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Chapter 1

Introduction

The goal of this project is to provide a proof for the equivalence be-
tween the categories of algebraic and analytic vector bundles on the
Fargues-Fontaine curve X where X will be viewed as a scheme. The
vector bundles on its analytic counterpart will only show up in the
guise of p-modules over some ring B which figures prominently in the
construction of X. Towards that goal we have to introduce a small
overview of the necessary auxiliary constructions (i.e. ramified Witt
vectors, the algebra B, etc.) with their most important properties that
we are going to need for the later proofs. This first chapter is just an
overview and we mainly refer to the work of Schneider, Fargues and
Fontaine [Sch17], [FF18], [FEF14].

In the next chapter we introduce the two functors. The first is alge-
braization which effectively is passing to a graded submodule and then
to the associated Ox module. The second one is analytization which
is composition of the compatible functors pullback, global sections and
inverse limit. Our main goal is to prove that they are inverse of each
other. This is done in the final chapter where we also show that the
functors commute with natural operations such as tensor product and
internal hom’s.

The main technical challenge is to work out the necessary result
from [KL15] (which are used as a blackbox in [FF'18]). They imply that
both functors are exact and that algebraization takes values in vector
bundles (and not just quasi-coherent modules as defined originally).
Having those results we can finally proceed to the last part, the proof
of the equivalence.



Chapter 2

Reminder on the Fargues-Fontaine
curve

In this chapter of the thesis we give a brief summary of the construc-
tion of the Fargues-Fontaine curve. For this, the notion of ramified
Witt vectors is of central importance.

So let us from now on, unless otherwise specified, fix the following
data:

(i) E|Q, a finite extension of the p-adic numbers.

(ii) O := Op its ring of integers and k its residue field with |k| = ¢
elements, ¢ = p/ a power of p.

(iii) A uniformizer 7 of O.

2.1 Ramified Witt Vectors

For this section on the construction of ramified Witt vector, we mostly
follow the book [Sch17] as our main source.

For any integer n > 0 we call

Oy (Xo, . Xp) = XE 47X+ 47X,

the n-th Witt polynomial.
Let B be an O-algebra and

BNo .— {(bo,bl, ) b, € B}

be the countably infinite direct product of the algebra B with itself (so
that addition and multiplication are componentwise). We introduce

4



Chapter 2

the following maps:

fp: BN — B
(bo,bl, ...)l%(bl,bg, )

which is an endomorphism of O-algebras

vp 1 BN — BN
(bo,bl,...) — (0,7’(’[)0,77'[)1, ),

which respects the O-module structure but generally neither multipli-
cation nor the unit element,

P, : B - B
(b(), bl, - ) —> (I)n(bo,. .. ,bn),

for n > 0, and

®p: BN — pho
b— ((I)Q(b), (I)l(b), (I)Q(b), c. )

Lemma 2.1.1. (i) If w1l is not a zero divisor in B then ®p is in-
jective.

(ii) If mlp € B> then ®p is bijective.
Proof. See reference [Sch17] Lemma 1.1.3. O

We will also need that there is a unique the map  : @ — O such
that
Po(Q2AN)) = (M A, . ..).

In fact the uniqueness follows from Lemma 2.1.1(i) because ®p is
injective (note that 7 is not a zero divisor in O). The existence of €2
follows from [Sch17], Proposition 1.1.5.

Then for any O-algebra B we use the canonical homomorphism
O — B to view Q()) also as an element in BY . Next we consider
the polynomial O-algebra

A= O[Xo, X1,... Yo, Y1, ...

in two sets of countably many variables. Then 71 4 is not a zero divisor

in A.
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Let X := (X, X1, ...)and Y := (Yp, Y1, ... ) in ANo. Asis shown in
[Sch17] page 11, there exist uniquely determined elements S = (.S, ),
P = (P, I = (I,), and F = (F,), in A such that:

D4(S) = B4(X) + BA(Y),
Dp(P) = Pa(X)Pa(Y),
Dy(I) = —Dy(X),

PA(F) = fa(Pa(X)),

or expressed coordinate-wise:

®,,(So,- - . ,Sn) = @ (Xos. .., Xp) + D (Yo, .., Y0),

O, (Py,....P,) = Pa(Xo, .., X0n)Pa(Yo, .., Y0),

o, (1Ly,. .., I,) = —P,(Xo,. .., X,),

O, (Fo,. .., Fp) = i1 (Xos - -, Xna1),
for any n > 0. And it is proven that S,, P,, F},, I, are actually poly-
nomials only in the given variables X,...,X,,.

Now returning to the general case let B again be an arbitrary O-

algebra. On the one hand we have the O- algebra (BN, +, - ) defined

as a direct product. On the other hand we define on the set Wg(B) :=
BN a new ‘addition’

(an)n + (bp)n == (Sn(ao,. .. ,an, boy. - ,bn))n

and a new ‘multiplication’

(an)n - (bn)n == (Pp(ag,. . . ,an, bo,- - . ,bn) )n-

Moreover, we define candidates for the neutral element of the new
operations

0:=(0,0,...) and 1:=(1,0,0,...).

Proposition 2.1.2. (i) (Wg(B),+,:) is a (commutative) ring with
zero element 0 and unit element 1; the additive inverse of (by)n
is (L(bo,- - - ,bn))n-

(ii) The map Q: 0O — (Wg(B),+,-) is a ring homomorphism, mak-
ing Wg(B),+,-) into an O-algebra.

(iii) The map ®p : Wg(B) — BYo is a homomorphism of O-algebras;
in particular, for any m > 0,

D, : WE(B) — B
(bp)n — Po(bo,- - - b))

6
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s a homomorphism of O-algebras.
(iv) For any O-algebra homomorphism p : By — By the map
We(p) : We(B1) = Wg(Bs)
s an O-algebra homomorphism as well.
Proof. See reference [Sch17] Proposition 1.1.8. O

Definition 2.1.3. (Wg(B),+,-) is called the ring of ramified Witt
vectors with coefficients in B.

Thus we can view Wg(-) as a functor from the category of O-
algebras to the category of O-algebras where the construction is B
BYo with "new” operations defined with the help of the polynomials
Sn, Pn, Fy,, I, and we are going to see that if we restrict our focus to
"good” algebras we get "good” algebras and an explicit description
of the elements in Wg(B). Towards that goal we first introduce the
necessary language and some important intermediate results.

On Wg(B) we have the maps

F: Wa(B) — Wg(B)
(bn)n —> (Fn(bO; .. 7bn+1))n

and

(bn)n — (0, bo, bl,. . )

which make the diagrams

Wg(B) —2 BNo Wg(B) —2 BN
Fl l »  and Vl lvB
Wg(B) —25 BN Wg(B) —2 BN

commute
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Proposition 2.1.4. The following hold true:
(i) F is an endomorphism of the O-algebra Wg(B) .
(i) V is an endomorphism of the O-module Wg(B) .
(iii) F(V (b)) = b for any b € Wg(B).
(iv) V(a- F(b)) =V(a)-b for any a,b € Wg(B).
(v) F(b) =b1 modnWg(B) for any b € Wg(B).
Proof. See reference [Sch17] Proposition 1.1.10. ]

Definition 2.1.5. We call F and V' the Frobenius and the Verschiebung
on Wg(B), respectively.

For any m > 0 define
Vm(B) = ZTn(‘/m) = {(bn)n € WE(B) cbp=... =b,,_1 = O}
We then have

We(B) = Vo(B) D Vi(B) D ... and ﬁ Vin(B) = 0.

m=0
By Proposition 2.1.4(ii) and (iv) every V,,(B) is an ideal in Wg(B).

Definition 2.1.6. Wg,,,(B) := Wg(B)/V,(B) is called the ring of
ramaified Witt vectors of length m with coefficients in B.

Proposition 2.1.7. (i) the map
We(B) = lim W, (B)
b (ZJr Vin(B))m,
is an isomorphism of O-algebras.
(i) The map ®y: Wg1(B) — B is an isomorphism of O-algebras.
Proof. See reference [Sch17] Lemma 1.1.13 and Exercise 1.1.14. [
Lemma 2.1.8. The map

T:B%WE(B)
b (b,0,...)

18 multiplicative.
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Proof. See reference [Sch17] Lemma 1.1.15. ]

Definition 2.1.9. We call T(b) € Wg(B) the Teichmiiller representa-
tive of b € B.

If B is a k-algebra then the ¢-Frobenius

B— B
b— b?

is an endomorphism of O-algebras. If this map is bijective, we call B
perfect.

Proposition 2.1.10. For a k-algebra B we have:
(1) Any b= (b,), € Wg(B) satisfies

F(b) = (b1), and b = F(V (b)) = V(F(b)) = (0,58, b7, ...).

(11) Vi (B) - Vo(B) C Viyin(B) for any m,n > 0.

(iii) T"Wg(B) C Vi(B)™ = 7™ 1Vi(B) C #™ 'Wg(B) for any m >
1.

(iv) The homomorphisms of O-algebras
We(B) = lim We(B)/7"We(B)

b (b+ 1" Wg(B))m

and

We(B) = lim Wg(B)/Vi(B)"
b (l;n +Vi(B)")m
are bijective.
Proof. See reference [Sch17] Proposition 1.1.18. ]

We get an even better picture for the case that B is a perfect k-
algebra.
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Proposition 2.1.11. If B is a perfect k-algebra then we have:
(i) mly,p) # 0 is not a zero divisor in Wg(B).
(ii) For any b = (b,), € Wg(B) and m > 1,

b+ Viu(B) = t(bo) + (b )+ ... + 7™ (bl Y + Viu(B).

(iii) Vi (B) = 7" Wg(B) = Vi(B)™. for any m > 0.
Proof. See reference [Sch17] Proposition 1.1.19. ]
Proposition 2.1.12. Let B be a field extension of k; we then have:

(i) Wg(B) is an integral domain with a unique mazimal ideal, which
is equal to V1(B) , and Wg(B)/Vi(B) = B.

(i1) If B is perfect then Wg(B) is a complete discrete valuation ring
with maximal ideal TWg(B) and residue class field B, and any
b= (b,), € Wg(B) has the convergent expansion

b= i (bl ")
n=0

Proof. See reference [Sch17] Proposition 1.1.21. N

Remark 2.1.13. If B is a field extension of k then the field of frac-
tions of Wg(B) has characteristic zero.

Proof. See reference [Sch17] Remark 1.1.22. ]

2.2 Gauss norms and the construction of the curve

Having an overview of the general construction of ramified Witt vec-
tors we are now going to reduce to the case where the ring of coeffi-
cients F'is a complete, perfect field containing £. And from there build
all the necessary auxiliary constructions to finally define X = Xgp
the Fargues-Fontaine curve associated with E, F'. For this section we
rely mainly on the works of Fargues-Fontaine [FF18|, [FF14]. So let’s
fix the following additional data and change of notation:

10
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(i) Let (F,|-|) be complete, non-trivially valued, non-archimedean,
perfect field containing k.

(ii) The Frobenius endomorphims on Wg(F') will be denoted by ¢.

(iii) The Teichmiiller lift will be denoted by [z] := T(z).

Then by Prop.2.1.12 Wg(F') is a complete DVR with maximal ideal
TWg(F), and Wg(F)[1] = Quot(Wg(F)) is a complete discretely
valued field with uniformizer w, valuation ring Wg(F') and residue
class field F. In addition any € Wg(F)[1] can be written as z =

> m"[x,], with uniquely determined z,, € F' and z, = 0, for all but
nez

finitely many n < 0.We indicate such an expansion by > #"[z,].
n>>—oo

Definition 2.2.1. Let
1
B':={x= ) ") € Wi(F)[=] | sup{la|} < oo}
n>>—oo "
be the subalgebra of "bounded” elements of Wg(F)[2].
Definition 2.2.2. For 0 < p <1 we define | - |, : B" = Rxq via

ST ally = sup{ Jral - o | n € Z)

n>>—0oo
Remark 2.2.3. B’ is easily seen to be a localization of Wg(Or), hence
an E-subalgebra of Wg(F)[2]. The maps | - |, are absolute values on
BY, i.e. multiplicative norms. They are usually called Gauss norms

(cf. [FF18], Proposition 1.4.3 and Proposition 1.4.9).
Definition 2.2.4. Forx = Y 7"[z,] € Wg(F)[%] we set

n>>—0o0
_ 0  for x =0
‘fE’o = q min{neZ|z,#0} , fOT‘ T 7£ 0

Definition 2.2.5. For any non-empty interval I C [0, 1] we define the
map |- |1 : B® = Rso U {0} by |z|; :=sup{|z|, | p € I}.

Lemma 2.2.6. (i) If I = [o,p] is compact interval with o # 0 then
|z|; = max{|z|,, |z|,} < oo for all z € B". |-|; is a norm on the
ring B®, in general only submultiplicative.

Proof. See reference [FF14] page 2. O

Definition 2.2.7. For any non-empty compact interval I C (0, 1] we
denote by By the completion of B® with respect to |- |r.

11
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Remark 2.2.8. (i) For any pair of compact intervals J C I C (0, 1]
the map idgs : (B°,|-|1) = (BY|-|;) is continuous. By the uni-
versal property of completions it extends to a continuous homo-
morphism vy; © Br — Bj which makes the following diagram

commutative
By
"

b s
B can B I

In particular, it 1s E-linear and uniqueness implies

Ly =Lk, gotyr for KCJCI.

(ii) From Lemma 2.2.6 the map idg : (B®,|-|1) — (B, |-|;) is norm
decreasing. This continues to be so after completion,
i.e. Ly1: Br — By is also norm decreasing.

Having established that |- |; is a norm on the ring B’ and the rela-
tions between the completions By, B; for compact intervals J C I C
(0,1). It can be proven that ¢ is injective and thus the construction

of the projective limit lﬁﬂ By can be viewed as corresponding to
0#A1<(0,1)
a system ordered by inclusion, satisfying

JCI= B;CBjy

Definition 2.2.9. Letting I run through the compact intervals in (0, 1),
we set

B:i= lim B;={(b)r €[[Br|V¥JCI : by=br}.
0£IC(0,1) 1

Lemma 2.2.10. For any J the projection B — By , b+ by 1s injec-

tive with image (| By as a subring of By. In particular B contains
JCJ'

Bb.
Proof. This is a direct consequence of the injectivity of ¢ . ]

Remark 2.2.11. We thus can view B as a subring of By contain-
ing B, for any O # J C (0,1) compact interval. This includes the
degenerate case J = {p} with p € (0,1).

12



Chapter 2

Returning to the Witt vector construction Wg(F)[Z] we are inter-
ested in the behaviour of the Frobenius homomorphism ¢. First of all
we fix the following notation. For I C [0, 1]

o) :={rt|rel}.

For example if [ = [0, p] is a compact interval then ¢(I) = [09, p1].
Recall from section 2.1 that Frobenius on Wg(F)[2] is given explicitly

by
o( Z "a,)) = Z " [xd]
n>—0oo n>—oo

It restricts to an E-linear automorphism of B’ satisfying

(Y mleal)l, =1 Y wad] lp = sup{p™ [n["}

n>—oo n>—oo

= sup{(p YOm ey =1 ) w[zallh,

n>=>—oo

for any 0 < p < 1. Consequently for any non-empty compact
interval I C (0.1)

o (B Y = (B o)

is an isometry. By the universal property of completion it extends to
an isometry

¢ o (B, |19 = (Boys | o)

Note that By is also the completion with respect to |- | because it is
a power of |- |; and hence defines the same topology.

These automorphisms fit together to an E-linear automorphism of
= @ Br given by
I

(o)1 = (e(br)r
Definition 2.2.12. Forn > 0 the we set
B~ = {be B | ¢(b) = 7"b}.

Note that ¢ is F-linear and hence B¥="" is an F-subspace of B.

13
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Lemma 2.2.13. The map

is injective and @ B¥=" is a gradded E-subalgebra of B

n>0

Proof. This is basic linear algebra. See also reference [FF18] Définition
6.1.1, Proposition 4.1.3. ]

Having introduced all the necessary auxiliary constructions we are
ready to give a definition of the Fargues-Fontaine curve.

Definition 2.2.14. The E-scheme
X = Xgrp = Proj(@B‘p:Wn)

n>0
15 called the Fargues-Fontaine curve associated with E, F'.

We now present the main properties of the curve and the rings
B, By.

Theorem 2.2.15. (i) We have
B* — (Bb)x
={) 7] IN€ Z, ax#0, Vn > N: |z,| < |ax]}.
n=N

(ii) We have
B~ =F.

(11i) For all n < 0 we have
B = 0.

Proof. See reference [FF18] Corollaire 1.9.5 , Proposition 4.1.1 , Propo-
sition 4.1.2. ]

Theorem 2.2.16. Let I C (0,1) be a compact interval.
(i) If F' is algebraically closed and f € Br\ {0} then there are
d
ai,...,aq € F and u € Bf such that f =u- [[(7 — [ai]).
i=1

14
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(i) By is a PID. If F is algebraically closed with
log, I N |F| =0 then By is even a field.

Proof. See reference [FF18] Théoreme 2.4.10, 2.5.1 and 3.5.1. O

Theorem 2.2.17. Assume that F is algebraically closed. Then for all
n>1and f € B~ \ {0} there are

t1,. .., tp € BP7"\ {0} such that f=1t,-... 1.

Such a factorization is unique up to multiplication with a unit u € E*
or permutation of the terms t;. Thus,

P = QB Be&="

n>0
a gradded factorial ring.
Proof. See reference [FF18] Théoreme 6.2.1 O
Theorem 2.2.18. For P as defined above and t € B¥=" \ {0}. We

have

(1) If F is algebraically closed then
Vi(t) = Proj(P/tP) C X = Proj(P)

consists of a single point, namely the homogeneous prime ideal
tP € Proj(P).

(11) Let us denote the homogeneous localization of P at {t" | n > 0}
by Pyy. Then
Ox(D(t)) = Py

1s a Dedekind ring which is not a field. If F' is algebraically closed
then it is a PID.

Proof. See reference [FF18] Théoreme 6.5.2(3) and (7), as well as
Proposition 7.2.1. ]

Theorem 2.2.19. (i) If F is algebraically closed, then X is the union
X = X1 U Xy of two affine open subschemes with X1 N X5 # ()
and such that for i € {1,2} the ring Ox(X;) is a PID that is not
a field. In fact, we can choose

X1 =D+(t), Xo=D(s) for any
tEPl\{O} , SEPl\tE

15
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(ii) The E-scheme X is :

(a) separated
(b) 1-dimensional
(¢) quasi-compact
(d) noetherian
(e) irreducible
(f) regular and hence normal
(iii)
H(X,0x)=E =P
(i) If F is algebraically closed and if | X| denotes the set of closed
points of X then there is a bijection
(B7"\A{0})/E" — | X]
tE* — tP €Proj(P) =X
Proof. See reference [FF18] Théoreme 6.5.2 and 7.3.3. O

And since we are going to need it later, we now provide a few,
somewhat technical, results.

Lemma 2.2.20. For a finite collection of compact intervals I, I, I, ..., I, C
(0,1) with I = Up_; I, the morphism

H Spec(By,) — Spec(By)
k=1

1s an fpgc covering, i.e. the homomorphism

B[ — HB]k
k=1

of E-algebras s faithfully flat.
Proof. See reference [FF14] lemma 7.15 O

We let |Y| € Max(B) be the set of ideals generated by a single
primitive irreducible element as in [FF14], Def. 2.1 and 2.2. Recall
from [FF14] page 11 that there is a norm function ||| : |Y] — (0,1).
The space |Y| lies at the heart of the theory of divisors for X. Later
on we shall need the following two results where we set

Yir={y e Y|yl eI}
for any interval I C (0,1).

16
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Theorem 2.2.21. For a compact non-empty interval I C (0,1), if
I = {p} with p & |F*| then By is a field, if not then the ring B is a
principal ideal domain with maximal ideals

{Bm | me |Y|}.
Proof. See reference [FF14] Theorem 3.9 O
Theorem 2.2.22. For the scheme X there is a bijection
Y]/e" = X
where | X| is the set of closed points of the curve.

Proof. See reference [FF14] Theorem 5.5 O

17
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w-Modules and construction of the
functors

In this chapter of the thesis we introduce the two relevant categories
and state the theorem that they are equivalent. We also construct
the two functors that give the equivalence. The actual proof of the
theorem is going to be presented in the next chapter.

3.1 ¢-Modules

Definition 3.1.1. A pair (M, ¢y) is called a p-module over B, if M
s a finitely generated projective module over B and oy : M — M 1s
a bijective map which is p-semilinear, meaning that it satisfies:

(i) for allm,n € M
pu(m+n)=ou(m)+ pu(n)
(ii) for allm € M,b e B
par(bm) = @ (b) - par(m)

Definition 3.1.2. A homomorphism F : (M,py) — (N, on) of o-
modules over B is a B-linear map F' : M,— N which commutes with
oy and . t.e. the following diagram is commutative

ML N

on | o

MLt N
We denote by ¢-Modp the category of ¢-modules over B and
¢- Homp (M, N) the set of p-module homomorphisms from M to N.

18
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Example 3.1.3. Let A\ € Q , X = % with h,d € Z, h > 1,
ged(h,d) = 1 and set M = B". Let oy be the unique p-semilinear
map which on the standard basis satisfies

€;) =
oM wle, if i=h

We denote the corresponding object of o-Modg by B(\).

3.2 Algebraization

We now define the first of the two functors. It is a functor from the
category of w-modules to the category of quasi-coherent Oyx-modules
given by the composition of two functors:

o-Modg > (M, py) +— M9 .= @MSOM:”" a graded P-module

n>0

— Far := M a quasi-coherent Ox-module

Recall that P = @,.,B¥~™ and X = Proj(P). Note that for F" :
M — N a ¢-module morphism and for any homogeneous element
e € M#v=™" we have

pn(F(e)) = Fleu(f)) = F(r"e) = 7" F(e).

Thus, for any n > 0, F restricts to M¥¥="" — N¥¥="" and induces a
morphism of graded P-modules

@ @
n>0 n>0
By (N) we denote the usual functor from algebraic geometry.
It will later be proven that actually F); is a vector bundle (See Cor.

4.2.4).

Remark 3.2.1. There is an analytic version of the Fargues-Fontaine
curve which is an adic space in the sense of [FAR18] chapter 1. It
is obtained from an open subspace of Spa(Wg(Opr), Wr(OF)) by mod-
ding out the action of the Frobenius. One can show that the category
of of the vector bundles on the adic curve is equivalent to p-Modpg

(c.f. [KL15] Theorem 8.2.22). We work with this algebraic descrip-
tion directly in order to avoid the language of adic spaces.
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3.3 Analytization

For the inverse direction we first need some intermediate steps. As
usual we set P, := @, _, B~

n>0

Lemma 3.3.1. For any compact interval I = [o, p] C (0, 1) with o # p
we have B¥=" N B # 0. In particular Py generates the unit ideal in
By.

Proof. Otherwise P, generates a proper non-empty ideal J of By,
which in turn must be contained in a maximal ideal J C m.

By Thm. 2.2.21 there is an element f € Bj such that m = (f) and
hence div(f) is a single point of |Y|;.

Choose an element g € By such that the support of div(g) € |Y|;
does not meet the p-orbit of div(f). This is possible because [ is
not a singleton. Then from Thm.2.2.22 and Thm.2.219 (iv) there is
homogeneous element ¢t € P, C J C m such that div(t) = div(g). But
t = fh for some h € B;. Implies that after restricting to |Y|; the
@-orbit of div(g) = div(t) = div(f) + div(h) meets div(f), giving us a
contradiction. O

Thus taking a homogeneous element of positive degree f € P, , we
have the following chain of inclusions F;) € Py C By C By y, which
give rise to a morphism of schemes

Spec(B1) 2 D(f) = Dy (f) € X

Using the last lemma we can glue these together to a morphism of
FE-schemes

g1 = Spec(Br) = JD(f) = [JD+(f) = X.
f f
Moreover if J C I then B; C Bj gives us a commutative diagram

Spec(By) -2~ X

QI,J\L %

Spec(By)

Now let F € Fibx be a vector bundle on X and denote

My :=T'(Spec(By), g;.F)
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the global sections of the pullback of F to Spec(By). Since Spec(By)
is an affine scheme M is a projective finitely generated module such
that M[ = g}

Remark 3.3.2. By Theorem 2.2.16 the ring Br is a PID. Thus M;
i1s actually free and finitely generated module over By

For J C I the commutativity of the above diagram gives
93 F =91 91F = M; = By ®p, M;
and thus we can define a Bj-linear map
My — M;=By®p, Mr : m—1@m. ()

This gives us a projective system of E-vector spaces indexed by the set
of non-empty, compact subintervals of (0,1). We denote its projective
limit by
M}' = 1&1’1 M[
I

This construction defines a functor Fiby — Modg. In order to get
the desired functor we also need a semilinear bijection ¢j,.. Towards
that goal we turn to the Frobenius map ¢ : B> — B? and recall that
it extends to an isomorphism ¢ : By — By

Lemma 3.3.3. The following diagram is commutative

Spec(Byr)) 2 x
SpeC(w)l gr
Spec(By)
with Spec(ypr) an isomorphism.

Proof. We are going to prove the commutativity by viewing it locally.
Solet n >0 and f € B¥~™ . Then the isomorphism ¢; : B — By
induces an isomomorphism of localizations

orf ¢ Bry = Bouye(r) = By = Ben).s

restricting to
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for b a homogeneous element of degree nm, i.e. f € B¥=™ b€ B¥=" ",
Calculating explicitly we find

o)  7™b b
gO(fm) o ﬂ-nmfm o fm

and thus
Waf‘P(f) = idpy,
[]

Thus for any I we get an isomorphism of quasi-coherent modules
9oy F = Specler) giF
on Spec(B,(r)). On global sections we get a B,p-linear isomorphism
M) = By @, Mi

Remark 3.3.4. Here B, is seen as a right Br-module using the map
¢r, i.e. for allb' € By, be By : b'-b="0b'yp(b)

The above construction is compatible with the inclusion of intervals,
meaning that for J C I the following diagram is commutative

M) — By @5, M

| |

M(y) —— By ®p, My

Here the vertical maps are the maps constructed before (see (x) after
Remark 3.3.2.)

Putting everything together we now have a canonical candidate for
a @r-semilinear bijection ¢y,

om, - Mp — B(p(I) X B, M]gM(p([)
m — 1®m

Lemma 3.3.5. ¢y, is a pr-semilinear bijection.

Proof. e Bijectivity
In order to prove that ¢,, is bijective we simply present its inverse

90;411 . By ®p, M — My

Z bi @ m; — Z @fl(bi)mi

22




Chapter 3

e pr-semilinearity
Additivity is inhereted from the bi-additivity of the tensor product.
Using Remark 3.3.4 we calculate

e, (bm) =1 ® bm = p;(b) @ m = ¢r(b)p,(m)
for all b € By, m € M;. O

Once again, this construction is compatible with the inclusion of
compact subintervals J C I. Thus taking projective limit one has

PMr Z:@@MI : M]: Z:@M[ — 1£1M¢(I):M]:
1 1 1

which is the sought after ¢-semilinear bijection on Mx.

It remains to be seen that (Mz, ¢, is indeed a ¢-module (i.e. M
is finitely generated and projective over B), and that the described
procedure is functorial (i.e. given a morphism of vector bundles it
naturally gives a morphism of p-modules). For the former we simply
quote [FF14] Proposition 7.14. And for the latter we observe that the
functor & +— Mgz is the composition of the 3 functors, pullback,
global section and inverse limit.

Theorem 3.3.6. The functors (M — Fyr) : @-Modp — Fiby and
(F = Mz) : Fibxy — p-Modg are well defined inverse equivalences
of categories.

Proof. See the calculations in the end of section 4.2 ]

Since we will need it in the next chapter we present a useful prop-
erty of Mx which relies on a topological variant of the Mittag-Leffler
condition.

Proposition 3.3.7. The canonical map
Mz ®p Br — MF
15 a bijection.

Proof. See reference [ST03] Cor.3.1 O
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Proof of the equivalence of
categories

After presenting all necessary concepts and notations, we are finally
ready to begin the proof of the main result of the thesis, the equiva-

lence of categories between p-modules over B and vector bundles on
X.

4.1 Exactness of the functors

One intermediate result that we need is the fact that algebraization
actually is a functor to the category of vector bundles. Towards that
goal we first need to prove that both functors are actually exact. We
start with a technical lemma

Lemma 4.1.1. Let [o,p] C (0,1) be a compact interval, 0 < ¢ < 1
and x € By, ). Then there are y € Blya ), 2 € By y1/a) with

(i) c=y+z2

}

W)WMMZWWﬂWWﬂ¢Hw1

(i68) 17 ()lg) S €7 - |ljo s

(v) 10(2)|op) < - [l

Here we see Biga ), Bis i) C© Bop) as subrings. Thus the addi-
tion makes sense. Furthermore go’l(B[qu]) = By pa) © By and
©( By p1/a]) = Bigap) € Blo,p), meaning that

¢ ' (y), ¢(2) € By

24



Chapter 4

Proof. From the density of B® C B, ) we can find a sequence M e
B’ with |£C(m)‘[g’p] < |£U|[U7p] and

ix(m) =z
m=0

in Bl . Then writing 2™ in its m-adic expansion

n>>—oo
we can define
(m) . _ nr,.(m) (m) . _ nf,.(m)
x, = E "z, and 7 = E " [x,"]
n)»ﬂm¢ﬁ?”26 n}»{m$ﬁﬁn<c

where g;(;”) 2" € Bt for any m > 0. We first show that

g3 ol
m=0

converges in By .

So let 0 < € < 1. Then there is M > 0 such that
for any m > M : |2™]|, < ¢
For m > M and |z{"| > ¢ we calculate
proe<p- eV < 2], <e < 1.
This gives us a lower bound n > ng := [—log(c)/log(p)] for n. Thus,

we can write
M= Y Al

n>ng, 2™ | >e
and calculate

m mn m aq " 7 m
LﬂwﬂsSuwwL¢M}=am{(;)pw¢>@

n>ng nzng

o4 o
<(=) -|z"™)],; since o’ <p
P p

o\ "
G-
P
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This means

m m m O-q o
2! )|[gq,p] = max{|z"" |, |21 )|p} < max { <?> ,1} s

This proves the claim that y converges in Bj,q,. Analogously we are
going to prove that

and for m > M we calculate

2 = sup {7 2]y = sup {p" [}V

™| <e 2™ | <c
< sup {p" -1 |957(¢m)|}1/q < e/, \x(_m) [1)/q < D/ . /g

|x£bm)|<c

where the strict inequality is derived from

o] = )] < @ o),

This means
|x(,m)\[a’p1/q] = max{\x&m)]g, ]x(,m)|p1/q} < max{e, eV Hay,
proving the claim that z converges in Bj, ,i/s. From the construction

we have v =y + z in B, , proving 7).

For 7i) we explicitly calculate

Ym >0 : |:C£_Lm)\[ | < |x(m)‘[a,p} < |37|[0,p]

o.p
and

= Yl < Si%{\x(l”)ho,p]} < |2l

|Z‘[a,p] < Sli%ﬂx(—m)ha,p]} < |[E|[O'7p] respectively

j maX{‘y [0}[0}7 ‘ZHO',p]} S |a’;|[0—7p]

and using
%[00 = |y + 2105 < max{|yljop0: |2]1001}

we get the reverse inequality proving the equality and thus ).
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For 7ii) and iv) we directly calculate for 7 € [0, p]

o (@), = sup {7204}

™| >c
— sup {7 |20 |2y < ¢ |20,

m

2™ |>¢

where the inequality is because ¢ > 1 <— 1 —¢ < 0= %q < 0 this
implies that after taking supremum over c

o (@ < ¢ T 1 S €7 2l
and thus
|90_1(y)|[o,p] < sup |90_1('7‘:g-m)> [0,p] < C%lxl[o,p]

m>0
Analogously we calculate for 7 € [o, p]

o™, = sup {r"z™)9}

\x%m) |<e

< sup {r"|zM ]}t = ),

|x£Lm)\<c
where once again the inequality is derived from

o1 = fal ol < )
After taking supremum over 7 we get
‘@(x(—m))ha,p] < Cq_1|37£m)‘[a,p] < Cq_1|x|[0,p]

and thus
() iopl < 5P |25 < T2

m=>0

[]

Now let M € ¢-Modp. Then for any compact interval I C (0,1)
we set

M= M ®p By

If J C I is a compact subinterval then By C Bj; and we get the
Br-linear map

ZdM®L : MI:M®BB]—>M®BBJ:MJ

where ¢ is the inclusion map. Note that idy; ® ¢ is again injective
because M is projective and thus flat. We just write M; C M.
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Lemma 4.1.2. Let I, J C (0,1) be compact intervals with I N J # (),
then the sequence:

0_>Bjuj—>B[@BJ—>B]ﬁJ_>O
b (b,b)
(b1, b2) > by — by

of B-modules is exact. i.e. when seen as subrings of Biny we have
B+ By = Bjny and ByN\ By = Bpyy.

Proof. See reference [FF1§| Prop.11.2.7 O

Remark 4.1.3. Since any M € @-Modpg s projective, hence flat over
B, Lemma 4.1.2 implies that we get an exact sequence of B-modules:

00— Mpy—>MaeM;y— My — 0
1.e. under the natural inclusions into M~y we have
Mp+My;=Mpn; and MpNM;= M,
Furthermore, we have the bijective map
¢ : M;p= M ®p By w;ﬂ> M ®p By = My ).

After composing with the inclusion map M,y C M), we obtain
for any n € Z the map

W_n'gp—l : M]—>M¢(I)QI

x> M) — o

Proposition 4.1.4. Let M € p-Modg and p € (0,1). Selting o :=
p?* there is N € N such that for alln > N the map

T =1 Mg g = Mig g (o, ptia)) = Mo

18 surjective.

Proof. First we fix a set of generators vy, ..., v, of M as a B-module.
It is also a set of generators of M; over By for any I C (0, 1) by viewing
B C By as a subring. Then we have the following pair of maps:

@Y M[O.7p1/q] — M[U‘?,p]

QO_l : M[O—q’p] — M[mpl/q]
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We choose A;; € B[07p1/q],Bi7]’ € Biga ) for all 1 <4, < m such that
forall1<j<m

o M) =) Ao
=1

m
p(vj) =Y Bijv
i=1
and set
C1 = Hlng |Ai,j‘[o,p1/q]

Cy = H%a_JX ‘Bi,j‘[aq,

9,

ol

Afterwards we pick N > 0 large enough such that for any n > N:

1/2)

plep <1 and  prleT) 0L < 1

which is possible because p < 1, and thus p" — 0. Given n > N we
set
n—1

¢ = (p" ey

and we explicitly calculate the following inequalities

(i) g>1 <= ¢—1>0= L >0and
O<p”*101§chl<1:>O<c<1

1—g
n n

(it) prci-co =p"er- (P a) T =p <]
1 1
(111) U_n “Cy - 1Cq_1 = p_nqz . (pn_lcl)q cCo = pn(q_q7>_q . C% - Co
< pNla—a?)-a . ¢! -co because n > N and ¢ — q% > 0
< 1 by definition of N

Now let w € M, ;. We inductively construct :Ugl), e ,xﬁfB € By, for

[ € Ny as follows:
e [ = 0: choose :Ego), e ,x£2> € M|, , such that

m

(0)

w = g T, v
i=1

o [ — [+ 1: write ZCZ(-Z) = yy) + ZZ-(Z) as in lemma 4.1.1 with the con-

stant ¢ constructed as above and set

m

[+1 n _ l —-n l
o™ =13 Al ) 7Y Bl
j=1 j=1
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Then we set

1-g _ _
e:=max{p" -ci-ci,0 "-cy-ct !}

and by (ii) and (iii) we have ¢ < 1. For [ > 0 we explicitly calculate

n —1 (1 n 1=g ! !
ko ZAZ'JQD 1(y§))|[07p] <ptic-ca -max|x§)\[0’p] < €-maX|x§.)

‘ s | [0,p]

where the first inequality is derived from lemma 4.1.1. Likewise we
calculate

-n ! —-n — l l
ko ZBLJ'%O(Z;)”[W] <o Moyl -mﬁx\x?ha,p] < 5-mﬁx|x§)\[g7p}

Putting both inequalities together we obtain
(1+1) (1+1)
[op] ’ ' ,p} |z

maxe{J 5
l

j=1

i

< 5-max|a:j

5 | [0.p]

Thus we inductively have
I+1)

max{\yf zl-(lﬂ)][a’p]} < e max ]xﬁm

J
for any [ > 0 and 1 < ¢ < m. This implies that for 1 < <m

0] | j0.4]

= iyy) and z; 1= f: ZZ-(Z)
1=0 1=0

converge in By, ). Whence meaning ¢~ '(y;) = Z o ( Y ) converges

in B[ 1 pl/a]- On the other hand we can use lemma 4.1.1 once again
to Construct the following bounds:

g l
e Wy <7 ol < m?X{!x§)|[o,p1}
< Cl%q el m&X{\ij ‘[a,p}}
J

showing that > ¢ 1(y (l)) converges in By, ;. Since |- |, < |- |5, and
=0

likewise | - |p1/q < |- ‘[Ul/q,pl/q] we have that Z 90_1(:‘/'(1)

(3
1=0
respect to the norms |- |, and |- |,1/s. But using Lemma 2.2.6 we have

) converges with

| ) |[a,p1/q] = maX{| : ‘pl/(H | : ‘U}
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implying that ) gp‘l(ygl)) converges in By, ,i/q

=0

Analogously one calculates for ¢(z;) = ng(zi(l)) that it doesn’t
1=0

only converge in Bjgq 51, but from 4.1.1 once again

l — l — l
(= Moy < € [y < e mae{]al o}

_ 0
<ALl mjax{m; )|[U>P]}
so that it also converges in By, ;. Since |-|gs < |- |00 and ||, < [+]5)
o0
we see that p(z;) = > gp(zz-(l)) converges with respect to the norms |+|,q
1=0

and |- |,. But using Lemma 2.2.6 we have

| loo,o) = max{] - [p, ] - |54}

oo

implying that ¢(z;) = > go(z/)) converges in B, ).

1=0
Thus

2= ¢ (p(2)) € B

Set . .

V= —W”ng Yy (vy) + szv] € M, yi/q
j=1 j=1
then




Chapter 4

where the first equality is from the definition of y; (as a sum on the [

variable) and A; ;, the second equality is from definition of xEZH)

z; (as a sum on the [ variable), the third is from using the z = y + 2

and

equation from lemma 4.1.1, using the definition of B;;, contracting
the [-summation and renaming the last two counters j to ¢, the fifth

equation is derived by adding and subtracting > ygo)vi ]
i=1

Theorem 4.1.5. Let
00— M — My — Mg —0

be an exact sequence of p-modules over B. Then there is N > 0 such
that for any n > N the sequence

0= M =M™ - M{" =0
of E-vector spaces is exact.

Proof. First we note that since the original sequence is a sequence of
¢-modules over B (i.e. morphisms commute with ), the restriction
to any homogeneous component produces a sequence

M = MY = M

of E-subspaces. Since the maps are the restrictions of the original
maps we get left exactness for any n > 0. Hence we only need to prove
the surjectivity statement, i.e. for any surjective map f : My — Mj
of ¢-modules over B we can find N > 0 such that the restricted map

fooMET o Mg

is surjective for any n > N.

1
Choose an arbitrary p € (0,1) and set o := p?°. By Proposition
4.1.4 applied to M; we get N > 0 such that the map

Y — Y SR Ml’[a’pl/q] — Mla[ffvﬂ]

is surjective for any n > N. Now let m € MY~ and consider the
following diagram

0 —_— Ml,[(f,pl/q] — MQ’[J’pl/q} —_— M3’[0’p1/q] R 0

(p_ﬂ.nl ()O_ﬂ.nl (p_ﬂ.nl

0 —— Ml,[ _— MQ’[ ] _— M37[07p} — 0

a,p] o.p
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with exact rows. Using the snake lemma we get the surjectivity of

(p:ﬂ'n SOZWn
My (o) = My 5 g

=T

In particular there is m’ € M;j ; ] with

[o,p

(f® idB[mpl/q])(m/) =m € M C M;’»p,[j;l/q]

and we more precisely calculate that since m’ € Mé’j ;ﬂ; o

p(m) =a"m' € My (s p1/q O My g1 = My 5 110 jea,5) = Mo foapi/a

and thus inductively
m € MQ,[Gq”,pl/q"}

for any n € N. And using that

ﬂ My (g p1/an) = ﬂ My = My
neN IC(0,1)comp.

thus
m' e My™" with  f(m) =m

[]

Corollary 4.1.6. The functor (M — Fyr) : p-Modg — QCohx is
exact.

—~—

Proof. We work locally. Let f € B#=™\ {0}. Then ‘FM‘D+(f) = M((;f)g.

Since the principle open sets D (f) cover X and (-) is exact on affine
schemes, we need to prove that the functor

alg
M — M(f)

is exact. As explained earlier (see proof of thm.4.1.5) the functor (-)*9

is left exact and homogeneous localization is even exact. Therefore it

alg

is only left to prove that (-)*9 preserves surjections. Solet g : M — N

be a surjective morphism of ¢-modules, and z € N, (a fl‘)q . Write z as

2= - for suitable m €Ny, y € N9,

fm

Then for any r € Ny

m—+r

fry e NTT
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and choosing r large enough, the restriction of g to the m +r homoge-
neous component is surjective by Theorem 4.1.5. In particular there
is z € M#=™""" such that g(z) = f"-y. Computing in the localization

we get
z N _ Ty oy
9(f) frer o fr+m T fm =7

Proposition 4.1.7. The functor (F — Mz) : Fibxy — o-Modp is
exact and the canonical Br-linear map By ®p My — M is bijective
for any compact interval I C (0, 1).

Proof. By thm.2.2.18 for any f € B?~"\ {0}, the localization Py is a
Dedekind domain. Using once again the inclusions of integral domains

[]

introduced in the analytization we have:
Py © Pr © By € Bry
In particular we can see By ; as a torsion-free P(y-module.

= By is flat because Py is Dedekind
= the functor (-) ®p,, Bry is exact
= the functor g; : QCohx — QCohgp..(p,) is exact

Global sections are an exact functor for quasi-coherent modules over
affine schemes. Thus it only remains to show that the projective
limit is exact as a functor which is true because our projective sys-
tem satisfies the generalized Mittag-Leffler condition of [ST03] chap.3
thm.A. ]

4.2 Proof of the equivalence of categories

Having proven that the two functors defined in chapter 2 (algebraiza-
tion, analytization) are exact, we proceed to prove that algebraization
is actually a functor to the category of vector bundles.

In particular both compositions are valid. In the last part of the
section we can explicitly calculate that the functors are inverse of each
other.

Proposition 4.2.1. If M € ¢-Modgp is a @-module, then there is
N € N such that ¥Yn > N there are finitely many elements of M=

which generate M as a B-module.
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Proof. Let p € (0,1). Using the notation of Proposition 4.1.4 we set
o = p? and let N € N be the natural number such that:

foralln > N:7"p—1 1 M, 4 — M, is surjective
Recall that the quantities ¢y, o, ¢, ¢ were defined by
C1 .= II%%X |Ai’j‘[g’p1/q]

¢z 1= max | Bi jlioa,0]

q

c:=(p" 1)t
g—1

0<e:=max{p"-c1-cq ,g—”.CQ.Cq—1}<1

n—1

where n > N is fixed. Choosing z € F with 0 < |z| < 1 sufficiently
close to ¢ we have

0<e = max{p”cﬂz\%,0_”02|z|q_1} < 1.

Recall that we have used a set of generators vy, vo, ..., v, of M over B
which also generate My, , over By, ;. Then we fix a k € {1,2,...,m}
and set

whence .
Z xz(o)vi = 0.
i=1

We define the following decompositions

2 =y 1O vy O = 5,5 12, 20 = 8- 2]

as a base case. As in the proof of Proposition 4.1.4 we inductively
define

lH = ZAwap Z Bi,jap(z](-l)) for all [ > 0.
j=1

As in the proof of Proposition 4.1.4 the element

m oo m

= —T ZZZ@ ,] UZ+ZZZJ(Z)UJ

j=1 1=0 i=1 j=1 1=0

converges in M, (/4] and satisfies

(=) ) = D v =
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meaning that ¢(u;) = 7" - ux. Mimicking the proof of thm 4.1.5 we
get

up € ﬂ M[an’puqn] = ﬂ M[ =M
neN IC(0,1)comp.
and thus u; € M¥=™" . We claim that ui, ..., u,, is a generating system

for My, , over Bj,,. To see this we compute the following upper
bounds:
For any 1 < i < m we have

d 1 n — -n
@) 1210 = | = T A ([2]) + 7" Bap([2]) o,y
< max{p"c|z|'9, 07 "co|2|1} = ' - |2] < |2].

Using the inequality (i) as well as the upper bounds in the proof
of prop 4.1.4 we have:

(i) |2V ]p < €1 maxg{|alV|} < e 2] < 2, forall 1> 1

n s es 1, (0 n _
() | =" 2 200 ') il = 1 = 7" X 0 (D) Akl < I,
]: 1=

i=1
. n Xm m — l — 1
(i) [ =" S0 S o (0)) - Aoy < €71 ma {51}
<tz < 2|, forall [>1.
By definition of u; we can thus write
ur = [2] - (yk - v + >, Cir - 03)
ik

with Cix € Bjyp with |Citlis, < 1 and [yl = 1. In fact, y; is a
unit in Bj, ;) because we can write it as

yp =1+ f
with

F=>"20 =m0 e W) Ay 127
=1 ]

and thus |f| < 1. Then from the geometric series we find the inverse

y =Y (DS

1=0

which converges in Bj, , and proves that y; is a unit. Now consider
the matrix C' = (Cj;) with diagonal elements Cy; = yi. From the
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definition of determinant we have

det(C) =y +x, wherey:= Hyk, v € By, with |z, < 1.
k=1

Note that y is still of the form 1+ e with |e[j, ; < 1 whence y is a unit
with |y| = |y~!| = 1. This implies det(C) =y - (1 + +) with [7] <1 so
that also det(C') is a unit and the matrix C' is invertible. Therefore

U1, Uz, . . ., Uy, are a generating set for M, , over By, .
Duplicating the previous process for p; = o, we get a second fam-
ily uf,ub,...,u), € M¥=™" that generates My o over Bl ,. Then

consider the B-linear map

F: B*™ s M
bl,bg,...,bm,b/, /,...,b, = biju; + bl
12 %2 m 11
i=1 =1

It remains to show that F'is surjective. Since the inverse limit is exact
in our situation (see [ST03] chap.3 thm.A) it suffices to show that the
induced Bj-linear map

Fr = F®idg, : B™ — M

is surjective for any compact interval I C (0, 1).
Choose [ € N large enough so that I C [p?,p? | =: J. If Fy is
surjective, then so is I = F; ® idp,. Thus we may assume

Now let

sothat 1= ¢'([p% ) = | ¢' () u | ¢'(12).

i=—1 i=—1 i=—1

By Lemma 2.2.20 the ring homomorphism

-1 -1
Br — H B@i(h) X H BW'(IQ)

i=—1 i=—1

is faithfully flat. Therefore it suffices to prove surjectivity after base
change to the product of rings. Looking at the components, it suffices
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to prove surjectivity after base change to By, for all possible i, j.
Then the claim is that {uy, us, . .., Up, uy, Uy, . . ., up, } generate Mi(r))
over B‘/Qi(lj)'

For j =1 and ¢ arbitrary we already have

m m

Miy) = Mfl Z Bru;) = Z %02'(311)“2 = Z Bgoi(Il)u;
t=1

using ' (u}) = 7"%}. Analogously for j = 2 and i arbitrary we have

m m

Mgoi(lz) MI2 Z B[QUt = Z gpi(BIQ)ut = Z B¢i<12)ut
t=1

t=1
using ' (ug) = 7" uy O

Lemma 4.2.2. Let f € P\ {0} be homogeneous of degree 1 and let
I =[o,p] C (0,1) be a compact interval with o < p?. Then the ring
homomorphism

P(f) — Pf — BLf

15 faithfully flat.

Proof. Firstly we show that the map is flat. For that we use the
injectivity of the homomorphism, which implies

By s torsion free over Py
= By is flat over Py, because Py is Dedekind

Let C := F be the completion of an algebraic closure, then by Kras-
ner’s lemma C' is algebraically closed.
We indicate by a subscript F' (resp. C') all rings and schemes defined
using F' (resp. C) as an input.
Then the inclusion
F—=C

of complete valued fields gives rise to ring homomorphims

Br,j — Bc,y
Br — BC’
Pr — P(]

and to a homomorphism of schemes

Xo— Xp
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fitting into a commutative diagram

Spec(BC’]) e XC

| J

Spec(Bpr) —— Xp

For the complete construction we refer [FF18| §7.6-7.7.
Furthermore we need some more results from [FF18], namely that
the morphisms

XC — XF
Spec(Ber) — Xe

are surjective (see [FF18], page 271 and Prop.6.7.1(2)). The commu-
tativity of the above diagram implies that

SpGC(BF,]) — XF

is surjective. Thus we can return to the case X = Xp (i.e. drop the
subscripts). By construction we have

91(D(f)) € Di(f)

and claim that it is actually an equality. So let

p € Spec(Br) with gr(p) € Dy(f)

and choose g € P\ {0} homogeneous of degree 1 with p € D(g). Then
by construction we have

g1(p) = pBryN Py € Di(g) = Spec(P)).

By means of contradiction assume p ¢ D(f) meaning that f € p and
hence
f

g € pBry N Py = gr(p)

contradicting g7(p) € D4 (f). Thus p € D(f) and gr(D(f)) = Di(f).
Altogether the surjection g; : Spec(By) — X restricts to a surjection

Spec(Bry) = D(f) = g7 (D+(f)) = D+(f) = Spec(Py))

implying that the flat ring homomorphism is P — By is in fact
faithfully flat. ]
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Now let M € ¢-Modp be a p-Module, I C (0, 1) a compact interval
and
M; = M ®p By.

For any of f € B¥~™ we define the Bj s-linear map
M((}l)lg) ®p,, Brf — My ®p, Bry = M ®p By ¢
mb— mKb

Theorem 4.2.3. Let M € p-Modg, I = [o,p] C (0,1) a compact
interval with p? < o and f € B¥="\ {0}. The canonical map con-
structed above is a bijection and M((;)lg) 15 a finitely generated projective
P py-module.

Proof. We first prove that the map is a bijection. For this we use
Proposition 4.2.1 and find a finite set of generators {wy, ws, ..., w,}
of M over B with w; € M?=™" for n chosen suitably large. Then we
can just see f ™w; as an element of M (a ;)g , thus finding preimages, and
thus proving the surjectivity.

Using Example 3.1.3 we consider the ¢-module B(n)™ and the nat-

ural surjection of ¢-modules

Denoting by M’ the kernel of this map we get a short exact sequence
0— M — Bn)"—M-—=0

of p-modules over B. By Theorem 4.1.5 and the exactness of homo-
geneous localization we get the exact sequence
1 (alg) m (alg) (alg)
0— (M)(f) — (B(n) )(f) — M7 =0
of Py-modules. Thus M((;f)lg) is a finitely generated P(p-module be-
cause the underlying P y-module in the middle is simply P(”J}). Fur-
thermore we have the following commutative diagram with exact rows

al m (al al
(MG @p,) Bry —— (B)™)\§ @p,, Bry — M @p, Bry — 0

| l !

0 — M} ®BI BLf _— (B(n)m)[ ®BI BLf EE— M[ ®BI B[’f — 0

40



Chapter 4

with the vertical arrows being the canonical homomorphisms defined
above. For the second row we use the formula

Nr ®p, Br.,f = N ®p Br;

and the fact that M is a flat B-module. We point out that the left
vertical arrow is surjective by the first part of the proof applied ti M’,

and the middle vertical arrow is bijective, too. In fact, the underlying

P p-module (resp. Br-module) of (B(n)m)(alg) (resp. (B(n)™)r) is just

(f)
Pr3) (resp. BJ'), and the vertical map is the canonical isomorphism

P}y ®p,, Bry = BY'y = Bf' ®p, Bi.

It now follows from snake lemma that the right vertical map is injec-
tive, completing the proof that the canonical homomorphism defined
above is a bijection.

Thus it only remains to prove that M (;flg) is a projective module.
Since projectivity can be checked after a faithfully flat base change
this follows from Lemma 4.2.2 because

M((}l)lg) ®p,, Bry =M ®p Bry

is a finitely generated projective Bj j-module (because M is a finitely
generated projective B-module). O

Corollary 4.2.4. Fy; € Fiby

Proof. Letting f € B¥=" \ {0} vary we have the open cover

X =JD.(f)
/

of X. For the restrictions to D, (f) we see from Theorem 4.2.3 that

—_ N —

~ (alg)
]:M‘D+(f) = M)

is associated to a finitely generated projective module over Ox (D,.(f)) =
Py). Thus F M’ Do) is a vector bundle over D, (f) and F); is a vector
bundle over X. H

For the next part we are going to need the following lemma from
commutative algebra
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Lemma 4.2.5. If Mis a finitely generated projective B-module, then
M ®p (=) commutes with limits. In particular if M is a p-module,and
(N7)r is a compatible family of Br-modules where I C (0,1) runs
through all compact intervals then

M ®p (@NI) = I&D(M ®p Ny).
I I

Proof. Consider the comparison map

M &p @NJ — lﬁn(M ®p Ny)
1 1

Any finitely generated projective module is a direct summand of a
finitely generated free module. Since the comparison map commutes
with finite direct sums we can reduce the problem to the case M = B.
In this case the statement is trivially true, because

im Ny = B ®p lim Ny — lim(B ®@p Nj) = lm N;
I I I I

is the identity map. []

We now proceed to explicitly calculate the compositions of the two
functors

o Mw— Fyr— M]:M :

Let M € o-Modp, I C (0,1) be a compact interval and f € B¥="\
{0}. Then Theorem 4.2.3 gives an isomorphism

Fu(Di(f)) ®p,, Bry = M ®p Br g

of P(y-modules. Letting f vary (using Spec(B;) = ; D(f) by Lemma
3.3.1) gives us
(Mz,)r = M &g B;

and therefore after taking inverse limits
My, = Jm(Mg, ) = Im(M ®p By) = M.
I I
Here we used Lemma 4.2.5 in the last step.

o Fio Mrw— Fyy: Wefix f € B\ {0} and F € Fibx a
vector bundle. Consider the Py -linear injection

alg alg
Mﬁ(f) — M;’f — Mg ;.
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Since ¢(f) = nf and 7 is a unit in B, the automorphism ¢ : B — B
extends to an automorphism ¢, : By — By. Likewise ¢y, : My —
Mr extends to a ¢-semilinear automorphism

QOM]_-J = QDM],-@QOJC . M]:,f = M}"@B Bf — MJ:@B Bf — M]:,f

We claim that »
alg ‘pr f
Mz )

for the first inclusion let z &€ M

=Mz

alg

F ()
M;Mf ~" such that z = f—n. This gives

There exist n > 0 and m €

©mr(m )_ ™m  m

Pre D = o e T

SOMJT =

Le. v € My o f ", For the reverse inclusion let x € M, C Mr ¢.
There exist n > 0 and m € Mz such that x = fn ThlS gives

m puz(m) — pux(m)

I = T g

i.e. pu,(m) =7m"m because Mr is a torsion-free B-module. Thus

_m alg
T = I € M]_-’(f),

proving the claim.
Using Theorem 4.2.3 we define the canonical F)-linear map

F(Dy(f)) = F(D(f)) ®p,, Bry = Mr ®p Bry = Mr
r—r®1

By construction of ¢/, the following diagram commutes

F(Di(f)) ®p, Bry —— Mry
id®gol l@M}-,f
F(D—F(f)) ®P(f) Bf,f i> M}',f

=1
Therefore the canonical map defined above takes values in M?jf S =

M;_.l% n meaning that we have a F(;)-linear map

F(DL(f) = M™ | = Far,(D(f)).
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The associated homomorphisms of module sheaves
—~—

— @ — al
Flp. = F D) = Mziy) = Farrp, )

)

glue to a homomorphism

F—).FMF

of Ox-modules. In order to see that it is an isomorphism, it suffices to
see that the Pg)-linear map F(Dy(f)) — Mjil‘? 7y 1s an isomorphism.
Using lemma 4.2.2 (for suitably chosen I) it is enough to see that the
map

!
F(D+(f)) ®P(f) BIaf — M;—',%f) ®P(.f) Bl’f
obtained after base change is bijective. However, composing this map
with the isomorphism

al
Mfa%f) ®py) Bry— Mr1®p, Bry = F(Dy(f)) QP By y
of Theorem 4.2.3 gives the identity.

4.3 Commutativity of the functors with tensor
products and internal hom’s.

In this final section we will show that the two functors commute with
tensor products and internal hom’s.

Firstly we turn our attention to tensor products. And define the
tensor product of two p-modules as follows.

Definition 4.3.1. Given two p-modules (M, par), (N, on) over B we
define their tensor product in the category p-Modg as (M @p N, oy &

eN).

Here M ®p N is finitely generated projective as a tensor product of
finitely generated projective modules. On simple tensors the ¢ @ o
is given by

(o @ n)(m @p n) = pu(m) @p ¢n(n)
and has inverse (¢,; ® py'). Finally we calculate
(ear @ on)(b(m @ n)) = (om @ en)(b-m @ n) = par(b-m) @ pn(n)
= (¢(0) - err(m)) @ pn(n) = @(b) - (prr(m) @ pn(n))
= ¢(b) - (pu®pn)(m @ n),

showing that ¢y ® o is semilinear.
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Proposition 4.3.2. Algebraization commutes with tensor products.

Proof. Let M, N € o-Modg. Then there is a natural homomorphism
of P-modules MY @p N — (M ®@p N)% satisfying r @ y — 1 ® .
Applying (-) we get a homomorphism of Ox-modules

— @ —

Malg Rp Nalg ~~
—~~— —~~— —

M9 Koy N = Fy, Rox FN = Fussy = (M ®p N)alg.

In order to see that it is an isomorphism it suffices to see that for any
f € B¥7"\ {0} the homomorphism of P -modules

(Far @0, FO)(DL (1) =
M5 ®p,, N = (M ®p N){) = Fuspn(D+(f))

is bijective. Using lemma 4.2.2 for a suitably chosen compact interval
I, it is enough to see this bijectivity after base change to Br ;. But
the map one obtains is the isomorphism

alg alg ~ alg alg
Mgy ®@py) Nijy ®py) Bry = (M(f) ®p,, Br.s) s, (N(f) ®p,, Br.y)
=~ (M ®p Bry) ®p,, (N ®p Bry) = M ®p N ®p Bry
~Y al
from Theorem 4.2.3 applied to M, N and M ®p N. ]
Proposition 4.3.3. Analytization commutes with tensor products.
Proof. Since pullback and the (N) construction on affine schemes com-
mute with tensor products, we have:

Mreo g1 = Mr1®p, Mgr.
Therefore, Proposition 3.3.7 gives

M]-‘®0Xg,] = Mz ®p, Mg = Mr ®p Br ®p, Mg1 = Mr ®p Mg 1.
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Because of Lemma 4.2.5 we obtain
Mrso,¢ = Im(Mrg,, g1) = Im(Mr ®p Mg 1)
I I

= Mr@plim Mg ; = My @p Mg
I

Next we turn our attention to internal hom’s.

Definition 4.3.4. Given two w-modules (M, par), (N, on) we define
their internal hom in the category of p-Modg as

Hom(M, N) := Hompg(M, N)
as a B-module with the @-linear automorphism

CHom(M.N) = (f > ono foleom)).

Here Homp (M, N) is again a finitely generated, projective B-module.
To see that one uses the characterization of finitely generated projec-
tive modules as direct summands of finitely generated free modules
and commutativity with finite direct sums of both arguments of in-
ternal hom’s. Moreover, Homp(B, B) = B. For the map @om(ir,n),
the additivity of Yrom(as,n)(f) is a direct consequence of the fact that
it is the composition of three additive maps. And for the scalars one
calculates

Crom(m.N)(f)(bm) = o o f o oyt (bm) = on(f(prf(bm)))

= on(f(e'(b) - o3 (M) = en(e ' (b) - fnf (M)
= (') - en(f(ear (M) = b+ Prom,n) (f)(m).

This shows that the map @om(w,n)(f) is B-linear and therefore
¢YHom(M,N) 18 well defined. Furthermore it is additive since:

Crom(m, ) (f + 9)(m) = @n o (f 4+ g) o (ou) " (m) = on(f + g(py (m)))
= on(f(enr (M) + g(err (M) = en(fea (m))) + en(g(ey (m)))
= Phom(M,N) (f) (M) + Prom(r,n)(9) ().

For the semilinearity one calculates

PHom(1,N) (0f) (M) = @ o (bf) o (ear) " (m) = @n(bf (@, (m)))
= (b) - on (f (3 (m))) = (¢(b) - CHom.N)(f))(m).
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As for the surjectivity of @mom(a,n), given g € Homp(M, N) one de-
fines f := (¢on) ! o go py and checks as above that f is B-linear.
Now

erom(M.N) ((Pn) o gopn) =eno (pn) Togopno(pn) =g

As for the injectivity, given f € ker(¢uom(m,n)) We have

on o fopy =Paomn(f) =0 < f=(on) " 000py =0.
A special case of internal hom which warrants mentioning is the dual.

Definition 4.3.5. Given a p-module (M, y) we define its dual -
module as

M"Y := Hom(M, B) := Homp(M, B)
oy frrpofolen)™
We now prove the commutativity of the two functors with the in-
ternal hom’s. Towards that goal we use a formula relating internal
hom’s, duals and tensor products. In our particular case they have
the form
Hom(M, N) = Homp(M,N) = MY @z N
_HOII](.F, g) = HomOX (Fa g) = f\/ Xox g.
Since commutativity with the tensor product is already proven, com-

mutativity with internal hom’s can be reduced to commutativity with
the dual. For algebraization we do not need this trick.

Proposition 4.3.6. Algebraization commutes with internal hom’s.

Proof. We need to show

- @ @—

(Homp(M, N))™ = Homey (Far, F).

Let f € B#=™\ {0} be arbitary, n > 0 and g € Hompz(M, N)¥="" i.e.
ON OGO goj_\/[l = n""g. Then

ﬁ . alg alg
o Mgy = Nig)
r o, 9(?
fm fn m
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is a well-defined Py-linear map. Thus we get a Py)-linear map

al al al
T: Hompg(M, N)(fg)’ — Homp(f)(M(f)g, N(ff)
where the left hand side is
- —
Hom (M, N){(if = Homp(M, N)"™ (D, (f))

and the right hand side is

al al
HO_mP(f)<M(f)ga N(f)g) = MOX(]:M,FN)(D+(J[)>
Applying (N) to T and letting f vary we obtain a homomorphism of
O x-modules

- @ @—

Hom (M, N)* — Homey, (Far, Fn)-

In order to see that it is bijective it suffices to see that T' is bijective.
By Lemma 4.2.2 it is enough to show the bijectivity of T" after base
change to By s for a suitably chosen compact interval I. But after the
base change T' is the isomorphism

Hom (M, N)?Jlf; ®p,, Bry = Homp(M,N) @p B j =
HomBl’f(M ®p Br, N ®@p Br ) =
al al ~

al al
Homp,, (M(z), Nigy)) ®ry, Brs
obtained from Theorem 4.2.3 applied to M, N and Homg(M, N) [

Proposition 4.3.7. Analytization commutes with internal hom’s.

Proof. Using the above formula relating internal hom’s, duals and ten-
sor products Proposition 4.3.3 gives

Myon(F.g) = MFveo, ¢ = Mrv @p Mg.

We recall that analytization is the composition of inverse limit, global
sections and pullback. Pullback and the (:)-construction on affine
schemes commute with duals. i.e.

(*)

Mz ;= (Mz)" = Homp,(Mz;, Bf) = Homp, (Mr ®p By, By)
= HOIIlB(M]:, BI)
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where the (%) isomorphism is the one obtained from Proposition 3.3.7.
Now we calculate

M]:v = I'LH(M]:V’I) = @((M]:J)v) = YLHHOIHB(M]:, B_r)
I I I

= HomB(Mf,@BI) = HOmB(M]:, B) = (M]:)v
1

and thus

Myom(F.g) = (Mr)" @5 Mg = Hom(Mr, Mg)
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