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Abstract

Let k be a perfect field of positive characteristic p. We study formal Qp-vector spaces
over k, i.e. Qp-vector space objects in the category of formal k-schemes. This is
inspired by Weinstein’s work [19] in equal characteristic and by questions on Banach-
Colmez spaces asked by Le Bras (cf. [8, Question 7.16]). Our main result is that,
if F is a formal Qp-vector space represented by a ring R = k[[X

1/p∞

1 , . . . , X
1/p∞

d ]] of
fractional formal power series, then F is isomorphic to the universal formal cover
G̃ of a p-divisible group G over k in case d = 1. For higher dimensions, we extend
Drinfeld’s equivalence between p-divisible groups and Tate k-groups. We then prove
that, if d ≥ 2, then, under a natural continuity condition, F is isomorphic to the
universal formal cover G̃ of what we call a generalized p-divisible group G. We also
briefly discuss the étale case and how to deal with infinite dimensional Qp-Banach
space representations of Gal(k/k).

Zusammenfassung

Sei k ein perfekter Körper der positiven Charakteristik p. Wir untersuchen for-
male Qp-Vektorräume über k, d.h. Qp-Vektorraumobjekte in der Kategorie der
formalen k-Schemata. Inspiriert wird das durch die Arbeit [19] von Weinstein in
gleicher Charakteristik und durch Fragen von Le Bras über Banach-Colmez-Räume
(vgl. [8, Question 7.16]). Wird ein formaler Qp-Vektorraum F durch einen Ring
k[[X

1/p∞

1 , . . . , X
1/p∞

d ]] gebrochener formaler Potenzreihen repräsentiert, so besagt
unser Hauptresultat, dass F im Fall d = 1 isomorph ist zur universellen formalen
Überlagerung G̃ einer p-divisible Gruppe G über k. Für höhere Dimensionen ver-
allgemeinern wir eine Äquivalenz von Drinfeld zwischen p-divisiblen Gruppen und
k-Tategruppen. Im Fall d ≥ 2 zeigen wir dann, dass F unter einer natürlichen
Stetigkeitsbedingung isomorph ist zur universellen formalen Überlagerung G̃ einer
sogenannten verallgemeinerten p-divisible Gruppe G. Wir diskutieren auch kurz den
étalen Fall und wie man unendlichdimensionale Qp-Banachraumdarstellungen von
Gal(k/k) behandeln kann.
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Introduction

Let p be a prime number, and let k be a perfect field of characteristic p. If K is a
non-Archimedean local field of characteristic p whose residue field is contained in k, then
Weinstein introduced and studied formal K-vector spaces over k in [19]. These objects
are used in studying the Lubin-Tate tower and its group actions in equal characteristic.

Passing to mixed characteristic, formal Qp-vector spaces over k arise naturally as uni-
versal formal covers G̃ = lim←−pG of p-divisible groups G over k. Implicitly, this functor
already appears in the work of Tate, [16]. It was studied systematically by Fontaine (cf.
[5, Chapitre V, §1]), and more recently by Scholze and Weinstein, who also introduced its
name (cf. [14, §3.1]). Universal formal covers of p-divisible groups over valuation rings of
perfectoid fields of mixed characteristic play a prominent role in p-adic Hodge theory and
in the theory of Banach-Colmez spaces. In [8], for example, Le Bras asks if any repre-
sentable Banach-Colmez space is isomorphic to the universal formal cover of a p-divisible
group (cf. [8, Question 7.16]). Fargues partly answers this question by establishing an
equivalence of categories between certain classes of p-divisible rigid analytic groups and
Banach-Colmez spaces via the universal formal cover functor (cf. [4, Théorème 3.3]). In
a much more down-to-earth situation, a similar question was asked by Kedlaya in the
language of perfect formal group laws over k (cf. [7, Question 2]).

With these questions in mind, we set up a general framework to study formal Qp-vector
spaces over k. We always assume our base field k to be discrete as a topological space. We
define a formal Qp-vector space F over k to be a representable functor from the category
of prodiscrete k-algebras into that of Qp-vector spaces (cf. Definition 4.1). By abuse of
notation, we write F = Spf(R) if R is the representing algebra of F . It is known that,
if G is a connected p-divisible group of dimension d over k, then F = G̃ is represented
by R = k[[X

1/p∞

1 , . . . , X
1/p∞

d ]] (cf. [14, Proposition 3.1.3.(iii)]). On the other hand, if G
is an étale p-divisible group over k, then F = G̃ is represented by C

(
T [1/p], k

)Γ, where
Γ = Gal(k/k), and T [1/p] denotes the group T (G)[1/p](k) of k-points of the rational
Tate module T (G)[1/p] of G (cf. Example 3.4).

In order to recognize a formal Qp-vector space over k as a universal formal cover, we rely
on a second description of G̃ = Spf(R). Namely, there is an isomorphism G̃ ' T (G)[1/p]
of formal k-schemes (cf. Proposition 3.1.(ii)), where T (G) = lim←−nG[pn] is the Tate
module of G viewed as a profinite affine group scheme over k. In the connected case, the
representing algebra of T (G) is R/(X1, . . . , Xd) (cf. Proposition 3.5).

Coming back to our motivating question, let us first consider a formal Qp-vector space F
represented by a k-algebra of the form R = k[[X1/p∞ ]], where X = (X1, . . . , Xd). Just as
in the classical situation, we find that F is given by a family G(X,Y ) ∈ k[[X1/p∞ , Y 1/p∞ ]]d

of d fractional formal power series G = (G1, . . . , Gd) in 2d variables X and Y satisfying
the usual axioms of a d-dimensional commutative formal group law (cf. Definition 1.20
and Proposition 1.21). Objects of this kind were coined perfect formal group laws by
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Kedlaya in [7]. The above description of the Tate module in the connected case suggests
to analyze whether or not the ideal (X) ⊆ R is a topological Hopf ideal for the Hopf
structure induced by F . In contrast to classical formal group laws, this does not directly
follow from the axioms because a perfect formal group law can in principle be of the form
G(X,Y ) = X + Y+ mixed lower terms.

In case d = 1, we show, by elementary methods, that this does not happen. In fact, the
law of associativity implies that G(X,Y ) = X + Y+ mixed higher terms (cf. Propo-
sition 4.12). Consequently, the ideal (X) ⊂ R is a topological Hopf ideal, and H =
Spec

(
R/(X)

)
is an affine group scheme over k (cf. Corollary 4.15). Using only power

series methods, we can show that H is a Tate k-group in the sense of Drinfeld (cf. [2, Def-
inition 3.1.1], as well as our Corollary 4.17). If G denotes the corresponding p-divisible
group under Drinfeld’s equivalence (cf. [2, §3.1.3], as well as our Corollary 2.11), we
obtain F ' G̃, giving a positive answer to our motivating question in the case d = 1 (cf.
Corollary 4.18):

Theorem. For any formal Qp-vector space F = Spf
(
k[[X1/p∞ ]]

)
of dimension d = 1,

there is a p-divisible group G over k whose universal formal cover is isomorphic to F .

If d ≥ 2, then we prove that the ideal (X) = (X1, . . . , Xd) ⊆ R need not be a topological
Hopf ideal even for formal Qp-vector spaces isomorphic to universal formal covers of p-
divisible groups, simply by considering the p-divisible formal group law of µp∞ × µp∞ ,
and changing it by a suitable fractional coboundary (cf. Corollary 4.19):

Theorem. There are formal Qp-vector spaces represented by k[[X1/p∞ ]] with d ≥ 2 such
that the ideal (X) = (X1, . . . , Xd) generated by the variables is not a Hopf ideal of
k[[X1/p∞ ]].

Surprisingly, it is not hard to construct other open ideals of definition (X)  I ⊆ R that
are topological Hopf ideals (cf. Corollary 4.21). Consequently, we obtain an affine group
scheme H = Spec(R/I) over k, and it follows, from general results on commutative
affine group schemes over k, that H is p-adically separated and complete, i.e. that the
canonical map H → lim←−n coker(H

pn−→ H) is an isomorphism (cf. Proposition 4.22).
Moreover, multiplication with p is injective on H because this is true on F = Spf(R).
Thus, H satisfies the axioms of a Tate k-group, except for the finiteness of H/pH =

coker(H
p−→ H), which we are unable to settle.

Fortunately, it turns out that Drinfeld’s equivalence extends under these relaxed con-
ditions (cf. Proposition 2.10) to give an equivalence with a category of what we call
generalized p-divisible groups (cf. Definition 2.1). These are defined almost in the same
manner as their classical counterparts, but without the usual finiteness conditions on
the torsion points. The universal formal cover can also be defined for the generalized p-
divisible group G corresponding to H, and gives, under a natural continuity assumption
on the multiplication by p, an isomorphism F ' G̃ as formal Qp-vector spaces over k,
pointing towards a positive answer to our motivating question also in the case d ≥ 2 (cf.
Corollary 4.23):
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Theorem. Let d ≥ 2, and let F = Spf
(
k[[X

1/p∞

1 , . . . , X
1/p∞

d ]]
)
be a formal Qp-vector

space over k. Assume that, for any f ∈ mR, we have limn→∞[pn](f) = 0. Then, there is
a generalized p-divisible group G over k with G̃ ' F .

We also give a tentative definition of an étale formal Qp-vector space F over k (cf. Def-
inition 4.2). In Proposition 4.7, we give a criterion that ensures that F ' G̃ for some
étale p-divisible group G over k. We know that the k-points G̃(k) of the universal formal
cover of an étale p-divisible group G over k is a finite dimensional Qp-vector space with
a continuous action of Γ = Gal(k/k) (cf. Corollary 3.2). In order to construct examples
of such beyond p-divisible groups, we show that the functor G̃ admits a straightforward
generalization to a functor F = V , where V is any continuous Qp-Banach space repre-
sentation of Γ. In the infinite dimensional case, the functor F is not representable in
the strict sense; however, we show that introducing strict k-linear inductive limits on a
certain space of uniformly continuous maps allows us to compute it on discrete k-algebras
(cf. Lemma 4.9). The use of these topologies seems a novel aspect of our work that might
deserve further consideration.

We provide a brief overview of each of the chapters:

In Chapter 1, our article starts with a background material on commutative affine group
schemes over a field k, with a particular focus on profinite group schemes. It is in this
chapter where we study prodiscrete k-algebras, and fix our definition of formal schemes
accordingly. Next, we introduce and discuss the notion of strict k-linear inductive limits
on linearly topologized k-vector spaces, which runs quite parallel to Schneider’s treatment
of the notion for locally convex topological spaces in [12, §5, E2]. We finish the chapter
by studying fractional formal power series rings and perfect formal group laws over k.

In Chapter 2, by loosening some finiteness condition in the definition of a p-divisible
group, we start by defining generalized p-divisible groups over a field k. Assuming k is
perfect of characteristic p > 0, we generalize Drinfeld’s equivalence (cf. [2, 3.1.3 in §3])
of categories between the category of p-divisible groups over k and the category of Tate
k-groups accordingly. As we have discussed above, both the classical equivalence and
its generalization are vital in establishing the main results Corollary 4.18 and Corollary
4.23, respectively.

In Chapter 3, we study the universal formal cover functor on generalized, as well as
on classical, p-divisible groups over k, mostly making use of its relation with the Tate
modules (cf. Proposition 3.1). We also prove that the universal formal cover functor
on the category of p-divisible groups up to isogeny over a perfect (discrete) field k of
characteristic p > 0 is fully faithful.

In Chapter 4, we obtain most of our new results we have been describing above.

3



Acknowledgments

First and above all, I wish to express my sincere gratitude to my supervisor, Prof. Dr. Jan
Kohlhaase, for the constant, encouraging, generous and inspiring mathematical support
he has been providing me with, without which the accomplishment of this work would
simply be impossible. I cannot stress enough that his kind and patient tone in his
comments and in our discussions had the biggest effect on my mathematical progression.
I specially thank him for his help in structuring Abstract and Introduction of the article.

Secondly, during all my years in Essen, I truly enjoyed to be surrounded by friends I
can turn to for any sort of problem. Those include most of the former and current PhD
fellows within the ESAGA group, among whom are Alessandro, Antonio, Chirantan,
Felix, Gabriela, Jonas, Martin, Nils, Paulina, Ran, and Robin; as well as a few outside-
the-department friends, Alen, Horbi, and Lucia. I thank, and love, them all.

And lastly, I thank the external referee for their careful evaluation of the document.

4



1 Foundations

In this chapter, we collect necessary foundations, and set down notational conventions.
Let k be a field (endowed with the discrete topology throughout the article).

1.1 Recalls on affine group schemes

Denote by GSchaff
k the category of commutative affine group schemes over k, and by

Hopfk the category of cocommutative k-Hopf algebras. The category GSchaff
k is Abelian

(cf. [18, Ex 12, §16]), and there is an equivalence

Spec : Hopfk → GSchaff
k

of categories (cf. [18, Theorem in §1.4]). Since objects of interest will always be
(co)commutative, we prefer to drop these adjectives from the writing although some
of the results we will be giving are more generally true for also non-(co)commutative
setting.

Given a map f : G→ H of affine group schemes over k, the kernel of f is defined as the
group functor taking a k-algebra R to the group ker

(
G(R)→ H(R)

)
, and is represented

by G×H 1. Assuming G = Spec(A) and H = Spec(B) with A,B ∈ Hopfk, the cokernel
coker(f) of f is represented by the G-invariant subalgebra BG of B, which is given by

BG = {b ∈ B | (ϕ ◦ idB) ◦∆ = 1⊗ b ∈ A⊗k B},

where ϕ : B → A is the algebra map in Hopfk corresponding to f , and ∆ : B → B ⊗k B
is the comultiplication of B (cf. [1, Theorem 1 in §6, Chapter II]).

Observe that, if (Gi)i∈I is an inverse system of affine group schemes Gi = Spec(Ai) with
Ai ∈ Hopfk, then it formally follows that

lim←−
i

Gi = lim←−
i

Spec(Ai) ' lim←−
i

Homk(Ai, •) ' Homk(lim−→
i

Ai, •) ' Spec(lim−→
i

Ai),

where Homk denotes (here and throughout the whole text) the Hom space in the category
of k-algebras. This implies that the category GSchaff

k has projective limits. Moreover, the
anti-equivalence between GSchaff

k and Hopfk restricts to an anti-equivalence between the
full subcategory GSchfin

k of finite group schemes over k and the full subcategory Hopffin
k

of finite dimensional k-Hopf algebras. We then call a projective limit G = lim←−i∈I Gi ∈
GSchaff

k of finite group schemes Gi ∈ GSchfin
k a profinite group scheme over k, and denote

by Pro(GSchfin
k ) the category of profinite group schemes over k. The representing k-

algebra A = lim−→i∈I Ai ∈ Hopfk of G is then an inductive limit of finite dimensional
k-Hopf algebras Ai, which we dually call an indfinite k-Hopf algebra. We denote the
category of indfinite k-Hopf algebras by Ind(Hopffin

k ).
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In the rest of the text, we often refrain from indicating the indexing sets of the limits, and
suggest instead that they should become clear from the corresponding lowercase letters
in place. For instance, a projective limit lim←−iAi should be simply understood to be taken
over an indexing set I.

Now, we want to describe the morphisms in the category Ind(Hopffin
k ). Let B = lim−→j

Bj

and A = lim−→i
Ai ∈ Ind(Hopffin

k ), and consider a map B → A. The universal property of
the inductive limit gives maps Bj → A for each j ∈ J , and upon identifying the image
of the canonical map Ai → A with a finite dimensional k-Hopf subalgebra of A, we view
A as a filtered union of finite dimensional k-Hopf subalgebras Ai. This implies that each
map Bj → A factors through an injection Ak ↪→ A for some k ∈ I. Moreover, the limit
over I can be taken over the indices i such that i ≥ k (cf. [9, Theorem 1, §3, Ch IX]) to
give us

Homk(B,A) ' lim←−
j

lim−→
i

Homk(Bj , Ai).

This implies an analogous relation for the Hom set in GSchaff
k . Consequently, assuming

G = lim←−iGi and H = lim←−j Hj in Pro(GSchfin
k ) are represented respectively by A and B

in Ind(Hopffin
k ), it follows that

Hom(G,H) ' lim←−
j

lim−→
i

Hom(Gi, Hj),

where the plain Hom symbol (without sub- or superscript) is always meant to denote the
set of natural transformations between k-group functors.

The category Pro(GSchfin
k ) of profinite group schemes over k as a full subcategory of

GSchaff
k is completely characterized by its underlying topological space in the following

sense:

Proposition 1.1. An affine group scheme over k is profinite if and only if its underlying
topological space is profinite.

Proof. Let G = Spec(A) ∈ Pro(GSchfin
k ), so that A = lim−→i

Ai ∈ Ind(Hopffin
k ) is a filtered

union of finite dimensional Hopf k-subalgebras Ai of A. We want to show that Spec(A)
is profinite. By [15, Tag 0905], it suffices to show that every prime ideal of A is maximal.
Let p be a prime ideal of A, and let m be a maximal ideal of A containing p. Since Ai is
finite dimensional over k, every prime ideal of Ai is maximal. So the prime ideals p∩Ai
and m∩Ai of Ai are both maximal, and must coincide by maximality. But A is a union
of Ai, so we must have p = m, and p is maximal.

Conversely, assume that G = Spec(A) is an affine group scheme such that Spec(A) is
profinite. Use [18, 2nd Theorem in §3.3] to write A = lim−→i

Ai as a filtered union of finitely
generated Hopf subalgebras Ai of A, so that each inclusion Ai → A is faithfully flat by
[18, Theorem in §14.1]. We would like to see that each Ai is indeed finite dimensional
over k. According to [15, Tag 06LH], it is enough to show that each prime ideal of Ai
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is maximal (for then, Ai would have Krull dimension 0, and hence be Artinian of finite
k-dimension). To this end, let p, p′ ∈ Spec(Ai) with p′ maximal such that p ⊆ p′. Using
that Ai → A is faithfully flat, let q′ ∈ Spec(A) be a prime ideal mapping to p′ under the
(surjective) map Spec(A) → Spec(Ai) of spectra, so that q′ ∩ Ai = p′. Using [15, Tag
00HS], we have that there is a prime ideal q ⊆ q′ with q ∩ Ai = p. But then, it follows
that q = q′ as, by [15, Tag 0905], Spec(A) is Hausdorff. Thus, p = p′, and p is maximal,
as desired.

Furthermore, we have:

Proposition 1.2. The category Pro(GSchfin
k ) is Abelian. Moreover, it is closed under

extensions: if
1→ G′

f−→ G
g−→ G′′ → 1

is an exact sequence in GSchaff
k , then we have G ∈ Pro(GSchfin

k ) if and only if G′, G′′ ∈
Pro(GSchfin

k ).

Proof. It is clear that the trivial group scheme Spec(k) is profinite. Observe also that
a product of two profinite group schemes lim←−iGi and lim←−j Hj is again a profinite group

scheme lim←−(i,j)
(Gi×Hj). Since the category GSchaff

k is Abelian, by [11, Proposition 5.92],

to prove that Pro(GSchfin
k ) is Abelian, it is enough to see that it has kernels and cokernels.

So we let f : Spec(A) → Spec(B) be a map of profinite group schemes over k, where,
as usual, A and B are filtered unions of their finite dimensional k-Hopf subalgebras.
But then, the representing algebra A ⊗B k of ker(f), being a quotient of A by a Hopf
ideal, is a filtered union of finite dimensional k-Hopf subalgebras itself. Similarly, the
representing algebra BG of coker(f) is a subalgebra of B, and hence is as well a filtered
union of finite dimensional k-Hopf subalgebras. This proves that ker(f) and coker(f) are
profinite group schemes over k, and thus, Pro(GSchfin

k ) is an Abelian category.

For the second assertion, assume that G′ and G′′ are profinite. Write G = Spec(A)
and G′ = Spec(B). Let Ai be a Hopf subalgebra of A that is finitely generated over k
(cf. [18, 2nd Theorem in §3.3]). Let Bi be the image of Ai under the homomorphism
A→ B of Hopf algebras corresponding to f : G′ → G, so it is itself a Hopf algebra. Let
G′i := Spec(Bi) and Gi := Spec(Ai). Let G′′i be the cokernel of the closed immersion
G′i → Gi (corresponding to the surjection Ai → Bi). We have a commutative diagram

1 G′ G G′′ 1

1 G′i Gi G′′i 1

f g

π

with exact rows, where the homomorphism π : G′′ → G′′i uniquely exists by the universal
property of coker(f). Write G′′ = Spec(C) and G′′i = Spec(Ci).
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Suppose we have shown that Bi and Ci are finitely generated over k. The commutativity
of the right square implies that the homomorphism Ci → C is injective because Ai → A
and Ci → Ai are. But then, the homomorphisms Bi → B and Ci → C of Hopf algebras
are faithfully flat with Spec(B) and Spec(C) profinite, and the second half of the above
proof implies that Bi and Ci are finite dimensional over k. Moreover, the exactness of
the second row gives us an isomorphism Bi ⊗k Ai ' Ai ⊗Ci Ai of Ai-modules. As Bi is
finite dimensional over k, the left hand side is a finitely generated Ai-module. Thus, so
must be the right hand side Ai ⊗Ci Ai. Since the map Ci → Ai corresponding to the
cokernel Gi → G′′i is faithfully flat, this implies that Ai is a finitely generated module
over Ci. But then, Ai is finite dimensional over k because Ci is. Thus, A ∈ Ind(Hopffin

k ),
and G ∈ Pro(GSchfin

k ).

Now, to see that Bi is indeed finitely generated, simply recall that Ai is finitely generated,
and G′i → Gi is a closed immersion. Hence, being a quotient of Ai, Bi is also finitely
generated over k. As for the finite dimensionality of Ci, note that we have a faithfully
flat inclusion Ci ↪→ Ai of Hopf algebras with Ai finitely generated. Let ε : Ci → k be
the augmentation of Ci, and I := ker(ε) ⊆ Ci the augmentation ideal. Then, the ideal
IAi in Ai generated by I is finitely generated. Moreover, faithful flatness implies that
IAi ' I⊗CiAi, and hence, I is finitely generated (as a Ci-module). Assume c1, . . . , cn ∈ I
are generators of I, and let D be a finitely generated Hopf subalgebra of Ci containing
the generators c1, . . . , cn, with augmentation ideal J . But then, the kernel of the quotient
map Spec(Ci) → Spec(D) (induced by the inclusion D ↪→ Ci), which is represented by
Ci/JCi, is trivial as JCi = I. This implies Spec(Ci)→ Spec(D) is an isomorphism, and
Ci = D is a finitely generated k-algebra.

Finally, assume G = Spec(A) is profinite, where A is a filtered union of its finite di-
mensional k-Hopf subalgebras. We need to see that G′ and G′′ are profinite. But the
exactness of the sequence 1→ G′ → G→ G′′ → 1 implies that the representing algebra
of G′ is a quotient of A, and that the represening algebra of G′′ is a subalgebra of A.
This proves that G and G′′ are profinite as in the first paragraph of the proof.

Let Γ denote the absolute Galois group Gal(k/k) of k throughout the text. We will
quite often refer to the standard equivalence between the category GSchét

k of étale group
schemes over k and the category of finite (discrete) groups on which Γ acts continuously
as group automorphisms, as well as its formal generalizations to related ind- and pro-
objects (recall that Γ acting on a group X as group automorphisms means that, for any
γ ∈ Γ and x1, x2 ∈ X, the action satisfies γ · (x1x2) = (γ · x1)(γ · x2)). Therefore, we
would like to record it here:

Proposition 1.3. There is an equivalence of categories between the category GSchét
k and

the category of finite groups on which Γ acts continuously as group automorphisms. Given
G = Spec(A) ∈ GSchét

k , this equivalence is given by

G 7→ G(k) = Homk(A, k).
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A quasi-inverse is given by mapping a finite group X with a continuous Γ-action by
group automorphisms to the étale group scheme over k whose representing algebra is the
k-algebra C(X, k)Γ of continuous maps from A to k that commute with the action of Γ.

Proof. See [18, Theorem in §6.4].

Note that the above equivalence could also be given in terms of the anti-equivalence
of categories between the category of étale k-algebras and the category of finite Γ-sets,
given by A 7→ Homk(A, k) (cf. [18, Theorem in §6.3]). Therefore, we will hardly make a
distinction between the implied equivalences of categories.

We say that a group scheme G over k is proétale if it can be written as a projective limit
G ' lim←−iGi of étale group schemes Gi over k. Denote by GSchét

k the full subcategory
of GSchfin

k consisting of étale group schemes over k, and by Pro(GSchét
k ) the category of

proétale groups schemes over k. Observe that the equivalence in the above proposition
formally extends to an equivalence between the category Pro(GSchét

k ) and the category
of profinite Γ-sets. Since proétale group schemes are affine, morphisms in the category
Pro(GSchét

k ) are maps of affine group schemes over k.

Recall that an algebraic group scheme over k is an affine group scheme that is represented
by a finitely generated k-algebra. Letting G be an affine group scheme over k, use [18,
Corollary in §3.3] to write G = lim←−iGi, where each Gi is an algebraic group scheme over
k . By [18, Theorem in §6.7], each Gi sits in an exact sequence

1→ G◦i → Gi → Gét
i → 1,

where G◦i is the connected component of the identity of Gi (cf. [15, Tag 0B7R]), and Gét
i

is represented by the largest separable subalgebra Asep
i of Ai (so that Gét

i ∈ GSchfin
k , by

definition). Taking the projective limit in GSchaff
k over I, we see that any affine group

scheme G ∈ GSchaff
k sits in an exact sequence

1→ G◦ → G→ Gét → 1,

where Gét = lim←−iG
ét
i is a proétale group scheme, and G◦ = lim←−iG

◦
i is the connected

component of the identity of G. This follows because projective limits are left exact in
GSchaff

k as in any Abelian category, and are also right exact as inductive limits are exact
in Hopfk (cf. [3, Proposition A6.4]). It then follows from [18, Theorem in §6.8] that, if G
is profinite, and k is perfect, then the sequence splits canonically, and G is a direct sum
of a proétale group scheme and a connected group scheme over k. To see this, consider
the splitting exact sequence

1→ G◦i → Gi → Gét
i → 1,

where Gi is finite for each i ∈ I, and let fi : Gi → G◦i be the canonical section for
G◦i → Gi. Then, the fi are compatible, and

f : lim←−Gi → lim←−G
◦
i ' (lim←−Gi)

◦

9
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defined by f := lim←−i fi, is a section for G◦ → G, and hence, the sequence 1 → G◦ →
G→ Gét → 1 splits.

1.2 Prodiscrete k-algebras

Recall that a prodiscrete k-algebra is a projective limit lim←−iAi of discrete k-algebras Ai
endowed with the projective limit topology. A topological k-algebra admitting a basis of
open neighborhoods of zero consisting of ideals is called linearly topologized. Recall also
that a linearly topologized k-algebra A is called separated and complete if the canonical
map A→ lim←−I A/I, where I runs over the open ideals of A, is bijective.

We start with the following elementary lemma:

Lemma 1.4. We have

(i) Let A be a linearly topologized, separated and complete k-algebra. If the projective
limit lim←−I A/I, where I runs over the open ideals of A, is endowed with the prodis-
crete topology, then the canonical map A→ lim←−I A/I is a topological isomorphism.

(ii) Any prodiscrete k-algebra is a separated and complete linearly topologized k-algebra.

Proof. For part (i), first note that, for any open ideal I of A, the quotient A/I is a
discrete space. This makes the natural surjection A → A/I continuous, and hence,
A → lim←−I A/I is continuous. Conversely, given an open ideal J of A, we have that the
image of J under the bijection A → lim←−I A/I is precisely the kernel of the projection
map lim←−I A/I → A/J , so that it is open.

For part (ii), letting A = lim←−iAi be a prodiscrete k-algebra, the projection pi : A → Ai
is continuous for each i, and ker(pi) for varying i forms a basis of open neighborhoods
of zero consisting of ideals. Thus, we have a topological isomorphism A = lim←−I A/I '
lim←−iA/ ker(pi) as, for every open I, we have ker(pi) ⊆ I for some i.

Remark 1.5. Suppose A = lim←−iAi is a prodiscrete k-algebra. Letting A′i := pi(A) be
the image of the projection pi : A → Ai, the inclusion A′i ↪→ Ai for each i ∈ I induces
a topological isomorphism lim←−iA

′
i → lim←−iAi. Thus, we may, and will, assume that, in

A = lim←−iAi, all the transition maps fij : Aj → Ai for i ≤ j are surjective.

Given a prodiscrete k-algebra A = lim←−iAi, we will often be interested in the question
under which conditions the natural map

lim−→
i

Homk(Ai, B)→ Homcont
k (A,B)

is a bijection for any discrete k-algebra B. The following lemma directly addresses this
question:
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Lemma 1.6. Let A = lim←−iAi be a prodiscrete k-algebra such that the transition maps
fij : Aj → Ai for i ≤ j are all surjective. Let B be a discrete k-algebra. Then, a k-algebra
map ϕ : A→ B is continuous if and only if ϕ factors through a projection prj : A→ Aj
for some j.

Proof. If ϕ : A → B factors through a projection prj , then, being a composition of two
continuous maps prj and Aj → B, it is continuous.

For the other direction, assume ϕ : A → B is continuous. Then, the kernel ker(ϕ) =
ϕ−1(0) is open in A as 0 is open in the discrete space B. By definition of the prodiscrete
topology, it follows that

A ∩
∏
i

Ui ⊆ ker(ϕ),

where, for a finite set J ⊆ I, Ui = {0} for all i ∈ J , and Ui = Ai for all i ∈ I \J . Assume
now that a = (ai)i ∈ A with prj(a) = aj = 0. Then, if k ∈ J with k ≤ j, we get, by the
surjectivity assumption, that

ak = fkj(aj) = fkj(0) = 0,

so that ak = 0 whenever k ≤ j. Thus, we get that a ∈ A is an element of the above
intersection, and hence, ker(prj) ⊆ kerϕ. Since A/ ker(pj) ' Aj by our surjectivity
assumption, the map ϕ factors as desired.

As the dual category of Pro(GSchét
k ) under the Spec functor (cf. §1.1), consider the

category of indétale k-algebras, whose objects are inductive limits lim−→i
Ai of étale k-

algebras Ai. Then, Proposition 1.3 formally extends to an anti-equivalence between the
category of indétale k-algebras and profinite Γ-sets, taking an indétale k-algebra lim−→i

Ai
to the profinite Γ-set

Homk(lim−→
i

Ai, k)Γ '
(

lim←−
i

Homk(Ai, k)
)Γ ' lim←−

i

Homk(Ai, k)Γ.

Conversely, if X is a profinite Γ-set, the corresponding indétale k-algebra is C(X, k)Γ.

Remark 1.7. This anti-equivalence transforms direct products of k-algebras into topo-
logical disjoint unions, and vice versa. In particular, given k-algebras A and B, the
map

Homk(A, k)Γ qHomk(B, k)Γ → Homk(A×B, k)Γ

given by composing with the projection from A×B, is a well-defined bijection.

Lemma 1.8. Let ϕ : A→ B be a homomorphism of indétale k-algebras with associated
map f : X → Y of profinite Γ-sets. Then, the following are equivalent:

(i) f is an open immersion of topological spaces, i.e. f(X) is open, and f is a homeo-
morphism onto its image.
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(ii) The map ϕ is surjective, and the ideal ker(ϕ) ⊆ A is finitely generated.

(iii) We have A ' B × C for some k-algebra C such that ϕ is the projection to B.

Proof. We start by proving (i)⇒ (iii). Let us first assume that k is algebraically closed.
Observe that, if A = lim−→i

Ai for étale k-algebras Ai, then Y = Homk(A, k), and

C(Y, k) ' C
(

lim←−
i

Homk(Ai, k), k
)
' lim−→

i

C
(

Homk(Ai, k), k
)
' lim−→

i

Ai = A.

Similarly, we have B ' C(X, k), and the map ϕ is given by

C(Y, k)→ C(X, k) g 7→ g ◦ f.

Since f is open, and Y is profinite, it follows that f(X) ⊆ Y is both open and closed.
So we can write Y = f(X)q (Y \ f(X)), and hence,

C(Y, k) ' C(f(X), k)× C(Y \ f(X), k), g 7→
(
g |f(X), g |Y \f(X)

)
.

But f : X → f(X) is a homeomorphism by assumption, so that C(f(X), k) ' C(X, k), as
needed. If k is not algebraically closed, one replaces k by k, and passes to Γ-invariants.

The implication (iii) ⇒ (ii) being clear, we are left with proving (ii) ⇒ (i). Assume,
without loss of generality, that k is algebraically closed, so that we have

I := ker(ϕ) = {g ∈ C(Y, k) | g |f(X)= 0}.

Since C(Y, k) is an inductive limit of finite k-algebras, every prime ideal of C(Y, k) is
maximal, and these are in a bijective correspondance with the points y ∈ Y via

y 7→ my := {g ∈ C(Y, k) | g(y) = 0}.

We first claim that, for every maximal ideal ideal my of C(Y, k), either IC(Y, k)my = 0 or
IC(Y, k)my = C(Y, k)my . To this end, write

C(Y, k)my = lim−→
y∈U
C(U, k),

where U ranges over the open neighborhoods of y in Y . Assume first that y ∈ f(X),
implying g(y) = 0 for every g ∈ I. But as k is discrete, any element of C(Y, k) is
locally constant, and we get that g is 0 in an open neighborhood U of y for every g ∈ I.
Consequently, IC(Y, k)my = 0 if y ∈ f(X). Next, assume y /∈ f(X). Since f(X) is
compact, and Y is Hausdorff, there is an open neighborhood U of y with U ∩ f(X) = ∅.
But then, the characteristic function g of U lies in I, and satisfies g |U= 1. This gives
IC(Y, k)my = C(Y, k)my if y /∈ f(X).

Now, by [15, Tag 04PS], we see that the ideal I is pure (that is, the A-module A/I is
flat), and hence, by [15, Tag 05KK], we conclude that the ideal I is generated by an
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idempotent. Since ϕ is surjective, this yields a decomposition A ' B× I as in part (iii).
We need to see that f : X → Y is an open immersion of topological spaces. By the
previous remark, we have a bijection

Homk(B, k)qHomk(I, k)→ Homk(A, k)

given by composing with the projections prB : B × I → B and prI : B × I → I. This
implies that the map f : X → Y is given by inclusion, and hence is a homeomorphism
onto its image. Furthermore, since A and B are indétale, so is I. This gives that Y is a
disjoint union of profinite sets f(X) and Homk(I, k). Thus, the complement Homk(I, k)
of f(X) is closed. This completes the proof.

Corollary 1.9. Let A = lim←−iAi be a prodiscrete k-algebra such that each Ai is an indétale
k-algebra, and such that the transition maps Aj → Ai for i ≤ j satisfy the equivalent
statements of the above lemma. Then, there is a locally profinite topological space X with
a continuous action of Γ such that A = C(X, k)Γ as prodiscrete k-algebras. As sets, we
have X = Homcont

k (A, k).

Proof. Write Ai = C(Xi, k)Γ, where Xi is a profinite Γ-set for each i. By assumption,
every transition map Aj → Ai is induced by an open immersion Xi → Xj of profinite
Γ-sets. Set X := lim−→i

Xi, and endow it with the inductive limit topology (that is, the
finest topology making the inclusions Xi → X continuous). Then, X is a locally profinite
space with a continuous Γ-action. Moreover, we have

A = lim←−
i

Ai ' lim←−
i

C(Xi, k)Γ ' C
(

lim−→
i

Xi, k
)Γ ' C(X, k)Γ

as prodiscrete k-algebras. Also, since Xi = Homk(Ai, k), we get, using Lemma 1.6, that

X = lim−→
i

Xi = lim−→
i

Homk(Ai, k) ' Homcont
k (lim←−

i

Ai, k) = Homcont
k (A, k).

We close this section by fixing a definition for formal schemes over k. Although there are
different conventions in the literature, we stick to the following fairly general and slightly
abusive terminology:

Definition 1.10. (i) A formal scheme over k is a representable set-valued functor on
the category of prodiscrete k-algebras. If the representing prodiscrete k-algebra of a
formal scheme F over k is A, we write F = Spf(A). So a formal scheme F over
k is, in other words, a set-valued functor on the category of prodiscrete k-algebras
such that, for any prodiscrete k-algebra B, we have

F(B) = Spf(A)(B) ' Homcont
k (A,B).
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(ii) A formal group over k is a representable functor from the category of prodiscrete
k-algebras to the category of Abelian groups.

Remark 1.11. We have:

(i) Let F be a formal scheme over k with representing algebra A = lim←−iAi. As usual,
we assume that the transition maps Aj → Ai, i ≤ j, are surjective (cf. Remark
1.5). By Lemma 1.6, we then have

F(•) = Spf(A)(•) ' Homcont
k (lim←−

i

Ai, •) ' lim−→
i

Homk(Ai, •) ' lim−→
i

Spec(Ai)(•),

i.e. a formal scheme over k is, in particular, a proprepresentable functor on the
category of discrete k-algebras. This implies that our definition of formal schemes
is more general than Fontaine’s (cf. [5, §4.1 in Chapter 1]), where a formal scheme
is defined as a prorepresentable functor on the category of finite discrete k-algebras.
Note that the surjectivity condition in Lemma 1.6 is automatic in that case (cf. [5,
§4.1 in Chapter I]).

(ii) Suppose we are given an inductive system (Fi)i of affine schemes over k with
Fi = Spec(Ai), where Ai is a k-algebra for each i. Assume that, for any i ≤ j,
the transition map Fi → Fj is a closed immersion. Consider the inductive limit
F := lim−→i

Fi, defined pointwise on the category of k-algebras. Endowing the k-
algebra A := lim←−Ai with the prodiscrete topology, Lemma 1.6 implies that F
is prorepresented by A. Therefore, we can formally extend it to the category of
prodiscrete k-algebras:

F(lim←−
j

Bj) ' lim←−
j

F(Bj)

for any prodiscrete k-algebra lim←−j Bj . Thus, F is a formal scheme over k with
representing algebra A.

(iii) Similarly, given an inductive system (Gi)i of closed immersions Gi → Gj , i <
j, between affine group schemes over k, the inductive limit G := lim−→i

Gi can be
viewed as a formal group over k (cf. item (ii)) simply because the category of
Abelian groups has inductive limits. Note, however, that given a formal group with
representing algebra satisfying the condition of Lemma 1.6, it is not clear whether
it can be written as an inductive limit of affine group schemes over k (cf. item
(i)). In fact, the discrete quotients Ai do not have any reason to be Hopf algebras
anymore.

1.3 Strict k-linear inductive limits

Recall that a topological k-vector space is called linearly topologized if it has a basis of
open neighborhoods of zero consisting of k-subspaces.
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Inspired by Schneider’s treatment of strict inductive limit of locally convex topological
vector spaces over non-Archimedean fields (cf. [12, §5 E.2]), we define strict k-linear
inductive limits for linearly topologized k-vector spaces:

Definition 1.12. Let X1 ⊆ X2 ⊆ X3 ⊆ · · · be an increasing sequence of linearly topolo-
gized k-vector spaces Xn. Let Tn denote the topology of Xn for each n ≥ 1. Assume

Tn+1 |Xn= Tn

for each n ≥ 1, and equip the union

X :=
⋃
n≥1

Xn

with the k-linear inductive limit topology T with respect to the inclusions fn : Xn → X
(that is, T is the finest k-linear topology on X making the inclusion fn continuous for
all n ≥ 1). Then, X, with its topology T , is called the strict k-linear inductive limit of
the sequence X1 ⊆ X2 ⊆ X3 ⊆ · · · .

Assume the setup of the above definition. Let Bn denote the basis of open neighborhoods
of zero consisting of k-subspaces of the linearly topologized k-vector space Xn for each
n ≥ 1. The following lemma shows that the strict k-linear inductive limit T on X could
equivalently be defined by an analogous condition on the Bn for n ≥ 1:

Lemma 1.13. The condition that Tn+1 |Xn= Tn for each n ≥ 1 is equivalent to the
condition that Bn+1 |Xn= Bn for each n ≥ 1.

Proof. Assume that Tn+1 |Xn= Tn for each n ≥ 1. Clearly, Bn+1|Xn ⊆ Bn. Conversely,
let Bn ∈ Bn. Since Bn ∈ Tn, the assumption implies that there is Tn+1 ∈ Tn+1 with
Tn+1 ∩ Xn = Bn. Since the topology Tn+1 is k-linear, there is B′n+1 ∈ Bn+1 such
that B′n+1 ⊆ Tn+1. Consider now Bn+1 := B′n+1 + Bn ∈ Bn+1. Then, Bn+1 ∩ Xn =
(B′n+1 +Bn) ∩Xn ⊆ Tn+1 ∩Xn = Bn. The reverse inclusion is obvious.

For the other direction, assume that Bn+1 |Xn= Bn for each n ≥ 1. The inclusion
Tn+1 |Xn⊆ Tn being clear, suppose Tn ∈ Tn. Let x ∈ Tn. Then, there is Bn ∈ Bn with
x + Bn ⊆ Tn. By assumption, there is Bn+1 ∈ Bn+1 such that Bn+1 ∩Xn = Bn. This
gives (x+Bn+1) ∩Xn = x+ (Bn+1 ∩Xn) = x+Bn ⊆ Tn. Consequently, Tn is open for
the induced topology Tn+1 |Xn , as needed.

Keep the notation from the above discussion. The following lemma provides a clearer
understanding of the topology T :

Lemma 1.14. Consider the collection B of subspaces of X of the form
∑

nBn, where
Bn ∈ Bn for all n ≥ 1. Then, B forms a basis of open neighborhoods of zero for the
topology T .
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Proof. Observe that, for any element
∑

nBn of B, the intersection
∑

nBn ∩ Xm is a
subspace of Xm containing Bm, hence is open in Xm, showing that B ⊆ T . Also,
suppose T ∈ T with 0 ∈ T . By definition, we have Xn ∩ T ∈ Tn for all n ≥ 1. By the
k-linearity of Tn, we get that there exists Bn ∈ Bn with Bn ⊆ Xn ∩ T for each n ≥ 1.
Then, B :=

∑
nBn ⊆ T , as required.

The following lemma summarizes some basic properties of the strict k-linear inductive
limit:

Lemma 1.15. With the notation as above, we have:

(i) For every n ≥ 1, the inclusion Xn → X is a topological embedding, i.e. T |Xn= Tn.

(ii) If Xn is Hausdorff for all n ≥ 1, then so is X.

(iii) If Xn is closed in Xn+1 for all n ≥ 1, then Xn is closed in X for all n ≥ 1.

(iv) If Xn is complete for all n ≥ 1, then so is X.

Proof. For the first three items, we follow the arguments in [12, Proposition 5.5], and
make use of Lemma 1.13 and Lemma 1.14.

For item (i), we prove that B |Xn= Bn for each n ≥ 1. So fix n ≥ 1, and assume Bn ∈ Bn
is given. We need to find an element B in B such that B ∩ Xn = Bn. Note that, by
Lemma 1.13, we can inductively find Bn+m ∈ Bn+m such that Bn = Xn ∩ Bn+m for all
m ∈ N. Then, B :=

⋃
m≥nBm ∈ B with B ∩Xn = Bn as required.

For item (ii), let a, b ∈ X with a 6= b. Then, for a large enough n ≥ 1, we have
a, b ∈ Xn, so that there exists Bn ∈ Bn with a − b /∈ Bn by the Hausdorff assumption.
As above, construct B ∈ B with B ∩Xn = Bn. Then, a+B and b+B are open disjoint
neighboorhoods of a and b in X.

For item (iii), fix n ≥ 1, and assume x ∈ X \ Xn. We need to find B ∈ B with
(x+ B) ∩Xn = ∅. By assumption, x ∈ Xm for some m ≥ n. Since Xn is closed in Xm,
there is Bm ∈ Bm with (x+ Bm) ∩Xn = ∅. As in the above items, there is B ∈ B with
B ∩Xm = Bm. Then, (x+B) ∩Xn = (x+Bm) ∩Xn = ∅, as required.

Finally, the last part follows as in [12, Lemma 7.9].

1.4 Perfect formal group laws

Let p be a prime number. Assume that k is perfect of characteristic p > 0 through the
discussion that follows.

Given any d ∈ N, the ring
R := k[[X

1/p∞

1 , . . . , X
1/p∞

d ]]
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of fractional formal power series over k in d variables is defined as the completion of the
inductive limit

lim−→
Xi 7→Xp

i

k[[X1, . . . , Xd]]

with respect to the ideal (X1, . . . , Xd). To ease the notation, we write (X) for any row
vector (X1, . . . , Xd) as long as it causes no confusion.

Remark 1.16. We refer to the number d of variables in R as the dimension of the
fractional formal power series ring R although, strictly speaking, it is not clear that this
is a well-defined notion.

We have the following description for the ring R:

Lemma 1.17. An element of R is given by a fractional formal power series∑
α=(αi)i∈N[1/p]d

cαX
α =

∑
α=(αi)i∈N[1/p]d

cαX
α1
1 · · ·X

αd
d

satisfying the condition that, for every β ∈ N, there are only finitely many nonzero
coefficients cα ∈ k with

|α| = α1 + · · ·+ αd < β.

Moreover, this condition is equivalent to the condition that, for every β = (β1, . . . , βn) ∈
Nd, there are only finitely many nonzero coefficients cα ∈ k with αi < βi for every
i = 1, . . . , d.

Proof. Let R′ be the set of fractional power series as described in the statement of the
lemma. We first want to check that R′ is a k-algebra. Other axioms being obvious to
check, we need to see that the product∑

α

cαX
α ·
∑
β

dβX
β =

∑
γ

( ∑
α+β=γ

cαdβ

)
Xγ

of two elements of R′ lies in R′. But, for any γ, choosing n with γ < n, we know, by
assumption, that there are only finitely many nonzero cα and dβ as α, β < n, so that the
sum ∑

α+β=γ

cαdβ

is finite for any γ. Moreover, since for any θ ∈ N, there are only finitely many nonzero cα
and dβ with |α|, |β| < θ/2, we see that there are only finitely many nonzero

∑
α+β=γ cαdβ

with |γ| = |α|+ |β| < θ. This shows that the product lies in R′. Next, observe that the
algebra

lim−→
X 7→Xp

k[[X]]
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is a dense subalgebra of R′: any element
∑

α cαX
α of R′ can be approximated by the

elements ∑
|α|<n

cαX
α ∈ lim−→

X 7→Xp

k[[X]] =
⋃
n∈N

k[[X1/pn ]].

Furthermore, we have that R′ is (X)-adically separated and complete. Indeed, an inverse
of the natural map

R′ → lim←−
n

R′/(X)n, f 7→
(
f mod (Xn)

)
n
,

is given by
(f0, f1, f2, . . . ) 7→ f0 +

∑
n=0

(fn+1 − fn).

Observe that, if (g0, g1, g2, . . . ) is another representative in (f0, f1, f2, . . . ), then(
f0 +

∑
n=0

(fn+1−fn)
)
−
(
g0 +

∑
n=0

(gn+1−gn)
)

= (f0−g0)+
∑
n=0

(
(fn+1−gn+1)+(gn−fn)

)
converges to 0 as n tends to infinity because fn − gn ∈ (Xn) for all n ∈ N. So the map
is well-defined. Thus, we have proved that R′ = R.

Finally, to prove the last statement, note that, given β ∈ N, if αi < β/d for all i = 1, . . . , d,
then |α| < dβ/d = β. Conversely, given β1, . . . , βd ∈ N, if α1 + . . . αd < βi for all
i = 1, . . . , d, then αi < βi for all i = 1, . . . , d.

Recall that, for a perfect field k of positive characteristic, a topological k-algebra A is
called perfect if the p-power map on A is bijective.

We have:

Lemma 1.18. Let A a perfect topological k-algebra. Let A
◦◦
denote its ideal of topologically

nilpotent elements. Then, the map

Homcont
k (R,A)→

(
A
◦◦)d

, ϕ 7→ (ϕ(X1), . . . , ϕ(Xd)),

is a bijection.

Proof. Note that, for any i = 1, . . . , d, the continuity for the (X)-adic topology on R
implies that ϕ(Xi)

n = ϕ(Xn
i ) converges to 0 as n tends to infinity, so that the map is

well-defined.

To see that it is surjective, given a = (a1, . . . , ad) ∈
(
A
◦◦)d, consider the substitution map∑

α

cαX
α 7→

∑
α

cαa
α.
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It is continuous and well-defined because the p-power map on A is bijective by assump-
tion, so that the elements of the form a

1/pn

i , for any i = 1, . . . , d and n ∈ N, lie in A.
Moreover, it maps to a ∈ (A

◦◦
)d.

Finally, assume ϕ(Xi) = 0 for all i = 1, . . . , d. We need to see that ϕ is then the 0-map.
But again, by assumption, for each i = 1, . . . , d, we have that ϕ(X

1/pn

i ) = ϕ(Xi)
1/pn has

a unique value in A for any n ∈ N. This implies that ϕ is completely determined by the
images of Xi for i = 1, . . . , d, and hence is 0.

Now, assume that A is a prodiscrete k-algebra. Recall that the inverse perfection A[ of
A is defined as the projective limit

A[ := lim←−
(·)p

A

of A over N with respect to the p-power map a 7→ ap on the elements a ∈ A. Note
that A[ has naturally the structure of a k-algebra as k[ ' k that is explicitly given by
x · (an)n = (x1/pnan)n for all x ∈ k and (an)n ∈ A[. Moreover:

Lemma 1.19. Let A be a prodiscrete k-algebra. Endowing A[ with the projective limit
topology, the canonical map

Homcont
k (R,A[)→ Homcont

k (R,A),

given by composing with the projection A[ → A to the first coordinate, is a bijection.

Proof. One checks that an inverse to the map is given by φ 7→
(
r 7→ (φ(r1/pn))n

)
for any

φ ∈ Homcont
k (R,A).

In the rest of this section, we would like to extend the definition of a formal group law
to the fractional setting, and prove some elementary results about them. Fix d ≥ 1, and
let

S := R⊗̂kR ' k[[X1/p∞ , Y 1/p∞ ]] = k[[X
1/p∞

1 , . . . , X
1/p∞

d , Y
1/p∞

1 , . . . , Y
1/p∞

d ]].

Note that S is then a perfect k-algebra as k is perfect.

Definition 1.20. Let d ≥ 1. A d-dimensional commutative perfect formal group law G
over k is a set of d fractional formal power series Gi(X,Y ) ∈ S, i = 1, . . . , d, such that

G(X,Y ) :=
(
G1(X,Y ), . . . , Gd(X,Y )

)
∈ Sd

satisfies the following conditions:

(i) G(X,0) = X,

(ii) G(X, Y) = G(Y, X),
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(iii) G(G(X, Y), Z) = G(X, G(Y,Z)).

We obtain:

Proposition 1.21. Consider a formal group F over k represented by R. Then, there is
a perfect formal group law G(X,Y ) ∈ Sd of dimension d over k such that, for any perfect
prodiscrete k-algebra A and for all x, y ∈ F(A), the addition in the Abelian group F(A)
is given by the rule

x+G y = G(x, y).

Proof. Let A be a perfect prodiscrete k-algebra. By Lemma 1.18, there is then a bijection
F(A) ' (A

◦◦
)d. We let now X = (X1, . . . , Xd), Y = (Y1, . . . , Yd) ∈ (A

◦◦
)d, and define, in this

group, G(X,Y ) := X +Y ∈ (A
◦◦

)d. Then, for each i = 1, . . . , d, we get that Gi(X,Y ) ∈ S
with Gi(0, 0) = 0, and the rest of the proof carries over from the classical situation.

For instance, to prove that G(X,Y ) satisfies the condition (i) of Definition 1.20 above,
let ϕ : S → S be the k-algebra map defined by Xi 7→ Xi and Yi 7→ 0 for all i = 1, . . . , d.
The representability of G then implies

G(X, 0) = G(ϕ(X), ϕ(Y )) = G(ϕ)(G(X,Y )) = G(ϕ)(X) +G(ϕ)(Y ) = ϕ(X) + ϕ(Y )

= X.

For the proof of the last asserion, let ϕ : S → A be the k-algebra map defined by Xi 7→ xi
and Yi 7→ yi for each i = 1, . . . , d. We obtain

x+G y = ϕ(X) + ϕ(Y ) = G(ϕ)(X) +G(ϕ)(Y ) = G(ϕ)(G(X,Y )) = G(ϕ(X), ϕ(Y ))

= G(x, y),

as required.

Remark 1.22. The perfect formal group law G rules the group structure of F(A) also
if A is not necessarily perfect. This is because, by Lemma 1.19, there is an isomorphism
F(A) ' F(A[) of groups, where A[ is a perfect k-algebra by definition.

Proposition 1.23. We keep the assumptions of the above proposition. There exists a
d-tuple

ι(X) = (ι1(X), . . . , ιd(X)) ∈ Rd

of fractional formal power series in X1, . . . , Xd, called the inverse of X = (X1, . . . , Xd),
satisfying ι(0) = 0, G(X, ι(X)) = 0, and ι(ι(X)) = X. Moreover, for any perfect
prodiscrete k-algebra A, the inverse of an element x = (x1, . . . , xd) in the group F(A) is
given by ι(x).
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Proof. The first part follows as in the classical case (cf. [20, Corollary 1.5]). For the
second assertion, let A be a perfect prodiscrete k-algebra, and x = (x1, . . . , xd) ∈ F(A).
Let y = (y1, . . . , yd) be the inverse of x in the Abelian group F(A). If ϕ : R → A is the
k-algebra map defined by Xi 7→ yi, we then get

y = ϕ(X) = ϕ(−ι(X)) = −ι(ϕ(X)) = −ι(y) = ι(x).

Remark 1.24. Suppose that we are conversely given G(X,Y ) ∈ Sd, a perfect formal
group law of dimension d over the perfect field k of characteristic p > 0. Let A be
a prodiscrete k-algebra. Then, for any x = (x1, . . . , xd) ∈

(
A[
◦◦ )d and f(X) ∈ R, the

expression f(x) makes sense, and we define a group operation in
(
A[
◦◦ )d via

x+G y := G(x, y)

for any x, y ∈
(
A[
◦◦ )d. That this really defines a group follows from the axioms on G

(cf. Definition 1.20) and Proposition 1.23 above (cf. [20, Remark 1.6]). Therefore, by
Lemma 1.18, we obtain an induced group structure on Homcont

k (R,A[) ' Homcont
k (R,A)

for any prodiscrete k-algebra A, giving a formal group F represented by R. Therefore,
given a perfect formal group law over a perfect field k of characteristic p > 0, we will not
distinguish it from its corresponding formal group over k, and vice versa.

In order to construct certain counterexamples later, we need the following result, which
is a slight generalization of the classical case in [6, Proposition 6.5]:

Proposition 1.25. Assume given F = (F1, . . . , Fm) ∈ k[[X1/p∞ , Y 1/p∞ ]]m and G =
(G1, . . . , Gn) ∈ k[[U1/p∞ , V 1/p∞ ]]n, perfect formal group laws over k of dimensions m and
n, respectively. Let

f(X) = (f1(X), . . . , fn(X)) ∈ k[[X1/p∞ ]]n

be such that f(0) = 0. Put

∆f(X,Y ) := f(X) +G f(Y )−G f(X +F Y ).

Then,

E(U,X, V, Y ) := (U +G V −G ∆f(X,Y ), X +F Y ) ∈ k[[U1/p∞ , X1/p∞ , V 1/p∞ , Y 1/p∞ ]]

is a perfect formal group law, and the map

i(U,X) :=
(
U +G f(X), X

)
∈ k[[U1/p∞ , X1/p∞ ]]

gives an isomorphism i : G× F → E of perfect formal group laws over k.
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Proof. It is a routine to check that E is a perfect formal group law. We only compute
to see that i is a homomorphism from G× F to E:

E
(
i(U,X), i(V, Y )

)
= E

(
U +G f(X), X, V +G f(Y ), Y

)
=
(
U +G f(X) +G V +G f(Y )−G ∆f(X,Y ), X +F Y

)
=
(
G(U, V ) +G f(F (X,Y )), F (X,Y )

)
= i
(
G(U, V ), F (X,Y )

)
= i
(
(G× F )(U,X, V, Y )

)
.

Finally, to see that i is indeed an isomorphism, we consider the map

j(U,X) :=
(
U −G f(X), X

)
∈ k[[U1/p∞ , X1/p∞ ]].

It is then a straightforward computation to see that j is a homomorphism E → G × F
of perfect formal group laws. It is also clear that

i(j(U,X)) = j(i(U,X)) = (U,X).
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2 Generalized Drinfeld equivalence

Recall that we always assume our affine group schemes over the field k to be commutative.

Consider an inductive system (Gn)n∈N of affine group schemes over k such that, for each
n ∈ N, the sequence

1→ Gn → Gn+1
pn−→ Gn+1

is exact, i.e. there are closed immersions in : Gn → Gn+1 such that Gn ' Gn+1[pn] for
each n ∈ N. By iterating in, we define

in,m := in+m−1 ◦ · · · ◦ in : Gn → Gn+m

for every m ∈ N. We then have Gn+m[pn] = Gn by an induction argument on m ≥ 1.
Indeed, the case m = 1 being part of definition, assuming Gn+m[pn] = Gn, we have, for
any k-algebra A, that

Gn+m+1[pn](A) = Gn+m+1[pn+m](A) ∩Gn+m+1[pn](A) = Gn+m(A) ∩Gn+m+1[pn](A)

= Gn+m[pn](A)

= Gn(A),

where the first equality follows from the fact that

Gn+m+1[pn](A) ⊆ Gn+m+1[pn+m](A),

the second one by assumption, the third one by viewing Gn+m(A) as a subgroup of
Gn+m+1(A) via in+m, and the last one by the induction hypothesis.

Observe that, since in : Gn → Gn+1 is a closed immersion, it follows that the map
An+1 → An is surjective, where Spec(An) = Gn for each n ∈ N. Hence, by Remark
1.11.(iii), given such an inductive system (Gn)n of affine group schemes over k as above,
we identify it with the formal group

G := lim−→
n

Gn = lim−→
n

(Gn, in),

whose representing algebra is the prodiscrete k-algebra lim←−nAn. Then, the equality
Gn+m[pn] = Gn implies, for any m ∈ N, that

G[pm] = lim−→
n

Gn[pm] = Gm.

Consider the multiplication by pm on Gn+m. Clearly, its image is annihilated by pn as
pnpmGn+m = pn+mG[pn+m] = 0, and hence is contained in Gn+m[pn] = Gn. It follows
that the map pm factors through a map

jm,n : Gn+m → Gn

such that pm = in,m ◦ jm,n for all n,m ≥ 0.

We are ready to define generalized p-divisible groups:
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Definition 2.1. A generalized p-divisible group over k is a formal group G = lim−→n
Gn,

where each Gn is an affine group scheme over k, satisfying

(i) for each n ∈ N, the sequence

1→ Gn
in−→ Gn+1

pn−→ Gn+1

is exact, i.e. there are closed immersions in : Gn → Gn+1 such that Gn ' Gn+1[pn],
and

(ii) for each n,m ∈ N, the above-constructed map jm,n is surjective.

We define morphisms of generalized p-divisible groups as in the case of classical p-divisible
groups (cf. [16, §2]).

Remark 2.2. A p-divisible group over k is a generalized p-divisible group since, given a
p-divisible group G = lim−→n

Gn, the sequence

1→ Gm
im,n−−−→ Gn+m

jm,n−−−→ Gn → 1

is exact (cf. [16, §2]). On the other hand, if G = lim−→n
Gn is a generalized p-divisible

group over k, then the above sequence is still exact. Indeed, exactness at the left and
right follows from the definition of a generalized p-divisible group, while the exactness in
the middle by

ker(jm,n) = ker(pm : Gn+m → Gn+m) = Gn+m[pm] = Gm.

Example 2.3. For a commutative affine group scheme G over k, the kernel G[pn] of
multiplication by pn for any n ∈ N is an affine group scheme over k. Then, the inductive
limit lim−→n

G[pn] is a generalized p-divisible group if the map jm,n : G[n + m] → G[n]
constructed above is surjective for all n,m ∈ N.

Definition 2.4. Given a generalized p-divisible group G = lim−→n
Gn over k, let jn := j1,n

for any n ∈ N, and consider the inverse system (Gn, jn : Gn+1 → Gn)n∈N. We define the
Tate module of G as the projective limit

T (G) := lim←−
n

(Gn+1, jn).

Remark 2.5. (i) By a common abuse of notation, we often write

T (G) = lim←−
p

Gn = lim←−
p

G[pn],

where the transition maps G[pn+1] → G[pn] are multiplication by p for all n ∈ N.
Since, as a map G[pn+1]

p−→ G[pn+1], multiplication by p satisfies pG[pn+1] ⊆ G[pn],
and p = in ◦ jn, this abuse indeed makes sense.
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(ii) Since the category of affine group schemes over k has projective limits (cf. §1.1), it
follows, from part (i), that T (G) is an affine group scheme over k, whose representing
algebra is lim−→p

An, where Gn = Spec(An) for each n ∈ N.

Example 2.6. For an étale p-divisible group G over k, it follows that the Tate module
T (G) of G is a proétale group scheme that is represented by

C(T, k)Γ ' lim−→
n

C(T/pnT, k)Γ,

where we used that T = T (G)(k) is p-adically separated and complete as an Abelian
group, and that the natural maps T/pn+1T → T/pnT are surjective for all n ∈ N (recall
that G[pn](k) ' T/pnT for all n ≥ 0).

Let G be an affine group scheme over k. For each n ∈ N, consider the map pn : G→ G,
the multiplication by pn, as an element of the Abelian group End(G). By the universal
property of cokernel, we have a map G → coker(G

pn−→ G) for each n ∈ N. Denoting
coker(G

pn−→ G) simply by G/pnG, we obtain a canonical map

ϕ : G→ lim←−
n

G/pnG = lim←−
n

coker(G
pn−→ G)

of affine group schemes over k.

Definition 2.7. An affine group scheme G over a field k is said to be p-adically separated
and complete if the map ϕ is an isomorphism.

Remark 2.8. Given a p-adically separated and complete affine group scheme G over k,
it is rarely true that, for any k-algebra A, the Abelian group G(A) is p-adically separated
and complete as well. Indeed, as the functor Homk(−, A) is left exact on the (Abelian)
category Hopfk, the exact sequence

1→ G
pn−→ G→ G/pnG→ 1

gives an injection
G(A)/pnG(A)→ (G/pnG)(A)

for any n ∈ N. In particular, we see that G(A) is p-adically separated and complete as
an Abelian group if Homk(−, A) is an exact functor on Hopfk. This holds, for example,
when A = k.

From here on until the end of this chapter, assume that k is perfect of characteristic
p > 0. The first part of the following definition was given in [2, Definition 3.1.1]:

Definition 2.9. (i) A Tate k-group is a p-adically separated and complete affine group
scheme G over k such that ker(G

p−→ G) = 0, and such that coker(G
p−→ G) is finite.
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(ii) A generalized Tate k-group is a p-adically separated and complete affine group
scheme G over k such that ker(G

p−→ G) = 0.

We have the following generalization of the result in [2, 3.1.3 in §3]:

Proposition 2.10. The functor

G = lim−→
n

Gn 7→ T (G) = lim←−
p

Gn

gives an equivalence of categories between the category of generalized p-divisible groups
over k and the category of generalized Tate k-groups.

Proof. Let G be a generalized p-divisible group over k. Note first that, as the transition
maps jn in the affine group scheme T (G) are surjective, the projection T (G) → G[pn]
is surjective for any n ∈ N. We claim that the kernel of this surjection is pnT (G). We
begin by showing that, for any k-algebra A, we have

ker
(
T (G)(A)→ G[pn](A)

)
= pn

(
T (G)(A)

)
.

Indeed, any element of T (G)(A) is a sequence of the form (0, a1, a2, . . . ) with ai ∈
G[pi](A), and p · ai+1 = ai for each i ≥ 1, so that, for any n, pn · (0, a1, a2, . . . ) is a shift
of the sequence (0, a1, a2, . . . ) by n entries to the right. Conversely, if (0, a1, a2, . . . ) ∈
T (G)(A) such that an = 0, the relations p · ai+1 = ai for i ≥ 1 clearly force a1 = a2 =
· · · = an = 0. This proves the claimed equality above.

Observe that the above argument also implies that, being a shift to the right on its
points, multiplication by pn is injective on T (G) for any n ∈ N, giving in particular that

ker(T (G)
p−→ T (G)) = 0.

Moreover, it implies that pn
(
T (G)(A)

)
' T (G)(A) ' pnT (G)(A) as Abelian groups for

any k-algebra A, and consequently, that

T (G)/pnT (G) ' G[pn]

as affine group schemes. Considering the projective limit of both sides over N, we see that
T (G) is a generalized Tate k-group, and we have defined a functor T from the category
of generalized p-divisible groups over k to the category of generalized Tate k-groups.

To construct a quasi-inverse, assume given a generalized Tate k-group T . Then, the
cokernel coker(T

pn−→ T ) = T/pnT is an affine group scheme over k, so that

G(T ) = lim−→
n

(T/pnT )

with the transition maps being multiplication by p is an inductive limit of affine group
schemes over k. Since ker(T

p−→ T ) = 0, we have pnT ' pn+1T via multiplication by p,
so that the map T/pnT p−→ T/pn+1T is injective, and thus, there are exact sequences

1→ T/pnT
p−→ T/pn+1T

pn−→ T/pn+1T
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for each n ∈ N. Moreover, the kernel of the map T/pn+mT
pm−−→ T/pn+mT is contained

in pnT/pn+mT , so that it factors over the reduction jm,n : T/pn+mT → T/pnT with
pm = in,m ◦ jm,n, where in,m : T/pnT → T/pn+mT is the multiplication by pm. In
particular, jm,n is surjective for all n,m ∈ N, and G(T ) is a generalized p-divisible group
over k.

Finally, we need to see that the constructions T and G are quasi-inverses of each other.
Indeed, if G is a generalized p-divisible group over k, then

G(T (G)) = lim−→
n

(
T (G)/pnT (G)

)
' lim−→

n

G[pn] = G.

Conversely, if T is a generalized Tate k-group, then G(T )[pn] = T/pnT , and hence,

T (G(T )) = lim←−
n

T/pnT = T.

We easily obtain [2, 3.1.3 in §3] as a corollary of this proposition:

Corollary 2.11. The above equivalence restricts to an equivalence of categories between
the category of p-divisible groups over k and the category of Tate k-groups.

Proof. Given a p-divisible group G, it follows by definition that

coker
(
T (G)

p−→ T (G)
)
' G[p]

is finite.

Conversely, given a Tate k-group T , the exact sequence 1 → T
p−→ T → T/pT → 1

induces an exact sequence

1→ T/pnT → T/pn+1T → T/pT → 1

of finite group schemes over k for each n ∈ N. The multiplicativity of orders of such
group schemes over exact sequences (cf. [16, §1.3]) imply that the order ord(T/pnT ) of
T/pnT is

(
ord(T/pT )

)n by induction on n. Now, we want to see that ord(T/pnT ) = pnh

for some h ∈ N, for which it is enough to prove that T/pT has order ph for some h ∈ N.

To this end, consider the short exact sequence (cf. §1.1)

1→ (T/pT )◦ → T/pT → (T/pT )ét → 1.

We have, from [18, 1st Corollary in §14.4], that the order of (T/pT )◦ is a power of p.
Also, as (T/pT )ét is annihilated by p, so is the finite Abelian group (T/pT )ét(k), implying
that the order of (T/pT )ét is a power of p. Thus, the multiplicativity of the order implies
that the order of T/pT is a power of p, say ph for some h ∈ N, as desired.
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Remark 2.12. One can define Tate k-groups over any field k by adding the assumption
that the order of T/pT is a power of p (note that we have just proved that this is
automatic when k is perfect of characteristic p > 0). The above corollary then remains
true.

In combination with Corollary 2.11, the following standard fact shows that Tate k-groups
are nothing but finite rank Zp-modules with a continuous Γ-action:

Corollary 2.13. There is an equivalence between the category of étale p-divisible groups
of height h over k and the category of free Zp-modules of rank h with a continuous Γ-
action.

Proof. Let G be an étale p-divisible group of height h over k. Consider the k-points

T := T (G)(k) = lim←−
p

G[pn](k)

of the Tate module T (G) of G. It follows that G[pn](k) is a finite group of order pnh for
each n ∈ N, for some h ∈ N, so that h ∈ N is the height of G (cf. [16, p. 12]), and thus,
T ' lim←−n Z/p

nhZ ' Zhp . Furthermore, T endowed with the projective limit topology
naturally carries a continuous action of Γ, induced from the continuous action of Γ on
the finite discrete spaces Gn(k) = G[pn](k) for each n.

Conversely, assume that T is a free Zp-module of rank h ∈ N with a continuous Γ-action.
The quotients T/pnT are then finite Γ-sets for each n ∈ N. Hence, by Proposition 1.3,
they give rise to étale group schemes Gn over k such that Gn(k) = T/pnT , and the exact
sequence

1→ T/pnT
p−→ T/pn+1T

pn−→ T/pn+1T

of Γ-sets uniquely determines an exact sequence

1→ Gn
p−→ Gn+1

pn−→ Gn+1

on the corresponding étale group schemes over k such that the order of Gn is pnh for
each n ∈ N, for some h ∈ N, i.e. an étale p-divisible group lim−→n

Gn of height h.

Finally, it is clear from the proof of the above proposition that these two constructions
are inverses of each other.

Corollary 2.14. Let k be a perfect field of characteristic different from p. Then the
category of p-divisible groups over k is equivalent to the category of free Zp-modules of
finite rank with a continuous action of the Galois group Gal(k/k).

Proof. Let G = lim−→n
Gn be a p-divisible group over k. Then, each finite group scheme

Gn is étale over k (cf. [10, Proposition 13.7]), and the result follows by the previous
proposition.

28



Example 2.15. (i) Consider the constant p-divisible group G = (Qp/Zp)h of height
h ∈ N. By Corollary 2.13, the k-points T (G)(k) of its Tate module is then Zhp with
the trivial action of the Galois group Γ.

(ii) Let k be a field of characteristic different from p. Then, the p-divisible group
µp∞ := lim−→n

µpn , where

µpn := Spec
(
k[t]/(tp

n − 1)
)
,

is étale over k of height 1. So, by the above corollary, we get that T (µp∞)(k) is a
free Zp-module of rank one with the action of the Galois group Gal(k/k) given by
the p-adic cyclotomic character χ : G → Z×p . Clearly, if the characteristic of k is p,
then µp∞ is connected.

Remark 2.16. It is a natural question how to define good notions of étaleness and
connectedness for generalized p-divisible groups. Note that there is an obvious way to
extend connectedness to the generalized setting. Namely, one could call a generalized
p-divisible group G = lim−→n

Gn connected if each affine group scheme Gn = Spec(An) is
connected as the prime spectrum of An in the Zariski topology. We will also briefly touch
on the notion of étaleness later.
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3 Universal formal cover functor

Let k be a field, and G a generalized p-divisible group over k. We define the universal
formal cover G̃ of G as the group functor

G̃ := lim←−
p

G = G
p←− G p←− · · ·

on the category of prodiscrete k-algebras, where the projective limit is taken over N with
respect to the multiplication by p on G.

Note that, writing G = lim−→n
Gn, we see that the functor G̃ takes a discrete k-algebra A

to the group
G̃(A) = lim←−

p

G(A) ' lim←−
p

lim−→
n

Gn(A),

so that, for a prodiscrete k-algebra A = lim←−iAi, we obtain

G̃(A) = lim←−
p

G(lim←−
i

Ai) ' lim←−
p

lim←−
i

G(Ai) ' lim←−
i

lim←−
p

G(Ai) ' lim←−
i

lim←−
p

lim−→
n

Gn(Ai).

Moreover, by definition, G(Ai) has a Zp-module structure, and, as the multiplication by
p on the projective limit G̃(Ai) is bijective, G̃(Ai) has the structure of a module over the
localization Zp[1/p] = Qp. It thus follows that

G̃(A) ' lim←−
i

G̃(Ai)

is a Qp-vector space for any prodiscrete k-algebra A.

From here on, we assume that the field k is perfect of characteristic p > 0. Consider the
inductive limit

T (G)
[1

p

]
:= lim−→

p

T (G)

of affine group schemes over k. By definition, T (G)[p] = 0, so that, assuming T (G) is
represented by the k-algebra A, the prodiscrete k-algebra lim←−pA satisfies the condition
of Lemma 1.6. Thus, T (G)[1/p] can be viewed as a formal group represented by lim←−pA
(cf. Remark 1.11.(iii)).

The next proposition provides a few useful relations between the group functors T (G),
T (G)[1/p] and G̃:

Proposition 3.1. Let the notation be as above. We have:

(i) Endowing the representing algebra of T (G) with the discrete topology, there is an
exact sequence

0→ T (G)→ G̃→ G

of group functors on the category of prodiscrete k-algebras.
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(ii) There is an isomorphism

G̃ ' T (G)
[1

p

]
as group functors on the category of prodiscrete k-algebras. In particular, the uni-
versal formal cover G̃ is a formal group over k, and hence is representable on the
category of prodiscrete k-algebras.

(iii) For any k-algebra A, we have T (G)(A) ' HomZp(Qp/Zp, G(A)). For any prodis-
crete k-algebra A, we have G̃(A) ' HomZp(Qp, G(A)).

Proof. Let A be a discrete k-algebra. For part (i) (which is already observed in [5, §1,
Chapter V] for the case of formal groups in Fontaine’s sense), we need to show that

T (G)(A) = lim←−
p

G[pn](A) = ker
(

lim←−
p

G(A)
pr0−−→ G(A)

)
= ker(G̃(A)

pr0−−→ G(A)).

But the elements of T (G)(A) are of the form (0, a1, a2, . . . ), which maps to 0 under the
projection G̃(A) → G(A). Conversely, any element of the kernel of pr0 is of the form
(0, a1, a2, . . . ), which satisfies, by induction, that pnan = 0 for all n ∈ N. So the sequence
is exact on the category of discrete k-algebras. The left-exactness of the projective limit
ensures that the sequence remains exact when we pass to the category of prodiscrete
k-algebras.

For part (ii), consider the map

ϕ : T (G)(A)[1/p]→ G̃(A), (0, a1, a2, . . . )⊗ p−r 7→ (ar, ar+1, ar+2, . . . ).

It is clear that ϕ is injective. For surjectivity, assume that (a0, a1, a2, . . . ) ∈ G̃(A) is
given. Let s ≥ 1 be such that a0 ∈ G[ps]. Then,

(a0, a1, a2, . . . ) ∈ lim←−
p

G[ps+n](A),

and we see that
(0, ps−1a0, p

s−1a1, . . . )⊗ p−s ∈ T (G)(A)[1/p]

maps to
(ps−1as−1, p

s−1as, p
s−1as+1, . . . ) = (a0, a1, a2, . . . ).

Note finally that we have observed, earlier in this section, that the functors T (G)[1/p]
and G̃ commute with projective limits. Thus, the result extends to the category of
prodiscrete k-algebras.

Finally, for the last part of the proposition (which gives the definitions used by Fontaine
in [5, Chapter V]), one easily checks that the maps

T (G)(A)→ HomZp(Qp/Zp, G(A)), (0, a1, a2, . . . ) 7→ (p−nZp 7→ an),
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and
G̃(A)→ HomZp(Qp, G(A)), (a0, a1, a2, . . . ) 7→ (p−nx 7→ xan),

for which we use the isomorphisms Qp/Zp ' lim−→n
p−nZp/Zp and Qp ' lim−→n

p−nZp, are
bijective. Also, the isomorphism G̃(A) ' HomZp(Qp, G(A)) we proved for discrete k-
algebras formally extends to an isomorphism on prodiscrete k-algebras by commuting
the limit.

Recall that the category of p-divisible groups over k up to isogeny is obtained by localizing
the category of p-divisible groups with respect to the multiplication by p. For two p-
divisible groups G and H over k, the group of morphisms in this category, denoted by
Hom(G,H)[1/p], is then given by the formula

Hom(G,H)[1/p] := Hom(G,H)⊗Zp Qp.

The next corollary gives a Galois-theoretic description of universal formal covers of étale
p-divisible groups:

Corollary 3.2. Let G be an étale p-divisible group over k. Then, the k-points G̃(k) of the
universal formal cover G̃ is a finite dimensional Qp-vector space with a continuous action
of Γ. Conversely, given such a Qp-vector space V , there is a unique étale p-divisible group
G over k up to isogeny such that G̃(k) ' V .

Proof. By Corollary 2.13, we know that T (G)(k) ' Zhp for some h ∈ N with a continuous
Γ-action. By part (ii) of the above proposition, we have G̃(k) ' T (G)(k)⊗Zp Qp, giving
us G̃(k) ' Zhp ⊗Zp Qp ' Qhp with a continuous Γ-action. This justifies the first claim.

For the second one, let the finite dimensional Qp-vector space V ' Qhp , h ∈ N, have
a continuous Γ-action. We need to show that, up to isogeny, there is a unique étale
p-divisible group G over k with G̃(k) = V . To this end, let T be a Γ-stable lattice of V ,
existence of which is ensured as follows: choose any lattice T0, and consider the stabilizer
H ⊆ Γ of T0. Then, Γ/H is a finite set, due to H being open, and Γ being compact; and
the sum

T :=
∑

g∈Γ/H

g(T0)

is a Γ-stable lattice of V by definition. Hence, T is of the form T ' Zhp with a continuous
Γ-action. Using Corollary 2.13 again, we get that it uniquely corresponds to an étale
p-divisible group G with T (G)(k) ' T , as desired.

For the assertion that G is determined up to isogeny, assume there is another étale p-
divisible group H over k such that H̃(k) ' V . Note that the kernel U ′ of the projection

V ' H̃(k) ' lim←−
p

H(k)→ H(k), (xn)n∈N 7→ x0,
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is open and Zp-stable. Since U ′ is an open bounded Zp-lattice, we obtain an isomorphism
V ' lim←−n V/p

nU ′, and it follows that the kernel of any projection

V ' lim←−
p

H(k)→ H(k)

is of the form pmU ′ for some m ∈ N. Hence, we get that pmU ′ ⊆ U for some m ∈ N.
Conversely, the openness of U ′ implies that pnU ⊆ U ′ for some n ∈ N. Therefore, the
Γ-invariant map

G(k) ' V/U pn−→ V/U ′ ' H(k)
pm−−→ V/U = G(k)

shows that G and H are isogeneous, and the proof is complete.

Remark 3.3. Observe that a description of the universal formal cover of a connected
p-divisible group G over k in terms of the k-points T (G)(k) of its Tate module T (G) as
in the étale case above is not possible as T (G)(k) vanishes. Indeed, by definition, Gi
is represented by a finite local algebra Ai over k for any i, so that any k-algebra map
Ai → k factors through the inclusion Ai/m→ k, yielding T (G)(k) = 0.

Example 3.4. If G is an étale p-divisible group, it follows, from Example 2.6 and
Proposition 3.1.(ii), that the representing algebra of the universal formal cover G̃ of G is

lim←−
p

C(T (G)(k), k)Γ ' C(lim−→
p

T (G)(k), k)Γ ' C(G̃(k), k)Γ.

Recall that our base field k is assumed to be perfect of characteristic p > 0. As in the
étale case above, we can describe the representing algebra of the universal formal cover
of a connected p-divisible group over k once we know the representing algebra of its Tate
module T (G). This is what we do next:

Proposition 3.5. Let G be a connected p-divisible group over k. Then the Tate module
T (G) of G is represented by the k-algebra

k[[X1/p∞ ]]/(X) = k[[X
1/p∞

1 , . . . , X
1/p∞

d ]]/(X1, . . . , Xd),

where d ∈ N is the dimension of G.

Proof. This is the result [14, Proposition 3.3.1]. Here, we give an explanatory proof by
mimicking the argument for the proof of [14, Proposition 3.1.3.(iii)].

Write G = lim−→i
Gi. By the proof of [16, Proposition 1, §2.2], we see that each Gi is

represented by the discrete quotient

k[[X]]/
(
[pi](X)

)
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of k[[X]]. Put G(pn)
i := Gi ⊗k,ϕn k for any i ∈ N, where n ∈ N, and ϕ is the Frobenius of

k. Using the decomposition p = V F = FV , where F : G
(pn)
i → G

(pn+1)
i is the Frobenius,

and V : G
(pn+1)
i → G

(pn)
i is the Verschiebung (cf. [20, Rem 5.21]), we obtain a natural

transformation of functors:

F : T (G) = lim←−
p

Gi → lim←−
F

G
(p−n)
i , (ai)i∈N 7→ (V i−1ai)i∈N.

Moreover, since multiplication by p is an isogeny on each Gi, we can write Fm = pui for
some m ≥ 1, where ui : G

(p−m)
i → Gi is an isogeny for any i (cf. [20, Proposition 5.25]).

Denote the isogeny G(p−mn)
i → G by uni , and consider the natural transformation

G : lim←−
Fm

G
(p−mn)
i → lim←−

p

Gi, (ai)i∈N 7→ (ui−1
i ai)i∈N.

We also have the following natural transformation:

H : lim←−
F

G
(p−n)
i → lim←−

Fm

G
(p−mn)
i , (ai)i∈N 7→ (F (i−1)(1−m)ai)i∈N.

For each i ∈ N, we then obtain

ui−1
i F (i−1)(1−m)V i−1 = ui−1

i Fm−imF i−1V i−1 = ui−1
i Fm−impi−1 = Fm−imFm(i−1) = 1,

showing that the composition G ◦ H ◦ F is the identity. Also, for each i ∈ N, we have

F (i−1)(1−m)ui−1
i V i−1 = F (i−1)(1−m)(p−1FmV )i−1 = F (i−1)(1−m)(Fm−1)i−1 = 1,

i.e. F ◦ G ◦ H = 1. Therefore, we have proved that F is an isomorphism, and it is
enough to determine the representing algebra of lim←−F G

(p−n)
i . But, for each i, there is an

isomorphism Gi ' G
(p−n)
i of affine schemes as k is perfect. Moreover, the map F on Gi

is given on the variables by Xj 7→ Xp
j for each j = 1, . . . , d (cf. [20, Theorem 5.2]), so we

conclude that the representing algebra of lim←−F Gi is

lim−→
F

k[[X]]/
(
[pi](X)

)
' lim−→

n

k[[X1/pn ]]/(X) ' k[[X1/p∞ ]]/(X),

as desired.

The following result was already observed in [14, Proposition 3.1.3.(iii)]. In fact, Scholze
and Weinstein go the other way around, and deduce the result in the above proposition
from the following statement (cf. [14, Proposition 3.3.1]).

Corollary 3.6. The universal formal cover G̃ of a connected p-divisible group is repre-
sented by

k[[X1/p∞ ]] = k[[X
1/p∞

1 , . . . , X
1/p∞

d ]].
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Proof. Since multiplication by p is an isogeny on G, as in the proof of the previous
proposition, we have Fm = pu for some m ≥ 1, where F : G(pn) → G(pn+1) is the
Frobenius, and u : G(p−m) → G is an isogeny. This induces a decomposition Fm = pu′

on T (G), so that G̃ ' T (G)[1/p] is represented by

lim←−
p

k[[X1/p∞ ]]/(X) ' lim←−
Fm

k[[X1/p∞ ]]/(X),

where Fm is given by Xj 7→ Xpm

j on each variable Xj , j = 1, . . . , d. But then, since
k[[X1/p∞ ]] is (X)-adically separated and complete, we get

lim←−
Fm

k[[X1/p∞ ]]/(X) ' lim←−
m

k[[X1/p∞ ]]/
(
Xpm

)
' k[[X1/p∞ ]].

Remark 3.7. In [14, Proposition 3.1.3.(iii)], Scholze and Weinstein instead start with
a connected p-divisible group G over k of dimension d, and proves that there is an
isomorphism

G̃ = lim←−
p

G ' lim←−
F

G(pn).

Observing that G, as a formal group, is represented by

lim←−
i

k[[X]]/
(
[pi](X)

)
' k[[X]],

where (X) = (X1, . . . , Xd), they then show that the k-algebras

lim−→
F

k[[X]] = lim−→
Xk 7→Xp

k

k[[X]] = lim−→
n

k[[X1/pn ]]

and k[[X1/p∞ ]] represent the same functor; namely, G̃.

Let G and H be p-divisible groups over k. Recall that G̃ and H̃ are group functors taking
values in the category of Qp-vector spaces, so that Hom(G̃, H̃) is a Qp-vector space.
Therefore, the natural injection Hom(G,H) → Hom(G̃, H̃), defined by f 7→ f̃ := (f)n,
induces a unique map

Hom(G,H)[1/p]→ Hom(G̃, H̃), f ⊗ p−n 7→ p−nf̃,

which is clearly injective.

Moreover:

Proposition 3.8. The universal formal cover functor on the category of p-divisible
groups up to isogeny over k is fully faithful.
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Proof. To prove the proposition, we begin by justifying that it is enough to prove it for
the categories of étale and connected p-divisible groups up to isogeny over k.

Let G and H be two p-divisible groups over k. Since k is perfect of characteristic p > 0,
by the proof of [16, Proposition 4], any p-divisible group over k is isomorphic to the direct
sum of its connected and étale parts, i.e. G ' G◦ ⊕Gét and H ' H◦ ⊕Hét. But then,
as both Hom(G◦, Hét) and Hom(Gét, H◦) only contain the zero map, we get that

Hom(G,H)[1/p] ' Hom(G◦, H◦)[1/p]⊕Hom(Gét, Hét)[1/p].

We claim that also Hom(G̃◦, H̃ét) and Hom(G̃ét, H̃◦) contain only the zero map. Assume,
without loss of generality, that the action of Γ is trivial. Suppose first that we are given
a map in Hom(G̃◦, H̃ét). Using Example 3.4 and Corollary 3.6, and , this gives us a map
F : C(V, k) → k[[X1/p∞ ]] of k-algebras, where V = G̃(k). We need to see that F factors
through the augmentation

ε : C(V, k)→ k, f 7→ f(0),

of C(V, k). To this end, let f ∈ ker(ε), and consider the characteristic function g of the
support of f . We have f · g = f , where the multiplication in C(V, k) is defined pointwise.
Since the support of f does not contain 0, we also get g(0) = 0. Moreover, g being
an idempotent in C(V, k), it must be mapped to an idempotent in the maximal ideal of
k[[X1/p∞ ]], i.e. F (g) = 0, so that

F (f) = F (f · g) = F (f)F (g) = 0,

which proves the claimed factorization.

Similarly, to see that Hom(G̃ét, H̃◦) is trivial, we must see that any map k[[X1/p∞ ]] →
C(V, k) of k-algebras factors through the augmentation ε : X 7→ 0 of k[[X1/p∞ ]]. Let
f ∈ ker(ε). As f ∈ k[[X1/p∞ ]] has no constant term, it follows that f(X) is topologically
nilpotent. However, since k is a discrete field, and multiplication in C(V, k) is defined
pointwise, it follows that C(V, k) has no nonzero topologically nilpotent elements. This
implies f(X) = 0, and the desired factorization follows. If k is not algebraically closed,
one can then pass to the Γ-invariants.

Now, since the universal formal cover functor (as a projective limit of formal groups)
commutes with the finite direct sums, we obtain

Hom(G̃, H̃) ' Hom(G̃◦, H̃◦)⊕Hom(G̃ét, H̃ét).

Therefore, it follows that it is enough to prove the proposition for the categories of étale
and connected p-divisible groups up to isogeny over k.

In order to do that, we need to prove that the map Hom(G,H)[1/p] → Hom(G̃, H̃)
defined above is surjective. Assume first that G and H are étale. Let G̃→ H̃ be a map
between the universal formal covers G̃ and H̃. By Corollary 3.2, this gives a Γ-equivariant
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Qp-linear map f : Qh1p → Qh2p of Γ-sets with h1, h2 ∈ N>0. Since the kernel of the
composition Qh1p → Qh2p → Qh2p /Zh2p , where Zh2p can be assumed to be Γ-stable in Qh2p by
choosing a suitable Qp-basis, contains pnZh1p for some n ∈ N (being an open Γ-invariant
subspace of Qh1p ), we obtain an induced Γ-equivariant map g : Qh1p /pnZh1p → Qh2p /Zh2p .
Composing g with pn, we get a map

pn ◦ g : Qh1p /pnZh1p
g−→ Qh2p /Zh2p

pn−→ Qh2p /pnZh2p

in Hom(G,H). We would like to see that pn ◦ g ⊗ p−n maps to f . But, it follows, by
construction, that

p−n ˜(pn ◦ g) = g̃ = f.

Now, assume that G and H are connected. Let f ∈ Hom(G̃, H̃). Using Corollary 3.6, we
assume that G̃ is represented by R = k[[X1/p∞ ]], and H̃ by S = k[[Y 1/p∞ ]], and consider
the map ϕ : S → R of Hopf algebras corresponding to f . Since H is a p-divisible
formal group, we have that [p](Yi) = Y phi

i after a suitable change of variables for each
i = 1, . . . , d, where Y = (Y1, . . . , Yd) for some d ≥ 1 (cf. [20, Theorem 5.2]). Thus, the
composition S pn−→ S

ϕ−→ R→ R/(X) factors through S/(Y ) for a large enough n ∈ N to
give us a map ϕ : S/(Y )→ R/(X) of Hopf algebras. By Proposition 3.5, this corresponds
to a map T (G) → T (H) between the Tate modules of G and H, which yields a unique
map g : G→ H in Hom(G,H) by Corollary 2.11. We are done if we show that f = p−ng̃.
But since G̃ ' T (G)[1/p] (and similarly for H), we see that the map g̃ : G̃ → H̃ on the
level of Hopf algebras is given by

φ : lim←−
p

S/(Y )→ lim←−
p

R/(X).

Since the Hopf algebra structure on the quotients R/(X) and S/(Y ) are induced by the
Hopf algebras R and S, respectively, we get φ = ϕ ◦ [pn], or g̃ = pnf , as required.
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4 Formal p-adic vector spaces

Assume that k is a perfect field of characteristic p > 0. This is the chapter where we
present most of our main results.

4.1 Definitions and examples

The notion of a formal Qp-vector space is defined in parallel with the definition of a
formal group over k (cf. Definition 1.10):

Definition 4.1. A formal Qp-vector space over k is a Qp-vector space object in the
category of formal schemes over k, i.e. it is a representable functor from the category of
prodiscrete k-algebras to the category of Qp-vector spaces.

Let G = lim−→n
Gn be a generalized p-divisible group over k. A fundamental example of a

formal Qp-vector spaces is then given by the universal formal cover G̃ of G. Recall that,
in the previous chapter, we have seen that, as a functor on prodiscrete k-algebras, G̃(A)
is a Qp-vector space for any prodiscrete k-algebra A. Moreover, by Proposition 3.1.(ii),
we know that G̃ is a formal group. Therefore, it follows that the universal formal cover
of a p-divisible group over k is an example of formal Qp-vector spaces over k.

Definition 4.2. An étale formal Qp-vector space over k is a formal Qp-vector space F
such that its representing algebra A = lim←−Ai is a projective limit of discrete indétale
k-algebras.

Example 4.3. Example 2.6 and Example 3.4 show that the representing algebra of the
universal formal cover G̃ of an étale p-divisible group G over k is

lim←−
p

C(T, k)Γ ' lim←−
p

lim−→
n

C(T/pnT, k)Γ,

where T = T (G)(k), showing that G̃ is an étale formal Qp-vector space over k.

Example 4.4. Let H = Spec(A) be a p-adically separated and complete affine group

scheme over k such that H[p] = 0. So we have that the induced map A
[p]−→ A is

surjective (cf. Remark 1.6). A natural construction of formal Qp-vector spaces is then as
follows: Consider F := H[1/p] = lim−→p

H as a formal scheme over k (cf. Remark 1.11.(ii)).
Since End(H/pnH) has a Z/pnZ-module structure, End(H) acquires a natural Zp-module
structure via

lim←−
n

Z/pnZ→ lim←−
n

End(H/pnH)→ End(lim←−
n

H/pnH) ' End(H).

This implies that F is a functor that takes values in the category of Qp-vector spaces. As
seen earlier, it is prorepresented by the prodiscrete k-algebra lim←−pA, and can be extended
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to a representable functor on the category of prodiscrete k-algebras by letting it commute
with projective limits.

A special class of formal Qp-vector spaces we are going to be interested in are the ones
whose representing algebra is the ring R = k[[X

1/p∞

1 , . . . , X
1/p∞

d ]] of fractional formal
power series, which we largely studied in §1.4. Observe that R is a local ring with the
unique maximal ideal

mR = (X1/p∞) = (X
1/p∞

1 , . . . , X
1/p∞

d ) =
⋃
n∈N

(X
1/pn

1 , . . . , X
1/pn

d ).

In particular, the prime spectrum of R is connected in the topological sense.

Motivated by this fact and for an ease of presentation, we define:

Definition 4.5. A formal Qp-vector space over k that is represented by R is called a
connected formal Qp-vector space of dimension d.

Example 4.6. It follows, by Corollary 3.6, that the universal formal cover G̃ of a con-
nected p-divisible group is a connected formal Qp-vector space of the kind described in
Example 4.4 above.

Thus, we have seen that the universal formal cover G̃ of a p-divisible group G over a
perfect field k of characteristic p > 0 constitutes an example of formal Qp-vector spaces
over k, namely étale and connected formal Qp-vector spaces. We are fundamentally
interested in the questions in the reverse direction:

(1) Given an étale formal Qp-vector space F , is there a (generalized) p-divisible group
G such that G̃ ' F?

(2) Given a connected formal Qp-vector space F of dimension d ≥ 1, is there a (gener-
alized) p-divisible group G over k such that G̃ ' F?

4.2 Étale formal vector spaces

Let F be an étale formal Qp-vector space. Let A = lim←−iAi, where each Ai is an indétale k-
algebra, be the representing algebra of F . Recall that, under the equivalent assumptions
of Lemma 1.8 on the indétale k-algebras Ai, Corollary 1.9 ensures the existence of a locally
profinite space X with a continuous Γ-action such that A ' C(X, k)Γ as prodiscrete
spaces.

We give a conditional answer to Question (1) we posed above:

Proposition 4.7. Let the notation be as in the above paragraph. Assume that

(i) the transition maps Aj → Ai for i ≤ j satisfy the equivalent assumptions of Lemma
1.8,
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(ii) the topology introduced in Corollary 1.9 makes F(k) = X into a topological Qp-
vector space.

Then, there is an étale p-divisible group G over k such that G̃ ' F .

Proof. We know, by the results in [17, §2], that the locally profinite topological space
X admits a compact open subgroup X0. Since the Qp-action on X is continuous by
assumption, X0 is a compact Zp-module. Moreover, if x ∈ X, then pnx ∈ X0 for a
sufficiently large n. This implies that X = X0[1/p], and hence, X is a finite dimensional
Qp-vector space.

Noting that the Γ-action on X = F(k) is Qp-linear, choose a Γ-stable Zp-lattice T ⊆
X. By Corollary 3.2, there is a corresponding étale p-divisible group G over k with
T (G)(k) ' T . But then, T (G) is represented by C(T, k)Γ, and hence the universal formal
cover G̃ ' T (G)[1/p] by

lim←−
p

C(T, k)Γ ' C(lim−→
p

T, k)Γ = C(X, k)Γ,

as required.

Now, in order to generalize the previous construction beyond étale p-divisible groups, let
V be an arbitrary (i.e. possibly infinite dimensional) Qp-Banach space with a continuous
Qp-linear action of Γ. Then, there is a bounded open lattice U of V that is Γ-invariant
(cf. [13, Remark 18.2]). We consider the inverse system

Wn := (V/pnU)n∈N

of discrete Γ-sets. Write eachWn ' lim−→m∈NWnm as an inductive limit of its finite discrete
Γ-stable subgroups Wnm. Each Γ-set Wn then gives rise to a formal group Gn over k
that is represented by the proétale k-algebra

C(Wn, k)Γ ' C
(

lim−→
m

Wnm, k
)Γ ' lim←−

m

C(Wnm, k)Γ

endowed with the projective limit topology (cf. [5, Chapter 1, §7.1]). Note, in particular,
that this implies that C(Wn, k)Γ is a separated and complete linearly topologized k-vector
space by Proposition 1.4.(ii). Setting now

V := lim←−
n

Gn,

and viewing it as a group functor on the category of prodiscrete k-algebras, we have the
following elementary observation:

Lemma 4.8. Let the notation be as above.

(i) The canonical Γ-invariant map V → lim←−nWn is a topological isomorphism.
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(ii) There is a Γ-invariant isomorphism V ' V (k).

Proof. For part (i), note that the topology of the Banach space V is generated by the
subsets of the form v + pnU with v ∈ V (cf. [13, Proposition 4.1]), so that the map
V → Wn is continuous for each n, where the space on the right is discrete. Hence,
the map V → lim←−nWn is continuous. Moreover, note that (pnU)n∈N is a basis of open
neighborhoods of zero in V , and that the image of any pnU is the kernel of the projection
lim←−nWn → V/pnU as the canonical map V → lim←−nWn is a bijection. Hence, the image
of pnU is open, showing that the map is open.

For part (ii), the canonical isomorphism Gn(k) ' Wn, for each n ∈ N, gives, together
with part (i), that

V (k) ' lim←−
n

Gn(k) ' lim←−
n

Wn ' V

is a Γ-invariant isomorphism.

Observe that the functor V , as a projective limit of formal groups, need not be repre-
sentable for purely formal reasons. However, by applying the construction in §1.3, we will
see that the space Cu(V, k)Γ of uniformly continuous maps from V to k that commute
with the action of Γ, topologized with the strict k-linear inductive limit (cf. §1.3), makes
V into a functor that satisfies some representability-like properties.

In fact, since (pnU)n∈N forms a basis of open neighborhoods of zero in V , any uniformly
continuous map V → k factors through Wn for some n ∈ N, yielding an isomorphism

Cu(V, k)Γ ' lim−→
n

C(Wn, k)Γ.

As, for each n ∈ N, the map C(Wn, k)→ C(Wn+1, k) is injective, we view Cu(V, k)Γ as a
filtered union of linearly topologized k-vector spaces C(Wn, k)Γ. Endow now Cu(V, k)Γ

with the strict k-linear inductive limit topology as in Definition 1.12.

Note that although, by Lemma 1.15, the space Cu(V, k)Γ is Hausdorff and complete, it
is not a linearly topologized ring: it has a basis of open neighborhoods of zero consisting
of k-vector subspaces, but not of ideals. In particular, Cu(V, k)Γ is not a prodiscrete
k-algebra; however, we still have:

Lemma 4.9. Let A be a discrete k-algebra. Then,

V (A) ' Homcont
k

(
Cu(V, k)Γ, A

)
.

Proof. By Lemma 1.15.(i) and the construction of the strict k-linear inductive limit
topology on Cu(V, k)Γ, a k-linear map Cu(V, k)Γ → A is continuous if and only if its
restriction C(Wn, k)Γ → A is continuous for all n ∈ N. In particular, this holds for
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homomorphisms of k-algebras, giving that

V (A) = lim←−
n

Gn(A) ' lim←−
n

Homcont
k

(
C(Wn, k)Γ, A

)
' Homcont

k

(
lim−→
n

C(Wn, k)Γ, A
)

' Homcont
k

(
Cu(V, k)Γ, A

)
.

Let again G be an étale p-divisible group over k. Consider the open Γ-invariant Zp-
lattice T of G̃(k) that satisfies T = T (G)(k). For each n ∈ N, consider the formal group
corresponding to the discrete Γ-set G̃(k)/pnT , and form the projective limit

G̃(k) := lim←−
n

Spf
(
C
(
G̃(k)/pnT, k

)Γ)
,

viewed as a functor on the category of prodiscrete k-algebras. We obtain:

Proposition 4.10. Let G be an étale p-divisible group of height h ≥ 1 over k. We have
an isomorphism

G̃(k) ' lim←−
p

G

as functors on the category of prodiscrete k-algebras. Moreover, for any prodiscrete k-
algebra A, we have

G̃(A) = Homcont
k

(
Cu(Qhp , k)Γ, A

)
.

Proof. For the first assertion, it is enough to see that we have an isomorphism

lim−→
n

C
(
G̃(k)/pnT, k

)Γ ' lim−→
p

C(G(k), k
)Γ

of inductive systems. To this end, note that, as in the left hand side, the transition maps
in the inductive limit on the right hand side are injective because they are induced from
multiplication by p on G(k). Hence, it is isomorphic to the filtered union⋃

n∈N
pnC(G(k), k)Γ

of the images pnC(G(k), k)Γ of the function space C(G(k), k)Γ under the multiplication
by p. But we have an isomorphism

C
(
G̃(k)/pnT, k

)
' pnC(G(k), k)

for each n ∈ N, which justifies the claim. Endowing the inductive limit lim−→p
C(G(k), k

)Γ
with the strict k-linear inductive limit topology, the last assertion follows by the above
lemma.
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Remark 4.11. (i) The fact that the representing algebra of G̃ is C(Qhp , k)Γ when G
is an étale p-divisible group of height h ≥ 1 over k (cf. Example 3.4) should not
lead to confusion since, although the k-algebras Cu(V, k)Γ and C(V, k)Γ of function
spaces do not generally agree (even when V is a finite dimensional Qp-Banach space,
e.g. V = Qhp), the functors Homcont

k (Cu(Qhp , k)Γ, •) and Homcont
k (C(Qhp , k

Γ
), •) are

still identical on the category of prodiscrete k-algebras.

(ii) As the new approach we offered above has no finiteness condition on the dimension
of the Qp-Banach space V , it somehow generalizes the classical finite dimensional
picture in the following sense: As opposed to the case where V is finite dimensional,
so that V is a formal scheme with the representing k-algebra C(V, k̄)Γ, in case V is
infinite dimensional, the k-algebra Cu(V, k)Γ is no longer prodiscrete; nonetheless,
we still have Lemma 4.9, which practically allows us to compute V in terms of the
continuous Hom functor in the category of k-algebras, though this is technically no
representability.

(iii) This approach allows us to meaningfully extend the definition of étaleness to the
generalized p-divisible groups (cf. Remark 2.16), and has a potential to yield a
classificaion of the universal formal cover of étale generalized p-divisible groups.
Indeed, we could define an étale generalized p-divisible group over k as a generalized
p-divisible group G = lim−→n

Gn such that each Gn is a proétale group scheme over
k. Letting then V be a Qp-Banach space with a continuous action of Γ, one could
reasonably claim that there is an étale generalized p-divisible group G over k such
that G̃ ' V , and that, if V is finite dimensional, then G is indeed a p-divisible
group over k.

4.3 Connected formal vector spaces

In this section, we attempt to answer Question (2) we asked at the end of §4.1 in two
cases: d = 1 and d ≥ 2. Throughout the section, assume given a connected formal
Qp-vector space F = Spf(R), where R = k[[X

1/p∞

1 , . . . X
1/p∞

d ]] with d ≥ 1.

Our general strategy is to find suitable Hopf ideals I when d = 1 (resp. when d > 1)
of R such that the affine subgroup Spec(R/I) is a Tate k-group (resp. generalized Tate
k-group) T , and then make use of Corollary 2.11 (resp. Proposition 2.10) to deduce
that there is a corresponding p-divisible group G (resp. generalized p-divisible group)
over k such that T (G) = T , i.e. that T is the Tate module of G. Next, we show
T [1/p] ' F unconditionally (resp. under a mild continuity condition), which shall imply,
by Proposition 3.1.(ii), that F is isomorphic to the universal formal cover of the p-divisible
group (resp. generalized p-divisible group) G over k.
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4.3.1 One-dimensional case

Assume d = 1. We denote by G(X,Y ) ∈ k[[X1/p∞ , Y 1/p∞ ]] the perfect formal group law
of F , and by ι(X) ∈ k[[X1/p∞ ]] the inverse of X (cf. §1.4). We write

G(X,Y ) =
∑

i,j∈N[1/p]

aijX
iY j and ι(X) =

∑
i∈N[1/p]

aiX
i.

The following lemmas are particular to the case d = 1.

Lemma 4.12. We have G(X,Y ) = X + Y mod (XY ).

Proof. Let `0 := min{i > 0 | ∃j aij 6= 0}, and let `′0 := min{j > 0 | ∃i aij 6= 0}. Observe
that Definition 1.20.(i) allows us to write

G(X,Y ) = X + Y +
∑

i,j∈N[1/p]\0

aijX
iY j .

By Definition 1.20.(ii), it follows that `0 = `′0, so that we can write

G(X,Y ) = X + Y +X`0Y `0 · u,

with u = u(X,Y ) satisfying u(0, 0) = a`0`′0 6= 0. Note that, if `0 = 1, we are done.
Suppose, for a contradiction, that `0 < 1. Write `0 = m0/p

r0 with m0, r0 ∈ N>0, and
p - m0. Consider the ideal

I :=

{ ∑
i,j,h∈N[1/p]

aijhX
iY jZh | i > `0/p

r0 or j ≥ `0

}
⊆ k[[X1/p∞ , Y 1/p∞ , Z1/p∞ ]].

Since 1 > `0 > `0/p
r0 , we have

G(X,G(Y, Z)) = X +G(Y,Z) +X`0G(Y,Z)`0u
(
X,G(Y,Z)

)
≡ G(Y, Z) mod I.

On the other hand, computing G(G(X,Y ), Z) modulo I,

G(G(X,Y ), Z) = X + Y +X`0Y `0u+ Z +G(X,Y )`0Z`0u
(
G(X,Y ), Z

)
≡ Z +G(X,Y )`0Z`0u

(
G(X,Y ), Z

)
≡ Z + (X1/pr0 + Y 1/pr0 +X`0/pr0Y `0/pr0u1/pr0 )m0Z`0u

(
G(X,Y ), Z

)
≡ Z +

(
m0∑
j=0

(
m0

j

)
Y (m0−j)/pr0Xj`0/pr0Y j`0/pr0uj/p

r0

)
Z`0u

(
G(X,Y ), Z

)
≡ Z +m0X

`0/pr0Y (`0+m0−1)/pr0u1/pr0Z`0u
(
G(X,Y ), Z

)
,
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where the last two congruences follow from the facts that 1/pr0 > `0/p
r0 , and that

2`0/p
r0 > `0/p

r0 , respectively. But then, using Definition 1.20.(iii), we obtain

Z +m0X
`0/pr0Y (`0+m0−1)/pr0u1/pr0Z`0u

(
G(X,Y ), Z

)
−G(Y, Z) ∈ I.

Since u(0, 0) = a`0`0 6= 0, and m0 ∈ k×, we get that m0a
1/pr0

`0`0
a`0`0 ∈ k×, and the

summand
m0a

1/pr0

`0`0
a`0`0X

`0/pr0Y (`0+m0−1)/pr0Z`0

of the above sum is the unique such with the smallest positive X-power. Hence, it must
belong to the ideal I, contradicting the definition of I. Thus, `0 ≥ 1, as needed.

Corollary 4.13. There exists an h ∈ N>0 such that [p](X) = Xph + f(X), where the
X-order of f ∈ k[[X1/p∞ ]] is strictly bigger than ph.

Proof. By Proposition 1.21, we have

[p](X) = G(X,G(X,G(X, · · · )))︸ ︷︷ ︸
G applied p times

.

Since p = 0 in k, this implies, by the above lemma, that

[p](X) = amX
m + f(X),

where am 6= 0, m > 1, and the X-order of f(X) ∈ k[[X1/p∞ ]] is strictly bigger than m.
We want to see that m = ph for some h ∈ Z>0. Indeed, as [p] defines an automorphism
of k[[X1/p∞ ]], there is g(X) ∈ k[[X1/p∞ ]] such that g

(
[p](X)

)
= X. Write

g(X) =

∞∑
i=0

am(i)X
m(i) ∈ k[[X1/p∞ ]]

with am(0) 6= 0, m(i) ∈ N[1/p], and m(i) < m(i + 1) for all i ∈ N. Since m(0) is the
smallest among the indices m(i) ∈ N[1/p], and am(0) 6= 0, we have

g
(
[p](X)

)
=

∞∑
i=0

(amX
m + f(X))m(i) = am(0)

(
amX

m + f(X)
)m(0)

+

∞∑
i=1

(amX
m + f(X))m(i)

= am(0)amX
mm(0) + h(X)

= X,

where the X-order of h(X) ∈ k[[X1/p∞ ]] is strictly bigger than mm(0). Thus, mm(0) = 1
in N[1/p], from which we get that m = ph for some h ∈ Z>0.
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Lemma 4.14. We have

ι(X) = −X +
∑

N[1/p]3i>1

aiX
i ∈ k[[X1/p∞ ]].

Proof. Write

ι(X) =
∞∑
i=0

am(i)X
m(i)

with am(0) 6= 0, and m(i) < m(i + 1) for all i ∈ N. Use the equality ι(ι(X)) = X to
obtain

ι(ι(X)) = a
m(0)+1
m(0) Xm(0)2 + f(X) = X,

where the X-order of f(X) is strictly bigger than m(0)2. We get am(0)+1
m(0) = 1, and

m(0)2 = 1. Now, writing

ι(X) = a1X +
∞∑
i=1

am(i)X
m(i)

with m(i) > 1 for all i ≥ 1, and, using the equality G(X, ι(X)) = 0 together with Lemma
4.12, we get

G(X, ι(X)) = X + a1X +
∞∑
i=1

am(i)X
m(i) +

∑
i,j≥1

aijX
i
(
ι(X)

)j
= 0

with aij ∈ k for all i, j ∈ N[1/p]. Thus, (1 + a1)X is the unique term with the smallest
X-order in the above expression, and we get 1 + a1 = 0, as required.

We therefore obtain:

Corollary 4.15. The ideal (X) is a Hopf ideal of R = k[[X1/p∞ ]]. Put another way, the
scheme

Spec
(
R/(X)

)
= Spec

(
k[[X1/p∞ ]]/(X)

)
defines an affine subgroup of Spf(R).

Proof. Let µ, ι, ε be respectively the comultiplication, coinverse, and augmentation of the
topological Hopf algebra R = k[[X1/p∞ ]]. Let I = (X). By definition, we have ε(I) = 0.
Let

f(X) =
∑

i∈N[1/p]

aiX
i ∈ I

be arbitrary. Then, clearly, by Lemma 4.14, we get

ι(f) =
∑

i∈N[1/p]

aiι(X)i =
∑

i∈N[1/p]

ai

(
−X +

∑
j∈N[1/p]

ajX
j

)i
∈ I
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as i, j ≥ 1. Also, we see that µ(f) is mapped to 0 under the reduction map

k[[X1/p∞ ]]⊗̂k[[Y 1/p∞ ]]→ k[[X1/p∞ ]]/(X)⊗̂k[[Y 1/p∞ ]]/(Y )

since, by Lemma 4.12,

µ(f) =
∑

i∈N[1/p]

aiµ(X)i =
∑

i∈N[1/p]

G(X,Y )i

=
∑

i∈N[1/p]

ai

(
X + Y +

∑
j,k∈N[1/p]

ajkX
jY k

)

as i, j, k ≥ 1.

Put
H := Spec

(
R/(X)

)
= Spec

(
k[[X1/p∞ ]]/(X)

)
,

and
H/pnH := coker(H

pn−→ H).

Then:

Lemma 4.16. Let An be the representing algebra of H/pnH. We have

An = k[[X1/pnh
]]/(X).

In particular, H/pnH is a finite affine group scheme over k of order pnh for each n ∈ N.
Here, h is the positive integer whose existence was shown in Corollary 4.13 above.

Proof. Using Lemma 4.12, write

G(X,Y ) = X + Y +XY g(X,Y )

with g(X,Y ) ∈ k[[X1/p∞ , Y 1/p∞ ]]. Fix n ∈ N. To show that k[[X1/pnh
]]/(X) ⊆ An, it is

enough to see that X1/pnh
+ (X) ∈ An, i.e. that

G
(
X, [pn](Y )

)1/pnh

≡ X1/pnh
mod (X,Y ).

But, by Corollary 4.13, we have [pn](Y )1/pnh ≡ 0 mod (Y ) , which implies

G
(
X, [pn](Y )

)1/pnh

≡ X1/pnh
+ [pn](Y )1/pnh

+X1/pnh
[pn](Y )1/pnh

g
(
X, [pn](Y )

)1/pnh

≡ X1/pnh
mod (Y ).

For the converse, let f ∈ k[[X1/p∞ ]] such that f
(
G(X, [pn](Y ))

)
≡ f(X) mod (X,Y ). We

may assume f(0) = 0. Write
f(X) =

∑
`∈N[1/p]

a`X
`.
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We need to show that f(X) ∈ k[[X1/pnh
]] modulo (X). To this end, let

r0 := max{−vp(`) | ` < 1 and a` 6= 0},

and
`0 := min{` | ` < 1, a` 6= 0 and − vp(`) = r0},

where vp denotes the p-adic valuation. Put m0 := `0p
r0 , so that m0 ∈ Z>0 with p - m0.

Observe that we are done if we show that r0 ≤ nh. So suppose, for a contradiction, that
r0 > nh. We use Lemma 4.12 and Corollary 4.13 to write

G
(
X, [pn](Y )

)
= X + Y pnh · u

with u ∈ k[[X1/p∞ , Y 1/p∞ ]], so that u is of the form 1 +F for some F ∈ k[[X1/p∞ , Y 1/p∞ ]]
with F (0, 0) = 0. For ` ∈ N[1/p] with ` < 1, and a` 6= 0, write ` = m/pr with p - m, and
consider the ideal

I :=

{ ∑
i>(m0−1)/pr0

or
j>pnh−r0

aijX
iY j

}
⊆ k[[X1/p∞ , Y 1/p∞ ]].

From the expansion

G
(
X, [pn](Y )

)`
= (X + Y pnh

u)` = (X1/pr + Y pnh−r
u1/pr)m

= X` +

m∑
j=1

(
m

j

)
X(m−j)/prY jpnh−r

uj/p
r
,

it follows that

G
(
X, [pn](Y )

)` ≡ {X` mod I if ` 6= `0

X` +m0X
(m0−1)/pr0Y pnh−r0u1/pr0 mod I otherwise

.

Indeed, assume ` 6= `0. If r < r0, then

G
(
X, [pn](Y )

)`
= (X1/pr + Y pnh−r

u1/pr)m = X` +
m∑
j=1

(
m

j

)
X(m−j)/prY jpnh−r

uj/p
r

≡ X` mod I

as Y jpnh−r ∈ I for all j ≥ 1 using r < r0. If r = r0, and m > m0, then we get

G
(
X, [pn](Y )

)` ≡ X` mod I,
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using m > m0 for the summand at j = 1. Therefore,

f
(
G(X, [pn](Y ))

)
=

∑
`∈N[1/p]

a`G
(
X, [pn](Y )

)`
≡
∑
`<1

a`G
(
X, [pn](Y )

)` mod (X,Y )

≡
∑

1>` 6=`0

a`G
(
X, [pn](Y )

)`
+ a`0G

(
X, [pn](Y )

)`0 mod (X,Y )

≡
∑

1>` 6=`0

a`X
`

+ a`0(X`0 +m0X
(m0−1)/pr0Y pnh−r0

u1/pr0 ) mod (X,Y ) + I

≡ f(X) + a`0m0X
(m0−1)/pr0Y pnh−r0

u1/pr0 mod (X,Y ) + I

≡ f(X) + a`0m0X
(m0−1)/pr0Y pnh−r0 mod (X,Y ) + I,

where the last equivalence follows from the definition of u. However, we have X ∈ I
because (m0 − 1)/pr0 < `0 < 1, and the assumption r0 > nh implies that also Y ∈ I.
Hence, (X,Y ) ∈ I. Moreover, by assumption, we have f

(
G(X, [pn](Y ))

)
− f(X) ∈ I,

which implies that
a`0m0X

(m0−1)/pr0Y pnh−r0 ∈ I,

in contradiction to the definition of I as a`0m0 ∈ k×. Thus, we conclude that r0 ≤ nh,
and the result follows.

Corollary 4.17. The affine group scheme H is a Tate k-group.

Proof. By the above lemma, it remains to see that H is p-adically separated and com-
plete, and that H[p] = 0. Again, by the above lemma, to prove the isomorphism
H ' lim←−H/p

nH amounts to proving that the canonical injection

lim−→
n

k[[X1/pnh
]]/(X) ↪→ k[[X1/p∞ ]]/(X)

is an isomorphism. But since h ≥ 1, the map is also surjective. To show that H[p] = 0,
notice that, by definition of F , the map on R induced by multiplication by p is bijective.
Hence, the induced map on R/(X) is surjective, which implies H[p] = 0.

The following corollary finally gives an answer to Question (2) when d = 1:

Corollary 4.18. Any connected formal Qp-vector space F = Spf
(
k[[X1/p∞ ]]

)
of dimen-

sion d = 1 comes from a (connected) p-divisible group over k, in the sense that there is
a connected p-divisible group G over k whose universal formal cover is isomorphic to F .
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Proof. By Corollary 2.11, we know that there is a p-divisible group G such that T (G) ' H.
Since G[pn] = T (G)/pnT (G) is represented by k[[X1/pnh

]]/(X) (cf. Lemma 4.16), a
local ring, we see that G is connected. Moreover, by the proof of Corollary 3.5, we
have lim−→p

H ' lim−→p
T (G) ' F . But then, by Proposition 3.1.(ii), we have lim−→p

T (G) =

T (G)[1/p] ' G̃, and thus, G̃ ' F .

4.3.2 Case of several variables

As an explicit example of the construction given in Proposition 1.25, we begin by pre-
senting a perfect formal group law

E = (E1, E2) ∈ k[[U
1/p∞

1 , X
1/p∞

1 , V
1/p∞

1 , Y
1/p∞

1 ]]2

of dimension two represented by R := k[[U
1/p∞

1 , X
1/p∞

1 ]] that is isomorphic to a (classical)
formal group law such that the ideal (U1, X1) is not a Hopf ideal.

Indeed, consider the multiplicative group Gm = X1 + Y1 + X1Y1 ∈ k[[X1, Y1]] and the
additive group Ga = U1 + V1 ∈ k[[U1, V1]]. Let f(X1) := X

1/p
1 ∈ k[[X

1/p∞

1 ]], so that, with
the notation of Proposition 1.25, we have

∆f(X1, Y1) = −X1/p
1 Y

1/p
1 ∈ k[[X

1/p∞

1 , Y
1/p∞

1 ]].

Define

E(U1, X1, V1, Y1) : =
(
E1(U1, X1, V1, Y1), E2(U1, X1, V1, Y1)

)
= (U1 +Ga V1 +Ga ∆f(X1, Y1), X1 +Gm Y1)

= (U1 + V1 −X1/p
1 Y

1/p
1 , X1 + Y1 +X1Y1).

Then, E is a perfect formal group law over k of dimension two, and the map

i(U1, X1) = (U1 +X
1/p
1 , X1) : Ga ×Gm → E

is an isomorphism of perfect formal group laws with inverse

i−1(U1, X1) = (U1 −X1/p
1 , X1).

Observe, however, that the ideal (U1, X1) is not a Hopf ideal for k[[U
1/p∞

1 , X
1/p∞

1 ]]. Indeed,
letting µ be the comultiplication of the perfect formal group law E, we see that

µ(U1 +X1) = E1(U1, X1, V1, Y1) + E2(U1, X1, V1, Y1)

= U1 + V1 +X
1/p
1 Y

1/p
1 +X1 + Y1 +X1Y1

/∈ (U1, X1, V1, Y1).
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Therefore, we have constructed the desired perfect formal group law.

Notice that, taking up the notation from Proposition 1.25, we have

U +G V −G ∆f(X,Y ) ≡ ∆f(X,Y ) mod (U, V )

by the axioms of the (classical) formal group law G. Therefore, as a general strategy,
by choosing f(X) ∈ k[[X1/p∞ ]]n suitably such that ∆f(X,Y ) /∈ (X,Y ), we can construct
perfect formal group laws over k for which the ideal generated by the variables is not a
Hopf ideal.

This can also be achieved for perfect formal group laws associated with formal Qp-vector
spaces as the following result shows:

Corollary 4.19. The result in Corollary 4.15 fails in the higher dimensional case. In
other words, there are connected formal Qp-vector spaces represented by k[[X1/p∞ ]] with
d ≥ 2 such that the ideal (X) = (X1, . . . , Xd) generated by the variables is not a Hopf
ideal of k[[X1/p∞ ]].

Proof. We directly give an example for d = 2 and p ≥ 3. Let F ∈ k[[X,Y ]] and
G ∈ k[[U, V ]] be the p-divisible formal group laws over k corresponding to the (con-
nected) p-divisible group µ∞ that is represented by k[[X]] and k[[U ]], respectively (cf. [16,
Proposition 1]). Then, G × F ∈ k[[U,X, V, Y ]]2 is a p-divisible formal group law over k.
Choosing f(X) = X2/p, we obtain

∆f(X,Y ) = X2/p +G Y
2/p −G f(X + Y +XY )

= X2/p + Y 2/p + (XY )2/p −G (X + Y +XY )2/p

= X2/p + Y 2/p + (XY )2/p +G

∞∑
m=1

(
− (X + Y +XY )2/p

)m
= X2/p + Y 2/p + (XY )2/p +

∞∑
m=1

(
− (X + Y +XY )2/p

)m
+
∞∑
m=1

(
X2/p + Y 2/p + (XY )2/p

)(
− (X + Y +XY )2/p

)m
= −2(XY )1/p − 2(XY )1/p(X1/p + Y 1/p) +

∞∑
m=2

(
− (X + Y +XY )2/p

)m
+

∞∑
m=1

(
X2/p + Y 2/p + (XY )2/p

)(
− (X + Y +XY )2/p

)m
/∈ (X,Y )

as −2(XY )1/p survives the sum, but is not an element of the ideal (X,Y ). According to
Proposition 1.25, the formal group G×F is then isomorphic to the perfect formal group
law

E = (E1, E2) = (U +G V −G ∆f(X,Y ), X +F Y ),
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for which the ideal (U,X) is not a Hopf ideal. As G × F is a p-divisible formal group
law, we get that E is a connected formal Qp-vector space, and hence, the result follows.

Nonetheless, we show that any connected formal Qp-vector space F of dimension d ≥ 1
at least comes from a generalized p-divisible group. The idea is to construct finitely
generated open Hopf ideals different from (X). Unless in the case d = 1, however, we
are not able to establish the finiteness property analogous to Lemma 4.16.

We have the same setup as in the last subsection. Consider the connected formal Qp-
vector space F of dimension d ≥ 1. Let the comultiplication ∆ : R → R⊗̂kR on R be
given by the perfect formal group law

G = (G1, . . . , Gd) ∈ k[[X1/p∞ , Y 1/p∞ ]]d,

and denote the coinverse by ι = (ι1, . . . , ιd). Note that then

∆(Xi) = Gi(X,Y ) and ι(Xi) = ιi(X,Y )

for any i = 1, . . . , d. Moreover, by a common abuse of notation, we define ∆(X)α =
G(X,Y )α for any α ∈ N[1/p]d by the formula

∆(X)α := ∆(X1)α1 · · ·∆(Xd)
αd = G1(X,Y )α1 . . . Gd(X,Y )αd = G(X,Y )α.

Write, for any i = 1, . . . , d,

Gi(X,Y ) =
∑

α,β∈N[1/p]d

c
(i)
αβX

αY β =
∑

β∈N[1/p]d

f
(i)
β (X)Y β,

where
f

(i)
β (X) =

∑
α∈N[1/p]d

c
(i)
αβX

α

with c(i)
αβ ∈ k for all α, β ∈ N[1/p]d. For any α ∈ N[1/p]d, set max(α) := max{α1, . . . , αd},

and consider the ideal
I :=

(
f

(i)
β (X)

)
i=1,...,d

max(β)<1

⊆ R.

Note that the ideal I ⊆ R is not the unit ideal. Indeed, the generator f (i)
β (X) for any

i = 1, . . . , d must lie in the maximal ideal mR of R for otherwise, if there was β0 among
the indices β with max(β) < 1 such that f (i)

β0
(X) ∈ k×, then the equality

Gi(0, Y ) =
∑
β

f
(i)
β (0)Y β = f

(i)
β0

(0)Y β0 +
∑
β 6=β0

f
(i)
β (0)Y β = Yi

would not hold.

For an easier readibility, in what follows, we will be dropping the index set N[1/p]d of
the sums from the notation.
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Proposition 4.20. (i) The ideal I is finitely generated and open, hence is an ideal of
definition of R for its (X)-adic topology.

(ii) The ideal I is a topological coideal; i.e., ∆(I) ⊆ I⊗̂kR+R⊗̂kI.

Proof. To prove part (i), note first that, for all i = 1, . . . , d, we have Xi = f
(i)
0 (X) ∈ I,

so that (X) ⊆ I, and I is open in R. Now fix i = 1, . . . , d. To prove that I is finitely
generated, we will see that, for all but finitely many β with max(β) < 1, we have

f
(i)
β (X) ∈ (X) = (f

(i)
0 (X))i=1,...,d.

Indeed, if max(α),max(β) < 1, then |α| + |β| < 2d. But it follows, from Lemma 1.17,
that the set {

(α, β) ∈ N[1/p]2d | |α|+ |β| < 2d and c(i)
αβ 6= 0 for some i ∈ N

}
is finite. This proves the first part of the proposition.

For part (ii), fix again i = 1, . . . , d, and write, for α ∈ N[1/p]d,

G(Y, Z)α =
∑
γ,δ

c
(α)
γδ Y

γZδ

with c(α)
γδ ∈ k, so that

Gi(X,G(Y,Z)) =
∑
α

f (i)
α (X)G(Y,Z)α =

∑
α,γ,δ

f (i)
α (X)c

(α)
γδ Y

γZδ,

where
f (i)
α (X) =

∑
β

c
(i)
αβX

β.

On the other hand, we have

Gi(G(X,Y ), Z) =
∑
β

f
(i)
β (G(X,Y ))Zβ =

∑
β

∆(f
(i)
β (X))Zβ.

Fixing β ∈ N[1/p]d with max(β) < 1, and comparing the coefficients of Zβ in

Gi(X,G(Y, Z)) = Gi(G(X,Y ), Z)

above, we obtain an alternative expression for ∆(f
(i)
β ):

∆(f
(i)
β (X)) =

∑
α,γ

f (i)
α (X)c

(α)
γβ Y

γ =
∑
α,γ

max(α)<1

f (i)
α (X)c

(α)
γβ Y

γ +
∑
α,γ

max(α)≥1

f (i)
α (X)c

(α)
γβ Y

γ ,
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i.e. it is enough to prove that the above sum is in I⊗̂kR + R⊗̂kI. Observe that, by
definition, the sum with max(α) < 1 is an element of I⊗̂kR. We claim that the sum with
max(α) ≥ 1 is an element of R⊗̂kI. To prove this, we will show that∑

γ

c
(α)
γβ Y

γ ∈ I ⊆ k[[Y 1/p∞ ]].

Indeed, as max(α) ≥ 1, we first choose 1 ≤ j ≤ d with αj ≥ 1, and write

G(Y,Z)α = Gj(Y,Z)G(Y,Z)α−ej =
(∑

θ

f
(j)
θ (Y )Zθ

)(∑
γ′

gγ′(Y )Zγ
′
)
,

where f (j)
θ (Y ), gγ′(Y ) ∈ k[[Y 1/p∞ ]]. Observing that the sum

∑
γ c

(α)
γβ Y

γ is the coefficient
of Zβ in G(Y, Z)α, we get ∑

γ

c
(α)
γβ Y

γ =
∑

θ+γ′=β

f
(j)
θ (Y )gγ′(Y ).

But then, max(β) < 1, and θ + γ′ = β imply max(θ) < 1, so that

f
(j)
θ (Y ) ∈ I =

(
f

(j)
θ (Y )

)
j=1,...,d

max(θ)<1

,

as desired.

Corollary 4.21. The ideal I = I + ι(I) is a finitely generated ideal of definition of R,
and is a topological Hopf ideal.

Proof. Note that

ι(I) = ι(I + ι(I)) = ι(I) + ι(ι(I)) = ι(I) + I = I.

Also,
∆(I) = ∆(I + ι(I)) = ∆(I) + ∆(ι(I)),

where ∆(I) ∈ I⊗̂kR+R⊗̂kI, and ∆(ι(I)) = (ι⊗ ι)(∆(I)) ⊆ ι(I)⊗̂kR+R⊗̂kι(I). Thus,

∆(I) + ∆(ι(I)) ⊆ I⊗̂kR+R⊗̂kI,

as needed.

Thus, the ideal I defines a subgroup scheme H := Spec(R/I) of F . Note that, as
multiplication by p on F is bijective, the induced map on R/I is surjective, so that
H[p] = 0. The following proposition shows that H is also p-adically separated and
complete. This gives that it is a Tate k-group, and thus corresponds to a generalized
p-divisible group G over k by Proposition 2.10.
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Proposition 4.22. The affine group scheme H is a projective limit of finite connected
group schemes of p-power order. In particular, H ' lim←−nH/p

nH is p-adically separated
and complete.

Proof. Let A = R/I. As R is local, so is A. Since (X) ⊆ I ⊆ (X1/p∞), the maximal
ideal mA of A consists of nilpotent elements. By [18, 2nd Theorem in §3.3], A is a
filtered union of finitely generated Hopf subalgebras Ai over k. Note that we can then
write Ai = k[a1, . . . , an], where aj = λj + bj with λj ∈ k, and bn ∈ mA, which implies
Ai = k[b1, . . . , bn], and hence, it is a finite dimensional algebra as bi is nilpotent for all
i = 1, . . . , n. Thus, A is local, and Hi := Spec(Ai) is a finite connected group scheme
over k. Moreover, by [18, 1st Corollary in §14.4], Hi is of p-power order, and we have
showed that A is a projective limit of finite connected group schemes of p-power order.

To prove that H is p-adically separated and complete, we need to see that A = lim−→n
An,

where An is the representing algebra of H/pnH = coker(H
pn−→ H). In other words, for

any a ∈ A, we need to see that there is n ∈ N such that

1⊗ a =
(
[pn]⊗ idA

)
◦∆(a),

where [pn] : A → A is the comorphism of multiplication by p on H, and ∆ is the
comultiplication of A (cf. §1.1). But, choosing i with a ∈ Ai, and n such that pn is the
order of Hi = Spec(Ai), we have that [pn] factors through the augmentation ε : X 7→ 0 of
Ai (see [10, Proposition 13.26]), so that the above equality holds by the axioms of Hopf
algebras.

Since each variable Xi is topologically nilpotent in R = k[[X
1/p∞

1 , . . . X
1/p∞

d ]], it follows
that, when d = 1 (in which case R is p-divisible, and hence, by Corollary 4.18, is iso-
morphic to a formal power series ring in one variable), the multiplication by p on R is
given by [p](X) = Xpn for a suitable choice of X, for some n ≥ 1 (cf. [20, Theorem 5.2]).
Thus, we see that, in this case, [p](X) tends to 0 as n tends to infinity.

Although we do not know if that condition holds in case d > 1, by imposing it as a
natural assumption, we finally obtain:

Corollary 4.23. Assume that, for any f ∈ mR, we have

lim
n→∞

[pn](f) = 0.

Then, we have F ' H[1/p]. Moreover, there is a generalized p-divisible group G over k
with G̃ ' F .

Proof. By assumption, we see that
(
[pn](I)

)
n∈N is a basis of open neighborhoods of zero

consisting of ideals. This yields

R ' lim←−
n

R/[pn](I) ' lim←−
p

R/I.
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In other words, F = Spf(R) = lim−→p
H = H[1/p]. It also follows, by Proposition 3.1.(ii),

that F is isomorphic to the universal formal cover of the generalized p-divisible group G
that corresponds to the generalized Tate k-group H under the equivalence by Proposition
2.10.

Remark 4.24. Assume that F is a connected formal Qp-vector space over k of dimension
d. Then, Lemma 1.18 and Lemma 1.19 imply that, for any prodiscrete k-algebra A, we
have F(A) =

(
A[
◦◦ )d as sets. Endowing this with the topology induced from A[, it is

natural to assume that this makes F a functor into the category of topological Qp-vector
spaces over k. An analogous condition is imposed by Weinstein in [19, Definition 2.1.1]. It
ensures that the continuity assumption and the conclusion of Corollary 4.23 are satisfied.
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