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Abstract. Let K be a nonarchimedean local field, let h be a positive integer,
and denote by D the central division algebra of invariant 1/h over K. The
modular towers of Lubin-Tate and Drinfeld provide period rings leading to an
equivalence between a category of certain GLh(K)-equivariant vector bundles
on Drinfeld’s upper half space of dimension h − 1 and a category of certain
D∗-equivariant vector bundles on the (h− 1)-dimensional projective space.
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0 Introduction

Let p be a prime number. The category of p-adic Galois representations, i.e.
that of continuous representations of the absolute Galois group of a local field on
finite dimensional Qp-vector spaces, has largely been studied through a variety
of period rings. These play a role in J-M. Fontaine’s description of p-adic Galois
representations through étale (ϕ,Γ)-modules, as well as in the geometrically sig-
nificant definition of de Rham, semi-stable and crystalline representations (cf.
[20, Theorem 4.23, Chapters 5 and 6]).

In view of the p-adic Langlands program, seeking to generalize the local Lang-
lands correspondence by matching up p-adic Galois representations with certain
continuous representations of p-adic reductive groups on nonarchimedean topo-
logical vector spaces, it seems a natural question whether it is possible to also
study representations of reductive groups using suitable rings of periods.
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Making use of the towers of Lubin-Tate and Drinfeld – two objects from arith-
metic geometry – we present a first and promising construction, showing that
this novel strategy leads to very interesting results. Let us mention that the
Lubin-Tate tower figures most prominently in the proof of the local Langlands
correspondence in characteristic zero by Harris and Taylor [26], as well as in
Strauch’s purely local proof of the fact that its `-adic cohomology realizes the
Jacquet-Langlands correspondence (cf. [42]).

In order to describe our procedure more precisely, let K be a nonarchimedean
local field of any characteristic, denote by o = oK its valuation ring, choose
a uniformizer π = πK of K, and let h ≥ 1 be an integer. Denote by K̆ the
completion of the maximal unramified extension of K, and by ŏ its valuation
ring.

For any integer m ≥ 0 let Y(h)
m be the generic fibre of the formal ŏ-scheme

parametrizing one dimensional formal o-modules of height h and level structure
m, constructed in [14, Section 4]. It is an étale Galois covering of the rigid ana-
lytic open unit polydisc of dimension h− 1 over K̆. Denoting by D = D

(h)
K the

central division algebra of invariant 1/h over K and by oD its valuation ring,
there are commuting left actions of the groups G(h)

0 := GLh(o) and H
(h)
0 := o×D

on Y(h)
m and hence on the ring B(h)

m := O(Y(h)
m ) of its global sections.

Section 1 is concerned with computing the rings of invariants of B(h)
m under the

actions of G(h)
0 and H

(h)
0 (cf. Theorem 1.4 and Corollary 1.6). For any integer

m ≥ 1 set H(h)
m := 1 + πmoD. Denoting by K̆m the field obtained by adjoining

the πm-torsion points of a one dimensional Lubin-Tate formal o-module to K̆,
we find a G(h)

0 ×H(h)
0 -equivariant isomorphism (B(h)

m )H
(h)
m ' K̆m.

Let X (h)
0 := Ω(h)

K ×K K̆, where Ω(h)
K is Drinfeld’s upper half space of dimen-

sion h − 1 over K. Interpreting X (h)
0 as the generic fibre of a formal ŏ-scheme

parametrizing special formal oD-modules of height h2, Drinfeld constructed in
[15, §3] a family X (h)

m of finite étale Galois coverings of X (h)
0 with m ≥ 0. Again,

there are commuting left actions of G(h)
0 and H

(h)
0 on X (h)

m and hence on the
ring A(h)

m := O(X (h)
m ) of its global sections.

In Section 2, we compute the rings of invariants of A(h)
m under the actions of

G
(h)
0 and H(h)

0 (cf. Theorem 2.8 and Corollary 2.10). To this end, we first show
that the spaces X (h)

m are connected (cf. Theorem 2.5). Partially, this result is
contained in [22, Théorème 1.1] , [18, Lemma 4.5] and [5, Theorem 2.3]), and
can also be deduced from the work of P. Boyer and J-F. Dat on the cohomology
of the Drinfeld tower (cf. [12], for example). We find a G(h)

0 ×H(h)
0 -equivariant

isomorphism (A(h)
m )G

(h)
m ' K̆m.

In Section 3 we combine the two modular towers of Lubin-Tate and Drinfeld,
setting Z(h)

m := X (h)
m ×K̆m Y

(h)
m and C

(h)
m := O(Z(h)

m ) for any integer m ≥ 0.

There are commuting left actions of the groups G(h)
0 and H(h)

0 on the ring C(h)
m

whose invariants are computed in Theorem 3.2. In fact, we find equivariant
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isomorphisms

O(Z(h)
m )G

(h)
0 ' O(Y(h)

0 ) and O(Z(h)
m )H

(h)
0 ' O(X (h)

0 ).

We are interested in the following problem. For any integer m ≥ 0 there are
natural morphisms pm : Z(h)

m → X (h)
0 and qm : Z(h)

m → Y(h)
0 . Given a G

(h)
0 -

equivariant vector bundle M on X (h)
0 , when is there an integer m ≥ 0 and

an H
(h)
0 -equivariant vector bundle N on Y(h)

0 together with a G
(h)
0 × H

(h)
0 -

equivariant isomorphism
p∗m(M) ' q∗m(N )?

Due to Theorem B for quasi-Stein spaces, the category ofG(h)
0 -equivariant vector

bundles of finite rank on X (h)
0 is equivalent to the category of finitely generated

projective A(h)
0 -modules with a semilinear action of G(h)

0 via the global section
functor (cf. Corollary A.3). We denote by ( · )∼ the usual quasi-inverse. Using
this result, the above problem admits the following algebraic approach, familiar
from the philosophy of period rings for p-adic Galois representations which we
referred to above.

A G
(h)
0 -equivariant vector bundleM = M̃ of finite rank on X (h)

0 is called Lubin-
Tate if there is an integer m ≥ 0 such that the natural map

C(h)
m ⊗

B
(h)
0

(C(h)
m ⊗

A
(h)
0
M)G

(h)
0 −→ C(h)

m ⊗
A

(h)
0
M

is an isomorphism (cf. Definition 3.4). In this case,

DLT(M) := [(C(h)
m ⊗

A
(h)
0
M)G

(h)
0 ]∼

turns out to be an H
(h)
0 -equivariant vector bundle of finite rank on Y(h)

0 whose
definition is independent of the integer m ≥ 0 (cf. the discussion following Def-
inition 3.4, as well as Lemma 3.5).

Likewise, an H
(h)
0 -equivariant vector bundle N = Ñ of finite rank on Y(h)

0 is
called Drinfeld if there is an integer m ≥ 0 such that the natural map

C(h)
m ⊗

A
(h)
0

(C(h)
m ⊗

B
(h)
0

N)H
(h)
0 −→ C(h)

m ⊗
B

(h)
0

N

is an isomorphism (cf. Definition 3.4). In this case,

DDr(N ) := [(C(h)
m ⊗

B
(h)
0

N)H
(h)
0 ]∼

is a well-defined G
(h)
0 -equivariant vector bundle of finite rank on X (h)

0 .

It is a formality to show that the functors DLT and DDr are mutually quasi-
inverse equivalences between the categories of Lubin-Tate and Drinfeld bundles
on X (h)

0 and Y(h)
0 , respectively (cf. Theorem 3.7). The nontrivial part of the

theory is rather concerned with the construction of interesting examples. Using
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Galois descent, we show that if V and W are finite dimensional smooth repre-
sentations of G(h)

0 and H
(h)
0 over K̆, respectively, then the equivariant vector

bundles

M(V ) := OX (h)
0
⊗K̆ V and N (W ) := OY(h)

0
⊗K̆ W

are Lubin-Tate and Drinfeld, respectively (cf. Theorem 3.8). Other examples
are provided by the structure sheaves of the coverings X (h)

m and Y(h)
m , respec-

tively (cf. Remark 3.9).

In Lemma 3.10 we show that the ring A
(h)
m (resp. B(h)

m ) is (K̆m, G
(h)
m )-regular

(resp. (K̆m, H
(h)
m )-regular) in the sense of [20, Definition 2.8]. In Lemma 3.11

we then give an alternative characterization for equivariant vector bundles to
be Lubin-Tate or Drinfeld. As a consequence, the categories of Lubin-Tate and
Drinfeld bundles enjoy many good formal properties (cf. Theorem 3.12).

In order to study objects which are equivariant under the full groups G(h) :=
GLh(K) and H(h) := D∗, we consider the Rapoport-Zink spaces X (h)

m and Y(h)
m

of the moduli problems of Drinfeld and Lubin-Tate, as well as the corresponding
period spaces X (h)

0 and Ph−1

K̆
(cf. Section 4). The latter carry actions of G(h)

and H(h), respectively, and the notions of equivariant Lubin-Tate and Drinfeld
bundles are generalized in Definition 4.2.

We follow Fargue’s exposition in [19, Chapitre I, Section IV.11], to define an
equivalence between the category of H(h)-equivariant coherent modules on Ph−1

K̆

and the category of so-called H(h)-equivariant cartesian coherent modules on
the Lubin-Tate tower (cf. Theorem 4.1). We use this result to define two mu-
tually quasi-inverse functors, again denoted by DLT and DDr, between the cate-
gory of G(h)-equivariant Lubin-Tate bundles on X (h)

0 and the category of H(h)-
equivariant Drinfeld bundles on Ph−1

K̆
(cf. Theorem 4.4). The latter contains

the category of all finite dimensional smooth representations of H(h) over K̆ as
a full subcategory (cf. Theorem 4.5).

We closely examine the abelian case of height one (cf. Proposition 4.6) and de-
duce that the above correspondence satisfies a general compatibility relation on
traces (cf. Theorem 4.7). This raises the question of how it is related to the
Jacquet-Langlands correspondence (cf. Remark 4.8).

The above results rely on a natural functoriality property underlying the moduli
problems of Sections 1 and 2 (cf. Section 5). If L|K is a finite field extension
of degree n and ramification index e, we recall how to obtain GLh(oL)× o×

D
(h)
L

-

equivariant morphisms

iL|K : X (h)
em,L −→ X

(nh)
m,K and rL|K : Y(h)

em,L −→ Y
(nh)
m,K

for any integer m ≥ 0, satisfying certain natural conditions (cf. Proposition
5.1). If the equivariant objects under consideration arise from finite dimen-
sional smooth representations, the pullback functors i*L|K and r*

L|K respect the
properties of being Lubin-Tate and Drinfeld, respectively, and commute nicely
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with the functors DLT and DDr (cf. Theorems 5.2 and 5.3).

Let us point out that also L. Fargues, building on ideas of G. Faltings, con-
structed a correspondence between certain smooth equivariant objects on the
period spaces associated with the deformation spaces of Lubin-Tate and Drinfeld
(cf. [19, Chapitre I, Théorème IV.13.1]). His correspondence is even an equiva-
lence of topoi and is a formal consequence of the construction of an equivariant
isomorphism between the two towers. On the other hand, it does not seem
to apply to coherent module sheaves and is by far more complicated than our
explicit and elementary approach.

Finally, many of our methods and arguments are general enough to hope for
similar functorial correspondences involving other p-adic period domains and
thus other p-adic reductive groups.

Acknowledgements. The author is grateful to Brian Conrad, Alain Genestier,
Laurent Fargues and in particular to Matthias Strauch for many very helpful
discussions.

Conventions and notation. Let K denote a nonarchimedean local field, i.e. a
field which is locally compact with respect to the topology defined by a nonar-
chimedean nontrivial normalized valuation vK . Let o and k denote the valuation
ring and the residue class field of K, respectively, and let q be the cardinality
of k. We choose a uniformizer π = πK of K and a separable closure ks of k.
Let K̆ := K̂nr denote the completion of the maximal unramified extension of
K, and let ŏ denote the valuation ring of K̆.
If h ≥ 1 is an integer we denote by D = D

(h)
K the central division algebra of

invariant 1/h over K. Let Nrd : D → K denote the reduced norm of D over
K. The valuation vK extends to a valuation vD := vK ◦ Nrd on D, and we
denote by oD the corresponding valuation ring of D. We set G(h) := GLh(K)
and G

(h)
0 := GLh(o), as well as H(h) := D∗ and H

(h)
0 := o×D. If R is a ring we

denote by Mh(R) the ring of (h×h)-matrices over R. For any integer m ≥ 1 we
let G(h)

m := 1+πmMh(o) and H(h)
m := 1+πmoD denote the principal congruence

subgroups of G(h) and H(h) of level πm, respectively.

1 Invariants in the Lubin-Tate tower

For Drinfeld’s theory of formal o-modules with level structure we refer to [14, §4].

Let C be the category of commutative unital complete noetherian local ŏ-
algebras R = (R,mR) with residue field R/mR ' ks. If R is an object of C, if H
is a one dimensional formal o-module over R, and if α ∈ o, then we denote by
[α]H = [α]H(X) ∈ R[[X]] the corresponding endomorphism of H. Recall from
[23, Lemma 4.1], that either the power series [π]H reduces to zero modulo the
ideal mRR[[X]] or else there is a uniquely determined positive integer h and a
power series f ∈ ks[[X]] with

[π]H(X) mod mR = f(Xqh) and f ′(0) 6= 0.
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In the latter case, the integer h is called the height of the formal o-module H.

We fix an integer h ≥ 1 and a one dimensional formal o-module H(h) of height
h over ks which is defined over k. Up to o-linear isomorphism (defined over ks)
there is exactly one such module, and we have

(1) Endo(H(h)) ' oD,

where oD is the valuation ring of the central division algebra D = D
(h)
K of in-

variant 1/h over K (cf. [14, Propositions 1.6 and 1.7]).

For any integer m ≥ 0 consider the set valued functor Y
(h)
m on C which associates

to an object R of C the set of isomorphism classes [(H, ρ, ϕ)] of triples (H, ρ, ϕ),
where H is a one dimensional formal o-module of height h over R, ρ is an o-linear
isomorphism

ρ : H(h) −→ H mod mR,

and ϕ : (π−mo/o)h → (mR,+H) is a homomorphism of abstract o-modules such
that the power series

∏
α∈(π−mo/o)h(X − ϕ(α)) divides [πm]H(X) in R[[X]].

If m′ and m are integers with m′ ≥ m ≥ 0 then we define a natural transforma-
tion

(2) Y
(h)
m′ → Y(h)

m

by sending the isomorphism class of a triple (H, ρ, ϕ) defined over an object
R of C to the class of the triple (H, ρ, ϕ|(π−mo/o)h) via the o-linear embedding
(π−mo/o)h ⊆ (π−m

′
o/o)h.

The following fundamental theorem is due to Drinfeld (cf. [14, Propositions 4.2
and 4.3]). In the case m = 0 and o = Zp it was first proved by Lubin and Tate,
building upon the work of Lazard (cf. [31, Theorem 3.1]). If m = 0 and if o is
arbitrary, a concise proof can be found in [43].

Theorem 1.1 (Lubin-Tate, Drinfeld). Let h ≥ 1 be an integer.

(i) For any integer m ≥ 0 the functor Y
(h)
m is representable by an object R(h)

m

of C. The local ring R(h)
m is regular.

(ii) If m and m′ are integers with m′ ≥ m ≥ 0 then the homomorphism of
local rings R(h)

m → R
(h)
m′ induced by (2) is finite and flat.

(iii) The ring R(h)
0 is noncanonically isomorphic to the ring ŏ[[t1, . . . , th−1]] of

formal power series in h− 1 indeterminates over ŏ. �

For any integer m ≥ 0 there are commuting left actions of G(h)
0 and H(h)

0 on the
functor Y

(h)
m for which the morphisms (2) are equivariant. They are given by

(3) (g, d) · [(H, ρ, ϕ)] := [(H, ρ ◦ d−1, ϕ ◦ g−1)] for d ∈ H(h)
0 and g ∈ G(h)

0 ,

where the action of H(h)
0 makes use of the identification in (1). The action of

the subgroup {(α, α) |α ∈ o×} of G(h)
0 ×H(h)

0 on the functor Y
(h)
m is trivial.
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For any integer m ≥ 0 we let Y(h)
m := (Y(h)

m )rig be the rigid analytic K̆-variety
associated with the formal ŏ-scheme Y

(h)
m = Spf(R(h)

m ) (cf. [28, Section 7]). Let

B(h)
m := O(Y(h)

m )

be the K̆-algebra of global rigid analytic functions on Y(h)
m . By functoriality,

Y(h)
m and B

(h)
m carry commuting left actions of G(h)

0 and H
(h)
0 , respectively.

Theorem 1.2. Let h ≥ 1 be an integer.

(i) For any integer m ≥ 0 the rigid analytic K̆-variety Y(h)
m is smooth con-

nected and quasi-Stein. The K̆-algebra B(h)
m is an integrally closed integral

domain.

(ii) If m′ and m are integers with m′ ≥ m ≥ 0 then the morphism

(4) Y(h)
m′ −→ Y

(h)
m

induced by (2) is a finite étale Galois covering with Galois group G(h)
m /G

(h)
m′ .

(iii) The space Y(h)
0 is noncanonically isomorphic to the rigid analytic open

unit polydisc B̊h−1

K̆
of dimension h− 1 over K̆.

Proof: All assertions follow from Theorem 1.1 and the properties of the rigidi-
fication functor (cf. [28, Section 7]). That B(h)

m is an integrally closed integral
domain follows from Lemma A.1. �

Remark 1.3. It is a classical result that all formal o-modules of height one over
ŏ are isomorphic (cf. [30, Lemma 2]). In this case R(1)

m = ŏm is the valuation
ring of the finite Galois extension B

(1)
m = K̆m of K̆ obtained by adjoining the

πm-torsion points of any Lubin-Tate formal o-module of height one over o to K̆
(cf. [30, Theorem 3]). We have Gal(K̆m|K̆) ' (o/πmo)× ' G

(1)
0 /G

(1)
m for any

integer m ≥ 0.

The following result heavily relies on the work [41] of Strauch.

Theorem 1.4. Let h ≥ 1 and m ≥ 0 be integers.

(i) We have (B(h)
m )G

(h)
0 = B

(h)
0 .

(ii) We have (B(h)
m )H

(h)
m = K̆m. Viewing K̆m as a left o×-module via the homo-

morphism o× → (o/πmo)× ' Gal(K̆m|K̆) (cf. Remark 1.3), the induced
left actions of G(h)

0 and H(h)
0 on K̆m are given by g ·α = det(g)−1(α) and

δ · α = Nrd(δ)(α) for all elements g ∈ G(h)
0 , δ ∈ H(h)

0 and α ∈ K̆m.

(iii) If N is a finitely generated projective B(h)
m -module with a semilinear ac-

tion of G(h)
0 /G

(h)
m , then the natural map B

(h)
m ⊗

B
(h)
0

NG
(h)
0 → N is an

isomorphism.

Proof: Assertion (i) is a direct consequence of Theorem 1.2. As for (ii) we start
with the following lemma, built upon a result of Gross and Hopkins (cf. [23,
Proposition 14.18]).
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Lemma 1.5. We have (B(h)
0 )H = K̆ for any open subgroup H of H(h)

0 .

Proof: If H = H
(h)
0 this follows as in [23, Proposition 14.18]. In the general

case we may assume H to be normal in H(h)
0 , so that (B(h)

0 )H is a finite Galois
extension of the field K̆ (note that (B(h)

0 )H ⊆ B
(h)
0 is an integral domain by

Theorem 1.2). However, K̆ is algebraically closed in B
(h)
0 ⊆ K̆[[t1, . . . , th−1]].�

By [41, Corollary 3.4 and Theorem 4.4], there is an equivariant embedding
K̆m ⊆ B(h)

m with the actions of G(h)
0 and H(h)

0 on K̆m as given above. Note that
the actions in [41] are from the right and are related to our actions by taking
inverses. Thus, K̆m ⊆ (B(h)

m )H
(h)
m .

On the other hand, since the actions of G(h)
0 and H

(h)
0 on B

(h)
m commute, the

ring (B(h)
m )H

(h)
m , which is an integral domain by Theorem 1.2, is finite over

(B(h)
0 )H

(h)
m = K̆ (cf. Lemma 1.5). Thus, (B(h)

m )H
(h)
m is a field and a finite Ga-

lois extension of K̆m in B
(h)
m . It follows from [41, Proposition 4.2], that K̆m is

separably closed in B
(h)
m . Indeed, if E|K̆m is a finite separable extension inside

B
(h)
m then its valuation ring oE is contained in R

(h)
m (cf. [28, Theorem 7.4.1]).

Let πm and πE be uniformizers of K̆m and E, respectively. There is an integer
e ≥ 1 such that πmoE = πeEoE . By [41, Proposition 4.2], the ring R(h)

m /πmR
(h)
m

is reduced, so that e = 1. Thus, the extension oE |oK̆m is étale. Since oK̆m
is strictly henselian we must have oE = oK̆m and thus E = K̆m. Therefore,

(B(h)
m )H

(h)
m = K̆m.

Finally, assertion (iii) follows from Corollary A.3 and Theorem A.4. �

Corollary 1.6. Let m ≥ 0 be an integer. We have (B(h)
m )H = (K̆m)Nrd(H) for

any open subgroup H of H(h)
0 .

Proof: As above, the ring (B(h)
m )H is a finite Galois extension of (B(h)

0 )H = K̆

inside B(h)
m . According to the proof of Theorem 1.4 we have (B(h)

m )H ⊆ K̆m.
Moreover, the field K̆m is stable under the action of H(h)

0 which factors through
the reduced norm. Therefore, (K̆m)Nrd(H) = (K̆m)H ⊆ (B(h)

m )H ⊆ (K̆m)H . �

2 Invariants in the Drinfeld tower

For Drinfeld’s theory of special formal oD-modules we refer to [4], [15] and [21].

We fix an h-dimensional special formal oD-module G(h) of height h2 over ks

which is defined over k. The oD-module G(h) is unique up to isogeny, and there
is an isomorphism

(5) EndoD (G(h))⊗o K ' Mh(K)

of K-algebras (cf. [4, Propositions II.5.2 and II.5.3] for the case h = 2).
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Let Nilpo denote the category of commutative unital o-algebras in which the
image of π is nilpotent. Define the set valued functor X

(h)
0 on Nilpo by asso-

ciating with an object R of Nilpo the set of isomorphism classes [(ψ,G, ρ)] of
triples (ψ,G, ρ), where ψ : ks → R/πR is a homomorphism of o-algebras, G is a
special formal oD-module of height h2 over R and ρ : ψ∗(G(h))→ Gmodπ is an
oD-equivariant quasi-isogeny of height zero (cf. [15, §2.A] or [4, Section II.7.1]
for the notion of a quasi-isogeny and of its height).

There are commuting left actions of the groups G(h)
0 = GLh(o) and H

(h)
0 = o×D

on the functor X
(h)
0 , given as follows. Any element g ∈ G

(h)
0 defines a quasi-

isogeny of G(h) of height zero via (5), and we set

g · [(ψ,G, ρ)] := [(ψ,G, ρ ◦ ψ∗(tg))],

where tg denotes the transpose of g. We emphasize that this definition of the
G

(h)
0 -action on X

(h)
0 differs from the usual one by the automorphism (g 7→ tg−1)

of the group G(h) = GLh(K).

Given a special formal oD-module and an element δ ∈ H
(h)
0 , we let δG be

the special formal oD-module obtained by pulling back the action of oD via
conjugation by δ. In this way, the action of δ−1 on G defines an oD-equivariant
quasi-isogeny δ−1 : G→ δG of height zero, and we set

δ · [(ψ,G, ρ)] := [(ψ, δG, ρ ◦ ψ∗(δ−1))].

Clearly, this action of H(h)
0 on X

(h)
0 is trivial. Further, the action of the sub-

group {(α, α) |α ∈ o×} of G(h)
0 ×H(h)

0 on the functor X
(h)
0 is trivial.

Let Ω(h)
K denote Drinfeld’s upper half space of dimension h − 1 over K, ob-

tained by removing all K-rational hyperplanes from Ph−1
K (cf. [37, §1]). Set

X (h)
0 := Ω(h)

K ×K K̆. There is a natural action of the group G(h) = GLh(K) on
the space Ω(h)

K which we change via the automorphism (g 7→ tg−1) of the group
G(h). It extends to an action on X (h)

0 over K̆. We emphasize that we let G(h)

act trivially on K̆. Further, let the group H(h) = D∗ act trivially on X (h)
0 .

The following fundamental theorem is due to Drinfeld (cf. [15, Theorem 2.A];
see also [4, Théorèmes II.8.4, II.9.3 and II.9.5], as well as [21, Chapitre III,
Théorème 3.1.1]).

Theorem 2.1 (Drinfeld). Let h ≥ 1 be an integer. The functor X
(h)
0 is pro-

representable by a formal ŏ-scheme which is locally formally of finite type. Its
generic fibre (X(h)

0 )rig is G(h)
0 ×H(h)

0 -equivariantly isomorphic to the rigid ana-
lytic K̆-space X (h)

0 . �

According to Theorem 2.1 there is a universal special formal oD-module over
the formal ŏ-scheme X

(h)
0 which may be used to define a certain family of rigid

analytic K̆-spaces (X (h)
m )m≥0 (cf. [15, §3], where these spaces are denoted Σh,m;

see also [4, Section II.13], and [21, Section IV.1]). Each of the spaces X (h)
m

9



carries commuting left actions of the groups G(h)
0 and H

(h)
0 , and if m′ and m

are integers with m′ ≥ m ≥ 0 then there are equivariant morphisms

(6) X (h)
m′ −→ X

(h)
m .

The following results are all implicit in the construction of the spaces X (h)
m or

follow from [37, §1 Proposition 4].

Theorem 2.2. Let h ≥ 1 be an integer. For any integer m ≥ 0 the rigid
analytic K̆-variety X (h)

m is smooth and quasi-Stein. If m′ and m are integers
with m′ ≥ m ≥ 0 then the morphism (6) is finite étale and Galois with Galois
group H(h)

m /H
(h)
m′ . �

Remark 2.3. If h = 1 then there are isomorphisms X (1)
m ' Sp(K̆m) for all

integers m ≥ 0 with K̆m as in Remark 1.3. The field K̆m is a left o×-module via
the homomorphism o× → (o/πmo)× ' Gal(K̆m|K̆). The resulting left actions
of G(1)

0 = o× and H
(1)
0 = o× on K̆m, obtained by transport of structure, are

given by g · α = g−1(α) and δ · α = δ(α) for all elements g ∈ G(1)
0 , δ ∈ H(1)

0 and
α ∈ K̆m.

As a supplement to the results [22, Théorème 1.1], [18, Lemma 4.5], and [5,
Theorem 2.3], concerning the connected components of the spaces X (h)

m , we
shall prove the following two theorems.

Theorem 2.4. Let h ≥ 1 be an integer. The rigid analytic K-variety Ω(h)
K is

smooth and geometrically connected. In particular, the ring of global sections of
Ω(h)
K ×K F is an integrally closed integral domain for any complete valued field

extension F of K.

Proof: By [37, §1 Proposition 1], the space Ω(h)
K is an admissible open subset of

Ph−1
K . Therefore, Ω(h)

K ×K F is smooth over F .

Consider the admissible covering (Ω(h)
n )n≥1 of Ω(h)

K , constructed in the proof of
[37, §1 Proposition 1], consisting of an increasing sequence of admissible open
subsets. According to the proof of [37, §1 Proposition 6], each Ω(h)

n admits an
admissible covering by open subsets (Vi,n)i with pairwise non-empty intersec-
tions such that each Vi,n is isomorphic to the product of an open polydisc with
a closed polydisc. Thus, each space Vi,n is geometrically connected, and we may
use [10, p. 492] to conclude that so is Ω(h)

K .

The last assertion of the theorem follows from Lemma A.1. �

Theorem 2.5. Let h ≥ 1 be an integer. For any integer m ≥ 0 the rigid analytic
K̆-variety X (h)

m is connected and its ring O(X (h)
m ) =: A(h)

m of global sections is
an integrally closed integral domain.

Proof: The group H
(h)
0 /H

(h)
m acts transitively on the set of connected compo-

nents of X (h)
m . Indeed, any connected component C of X (h)

m is finite and flat over
the connected space X (h)

0 , hence maps surjectively onto X (h)
0 (cf. Proposition

A.6). Thus, it suffices to see that H(h)
0 acts transitively on the fibre in X (h)

m of
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any point in X (h)
0 . But here the transitivity follows from Theorem 2.2 and [3,

V.2.2 Théorème 2].

Thus, choosing a connected component C of X (h)
m and denoting by H ′ its sta-

bilizer group in H
(h)
0 /H

(h)
m , we need to show that H ′ = H

(h)
0 /H

(h)
m . Since

H
(h)
0 /H

(h)
m is a finite group, it suffices to show that it is the union of the conju-

gates of its subgroup H ′ (cf. [1, Exercice I.5.6, p. 130]).

Let L|K be an extension of degree h and choose an embedding L ↪→ D = D
(h)
K ,

inducing embeddings L∗ ↪→ H(h) and o×L ↪→ H
(h)
0 . Denoting by e = eL|K the

ramification index of the extension, we shall recall in Section 5 how to construct
an o×L -equivariant morphism X (1)

em,L → X
(h)
m = X (h)

m,K , where the index indicates

which base field the objects refer to. The space X (1)
em,L = Sp(L̆em) consists of

just one point whose image in X (h)
m,K we denote by yL. By the above reasoning

there is an element δ ∈ H(h)
0 such that δ · yL ∈ C. It follows that for any exten-

sion L of K of degree h there is an embedding L ↪→ D such that the image of
o×L in H

(h)
0 /H

(h)
m is contained in H ′.

According to [15, §2], the action of H(h)
0 on X (h)

m extends semilinearly to the full
group H(h). In particular, the action of H(h)

0 on the set of connected compo-
nents of X (h)

m extends to an action of H(h). According to [15, §3], the morphism
X (1)
em,L → X

(h)
m,K is L∗-equivariant. Choosing L to be totally ramified over K,

the point yL is fixed by a uniformizer πL of L, and the component C is fixed by
the uniformizer Π := δπLδ

−1 of D. It follows that the subgroup H ′ of H(h)/H
(h)
m

is normalized by the image of Π.

By abuse of notation, let H ′ ⊆ H
(h)
0 be any subgroup which is normalized by

a suitable uniformizer Π of D and which contains a copy of o×L for any field
extension L of K of degree h via a suitable embedding L ↪→ D (e.g. the inverse
image of H ′ in H

(h)
0 under the projection H

(h)
0 → H

(h)
0 /H

(h)
m ). We show that

H
(h)
0 is the union of the conjugates of H ′. Indeed, let α ∈ H(h)

0 and let L′ be a
maximal commutative subfield of D containing K[α]. According to [2, VIII.10.3
Corollaire à la Proposition 3], the field L′ is of degree h over K. By the theorem
of Skolem-Noether (cf. [2, VIII.10.1 Théorème 1]), there is an element δ ∈ H(h)

such that L := δ · L′ · δ−1 has the property that o×L ⊂ H ′. Writing δ = Πrδ0

with δ0 ∈ H(h)
0 and a suitable integer r, we obtain α ∈ δ−1

0 H ′δ0, because H ′ is
normalized by Π.

The final assertion of the theorem is now a consequence of Theorem 2.2 and
Lemma A.1. �

Remark 2.6. In the case where K is a local function field, Genestier con-
structed a G(h)

0 ×H
(h)
0 -equivariant morphism X (h)

m → Sp(K̆m) (cf. [21, Chapitre
IV, §2]), the actions of G(h)

0 and H(h)
0 on K̆m being as in Theorem 1.4. Letting

Nm be the kernel of the map H
(h)
0 /H

(h)
m → (o/πmo)× induced by the reduced

norm Nrd : H(h)
0 → o×, the space X (h)

m /Nm ' X (h)
0 ×K̆K̆m can be thought of as

being obtained by trivializing the determinant of the universal special formal oD-
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module on X (h)
0 . The construction of an equivariant morphism X (h)

m → Sp(K̆m)
in characteristic zero (and for many other moduli spaces) is the subject of the
forthcoming thesis [9] of Chen, as well as of the recent work [27] of Heday-
atzadeh. For the Drinfeld tower, a global construction, relying on Carayol’s
strategy [8, Section 4.3], of computing the geometrically connected components
of the spaces X (h)

m , was given in [5].

Proposition 2.7. The field K̆m is separably closed in A
(h)
m .

Proof: Let E be the separable closure of K̆ in A
(h)
m . Since A(h)

m is an integral
domain (cf. Theorem 2.5) the field E is stable under the action of the group
G′ of elements in G(h) whose determinant is contained in o× (cf. Section 4 for
the extension of the action from G

(h)
0 to G′). Let K ′ denote the unramified

extension of degree h of K, and denote by y the image of an o×K′ -equivariant
morphism Sp(K̆ ′m) = X (1)

m,K′ → X
(h)
m,K as in Section 5. Since K̆ ′ = K̆, the

Galois group of the extension κ(y)|K̆ is a quotient of o×K′ ⊂ G′. Since E embeds
o×K′ -equivariantly into κ(y), it follows that Gal(E|K̆) is an abelian quotient of
G′. Since the commutator subgroup of G′ is SLh(K) and since the determinant
on G(h) restricts to the norm map NK′|K on (K ′)∗, it follows that E is fixed by
all elements α ∈ o×K′ such that NK′|K(α) = 1. Consider the diagram

(7) Gal(K̆ ′m|K̆ ′)
res //

'
��

Gal(K̆m|K̆)

'
��

(oK′/πmoK′)×
NK′|K // (o/πmo)×,

which is commutative according to the base change property of local class field
theory. In fact, for abelian extensions generated by torsion points of one di-
mensional Lubin-Tate modules of height one, it can be proved directly (cf. [44,
Theorem 5.9]). It follows that E ⊆ K̆m. �

We are now ready to prove an analog of Theorem 1.4.

Theorem 2.8. Let h ≥ 1 and m ≥ 0 be integers.

(i) We have (A(h)
m )H

(h)
0 = A

(h)
0 .

(ii) We have (A(h)
m )G

(h)
m = K̆m, and the resulting actions of G(h)

0 and H(h)
0 on

K̆m are as in Theorem 1.4.

(iii) If M is a finitely generated projective A(h)
m -module with a semilinear ac-

tion of H(h)
0 /H

(h)
m , then the natural map A

(h)
m ⊗

A
(h)
0

MH
(h)
0 → M is an

isomorphism.

Proof: Assertion (i) is a direct consequence of Theorem 2.2. As in Theorem 1.4,
assertion (ii) follows from Proposition 2.7 together with the following lemma.
Finally, assertion (iii) follows from Corollary A.3 and Theorem A.4. �

Lemma 2.9. We have (A(h)
0 )G = K̆ for any open subgroup G of G(h)

0 .
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Proof: Let z = [z0 : . . . : zh−1] ∈ X (h)
0 ⊂ Ph−1

K̆
be a K̆-rational point (for

example the image in X (h)
0 of the point y which appears in the proof of Propo-

sition 2.7). Multiplying z by suitable elementary matrices with entries 0 or 1,
we obtain a K̆-rational point all of whose coordinates are different from zero.
We again denote it by z.

Let f ∈ A(h)
0 be G-invariant. Replacing f by f−f(z), we may assume f(z) = 0.

There is an integer m ≥ 0 such that also f(z′) = 0 for any point z′ of the form
z′ = [α0z0 : . . . : αh−1zh−1] with αi ∈ 1 + πmo. Since zi 6= 0 for each index i,
the subset (1 + πmo)zi of K̆ has zi as a limit point. Therefore, an elementary
induction argument on h shows that we must have f = 0. �

The following corollary can be proved like Corollary 1.6.

Corollary 2.10. Let m ≥ 0 be an integer. We have (A(h)
m )G = (K̆m)det(G) for

any open subgroup G of G(h)
0 . �

3 Admissible bundles on the deformation spaces

Let h ≥ 1 and m ≥ 0 be integers, and set Z(h)
m := X (h)

m ×K̆m Y
(h)
m . The mor-

phisms (4) and (6) induce morphisms

(8) Z(h)
m′ −→ Z

(h)
m

for any integer m′ with m′ ≥ m. Set C(h)
m := O(Z(h)

m ). Combining Theorem
1.2, Theorem 2.2 and Theorem 2.5, we obtain the following results.

Theorem 3.1. Let h ≥ 1 be an integer. For any integer m ≥ 0 the rigid
analytic K̆-variety Z(h)

m is smooth connected and quasi-Stein. In particular, the
ring C(h)

m is an integrally closed integral domain. If m′ is an integer such that
m′ ≥ m then the morphism (8) is finite étale and Galois.

Proof: According to [41, Theorem 4.4], the space Y(h)
m is geometrically con-

nected over Sp(K̆m). The connectedness of Z(h)
m is therefore a consequence of

Theorem 2.5 and [16, Théorème 8.4].

The smoothness of Z(h)
m follows from the corresponding properties of X (h)

m and
Y(h)
m (cf. Theorem 1.2 and Theorem 2.2), as well as from [11, Theorem 4.2.7].

The last reference also implies the covering morphisms (8) to be étale. They
are finite by the remark following [6, 9.4.4 Corollary 2]. Finally, the property
of being Galois is also a formal consequence of the corresponding fact for the
morphisms (4) and (6). Since we will not make use of this result, we leave the
details to the reader.

Finally, the assertions concerning the ring C(h)
m follow from Lemma A.1.�

For any two integers h ≥ 1 and m ≥ 0 the rigid analytic K̆m-varieties X (h)
m and

Y(h)
m admit admissible coverings by increasing sequences of affinoid subdomains

such that the inclusion maps are relatively compact over K̆m in the sense of [6,
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Section 9.6.2], and such that the restriction maps on the corresponding affinoid
algebras have dense image. It follows from [17, Proposition 2.1.16] and [36,
Propositions 16.5 and 20.7], that A(h)

m and B
(h)
m are nuclear K̆m-Fréchet spaces

in the sense of [36, §19].

If V andW are two locally convex vector spaces over a complete nonarchimedean
valuation field F then we denote by V ⊗̂FW the complete projective tensor prod-
uct of V and W over F (cf. [36, §17]).

It follows from the above results as well as from [6, 9.6.2 Lemma 1], [17, Propo-
sition 1.1.29], and [36, Corollary 20.14], that C(h)

m is a nuclear K̆m-Fréchet space
and that there is a natural topological isomorphism

C(h)
m ' A(h)

m ⊗̂K̆mB
(h)
m .

Note that by a cofinality argument the topologies of A(h)
m , B(h)

m and C
(h)
m do

not depend on the choice of the admissible affinoid coverings chosen above. It
follows that the groups G(h)

0 and H
(h)
0 act on A

(h)
m and B

(h)
m by continuous K̆-

linear automorphisms. According to Theorems 1.4 and 2.8 the actions of G(h)
0

and H(h)
0 on the common subalgebra K̆m of A(h)

m and B(h)
m agree. By continuity,

we obtain commuting diagonal left actions of G(h)
0 and H

(h)
0 on C

(h)
m .

Theorem 3.2. For any two integers h ≥ 1 and m ≥ 0 there are isomorphisms
(C(h)

m )H
(h)
0 ' A

(h)
0 and (C(h)

m )G
(h)
0 ' B

(h)
0 which are G(h)

0 -equivariant and H
(h)
0 -

equivariant, respectively.

Proof: Given the results of Theorem 1.4 and Theorem 2.8, the two assertions
follow from the following general fact by first considering the invariants under
the open subgroups H(h)

m and G
(h)
m , respectively. �

Lemma 3.3. Let F be a field which is spherically complete with respect to a
nonarchimedean valuation, and let V and W be F -Fréchet spaces. Let Γ be a
group acting on V by continuous F -linear automorphisms and endow W with
the trivial Γ-action. If one of V or W is nuclear in the sense of [36, §19], then

(V ⊗̂FW )Γ ' V Γ⊗̂FW.

Proof: Denote by W ′ the space of continuous F -linear functionals on W . Given
a nonzero element λ ∈ W ′ endow the quotient Wλ := W/ ker(λ) with the
quotient topology which makes it a one dimensional F -vector space with its
natural topology. Due to the Hahn-Banach theorem, the natural map

W →
∏
λ∈W ′

Wλ

is continuous and injective (cf. [36, Corollary 9.3]). Endow V/V Γ with the
quotient topology and consider the commutative diagram

0 // V Γ⊗̂FW //

��

V ⊗̂FW //

��

(V/V Γ)⊗̂FW //

��

0

0 //
Q

λ∈W ′
V Γ ⊗F Wλ //

Q
λ∈W ′

V ⊗F Wλ //
Q

λ∈W ′
(V/V Γ)⊗F Wλ // 0.
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We shall need several properties of the complete projective tensor product over
F which can be proved as in the archimedean context. Notably, the complete
projective tensor product commutes with arbitrary direct products (cf. [24, I.1.3
Proposition 6]). It coincides with the usual tensor product if both spaces are
Hausdorff and if one of the factors is finite dimensional over F , endowed with its
natural topology. It follows from the nuclearity and metrizability assumptions,
as well as from [24, I.1.2 Proposition 3 and II.3.1 Corollaire à la Proposition
10], that the two rows in the above diagram are exact. The vertical arrows
are injective according to [24, I.1.2 Proposition 3]. Since the middle arrow is
Γ-equivariant and since (V ⊗F Wλ)Γ ' V Γ ⊗F Wλ for all λ ∈ W ′, the result
follows. �

Let BX (h)
0

(G(h)
0 ) denote the category of G(h)

0 -equivariant vector bundles of finite

rank on X (h)
0 . Recall from Corollary A.3 that the global section functor is an

equivalence between BX (h)
0

(G(h)
0 ) and the category of finitely generated projec-

tive A(h)
0 -modules with a semilinear action of G(h)

0 . Given such a module M , we
denote by M̃ the associated equivariant vector bundle. If m ≥ 0 is an integer,
we let the group G

(h)
0 act diagonally on C

(h)
m ⊗

A
(h)
0
M .

Similarly, let BY(h)
0

(H(h)
0 ) denote the category of H(h)

0 -equivariant vector bun-

dles of finite rank on Y(h)
0 . Results and conventions analogous to those for

BX (h)
0

(G(h)
0 ) apply.

Definition 3.4. (i) A G
(h)
0 -equivariant vector bundleM = M̃ of finite rank

on X (h)
0 is called Lubin-Tate if there is an integer m ≥ 0 such that the

natural map

(9) C(h)
m ⊗

B
(h)
0

(C(h)
m ⊗

A
(h)
0
M)G

(h)
0 −→ C(h)

m ⊗
A

(h)
0
M

is an isomorphism.

(ii) An H(h)
0 -equivariant vector bundle N = Ñ of finite rank on Y(h)

0 is called
Drinfeld if there is an integer m ≥ 0 such that the natural map

(10) C(h)
m ⊗

A
(h)
0

(C(h)
m ⊗

B
(h)
0

N)H
(h)
0 −→ C(h)

m ⊗
B

(h)
0

N

is an isomorphism.

Assume thatM = M̃ is a Lubin-Tate bundle on X (h)
0 . Choose an integer m ≥ 0

as in Definition 3.4 and let x ∈ X (h)
m be any point. Then x corresponds to a

closed maximal ideal m of A(h)
m . One can show that m is of finite codimension

over K̆m, so that the sequence

0 −→ m⊗̂K̆mB
(h)
m −→ C(h)

m −→ κ(x)⊗K̆m B(h)
m −→ 0

is exact. We obtain from (9) that the natural map

(κ(x)⊗K̆m B(h)
m )⊗

B
(h)
0

(C(h)
m ⊗

A
(h)
0
M)G

(h)
0 −→ (κ(x)⊗K̆m B(h)

m )⊗
A

(h)
0
M
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is an isomorphism. Since the right-hand side is a finitely generated projective
module over κ(x) ⊗K̆m B

(h)
m and since the latter is faithfully flat over B(h)

0 (cf.

Theorem 1.2 and Proposition A.5), it follows that (C(h)
m ⊗A(h)

0
M)G

(h)
0 is a finitely

generated projective B(h)
0 -module of the same rank as M . Moreover, via the

action of H(h)
0 on C(h)

m , which commutes with that of G(h)
0 and is trivial on A(h)

0 ,
we obtain an H

(h)
0 -equivariant vector bundle

(11) DLT(M) := [(C(h)
m ⊗

A
(h)
0
M)G

(h)
0 ]∼

of finite rank on Y(h)
0 . Similarly, if N = Ñ is a Drinfeld bundle on Y(h)

0 and if
the integer m ≥ 0 is as in Definition 3.4 then

(12) DDr(N ) := [(C(h)
m ⊗

B
(h)
0

N)H
(h)
0 ]∼

is a G(h)
0 -equivariant vector bundle on X (h)

0 of the same rank as N .

Lemma 3.5. (i) IfM = M̃ is a G(h)
0 -equivariant vector bundle of finite rank

on X (h)
0 such that the map (9) is bijective for some integer m ≥ 0 then it

is also bijective for any integer m′ ≥ m, and the natural homomorphism
C

(h)
m ⊗A(h)

0
M → C

(h)
m′ ⊗A(h)

0
M induces an isomorphism on G(h)

0 -invariants.

(ii) If N = Ñ is an H
(h)
0 -equivariant vector bundle of finite rank on Y(h)

0

such that the map (10) is bijective for some integer m ≥ 0 then it is
also bijective for any integer m′ ≥ m, and the natural homomorphism
C

(h)
m ⊗B(h)

0
N → C

(h)
m′ ⊗B(h)

0
N induces an isomorphism on H(h)

0 -invariants.

Proof: As for (ii), note that the isomorphism (10) is H(h)
0 -equivariant if we let

H
(h)
0 act on C

(h)
m on the left and diagonally on the right-hand side. Tensoring

with C(h)
m′ over C(h)

m and passing to H(h)
0 -invariants, we obtain the isomorphism

(C(h)
m′ ⊗B(h)

0
N)H

(h)
0 ' (C(h)

m′ ⊗A(h)
0

(C(h)
m ⊗

B
(h)
0

N)H
(h)
0 )H

(h)
0 .

Since (C(h)
m ⊗

B
(h)
0

N)H
(h)
0 is a projective A(h)

0 -module, it follows from Theorem
3.2 that the right-hand side is naturally isomorphic to

(C(h)
m′ )

H
(h)
0 ⊗

A
(h)
0

(C(h)
m ⊗

B
(h)
0

N)H
(h)
0 ' (C(h)

m ⊗
B

(h)
0

N)H
(h)
0 ,

proving the second claim. The first claim is obtained by tensoring with C
(h)
m′

over A(h)
0 and once again using (10) for the integer m. Assertion (i) can be

proved analogously. �

Corollary 3.6. If M and N are Lubin-Tate and Drinfeld bundles on X (h)
0 and

Y(h)
0 , respectively, then the vector bundles DLT(M) and DDr(N ) are independent

of the integers m ≥ 0 appearing in Definition 3.4. �

Denote by BLT

X (h)
0

(G(h)
0 ) and BDr

Y(h)
0

(H(h)
0 ) the full subcategories of BX (h)

0
(G(h)

0 )

and BY(h)
0

(H(h)
0 ) consisting of all Lubin-Tate and Drinfeld bundles, respectively.
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Theorem 3.7. IfM is a Lubin-Tate bundle on X (h)
0 then DLT(M) is a Drinfeld

bundle on Y(h)
0 . If N is a Drinfeld bundle on Y(h)

0 then DDr(N ) is a Lubin-Tate
bundle on X (h)

0 . The assignments

DLT := (M 7→ DLT(M)) and DDr := (N 7→ DDr(N ))

are mutually quasi-inverse equivalences of categories between BLT

X (h)
0

(G(h)
0 ) and

BDr

Y(h)
0

(H(h)
0 ).

Proof: Let M = M̃ be a Lubin-Tate bundle on X (h)
0 . The isomorphism (9) of

C
(h)
m -modules is H(h)

0 -equivariant if we let H(h)
0 act diagonally on the left-hand

side and via its action on C
(h)
m on the right-hand side. Since M is a projective

A
(h)
0 -module we have

(C(h)
m ⊗

A
(h)
0
M)H

(h)
0 ' (C(h)

m )H
(h)
0 ⊗

A
(h)
0
M 'M

by Theorem 3.2. It follows that DLT(M) is Drinfeld and that DDr(DLT(M)) '
M, naturally in M.

Similarly, one can show that DDr(N ) is Lubin-Tate if N is Drinfeld and that in
this case DLT(DDr(N )) ' N , naturally in N . Since the assignments DLT and
DDr are obviously functorial, the theorem is proved. �

A large class of Lubin-Tate and Drinfeld bundles is provided by the following
construction. Denote by Rep∞

K̆
(G(h)

0 ) and Rep∞
K̆

(H(h)
0 ) the categories of smooth

representations of G(h)
0 and H(h)

0 on finite dimensional K̆-vector spaces, respec-
tively. If V is an object of Rep∞

K̆
(G(h)

0 ) then, via the diagonal G(h)
0 -action,

M(V ) := (A(h)
0 ⊗K̆ V )∼ is a G

(h)
0 -equivariant vector bundle of finite rank on

X (h)
0 . Similarly, N (W ) := (B(h)

0 ⊗K̆ W )∼ is an H
(h)
0 -equivariant vector bundle

of finite rank on Y(h)
0 for any object W of Rep∞

K̆
(H(h)

0 ).

Theorem 3.8. If V and W are objects of Rep∞
K̆

(G(h)
0 ) and Rep∞

K̆
(H(h)

0 ), re-
spectively, then the equivariant vector bundlesM(V ) and N (W ) are Lubin-Tate
and Drinfeld, respectively.

Proof: Since dimK̆(V ) < ∞ there is an integer m ≥ 0 such that the action of
G

(h)
0 on V factors through G

(h)
0 /G

(h)
m . By Theorem 1.4 the natural map

(13) B(h)
m ⊗

B
(h)
0

(B(h)
m ⊗K̆ V )G

(h)
0 −→ B(h)

m ⊗K̆ V

is bijective. Note that by Lemma 3.3 and Theorem 2.8

(C(h)
m ⊗K̆ V )G

(h)
0 ' ((C(h)

m )G
(h)
m ⊗K̆ V )G

(h)
0 ' (B(h)

m ⊗K̆ V )G
(h)
0 .

Therefore, tensoring (13) with C
(h)
m over B(h)

m , we obtain that M(V ) is Lubin-
Tate. That the H(h)

0 -equivariant vector bundle N (W ) is Drinfeld follows by a
similar reasoning. �
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Remark 3.9. If V is a finite dimensional smooth representation of G(h)
0 over

K̆ then the H
(h)
0 -equivariant vector bundle DLT(M(V )) on Y(h)

0 is typically
not of the form N (W ) for any object W of Rep∞

K̆
(H(h)

0 ). If for example m ≥
0 is an integer and if V := K̆[G(h)

0 /G
(h)
m ] with G

(h)
0 acting through the left

regular representation, then one can check that DLT(M(V )) ' OY(h)
m

. Likewise,

DDr(N (K̆[H(h)
0 /H

(h)
m ])) ' OX (h)

m
for any integer m ≥ 0.

We are now going to study the formal properties of the categories of Lubin-Tate
and Drinfeld bundles.

Let B be a ring carrying the action of a group Γ. Assume E := BΓ to be a field
and let F ⊆ E be a subfield. Recall from [20, Definition 2.8], that B is called
(F,Γ)-regular if B is an integral domain such that Quot(B)Γ = BΓ and such
that any element f ∈ B spanning a one dimensional Γ-stable F -subspace of B
is a unit.

Lemma 3.10. For any integer m ≥ 0 the rings A(h)
m and B(h)

m are (K̆m, G
(h)
m )-

regular and (K̆m, H
(h)
m )-regular, respectively.

Proof: Note first that B(h)
m is an integral domain and that (B(h)

m )H
(h)
m = K̆m by

Theorems 1.2 and 1.4.

We will first show that Quot(B(h)
0 )H

(h)
m = K̆ for any integer m ≥ 0. Since

B
(h)
0 is integrally closed in its field of fractions, Lemma 1.5 shows that it suf-

fices to treat the case m = 0. Let f1, f2 ∈ B
(h)
0 with f2 nonzero, such that

F := f1/f2 ∈ Quot(B(h)
0 ) is H(h)

0 -invariant. According to the proof of [23,
Proposition 14.18], there is a K̆-rational point y ∈ Y(h)

0 whose H
(h)
0 -orbit is

Zariski dense. Thus, f2(y) 6= 0. Set α := f1(y)/f2(y) ∈ K̆ and consider
F ′ := f1−αf2 ∈ B(h)

0 . It follows from the H(h)
0 -invariance of F that F ′(y′) = 0

for all y′ ∈ H(h)
0 y. Thus, F ′ = 0 and F = α ∈ K̆.

In the general case, Quot(B(h)
m )H

(h)
m is integral over Quot(B(h)

0 )H
(h)
m = K̆ ⊂ B(h)

m .
Since B(h)

m is integrally closed in its field of fractions (cf. Theorem 1.2) we have
Quot(B(h)

m )H
(h)
m = (B(h)

m )H
(h)
m .

Now assume f ∈ B(h)
0 to span an H

(h)
m -stable one dimensional K̆-subspace of

B
(h)
0 for some integer m ≥ 0. We show that f is a unit. Let {h1, . . . , hn} be a

set of representatives of H(h)
0 /H

(h)
m in H(h)

0 and set f̃ :=
∏
i hi · f . The element

f̃ of B(h)
0 is nonzero and spans an H

(h)
0 -stable subspace. Therefore, the action

of H(h)
0 on f̃ is given by a character χ : H(h)

0 → K̆∗. According to Lemma 1.5
it will suffice to show that χ is trivial.

According to the proof of [23, Proposition 14.18], the stabilizer group of the
above point y ∈ Y(h)

0 is the group of units o×K′ of the valuation ring of the un-
ramified extension K ′ of degree h of K via some embedding o×K′ ↪→ H

(h)
0 . It

follows from our assumptions that the image of f̃ in κ(y) = K̆ is nonzero. Since
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the induced action of o×K′ on κ(y) is trivial, it follows that χ|o×K′ = 1.

Further, the restriction of the reduced norm map Nrd : H(h)
0 → o× to o×K′ is

surjective. Together with [34, Corollary 4.1.2], this implies that any element of
H

(h)
0 is a product of an element in o×K′ and a commutator in H(h)

0 . Thus, χ = 1.

In the general case let f ∈ B(h)
m span a one dimensionalH(h)

m -stable K̆m-subspace
and consider the norm f̃ := N

B
(h)
m |B(h)

0
(f) =

∏
g∈G(h)

0 /G
(h)
m
g · f of f in B

(h)
0 .

Since the actions of G(h)
0 and H(h)

0 on B(h)
m commute and since the restriction of

N
B

(h)
m |B(h)

0
to K̆m is a power of NK̆m|K̆ (cf. Theorem 1.4) it follows that f̃ spans

a one dimensional H(h)
m -stable K̆-subspace in B

(h)
0 . By the above reasoning we

have f̃ ∈ (B(h)
0 )× and thus f(

∏
g 6=1 g · f)f̃−1 = 1.

The ring A(h)
m can be treated similarly. �

Lemma 3.11. (i) For any G(h)
0 -equivariant vector bundle M = M̃ of finite

rank on X (h)
0 and for any integer m ≥ 0 the natural map

(14) A(h)
m ⊗K̆m (A(h)

m ⊗A(h)
0
M)G

(h)
m −→ A(h)

m ⊗A(h)
0
M

is injective. The vector bundle M is Lubin-Tate if and only if there is an
integer m ≥ 0 such that the map (14) is bijective.

(ii) For any H(h)
0 -equivariant vector bundle N = Ñ of finite rank on Y(h)

0 and
for any integer m ≥ 0 the natural map

(15) B(h)
m ⊗K̆m (B(h)

m ⊗
B

(h)
0

N)H
(h)
m −→ B(h)

m ⊗
B

(h)
0

N

is injective. The vector bundle N is Drinfeld if and only if there is an
integer m ≥ 0 such that the map (15) is bijective.

Proof: Using Lemma 3.10 the injectivity of the maps (14) and (15) can be
proved as in [20, Theorem 2.13].

If (15) is a bijection then W := (B(h)
m ⊗

B
(h)
0

N)H
(h)
m is a finite dimensional K̆m-

vector space carrying a semilinear action of H(h)
0 /H

(h)
m . By Theorem 2.8 the

natural map

(16) A(h)
m ⊗A(h)

0
(A(h)

m ⊗K̆m W )H
(h)
0 −→ A(h)

m ⊗K̆m W

is an isomorphism. Since it is A(h)
m -linear it is even a topological isomorphism

with respect to certain natural Fréchet topologies on both sides (cf. the remarks
preceding [40, Proposition 3.7]). Taking the complete tensor product with B(h)

m

over K̆m, we obtain an isomorphism

C(h)
m ⊗

A
(h)
0

(A(h)
m ⊗K̆m W )H

(h)
0 −→ A(h)

m ⊗̂K̆mB
(h)
m ⊗K̆m W.

Likewise, the map (15) is a topological isomorphism so that the right-hand side
can be identified with C

(h)
m ⊗

B
(h)
0

N . By Lemma 3.3 we have

(17) (A(h)
m ⊗K̆m W )H

(h)
0 ' (C(h)

m ⊗
B

(h)
0

N)H
(h)
0 ,
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and the above isomorphism turns out to be the natural homomorphism

C(h)
m ⊗

A
(h)
0

(C(h)
m ⊗

B
(h)
0

N)H
(h)
0 −→ C(h)

m ⊗
B

(h)
0

N.

Therefore, N is Drinfeld.

Conversely, if (10) is an isomorphism for some integer m ≥ 0 then, passing to
H

(h)
m -invariants on both sides and using Theorem 1.4 and Lemma 3.3, we obtain

A(h)
m ⊗K̆m(B(h)

m ⊗B(h)
0
N)H

(h)
m ' (C(h)

m ⊗B(h)
0
N)H

(h)
m ' A(h)

m ⊗A(h)
0

(C(h)
m ⊗B(h)

0
N)H

(h)
0 .

Here we used that (B(h)
m ⊗

B
(h)
0

N)H
(h)
m is a finite dimensional K̆m-vector space

because of the injectivity of (15). Tensoring with C(h)
m over A(h)

m and using (10)
again, we obtain that the natural map

C(h)
m ⊗K̆m (B(h)

m ⊗
B

(h)
0

N)H
(h)
m −→ C(h)

m ⊗
B

(h)
0

N

is bijective. As seen before, the ring C(h)
m has a quotient which is faithfully flat

over B(h)
m . Thus, we can deduce that (15) is bijective for the integer m. The

analogous assertion in (i) can be proved similarly. �

As a consequence of the two preceding lemmas we obtain the following result.

Theorem 3.12. The categories of Lubin-Tate and Drinfeld bundles are strictly
full subcategories of BX (h)

0
(G(h)

0 ) and BY(h)
0

(H(h)
0 ), respectively, which are closed

under direct sums, tensor products and duals. The equivalences DLT and DDr

commute with these structures. Let

0 −→M1 −→M2 −→M3 −→ 0

be a sequence of homomorphisms of G(h)
0 -equivariant vector bundles of finite

rank on X (h)
0 and assume M2 to be Lubin-Tate. If the sequence is exact on the

left (resp. on the right) then M1 (resp. M3) is Lubin-Tate, as well, and the
induced sequence

(18) 0 −→ DLT(M1) −→ DLT(M2) −→ DLT(M3) −→ 0

is exact on the left (resp. on the right). Analogous results hold for sequences in
BY(h)

0
(H(h)

0 ).

Proof: The properties of being strictly full and of admitting direct sums are
clear. It is also clear that the functors DLT and DDr commute with direct sums.
Given an exact sequence of G(h)

0 -equivariant vector bundles of finite rank on
X (h)

0 as above, write Mi = M̃i for i = 1, 2, 3, let m ≥ 0 be an integer, set
Wi := (A(h)

m ⊗A(h)
0
Mi)G

(h)
m , and consider the commutative diagram

0 // A(h)
m ⊗K̆m W1

//
� _

��

A
(h)
m ⊗K̆m W2

//
� _

��

A
(h)
m ⊗K̆m W3� _

��

0 // A(h)
m ⊗A(h)

0
M1

// A(h)
m ⊗A(h)

0
M2

// A(h)
m ⊗A(h)

0
M3

// 0.
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The vertical maps are injective according to Lemma 3.11. Using the flatness of
the ring homomorphism A

(h)
0 → A

(h)
m (cf. Proposition A.5), it is straightforward

to check that together with the vertical arrow in the middle also the one on the
left (resp. on the right) is bijective once the initial sequence is exact on the left
(resp. on the right). In this situation it follows that also the sequence

0 −→W1 −→W2 −→W3 −→ 0

is exact on the left (resp. on the right). Tensorizing with B
(h)
m over K̆m and

passing to G(h)
0 /G

(h)
m -invariants we obtain that the sequence (18) is exact on the

left (resp. on the right) (cf. Theorem A.4 and the analog of (17)).

Assuming M = M̃ to be Lubin-Tate there is an integer m ≥ 0 such that the
natural map (14) is G(h)

m -equivariantly bijective. Putting M∗ := M∗(X (h)
0 ) =

Hom
A

(h)
0

(M,A
(h)
0 ), there is an isomorphism

(19) (A(h)
m ⊗A(h)

0
M∗)G

(h)
m ' HomK̆m

((A(h)
m ⊗A(h)

0
M)G

(h)
m , K̆m),

from which one obtains the isomorphism

(20) A(h)
m ⊗K̆m (A(h)

m ⊗A(h)
0
M∗)G

(h)
m ' A(h)

m ⊗A(h)
0
M∗.

Using Lemma 3.11 one concludes that the dual bundleM∗ is Lubin-Tate. Fur-
ther, the analog of (17) leads to a natural isomorphism DLT(M∗) ' DLT(M)∗ of
H

(h)
0 -equivariant vector bundles on Y(h)

0 . In particular, the category of Drinfeld
bundles is closed under duals, too.

The assertions concerning tensor products can be proved as in [20, Theorem
2.13]. The details are left to the reader. �

4 Admissible bundles on the period spaces

In order to extend the equivalence in Theorem 3.7 to objects which are equiv-
ariant under the full groups G(h) = GLh(K) and H(h) = (D(h)

K )∗, we need to
pass to the corresponding Rapoport-Zink spaces X (h)

m and Y(h)
m , i.e. to allow

quasi-isogenies of arbitrary heights in the moduli problems of Sections 1 and 2
(cf. [35, Definition 2.15]).

Recall that there are decompositions

X (h)
m =

∐
n∈Z
X (h),n
m and Y(h)

m =
∐
n∈Z
Y(h),n
m ,

where X (h),n
m (resp. Y(h),n

m ) is the open subspace on which the universal quasi-
isogeny has height nh (resp. n). All spaces X (h),n

m (resp. Y(h),n
m ) are noncanon-

ically isomorphic to X (h),0
m = X (h)

m (resp. Y(h),0
m = Y(h)

m ). For any two integers
m′ and m with m′ ≥ m ≥ 0 and for any integer n there are finite étale Galois
morphisms X (h),n

m′ → X (h),n
m and Y(h),n

m′ → Y(h),n
m which, for n = 0, are given by
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(4) and (6).

For each integer m ≥ 0 there is a left action of H(h) on the space Y(h)
m such that

δ(Y(h),n
m ) = Y(h),n−vD(δ)

m for all integers n and all elements δ ∈ H(h). It restricts
to the action of H(h)

0 on Y(h)
m considered in section 1. Further, the covering

morphisms Y(h)
m′ → Y

(h)
m are H(h)-equivariant.

There is also a left action of G(h)
0 on Y(h)

m , commuting with the action of H(h)

and respecting the components Y(h),n
m . For n = 0 it is the action considered

in section 1. It extends to a left action of G(h) on the family (Y(h)
m )m≥0 in the

following sense.

If U ⊆ G
(h)
0 is an open subgroup then we choose an integer m ≥ 0 such that

G
(h)
m ⊆ U and set Y(h)

U := Y(h)
m /U with the induced action of H(h). If g ∈

G(h) is an element such that gUg−1 ⊆ G
(h)
0 then there is an H(h)-equivariant

isomorphism
g : Y(h)

U −→ Y(h)
gUg−1 .

If U ⊆ G
(h)
0 is an open subgroup and if g1, g2 ∈ G(h) are elements such that

g1Ug
−1
1 ⊆ G(h)

0 and g2g1Ug
−1
1 g−1

2 ⊆ G(h)
0 then the diagram

Y(h)
U

g1 //

g2g1 $$IIIIIIIIII
Y(h)

g1Ug
−1
1

g2yyssssssssss

Y(h)

g2g1Ug
−1
1 g−1

2

commutes.

If U and U ′ are open subgroups of G(h)
0 such that U ′ ⊆ U then there are mor-

phisms qU ′,U : Y(h)
U ′ → Y

(h)
U . If in particular U ′ = G

(h)
m′ and U = G

(h)
m for

integers m′ and m with m′ ≥ m ≥ 0 then qU ′,U is the covering morphism (4).
Set qU := q

U,G
(h)
0

.

Following [19, Chapitre I, Section IV.11], a left H(h)-equivariant cartesian co-
herent module on the Lubin-Tate tower is a family (NU )

U⊆G(h)
0

of left H(h)-

equivariant coherent modules NU on Y(h)
U for any open subgroup U of G(h)

0

together with H(h)-equivariant isomorphisms

iU ′,U : q∗U ′,U (NU ) −→ NU ′ and cg : (g−1)∗(Ng−1Ug) −→ NU

for any two open subgroups U ′ and U of G(h)
0 such that U ′ ⊆ U and for all

elements g ∈ G(h) such that g−1Ug ⊆ G
(h)
0 . These are subject to the obvious

cocycle relations.

There is a left action ofH(h) on Ph−1

K̆
and an étaleH(h)-equivariant rigid analytic

morphism
Φ : Y(h)

0 −→ Ph−1

K̆
,

22



the so-called period morphism, whose restriction Φ0 := Φ| Y(h)
0 to Y(h)

0 is the
morphism constructed in [23, Section 23]. Given a coherent H(h)-equivariant
module F on Ph−1

K̆
consider the family

Φ∗∞(F) := ((Φ ◦ qU )∗(F))
U⊆G(h)

0

of H(h)-equivariant coherent modules on the Lubin-Tate tower.

Theorem 4.1. The functor (F 7→ Φ∗∞(F)) is an equivalence between the cat-
egory of H(h)-equivariant coherent modules on Ph−1

K̆
and the category of H(h)-

equivariant cartesian coherent modules on the Lubin-Tate tower.

Proof: This can be proved as in [19, Chapitre I, Proposition IV.11.20]. �

Given a vector bundle M on X (h)
0 (resp. N on Ph−1

K̆
) which is equivariant with

respect to G(h) (resp. H(h)) we denote by resG
(h)

G
(h)
0
M (resp. resH

(h)

H
(h)
0
N ) the G(h)

0 -

equivariant vector bundle on X (h)
0 (resp. the H(h)

0 -equivariant vector bundle on
Ph−1

K̆
) obtained by restriction of the action from G(h) to G(h)

0 (resp. from H(h)

to H(h)
0 ).

Definition 4.2. (i) A G(h)-equivariant vector bundleM = M̃ of finite rank
on X (h)

0 is called Lubin-Tate if theG(h)
0 -equivariant vector bundle resG

(h)

G
(h)
0
M

is Lubin-Tate in the sense of Definition 3.4 (i).

(ii) An H(h)-equivariant vector bundle of finite rank on Ph−1

K̆
is called Drinfeld

if the H(h)
0 -equivariant vector bundle Φ∗0(resH

(h)

H
(h)
0
F) on Y(h)

0 is Drinfeld in

the sense of Definition 3.4 (ii).

In order to relate the categories of Lubin-Tate and Drinfeld bundles we need
to examine the actions of G(h) and H(h) on the inductive limit of the rings of
sections of the spaces X (h)

m and Y(h)
m .

For any integer n and any integer m ≥ 0 we let A
(h),n
m := O(X (h),n

m ) and
B

(h),n
m := O(Y(h),n

m ), so that

A(h)
m :=

∏
n∈Z

A(h),n
m and B(h)

m :=
∏
n∈Z

B(h),n
m

are the rings of global sections of X (h)
m and Y(h)

m , respectively. We endow them
with the product topology of the K̆-algebras A(h),n

m and B
(h),n
m . The above

covering morphisms allow us to define

(21) A(h)
∞ := lim−→mA(h)

m and B(h)
∞ := lim−→mB(h)

m ,

endowed with the topology of the locally convex inductive limit in the sense of
[36, §5.E]. Further, the actions of G(h) and H(h) give rise to commuting contin-
uous K̆-linear left actions of G(h) and H(h) on A(h)

∞ and B(h)
∞ .
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For any integer m ≥ 0 we let E(h),n
m and F

(h),n
m denote the separable closure of

K̆ in A
(h),n
m and B

(h),n
m , respectively. We know from Proposition 2.7 and the

proof of Theorem 1.4 that each of these fields is isomorphic to K̆m, hence is
Galois over K̆. It follows that the subalgebra

∏
nE

(h),n
m (resp.

∏
n F

(h),n
m ) of

A(h)
m (resp. B(h)

m ) is stable under the action of G(h) ×H(h). Using Theorem 1.4
and Theorem 2.8 one can show

∏
nE

(h),n
m and

∏
n F

(h),n
m to be G(h) × H(h)-

equivariantly isomorphic.

In order to ease the notation we identify all fields E(h),n
m and F

(h),n
m with K̆m.

Define the rigid analytic K̆-variety

Z(h)
m :=

∐
n∈Z
X (h),n
m ×K̆m Y

(h),n
m

and denote by C(h)
m := O(Z(h)

m ) =
∏
n∈Z C

(h),n
m its ring of global sections, en-

dowed with the product topology. Here

C(h),n
m := O(X (h),n

m ×K̆m Y
(h),n
m ) ' A(h),n

m ⊗̂K̆mB
(h),n
m

for every integer n. We also set C(h)
∞ := lim−→mC(h)

m , endowed with the topology
of the locally convex inductive limit.

There are K̆-linear diagonal actions of G(h) and H(h) on C(h)
∞ such that for each

integer m ≥ 0 the induced action of G(h)
0 ×H(h)

0 on C(h)
m coincides with the one

considered in Section 3.

Theorem 4.3. For any integer m ≥ 0 there are G(h)
0 × H(h)-equivariant iso-

morphisms (C(h)
∞ )G

(h)
m ' (B(h)

∞ )G
(h)
m ' B(h)

m . For any integer m ≥ 0 there are
G(h) × H(h)-equivariant isomorphisms (C(h)

∞ )H
(h)
m ' (A(h)

∞ )H
(h)
m ' A(h)

m . Fur-
ther, (A(h)

∞ )G
(h) ' (B(h)

∞ )G
(h) ' (C(h)

∞ )G
(h) ' (B(h)

∞ )H
(h) ' K̆, and there are

G(h)-equivariant isomorphisms (A(h)
∞ )H

(h) ' (C(h)
∞ )H

(h) ' A(h)
0 .

Proof: If m′ ≥ m is an integer, the subrings A(h)
m′ , B(h)

m′ and C(h)
m′ of A(h)

∞ , B(h)
∞

and C(h)
∞ , respectively, are stable under the actions of G(h)

m and H
(h)
m . The first

assertions of the theorem follow from Theorems 1.4, 2.8 and Lemma 3.3 together
with the following consideration.

Let n be an integer and let δ ∈ H(h) be such that vD(δ) = −n. The element δ
defines G(h)

0 -equivariant isomorphisms

A
(h)
m′ −→ A

(h),n
m′ and B

(h)
m′ −→ B

(h),n
m′ ,

whence (A(h),n
m′ )G

(h)
m = K̆m and (B(h),n

m′ )H
(h)
m ' K̆m.

Any element β ∈ (B(h)
∞ )H

(h)
is contained in some subring B(h)

m . It follows that
β ∈ B(h)

m , embedded into B(h)
m via the direct product of the integral powers of

some uniformizer of D. Since the projection B(h)
m → B

(h)
m is H(h)

0 -equivariant,
we obtain β ∈ K̆ from Theorem 1.4. The H(h)-invariants of A(h)

∞ and C(h)
∞ can
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be computed by the same strategy, using Theorems 2.8 and 3.2.

As seen above, we have (A(h)
m )G

(h)
m =

∏
n∈Z K̆m, and this algebra is stable un-

der the action of G(h) with SLh(K) acting trivially. Embedding K̆m diagonally
via some element whose determinant has valuation 1, we deduce as above that
(A(h)
∞ )G

(h)
= K̆ by using Theorem 2.8.

Finally, any of the subrings B(h)
m (resp. C(h)

m ) of B(h)
∞ (resp. C(h)

∞ ) is stable under
the action of G(h)

0 , so that (C(h)
∞ )G

(h) ' (B(h)
∞ )G

(h) ⊆ B(h)
0 . Let f ∈ B(h)

0 ⊂ B(h)
∞

be invariant under G(h). Choosing g ∈ G(h) with vK(det(g)) = 1, we see that f
is determined by its restriction to the space Y(h)

0 = Y(h),0
0 .

According to the proof of [23, Corollary 23.21], there are closed rigid analytic
polydiscs D1, . . . , Dn in Y(h)

0 such that the restrictions Φ : Di → Φ(Di) of the
period morphism are isomorphisms and such that the subsets Φ(Di) form an
affinoid covering of Ph−1

K̆
.

We obtain sections fi ∈ O(Φ(Di)) via Φ∗(fi) = f |Di and claim that fi and fj
coincide on Φ(Di)∩Φ(Dj) for any two indices i and j. Since Ph−1

K̆
is reduced, this

can be checked pointwise. If yi ∈ Di and yj ∈ Dj are such that Φ(yi) = Φ(yj)
then there is an element g ∈ G(h), an integer m ≥ 0 and a point y′i in Y(h)

m

lying above yi such that g : Y(h)
m → Y(h)

0 is defined and maps y′i to yj (cf. [23, p.
82], [35, Section 5.50], or [42, Proposition 2.6.7]). Since the compositions with
Φ of the morphism g and the covering morphism Y(h)

m → Y(h)
0 agree, there is a

commutative diagram

κ(Φ(yi)) = κ(Φ(yj)) //

��

κ(yi)

��
κ(yj) g

// κ(y′i).

But then fi(Φ(yi)) = fj(Φ(yj)) by the G(h)-invariance of f .

Therefore, the family (f1, . . . , fn) gives rise to a global section on Ph−1

K̆
. Since

O(Ph−1

K̆
) = K̆ we obtain f |D1 ∈ K̆ and then f ∈ K̆ since Y(h)

0 is normal and
connected (cf. Theorem 1.2 and [10, Lemma 2.1.4]). �

Given a G(h)-equivariant Lubin-Tate bundle M = M̃ on X (h)
0 , we claim that

the natural map

(22) C(h)
∞ ⊗B(h)

0
(C(h)
∞ ⊗A(h)

0
M)G

(h)
0 −→ C(h)

∞ ⊗A(h)
0
M

is bijective. Note first that, as in the proof of Theorem 4.3, A(h)
0 is identified with

the ring of H(h)-invariants of C(h)
∞ by embedding it diagonally via the integral

powers of a fixed element δ ∈ D with valuation −1. Choose an integer m ≥ 0
so that the map (9) is bijective. For any integer n we then have

(C(h)
m ⊗

A
(h)
0
M)G

(h)
0 ' (C(h),n

m ⊗
A

(h)
0
M)G

(h)
0
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via δn ⊗ idM . Since M is finitely presented over A(h)
0 (cf. Proposition A.2), the

natural G(h)
0 -equivariant map

C(h)
m ⊗A(h)

0
M −→

∏
n∈Z

(C(h),n
m ⊗

A
(h)
0
M)

is bijective (cf. [3, Exercice I.2.9, p. 62]). Since the module (C(h)
m ⊗

A
(h)
0
M)G

(h)
0

is finitely presented over B(h)
0 (cf. the discussion following Definition 3.4), the

same reference together with the above reasoning implies that the natural map

B(h)
0 ⊗

B
(h)
0

(C(h)
m ⊗

A
(h)
0
M)G

(h)
0 −→ (C(h)

m ⊗A(h)
0
M)G

(h)
0

is bijective. Therefore,

C(h)
m ⊗B(h)

0
(C(h)

m ⊗A(h)
0
M)G

(h)
0 ' C(h)

m ⊗B(h)
0

(C(h)
m ⊗

A
(h)
0
M)G

(h)
0 ,

where B(h)
0 is embedded into C(h)

m via the integral powers of δ. Thus, by the
base extension of the isomorphism (9) from C

(h)
m to C(h)

m via the integral powers
of δ, we obtain that the natural map

C(h)
m ⊗B(h)

0
(C(h)

m ⊗A(h)
0
M)G

(h)
0 −→ C(h)

m ⊗A(h)
0
M

is bijective. Passing to the direct limit over all integers m′ ≥ m, and using
Lemma 3.5, we obtain the desired bijectivity of (22).

We obtain the H(h)-equivariant vector bundle N
G

(h)
0

:= [(C(h)
∞ ⊗A(h)

0
M)G

(h)
0 ]∼

of finite rank on Y(h)
0 such that N

G
(h)
0
| Y(h),n

0 ' [(C(h),n
m ⊗

A
(h)
0
M)G

(h)
0 ]∼ for some

integer m ≥ 0 and any integer n.

The bijection (22) is G(h)
m -equivariant with respect to the diagonal action on

both sides. Since (C(h)
∞ ⊗A(h)

0
M)G

(h)
0 is a projective B(h)

0 -module, passing to

G
(h)
m -invariants and tensoring with C(h)

∞ over B(h)
m shows that the natural map

C(h)
∞ ⊗B(h)

m
(C(h)
∞ ⊗A(h)

0
M)G

(h)
m −→ C(h)

∞ ⊗A(h)
0
M

is bijective for any integer m ≥ 0. We obtain an H(h)-equivariant vector bundle
N
G

(h)
m

:= [(C(h)
∞ ⊗A(h)

0
M)G

(h)
m ]∼ of finite rank on Y(h)

m satisfying q∗
G

(h)
m

(N
G

(h)
0

) '
N
G

(h)
m

.

Given a compact open subgroup U of G(h)
0 set NU := q∗U (N

G
(h)
0

), which is

an H(h)-equivariant vector bundle of finite rank on Y(h)
U with global sections

(C(h)
∞ ⊗A(h)

0
M)U .

The diagonal action of G(h) on C(h)
∞ ⊗A(h)

0
M induces on the family (NU )U the

structure of an H(h)-equivariant cartesian module on the Lubin-Tate tower, in
which all modules NU are locally free of finite rank. According to Theorem

26



4.1 it corresponds to an H(h)-equivariant vector bundle of finite rank on Ph−1

K̆
which, by abuse of notation, we denote by DLT(M). By construction there is
an H

(h)
0 -equivariant isomorphism

(23) Φ∗0(resH
(h)

H
(h)
0

DLT(M)) ' DLT(resG
(h)

G
(h)
0
M).

Conversely, if F is an H(h)-equivariant Drinfeld bundle on Ph−1

K̆
then the natural

map

(24) C(h)
∞ ⊗A(h)

0
(C(h)
∞ ⊗B(h)

0
Φ∗(F)(Y(h)

0 ))H
(h)
−→ C(h)

∞ ⊗B(h)
0

Φ∗(F)(Y(h)
0 )

is an isomorphism. Indeed, the B(h)
0 -module Φ∗(F)(Y(h)

0 ) is finitely presented
so that there is an H(h)-equivariant isomorphism

C(h)
m ⊗B(h)

0
Φ∗(F)(Y(h)

0 ) '
∏
n∈Z

C(h),n
m ⊗

B
(h),n
m

Φ∗(F)(Y(h),n
0 )

for any integer m ≥ 0. The embedding of C(h)
m ⊗B(h)

0
Φ∗(F)(Y(h)

0 ) into the right-
hand side via the integral powers of a uniformizer of D induces an isomorphism

(C(h)
m ⊗

B
(h)
0

Φ∗(F)(Y(h)
0 ))H

(h)
0 ' (C(h)

m ⊗B(h)
0

Φ∗(F)(Y(h)
0 ))H

(h)

for any integer m ≥ 0. The bijectivity of (24) follows from Lemma 3.5 and the
fact that Φ∗(F)| Y(h)

0 = Φ∗0(F) is Drinfeld in the sense of Definition 3.4. As a
consequence,

DDr(F) := [(C(h)
∞ ⊗B(h)

0
Φ∗(F)(Y(h)

0 ))H
(h)

]∼

is a vector bundle of finite rank on X (h)
0 . Further, the action of G(h) on C(h)

∞
induces on DDr(F) the structure of a G(h)-equivariant vector bundle. By con-
struction there is a G(h)

0 -equivariant isomorphism

(25) resG
(h)

G
(h)
0

DDr(F) ' DDr(Φ∗0(resH
(h)

H
(h)
0
F)).

As in Section 3 we denote by BX (h)
0

(G(h)) and BPh−1
K̆

(H(h)) the category of

G(h)-equivariant vector bundles of finite rank on X (h)
0 and the category of H(h)-

equivariant vector bundles of finite rank on Ph−1

K̆
, respectively. The full sub-

categories consisting of Lubin-Tate and Drinfeld bundles are marked with a
corresponding superscript. The following result is a direct consequence of The-
orem 3.7, Theorem 4.1, (23) and (25).

Theorem 4.4. If M is a G(h)-equivariant Lubin-Tate bundle on X (h)
0 then

DLT(M) is an H(h)-equivariant Drinfeld bundle on Ph−1

K̆
. If F is an H(h)-

equivariant Drinfeld bundle on Ph−1

K̆
then DDr(F) is a G(h)-equivariant Lubin-

Tate bundle on X (h)
0 . The assignments

DLT := (M 7→ DLT(M)) and DDr := (F 7→ DDr(F))

are mutually quasi-inverse equivalences of categories between BLT

X (h)
0

(G(h)) and

BDr
Ph−1
K̆

(H(h)). �
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As for the formal properties of the categories of Lubin-Tate and Drinfeld bun-
dles on X (h)

0 and Ph−1

K̆
, Theorem 3.12 has an exact analog which we refrain from

repeating.

Let RepK̆(H(h)) denote the category of finite dimensional representations of
H(h) over K̆. Given an object ρ of this category set F(ρ) := OPh−1

K̆

⊗K̆ρ, which is

an H(h)-equivariant vector bundle of finite rank on Ph−1

K̆
. Since F(ρ)(Ph−1

K̆
) ' ρ

as an H(h)-representation over K̆, the functor (ρ 7→ F(ρ)) from RepK̆(H(h)) to
BPh−1

K̆

(H(h)) is an embedding of categories.

We say that a finite dimensional representation ρ of H(h) over K̆ is Drinfeld
if the H(h)-equivariant vector bundle F(ρ) on Ph−1

K̆
is Drinfeld in the sense of

Definition 4.2. In this case we set DDr(ρ) := DDr(F(ρ)) and have isomorphisms

(26) DDr(ρ) ' [(C(h)
∞ ⊗K̆ ρ)H

(h)
]∼ and ρ ' (C(h)

∞ ⊗A(h)
0

DDr(ρ)(X (h)
0 ))G

(h)

in BX (h)
0

(G(h)) and RepK̆(H(h)), respectively.

Given a finite dimensional representation V of G(h) over K̆ we shall also consider
the G(h)-equivariant vector bundle M(V ) := (A(h)

0 ⊗K̆ V )∼ on X (h)
0 .

Theorem 4.5. Any finite dimensional smooth representation ρ of H(h) over K̆
is Drinfeld. If V is a finite dimensional smooth representation of G(h) over K̆
then the G(h)-equivariant vector bundle M(V ) on X (h)

0 is Lubin-Tate.

Proof: This follows from (23), (25) and Theorem 3.8. �

Note that by Remark 3.9 the essential images of the functors DLT(M( · )) and
F( · ) do not seem to agree.

Proposition 4.6. Identifying the category of G(1)- and H(1)-equivariant vec-
tor bundles on X (1)

0 = Sp(K̆) and P0
K̆

= Sp(K̆) with the category of finite
dimensional representations of G(1) and H(1) over K̆, respectively, we have
BLT

X (1)
0

(G(1)) = Rep∞
K̆

(G(1)) and BDr
P0
K̆

(H(1)) = Rep∞
K̆

(H(1)). Identifying G(1) and

H(1) with K∗ we have
trDDr(ρ)(α) = trρ(α)

for any finite dimensional smooth representation ρ of K∗ over K̆ and any ele-
ment α ∈ K∗.

Proof: In this case we have A(1)
m = B

(1)
m = C

(1)
m = K̆m for all integers m ≥ 0.

According to Lemma 3.11, the restriction of any Lubin-Tate (resp. Drinfeld)
representation of G(1) (resp. H(1)) to some suitable subgroup G

(1)
m (resp. H(1)

m )
is trivial. The converse is the content of Theorem 4.5.

If ρ is a finite dimensional smooth representation of H(1) over K̆, consider the
isomorphism

C(1)
∞ ⊗K̆ DDr(ρ) ' C(1)

∞ ⊗K̆ ρ,
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which is checked to be K∗-equivariant with respect to the C(1)
∞ -linear extension

of the action of K∗ on ρ and DDr(ρ), respectively. �

The compatibility with traces in Proposition 4.6 extends to a more general
situation. For this, let g ∈ G(h) be regular elliptic, i.e. assume its minimal
polynomial µg(t) ∈ K[t] to be irreducible and separable of degree h. Denote by
L := K[g] ' K[t]/(µg(t)) the subfield of Mh(K) generated by g. Let C denote
the completion of an algebraic closure of K. The fixed points xi of g in Ph−1

K (C)
correspond bijectively to the eigenspaces of g in Ch, hence to the h distinct
roots α1, . . . , αh of µg in C. We have κ(xi) ' K[αi] ' L for all indices i, and
all points xi are contained in Ω(h)

K (C).

Note also that there is a K-linear isomorphism of fields τ : C → C with
τ(αi) = αj for any two indices i and j. Since g is K-linear we have τ(xi) = xj .
Thus, all points x1, . . . , xh are conjugate over K and have the same underlying
image in Ω(h)

K .

Now let M be a G(h)-equivariant vector bundle of finite rank on X (h)
0 '

Ω(h)
K ×K K̆. For any point x ∈ X (h)

0 (C) the reduction M⊗ κ(x) of M at x
is a finite dimensional κ(x)-linear representation of the stabilizer subgroup G(h)

x

of G(h) at x. If g ∈ G(h)
x we denote by trM⊗κ(x)(g) ∈ κ(x) the trace of g on

M⊗ κ(x).

Recall that there is a bijection between the set of conjugacy classes of regular
elliptic elements in G(h) and the set of conjugacy classes of certain elements in
H(h). It is characterized by the identity of the corresponding minimal polyno-
mials over K.

Theorem 4.7. Let h ≥ 1 be an integer, let g ∈ G(h) be regular elliptic and
let δ ∈ H(h) be a representative of the conjugacy class corresponding to the
conjugacy class of g in G(h). If ρ is a finite dimensional smooth representation
of H(h) over K̆ then

(27) trDDr(ρ)⊗κ(x)(g) = trρ(δ)

for any fixed point x ∈ X (h)
0 (C) of g.

Proof: Choose a representative δ ∈ D of the conjugacy class corresponding to g
and consider the subfield L := K[δ] of D. Since L is of dimension h over K we
shall construct in Section 5 an embedding L ↪→ Mh(K) and an L∗-equivariant
morphism iL|K : X (1)

em,L → X
(h)
m,K for any integer m ≥ 0. Here e = eL|K denotes

the ramification index of L over K. For m = 0, the morphism iL|K defines a
fixed point x′ of the image g′ of δ in G(h) under the embedding L∗ ↪→ G(h).

According to the base change property exhibited in Theorem 5.3, there is an
L∗-equivariant isomorphism

(DDr(ρ)⊗ κ(x′))⊗κ(x′) L̆ ' DDr(resH
(h)

L∗ (L̆⊗K̆ ρ)).

Thus, Proposition 4.6 implies that

(28) trDDr(ρ)⊗κ(x′)(g′) = trρ(δ).
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According to the theorem of Skolem-Noether (cf. [2, VIII.10.1 Théorème 1])
there is an element γ ∈ G(h) such that γg′γ−1 = g. Setting x := γ · x′, the
element γ induces an isomorphism of fields γ : κ(x) → κ(x′) and a K̆-linear
bijection

DDr(ρ)⊗ κ(x) −→ DDr(ρ)⊗ κ(x′),

compatible with γ. Thus, x is a fixed point of g and γ(trDDr(ρ)⊗κ(x)(g)) =
trDDr(ρ)⊗κ(x′)(g′). It follows from (28) and the fact that trρ(δ) lies in K̆ that

trDDr(ρ)⊗κ(x)(g) = trρ(δ).

The element γ induces a bijection between the fixed points of g′ and those of g.
By the arguments just given we may assume g = g′ and x = x′.

Let x′′ ∈ X (h)
0 (C) be a second fixed point of g. According to our preliminary

remarks the points x and x′′ are conjugate over K. Thus, there is a K-linear
isomorphism τ : K̆ → K̆ of fields such that x′′ is the image of the L∗-equivariant
morphism

X (1),(τ)
0,L

i
(τ)
L|K // X (h),(τ)

0,K
// X (h)

0,K

of K̆-varieties. Here Z(τ) := Z ×K̆ K̆(τ) denotes the base extension along τ

for any rigid K̆-variety Z, and Z(τ) → Z is the natural projection. Denote
by τ̃ : κ(x′′) → L̆(τ) the induced homomorphism of fields over K̆. Using the
embedding τ : K̆ → K̆ → L̆ in the construction of the morphism iL|K of section
5, we obtain precisely the morphism i(τ)

L|K . Therefore,

(DDr(ρ)⊗ κ(x′′))⊗κ(x′′) L̆
(τ) ' DDr(resH

(h)

L∗ (L̆(τ) ⊗K̆ ρ))

and τ̃(trDDr(ρ)⊗κ(x′′)(g)) = τ(trρ(δ)), as above. Since the restriction of τ̃ to
the subfield K̆ of κ(x′′) coincides with τ , the latter equation implies that
trDDr(ρ)⊗κ(x′′)(g) = trρ(δ). �

Remark 4.8. The space of global sections of a G(h)-equivariant vector bundle
M of finite rank on X (h)

0 is a K̆-Fréchet space with an action of G(h) by contin-
uous K̆-linear automorphisms. This construction gives rise to many interesting
examples of locally analytic representations in the sense of [39, Section 3] (cf.
[38] and [33]).

A first attempt to define the trace of a locally analytic representation, at least
in special cases, was made by Diepholz in [13]. It is not clear if it covers our
situation. If g ∈ G(h) is a regular elliptic element one might alternatively choose
an embedding κ(x) → C for any fixed point x ∈ X (h)

0 (C) of g. Assuming the
integer h to be prime to the characteristic of K we set

trM(g) :=
1
h

∑
x∈X(h)

0 (C)
g·x=x

trM⊗κ(x)(g) ∈ C,

and call trM(g) the trace of g onM. With this convention Theorem 4.7 implies
the more suggestive formula

trDDr(ρ)(g) = trρ(δ)
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for any finite dimensional smooth representation ρ of H(h) over K̆.

This compatibility with traces raises the question of how the restriction of the
equivalence in Theorem 4.4 to finite dimensional smooth representations of H(h)

over K̆ is related to the Jacquet-Langlands correspondence.

If ρ is a finite dimensional smooth representation of H(h) over K̆, the naive
approach of considering the subspace of G(h)-smooth vectors in DDr(ρ) or in its
continuous K̆-linear dual does not yield anything useful. If for example ρ = K̆

is the trivial representation of H(h), then O(DDr(K̆)) = O(X (h)
0 ) = A

(h)
0 , by

Theorem 4.3. It follows from Lemma 2.9 that the subspace of G(h)-smooth vec-
tors of the latter is just K̆, i.e. the trivial representation of G(h).

On the other hand, the bundles DDr(ρ) carry an additional piece of structure.
Namely, they come equipped with a G(h)-equivariant integrable connection. The
corresponding de Rham complex is simply the ρ-isotypic component of the de
Rham complex of OX (h)

m
for m sufficiently large. It is tempting to wonder

about the connection between the smooth G(h)-representation associated to ρ
via the Jacquet-Langlands correspondence and the de Rham cohomology of
DDr(ρ). For example, the smooth G(h)-representation corresponding to the
trivial representation ρ = K̆ is the Steinberg representation. According to a
theorem of Schneider and Stuhler, the latter also coincides with the continuous
K̆-linear dual of Hh−1

dR (X (h)
0 ,OX (h)

0
) = Hh−1

dR (X (h)
0 ,DDr(K̆)) (cf. [37, §3 Theorem

1 and §4 Lemma 1]).

5 Functoriality

Let L be a field extension of K which is of finite degree, and denote by n :=
[L : K], e = eL|K and f = fL|K its degree, its ramification index and its residue
class degree, respectively. All objects of the previous sections will be marked
with an additional index L or K, according to which base field they refer to.

Fix an embedding K̆ ⊆ L̆ over K and consider the induced embedding ŏK ⊆ ŏL.
Since the residue class fields of ŏK and ŏL coincide, restriction of scalars defines
an embedding resL|K : CL → CK . If h ≥ 1 and m ≥ 0 are integers then
the restriction Y

(h)
m,K ◦ resL|K of the set valued functor Y

(h)
m,K to the subcategory

CL of CK is represented by the formal scheme Spf(R(h)
m,K⊗̂ŏK ŏL) = Y

(h)
m,K×ŏK ŏL.

Fix an integer h ≥ 1. Via restriction of scalars, the one dimensional formal oL-
module H(h)

L of height h over ks is a one dimensional formal oK-module of height
nh. In particular, there is an isomorphism H(h)

L ' H(nh)
K (cf. [14, Proposition

1.7]), giving rise to an embedding of rings

(29) o
D

(h)
L

' EndoL(H(h)
L ) ⊆ EndoK (H(h)

L ) ' EndoK (H(nh)
K ) ' o

D
(nh)
K

.

For any integer m ≥ 0 we define a natural transformation

(30) rL|K : Y
(h)
em,L −→ Y

(nh)
m,K ◦ resL|K
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of set valued functors on CL as follows.

Given an object R = (R,mR) of CL and an isomorphism class in Y
(h)
em,L(R),

represented by a triple (H, ρ, ϕ), define its image under rL|K(R) to be the iso-
morphism class in Y

(nh)
m,K(R) represented by the triple (H ′, ρ′, ϕ′) where H ′ is

obtained from H via restriction of scalars. Further, ρ′ is the composition of
ρ with the fixed isomorphism H(h)

L ' H(nh)
K . Finally, choosing an oK-linear

isomorphism oL ' onK , we obtain an oK-linear isomorphism

(π−emL oL/oL)h = (π−mK oL/oL)h ∼→ (π−mK oK/oK)nh

and define ϕ′ to be the composition of its inverse with ϕ.

The identification oL ' onK defines an embedding

(31) G
(h)
0,L ↪→ G

(nh)
0,K .

Letting G
(h)
0,L and H

(h)
0,L act on Y

(nh)
m,K ◦ resL|K via restriction along the embed-

dings (29) and (31), the transformation rL|K becomes G(h)
0,L ×H

(h)
0,L-equivariant.

Since the functors Y
(h)
em,L and Y

(nh)
m,K ◦ resL|K are representable, the transforma-

tion rL|K corresponds to the homomorphism r*
L|K : R(nh)

m,K⊗ŏK ŏL → R
(h)
em,L which

is the image of the identity on R
(h)
em,L under rL|K(R(h)

em,L). By abuse of notation

we also write rL|K and r*
L|K for the induced G(h)

0,L ×H
(h)
0,L-equivariant morphisms

rL|K : Y(h)
em,L → Y

(nh)
m,K ×K̆L̆ and r*

L|K : B(nh)
m,K ⊗K̆ L̆→ B

(h)
em,L

of the associated rigid L̆-spaces and their rings of global sections, respectively.

Proposition 5.1. Let L|K be a field extension of finite degree n and ramifica-
tion index e, and let h ≥ 1 be an integer.

(i) If m and m′ are integers with m′ ≥ m ≥ 0 then the diagram

Y(h)
em′,L

rL|K //

��

Y(nh)
m′,K ×K̆L̆

��
Y(h)
em,L

rL|K // Y(nh)
m,K ×K̆L̆

is commutative.

(ii) If m ≥ 0 is an integer then the diagram

Y(h)
em,L

rL|K //

��

Y(nh)
m,K ×K̆L̆ // Y(nh)

m,K

��
Sp(L̆em) // Sp(K̆m)
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is commutative and G
(h)
0,L × H

(h)
0,L-equivariant. The actions of G(h)

0,L and

H
(h)
0,L on Sp(K̆m) are given by det−1

L : G(h)
0,L → o×L and NrdL : H(h)

0,L → o×L ,
respectively, composed with the homomorphism

o×L
NL|K−→ o×K −→ (oK/πmKoK)× ' Gal(K̆m|K̆).

Proof: Assertion (i) is obvious. As for (ii), the upper row is G(h)
0,L × H

(h)
0,L-

equivariant by construction, and so are the vertical arrows with respect to the
action exhibited in Theorem 1.4. In particular, r*

L|K restricts to an equivariant
homomorphism

K̆m = (B(nh)
m,K)H

(nh)
m,K ⊆ (B(nh)

m,K)H
(h)
em,L → (B(h)

em,L)H
(h)
em,L = L̆em,

giving the bottom row of the diagram. According to Theorem 1.4, the last
assertion in (ii) follows from the fact that the restrictions of detK : G(nh)

0,K → o×K

and NrdK : H(nh)
0,K → o×K to G

(h)
0,L and H

(h)
0,L coincide with NL|K ◦ detL and

NL|K ◦NrdL, respectively. For the determinant this is well-known (cf. [1, III.9.4
Proposition 6]). Given α ∈ H(h)

0,L, choose a maximal commutative subfield L′ of

D
(h)
L containing α. It is of dimension h over L, so that its image in D

(nh)
K is a

maximal commutative subfield containing K and α. We have

NrdK(α) = NL′|K(α) = NL|K ◦NL′|L(α) = NL|K ◦NrdL(α). �

Note that the embeddings H(h)
0,L ↪→ H

(nh)
0,K and G

(h)
0,L ↪→ G

(nh)
0,K extend to embed-

dings H(h)
L ↪→ H

(nh)
K and G(h)

L ↪→ G
(nh)
K . Without giving the details, we remark

that the morphisms rL|K extend to G(h)
L ×H

(h)
L -equivariant morphisms

rL|K : Y(h)
em,L −→ Y

(nh)
m,K ×K̆ L̆

of the corresponding Rapoport-Zink spaces. These give rise to a continuous
G

(h)
L × H

(h)
L -equivariant homomorphism r*

L|K : B(nh)
∞,K → B(h)

∞,L of topological

K̆-algebras, as well as to an H
(h)
L -equivariant morphism

rL|K : Ph−1

L̆
→ Pnh−1

K̆
×K̆ L̆.

As for the Drinfeld tower, given a field extension L|K of finite degree n, an
integer h ≥ 1 and starting from a K-linear embedding D(h)

L ↪→ D
(nh)
K , Drinfeld

constructed in [15, §3], a closed embedding

(32) iL|K : X
(h)
0,L −→ X

(nh)
0,K ×ŏK ŏL.

Its construction relies on the fact that o
D

(nh)
K

⊗o
D

(h)
L

G(h)
L is a special formal

o
D

(nh)
K

-module of height (nh)2 over ks, hence is isomorphic to G(nh)
K (cf. [15,

§2.1]). Any such isomorphism induces an embedding

(33) Mh(L) ' Endo
D

(h)
L

(G(h)
L )⊗oL L ↪→ Endo

D
(nh)
K

(G(nh)
K )⊗oK K ' Mnh(K)
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of K-algebras, giving rise to an embedding of the subgroup of G(h)
L consisting

of elements with determinant in o×L into the subgroup of G(nh)
K consisting of

elements with determinant in o×K . It follows from its functorial construction
that the morphism iL|K is G(h)

0,L ×H
(h)
0,L-equivariant.

We denote by iL|K : X (h)
0,L → X

(nh)
0,K ×K̆L̆ the induced morphism of rigid ana-

lytic L̆-varieties. According to [15, §3] it induces closed equivariant embeddings
iL|K : X (h)

em,L → X
(nh)
m,K for any integer m ≥ 0, where e = eL|K denotes the

ramification index of the extension L|K. We denote by i*L|K : A(h)
em,L → A

(nh)
m,K

the induced continuous equivariant homomorphisms of K̆-Fréchet algebras.

Proposition 5.1 has an exact analog in this situation which we refrain from re-
peating.

Again, the morphims iL|K extend to G(h)
L ×H(h)

L -equivariant morphisms iL|K :
X (h)
em,L → X

(nh)
m,K ×K̆ L̆ between the corresponding Rapoport-Zink spaces and

give rise to a continuous G(h)
L ×H

(h)
L -equivariant homomorphism

i*L|K : A(nh)
∞,K −→ A(h)

∞,L

of topological K̆-algebras. We also denote by iL|K the induced G(h)
L -equivariant

morphism

iL|K : X (h)
0,L ' X

(h)
0,L/H

(h)
L −→ X (nh)

0,K ' X
(nh)
0,K /H

(nh)
K .

We shall now study the behavior of Lubin-Tate and Drinfeld bundles under pull
back along iL|K and rL|K, respectively. If Γ is a locally profinite group and if Γ′

is a closed subgroup then we denote by res = resΓ
Γ′ : Rep∞

K̆
(Γ)→ Rep∞

K̆
(Γ′) the

restriction functor.

Theorem 5.2. Let L|K be a field extension of finite degree n, and let h ≥ 1 be
an integer. The two diagrams

Rep∞
K̆

(G(nh)
0,K ) M //

res ◦(L̆⊗K̆( · ))
��

BX (nh)
0,K

(G(nh)
0,K )

i*L|K
��

Rep∞
L̆

(G(h)
0,L) M // BX (h)

0,L
(G(h)

0,L)

and

Rep∞
K̆

(H(nh)
0,K ) N //

res ◦(L̆⊗K̆( · ))
��

BY(nh)
0,K

(H(nh)
0,K )

r*
L|K

��

Rep∞
L̆

(H(h)
0,L) N // BY(h)

0,L
(H(h)

0,L)

are commutative. In particular, i*L|K(M(V )) and r*
L|K(N (W )) are Lubin-Tate

and Drinfeld bundles on X (h)
0,L and Y(h)

0,L whenever V and W are finite dimen-

sional smooth representations of H(nh)
0,K and G

(nh)
0,K over K̆, respectively. In this
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case there are natural isomorphisms

DLT(i*L|K(M(V ))) ' r*
L|K(DLT(M(V ))) and(34)

DDr(r*
L|K(N (W ))) ' i*L|K(DDr(N (W )))(35)

in BY(h)
0,L

(H(h)
0,L) and BX (h)

0,L
(G(h)

0,L), respectively.

Proof: The commutativity of the two diagrams is clear, so that the second
assertion is a consequence of Theorem 3.8. In the proof of the latter we saw
that there is a natural H(nh)

0,K -equivariant isomorphism

(36) DLT(M(V )) = (C(nh)
m,K ⊗K̆ V )G

(nh)
0,K ' (B(nh)

m,K ⊗K̆ V )G
(nh)
0,K

for any object V of Rep∞
K̆

(G(nh)
0,K ) if the integer m is chosen so that G(nh)

m,K acts
trivially on V . Further, the natural map

B
(nh)
m,K ⊗B(nh)

0,K
(B(nh)

m,K ⊗K̆ V )G
(nh)
0,K −→ B

(nh)
m,K ⊗K̆ V

is a G
(nh)
0,K -equivariant isomorphism. Since the B

(nh)
0,K -module DLT(M(V )) is

projective, passage to G(h)
0,L-invariants gives

(B(nh)
m,K ⊗K̆ V )G

(h)
0,L ' (B(nh)

m,K)G
(h)
0,L ⊗

B
(nh)
0,K

(B(nh)
m,K ⊗K̆ V )G

(nh)
0,K .

Tensoring with B(nh)
m,K over (B(nh)

m,K)G
(h)
0,L shows that the natural G(h)

0,L-equivariant
homomorphism

B
(nh)
m,K ⊗

(B
(nh)
m,K)

G
(h)
0,L

(B(nh)
m,K ⊗K̆ V )G

(h)
0,L −→ B

(nh)
m,K ⊗K̆ V

is bijective.

Note that (B(nh)
m,K)G

(h)
0,L is the ring of global sections of Y(nh)

m,K /G
(h)
0,L. Since the

covering Y(nh)
m,K → Y

(nh)
0,K is finite étale and Galois, so is the covering Y(nh)

m,K →

Y(nh)
m,K /G

(h)
0,L. In particular, the homomorphism (B(nh)

m,K)G
(h)
0,L → B

(nh)
m,K is faith-

fully flat (cf. Theorem 1.2 and Proposition A.5). It follows that the (B(nh)
m,K)G

(h)
0,L -

module (B(nh)
m,K ⊗K̆ V )G

(h)
0,L is projective. Thus, there are H(h)

0,L-equivariant iso-
morphisms

(37) (B(h)
em,L ⊗K̆ V )G

(h)
0,L ' B(h)

0,L ⊗B(nh)
0,K

(B(nh)
m,K ⊗K̆ V )G

(nh)
0,K .

In particular, i*L|K(M(V )) is trivialized by B
(h)
em,L. Combining the above with

the natural isomorphisms

DLT(i*L|K(M(V ))) ' (B(h)
em,L ⊗K̆ V )G

(h)
0,L

and (36), this proves (34). The functoriality assertion in (35) can be proved
analogously. �

For vector bundles coming from smooth representations, the functoriality prop-
erties of Theorem 5.2 extend to the equivalence in Theorem 4.4 involving the
full groups G(nh)

K and H
(nh)
K .
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Theorem 5.3. Let L|K be a field extension of finite degree n and let h ≥ 1 be
an integer. If ρ is an object of Rep∞

K̆
(H(nh)

K ) then the G(h)
L -equivariant vector

bundle i*L|K(DDr(ρ)) on X (h)
0,L is Lubin-Tate. In fact, there is a natural G(h)

L -
equivariant isomorphism

(38) i*L|K(DDr(ρ)) ' DDr(resH
(nh)
K

H
(h)
L

(L̆⊗K̆ ρ)).

Proof: As in the proof of Theorem 3.8 we see that there is an integer m ≥ 0
and G

(nh)
0,K -equivariant isomorphisms

DDr(ρ) ' (A(nh)
m,K ⊗K̆ ρ)H

(nh)
K ' (A(nh)

m,K ⊗K̆ ρ)H
(nh)
0,K .

Thus, we may argue as before. �

A Results from rigid geometry

We will prove several results from rigid geometry for which we could not find
suitable references. Throughout the appendix, let F be a field which is complete
with respect to a nontrivial nonarchimedean valuation.

Lemma A.1. If Z is a normal connected rigid analytic F -variety then the ring
of global sections of Z is an integrally closed integral domain.

Proof: It follows from [10, Lemma 2.1.4], that S := O(Z) is an integral domain.
Further, Z admits an affinoid covering (Zi)i∈I such that all affinoid spaces Zi
are normal and connected. By [10, Lemma 2.1.4] and [3, V.1.5 Corollaire 3],
each of the rings Si := O(Zi) is an integrally closed integral domain. The sheaf
axioms imply that also S is integrally closed. �

Let Z be a rigid analytic F -variety. We call vector bundle of finite rank on Z a
coherent locally free OZ-module M such that

(39) sup
z∈Z
{rkOZ,zMz} <∞.

If Z has only finitely many connected components then the global finiteness
condition (39) is satisfied by any coherent locally free OZ-module.

Proposition A.2. Let Z be a quasi-Stein rigid analytic F -variety such that
supz∈Z{dim(OZ,z)} < ∞. The global section functor is an equivalence between
the category of vector bundles of finite rank on Z and the category of finitely
generated projective O(Z)-modules.

Proof: Let (Zi)i∈N be an affinoid covering exhibiting Z as a quasi-Stein space.
It follows from Theorem B (cf. [29, Satz 2.4]) that the assignment M 7→ M̃ ,
with M̃(Zi) := O(Zi) ⊗O(Z) M , is quasi-inverse to the global section functor,
considered on the larger category of coherent module sheaves on Z. A proof
of this fact in the more general setting of possibly noncommutative analogs of
O(Z) can be found in [40, Section 3]. Any finitely generated projective O(Z)-
module M is finitely presented and hence is contained in the essential image
of the global section functor (cf. [40, Corollary 3.4]). Evidently, the sheaf M̃ is
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locally free of finite rank.

Conversely, if M is a vector bundle of finite rank then M(Z) is a finitely gen-
erated projective O(Z)-module. Indeed, by [3, VIII.1.3 Proposition 8] and our
assumption, there is an index i0 such that dim(O(Zi)) = dim(O(Zi0)) for all
indices i ≥ i0. The claim can now be proved along the lines of [25, p. 84], proof
of Théorème 1. It is here that we need the global bound (39). �

Let Z be a rigid analytic F -variety endowed with the left action of a group Γ.
Recall that an OZ-module M is called left Γ-equivariant if there is a family of
isomorphisms cγ : (γ−1)∗(M) → M, γ ∈ Γ, satisfying the relations c1 = idM
and cγ2 ◦ (γ−1

2 )∗(cγ1) = cγ2γ1 for any two elements γ1, γ2 ∈ Γ.

By spelling out the definition of an equivariant sheaf, the following corollary is
an immediate consequence of Proposition A.2.

Corollary A.3. Let Z be a quasi-Stein rigid analytic F -variety endowed with
the action of a group Γ. Assuming supz∈Z{dim(OZ,z)} <∞, the global section
functor is an equivalence between the category of Γ-equivariant vector bundles of
finite rank on Z and the category of finitely generated projective O(Z)-modules
carrying a semilinear action of Γ. �

By reducing to a local situation, the following theorem can be proved using
general facts on étale Galois descent for schemes (cf. [7, Example 6.2.B]).

Theorem A.4. If f : Z → Z ′ is a finite étale Galois morphism of rigid an-
alytic F -varieties, and if Γ denotes the corresponding Galois group, then the
inverse image functor f∗ is an equivalence between the category of coherent
OZ′-modules and the category of Γ-equivariant coherent OZ-modules. A quasi-
inverse is given by the functor sending a Γ-equivariant coherent OZ-module M
to f∗(M)Γ. Locally free sheaves correspond to locally free sheaves of the same
rank. �

Proposition A.5. Let f : Z → Z ′ be a finite flat morphism of quasi-Stein rigid
analytic F -varieties and set R := O(Z) and S := O(Z ′). Assuming Z to have
only finitely many connected components and supz′∈Z′{dim(OZ′,z′)} < ∞, the
S-module R is finitely generated and projective. If, moreover, Z is non-empty,
and if Z ′ is normal and connected, then R is faithfully flat over S.

Proof: If Z has only finitely many connected components then the OZ′ -module
f∗OZ is locally free of finite rank in the strong sense of (39). Thus, under the
assumptions on Z ′, R is a finitely generated projective S-module according to
Proposition A.2.

It follows from Lemma A.1 that S is an integral domain. If Z is non-empty
then R is nonzero, and the flat homomorphism S → R is injective. Since it is
also finite, it follows from [3, II.2.5 Corollaire 4 and V.2.1 Théorème 1], that R
is faithfully flat over S. �

Proposition A.6. Let f : Z → Z ′ be a finite flat morphism of rigid analytic
F -varieties. If Z is non-empty and if Z ′ is connected then f is surjective.
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Proof: The image of f is a Zariski closed subset of Z ′ by [6, 9.6.3 Proposition
3]. If U ⊆ Z ′ is an affinoid subdomain then the restriction of f to f−1(U) is a
finite flat morphism of affinoid spaces. According to [32, Theorem I.2.12], the
subset f(f−1(U)) of U is Zariski open. It follows that f(Z) is Zariski open in
Z ′. Since the image of f is non-empty the connectedness of Z ′ implies that
f(Z) = Z ′. �
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