Coefficient systems on the Bruhat-Tits building
and pro-p Iwahori-Hecke modules

JAN KOHLHAASE

Abstract. Let G be the group of rational points of a split connected re-
ductive group over a nonarchimedean local field of residue characteristic p.
Let I be a pro-p Iwahori subgroup of G and let R be a commutative quasi-
Frobenius ring. If H = R[I\G/I]| denotes the pro-p Iwahori-Hecke algebra
of G over R we clarify the relation between the category of H-modules and
the category of G-equivariant coefficient systems on the semisimple Bruhat-
Tits building of G. If R is a field of characteristic zero this yields alternative
proofs of the exactness of the Schneider-Stuhler resolution and of the Zelevin-
ski conjecture for smooth G-representations generated by their /-invariants.
In general, it gives a description of the derived category of H-modules in
terms of smooth G-representations and yields a functor to generalized (p,I')-
modules extending the constructions of Colmez, Schneider and Vignéras.
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Introduction

Let K be a nonarchimedean local field and let G be a split connected re-
ductive group over K. If R is a commutative unital ring then we denote
by Rep% (G) the category of R-linear smooth representations of the locally
profinite group G = G(K). It lies at the heart of the local Langlands pro-
gram in its various forms.

There are two particularly important techniques to study this category. One
of them is by means of the category Coeff¢(Z") of G-equivariant coefficient
systems of R-modules on the semisimple Bruhat-Tits building 2~ of G. It
is linked to the category Rep% (G) through functors

Fe

Rep% (G) Coeffq(2).

HO(VﬂUV’ )

Here Fy € Coeff(2") denotes the fixed point system of a representation
V € RepR (@) (cf. Example2.2)) and Hy(2", F) € Rep% (G) denotes the 0-th
homology group of the oriented chain complex C¢"(Z(s), F) of a coefficient
system F € Coeff(2Z") (cf. §2.1). If R is the field of complex numbers the
precise relation between the two categories was the subject of the seminal
article [39] of Schneider and Stuhler. As an outcome one obtains functorial
finite projective resolutions of complex smooth G-representations, a proof
of the Zelevinski conjecture and a description of large parts of Rep®% (G) as
a localization of Coeff¢(2).

If I is a compact open subgroup of G then we denote by H = R[I\G/I]
the corresponding Hecke algebra over R and by Mody the category of left
H-modules. The R-algebra H can also be realized as the opposite endomor-
phism ring of the compactly induced smooth G-representation X = ind% (R)
whence X is naturally a right H-module. By Frobenius reciprocity there is
a pair of adjoint functors

()

Rep% (G) Mody.

X®u()

If R is the field of complex numbers and if [ is an Iwahori subgroup then the
precise relation between these categories was clarified by Bernstein and A.
Borel. They showed that if Reph(G) C Rep® (G) denotes the full subcate-
gory of representations generated by their /-invariants then the above func-
tors give mutually quasi-inverse equivalences Reph(G) = Mody of abelian
categories (cf. [4], Corollaire 3.9). This was used crucially by Kazhdan and
Lusztig to establish the local Langlands correspondence for this kind of rep-
resentations.



Let p denote the characteristic of the residue class field of K. The emerging
p-adic and mod-p variants of the local Langlands program make it necessary
to consider the case where p is nilpotent in R and [ is a pro-p Iwahori sub-
group of G (cf. . If R=F, and if G = GL2(Q,) or G = SL2(Q,) then
Ollivier and Koziol showed that Reph(G) = Mody via the above functors
(cf. [26], Théoreme 1.2 (a) and [22], Corollary 5.3). However, this is not
true in general and the precise relation between the categories Repé(G) and
Mody is unknown. Likewise, if R = F, and if G = GLy(K) then Paskunas,
Breuil and Hu used coefficient systems to construct interesting examples of
G-representations in [§], [18] and [33]. However, the relation between the
categories Rep® (G) and Coeff(2") in the modular setting has never been
studied systematically.

We continue to assume that I is a pro-p Iwahori subgroup of G. The aim
of the present article is to clarify the relation between the categories Mod g
and Coeff¢(Z2") and to give applications to the theory of smooth R-linear
G-representations. For the general setup R is allowed to be any commuta-
tive unital ring. For most of the deeper results, however, we will assume in
addition that R is a quasi-Frobenius ring, i.e. that R is noetherian and self-
injective. The most important case for arithmetic applications is R = S/tS
where S is a principal ideal domain and ¢ € S is non-zero (cf. [23], Example
3.12). Of course, R could still be any field.

At the beginning of the article we gather the necessary input from the the-
ory of Bruhat-Tits buildings, pro-p Iwahori-Hecke algebras and coefficient
systems. We also generalize Paskunas’ notion of a diagram from GLg(K) to

any G (cf. Remark and Proposition .

Depending on R the augmented chain complex 0 — C"(Z(qy, Fv/) = V — 0
of the fixed point system Fy of a representation V € Rep® (G) may or
may not be exact (cf. [30], Remark 3.2). However, Ollivier and Schneider
observed that the complex Ccor(e%”(.),}'v)l of I-invariants is always exact
(cf. [30], Theorem 3.4, which was inspired by the work [9] of Broussous). It
therefore seems natural to consider the functor

M : Coeff(2) — Mody, M(F) =Ho(CI (20, F)').

In fact, the above acyclicity result holds for a larger class of coefficient sys-
tems that we study in Note that the order of the functors Hy and (-)!
is a subtle point here. If p is nilpotent in R then it can generally not be
reversed.

In order to construct a functor in the other direction let F' be an arbitrary
face of 2°. We denote by P}; = {g € G | gF = F} the stabilizer of F'in G, by



Pr the parahoric subgroup of G corresponding to F' and by I the pro-p radi-
cal of Pp (cf. §1.1)). Given an H-module M we consider the smooth R-linear
P};—representation tp(M) = im(X'F @y M — Hompy (Hompy (X'F, H), M)).
This is a local version of a construction appearing in [3I]. Letting F' vary
we obtain the functor

F() : Modyg — Coeff(Z), F(M)= tp(M))p.

In we single out a full subcategory C of Coeff(Z") such that the func-
tors M(-) and F(-) are mutually quasi-inverse equivalences Mody = C of
additive categories (cf. Theorem and Theorem . In particular, the
functor F(-) : Mody — Coeff;(2Z") is fully faithful. For any H-module M
we obtain a functorial resolution

(1) 0— CCO’”(%(.),}'(M))[ — M —0

generalizing to any quasi-Frobenius ring R the Gorenstein projective reso-
lution [30], equation (6.5), of M constructed by Ollivier and Schneider if R

is a field (cf. Proposition (ii), Theorem and Remark |3.24]).

The definition of the category C and the proof of the above equivalence relies
on the representation theory of finite reductive groups as developed by Ca-
banes (cf. [13]). In §3.1] we take up this theory and reprove it in a framework
which is sufficiently general for our purposes. First of all, we need to work
over an arbitrary quasi-Frobenius ring R and the underlying R-modules of
our representations are not necessarily finitely generated. Moreover, beyond
representations of the finite reductive groups Pp/Ir we are interested in rep-
resentations of the groups P} /Ir. Since the corresponding Hecke algebras

H} are generally not selfinjective (cf. Remark the strategy of Cabanes
does not apply directly. In Definition [3.1] we introduce a certain condition
(H) on smooth R-linear representations of P or P;,. It is a generalization
of condition (*x) in [I3] to filtered unions. We obtain full subcategories of
Rep% (Pr) and RepoRo(P}) which are equivalent to the corresponding cate-
gories of Hecke modules (cf. Theorem and Theorem (ii)). We also
show that a quasi-inverse is given by a variant of the above functor tp (cf.
Theorem . Even in the case of finite reductive groups this does not
seem to have been observed before.

Given a representation V' € Rep% (G) the corresponding fixed point system
Fv may or may not belong to the category C (cf. the discussion after Remark
3.17). However, it turns out that an object F € Coeff(Z") belongs to the
category C if and only if for any vertex x of 2~ the restriction of F to the
star of z is a Ronan-Smith sheaf associated to a P,-representation satisfying
condition (H) (cf. Proposition [3.18). At the end of we also relate our
constructions to the torsion theory and the functor t : Mody — Rep% (G)



of Ollivier and Schneider introduced in [31] when R is a field. Given a
Hecke module M € Mody there is a functorial G-equivariant surjection
Ho(Z, F(M)) — t(M) (ct. Proposition [3.22). We comment on a few cases
in which this is an isomorphism (cf. Remark .

The second part of our article is concerned with applications to the category
Rep% (G) of smooth R-linear G-representations. We denote by Reph(G) the
full subcategory of Rep% (G) consisting of all representations generated by
their [-invariants.

In §4.1] we are mainly concerned with the case that R is a field of characteris-
tic zero. In this case we simply have F(M) = Fx @y M for any M € Modpy
and F(V!) = Fy for any V € Reph(G) (cf. Theorem . According to
Bernstein, the functor (-)! : Reph(G) — Mody is an equivalence of abelian
categories. Since we could not find a reference checking the hypotheses of
[4], Corollaire 3.9, we give a quick argument relying on the known case of
a first congruence subgroup (cf. Theorem . As a consequence, the 0-th
homology functor Ho(Z,-) : C — Repkh(G) is an equivalence of categories
(cf. Corollary and Corollary (i)). Moreover, we can follow an ar-
gument of Broussous to show that the augmented oriented chain complex
0 — C"(Ze); Fv) = V — 0 is exact for any V € Repkh(G) (cf. Corollary
(ii)). This is a particular case of a much more general result of Schneider
and Stuhler (cf. [39], Theorem I1.3.1). Finally, we use Bernstein’s theorem
to interprete the Zelevinski involution in terms of certain Ext-duals on the
category Mody. If G is semisimple we use the homological properties of H
as established by Ollivier and Schneider to prove the main properties of the
Zelevinski involution (cf. Theorem . In fact, this interpretation of the
Zelevinski involution shows that it has good properties way beyond the case
of admissible representations studied classically (cf. Remark .

At the end of we assume that p is nilpotent in R. If M € Modg then
the exactness of the complex CZ"(Z(,), F(M)) remains an open problem. At
least, we can treat the case that the semisimple rank of G is equal to one.
Under these assumptions the augmented complex

0 — C"(Z(1), F(M)) — C" (Z(0), F(M)) — Ho(Z, F(M)) — 0

is exact and there is an H-linear embedding M < Ho(2 , F(M))! (cf.
Proposition . If the underlying R-module of M is finitely generated
the G-representation Ho( 2", F(M)) may thus be called finitely presented.
However, it is generally not irreducible and admissible and the embed-
ding M — Ho(Z,F(M))! is generally not an isomorphism (cf. Remark
[4.15). We also show F(-) & Fx ®p (-) if G = SLy(K), G = GLy(K) or
G = PGLy(K) and if the residue class field of K is the field with p elements



(cf. Proposition [4.16]).

If p is nilpotent in R then the functor (-)! : Repé(G) — Modp is generally
not fully faithful (cf. [26], Théoréme). In we introduce the full subcat-
egory Repi,%d(G) of Repﬁ(G) consisting of all representations isomorphic to
a finite direct sum of compactly induced representations indg; (Vr) where

Vr € Rep® (P};) satisfies the generalized condition (H) of Cabanes and F' is
contained in the closure of the chamber fixed by I. Likewise, we denote by
Modi;}d the full subcategory of Mody consisting of all H-modules isomor-
phic to a finite direct sum of scalar extensions H®H} Mp with M € ModH;

for various F' (cf. Definition . If R is an arbitrary quasi-Frobenius ring
then the functor (-)! : Rep%(G) — Mod3¢ turns out to be an equivalence
of additive categories (cf. Theorem [4.21]). Particular cases of its fully faith-
fulness have also been shown by Ollivier and Vignéras (cf. Remark [4.22)).
However, the building theoretic arguments needed to treat the general case
are much more involved (cf. Proposition and Remark . Our proof
also uses the full force of the relation between P}—representations and H}—
modules as developed in

In Proposition we use the functorial resolutions to show that in
a suitable sense the inclusion Mod%¢ C Mody induces a triangle equiv-
alence on the level of bounded derived categories. One can then use the
equivalence Repiﬁd(G) = Modiﬁ}d to realize the bounded derived category of
H-modules as a somewhat exotic localization of the homotopy category of
bounded complexes over RepB4(G) (cf. Theorem 4.25)). However, our results
rather indicate that the true relation between Repy(G) and Mody is that
of a Quillen equivalence. We will come back to this in a future work. More-
over, since the equivalence Repiﬁd(G) = Modi}}d is generally not compatible
with the homological properties of the categories Repf (G) and Mody the
relation to Schneider’s derived equivalence in [38], Theorem 9, is presently
unclear.

In §4.3] we relate our constructions to the theory of generalized (p,T')-
modules as developed by Schneider and Vignéras (cf. [40]). Note that the
more general definitions and constructions of [40] make sense for any ar-
tinian coefficient ring R. We choose a Borel subgroup P of G and a suitable
vector chamber ¢° of 2~ which is stabilized by a certain submonoid P
of P. Any vector chamber % of 2~ contained in ¢ gives rise to the sub-
complex 2°T(¢) = P % of the building 2". For any coefficient system
F € Coeff(Z") we consider the complex of R-modules

(2) liy CO(2,(€), F)"

(*)
¢CE0



where (-)* denotes the R-linear dual and the transition maps in the inductive
limit are dual to the inclusions Cé”’(:%”(f) (€¢"),F) C Cé”"(ﬁf(f) (¢),F) for all
vector chambers 4’ C ¥ C %°. This procedure is vaguely reminiscent of
passing to the stalk at a boundary point of Z". We observe that the complex
carries actions of the completed monoid rings R[[FJF]] and R[[(?Jr)*l]]
introduced in [40], §1. In fact, the R[[Fﬂ]—module structure is always étale
(cf. Proposition . If p is nilpotent in R and if the semisimple rank of
G is equal to one then the complex ([2)) is acyclic in positive degrees and its
0-th cohomology group is non-trivial (cf. Proposition. Moreover, if the
R-modules Fr are finitely generated for any face F' of 2 then there is an
isomorphism of complexes of R[[(?ﬂ‘ﬂ]—modules

lim €7 (2]

(.)(%)7}-)* = D(Cé”’(t%”(.)’]-").
CCE0

Here D is the functor introduced in [40], §2. In fact, under suitable as-

sumptions we establish the existence of an FEs-spectral sequence of étale
—+

R[P " ]-modules

DIH,(2', F) = WH( iy C'(25(€), F)")
FCH0

where (D7);>0 is the universal d-functor of Schneider and Vignéras (cf.
Proposition [4.33] (ii) and [40], §4). Here we need to put ourselves in the
situation of [40]. More precisely, we assume K = Q, and R = o/n"0 for the
valuation ring o of some finite field extension of @, a uniformizer = € o and
a positiver integer n. We note in passing that the proof of Proposition
(i) shows the invariance of the d-functor (D7);>0 under central isogenies — a
result which seems interesting on its own.

Assume in addition that the semisimple rank of G is equal to one and that
F = F(M) for some M € Modg. If the underlying R-module of M is
finitely generated and if the center of G acts on M through a character
then the above spectral sequence degenerates (cf. Proposition [£.33] (ii)). In
this case the étale R[[FJF]]—module DHo(Z , F(M)) is the j-th cohomology
group of the complex and we have D/Hy(2 , F(M)) = 0 for all j > 1.
Note that the P-representation Ho (2", F(M)) is actually finitely presented
(cf. Proposition and the proof of Proposition . However, we do not
know if it is admissible so that [40], Remark 11.4, might not be applicable.

Finally, assume that G = GL2(Q,), R = o/mo and F = F(V!) for some
admissible representation V' € Repﬁ(G) admitting a central character. If o
is chosen suitably then Ollivier’s equivalence of categories and the compar-
ison results of [40], §11, show that the complex eventually leads to the
étale (¢, I')-module corresponding to V under the p-adic local Langlands



correspondence of Colmez (cf. Remark [4.34). We hope that our geometric
constructions will be useful in extending this correspondence to other groups.
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Notation and conventions. Throughout the article R will denote a fixed
commutative unital ring. Let K be a nonarchimedean local field with nor-
malized valuation val and valuation ring 0. We denote by k the residue
class field of K and by p and ¢ the characteristic and the cardinality of
k, respectively. For any unital ring S we denote by Modg the category
of S-modules. Unless specified otherwise an S-module will always mean a
left S-module. For any topological monoid J we denote by Rep%(J) the
category of R-linear smooth representations of J, i.e. the category of all R-
modules V' carrying an R-linear action of J such that the stabilizer of any
element v € V is open in J. We shall write Hom ;(V, W) for the R-module
of R-linear and J-equivariant maps between two objects V,W & Rep% (J).
If J is a group and if Jy € J is an open subgroup then we denote by
indﬂo : Rep® (Jo) — Rep% (J) the compact induction functor (cf. [46], §1.5).

1 A reminder on the Bruhat-Tits building

1.1 Stabilizers and Bruhat decompositions

Let G denote a split connected reductive group over K. We fix a maximal
split K-torus T of G and let C denote the connected component of the center
of G. Let d denote the semisimple rank of G, i.e. the dimension of a maxi-
mal split K-torus of the derived group of G. This is equal to the dimension
of T/C. By G = G(K) and T' = T(K) we denote the group of K-rational
points of G and T, respectively.

Let 2 denote the semisimple Bruhat-Tits building of G (cf. [45]) and let
o/ = X.(T/C)®zR denote the apartment of .2 corresponding to 7T". Recall
that 2 is a d-dimensional polysimplicial complex with a simplicial action
of G whose 0-dimensional (resp. d-dimensional) faces are usually called the



vertices (resp. the chambers) of 2". For any face F' of 2" we denote by
Pl={geG|gF =F}

the stabilizer of F in G. We denote by 2! the enlarged Bruhat-Tits building
of G in the sense of [I1], §4.2.16, and denote by pr : 2! — 2" the projection
map. The pointwise stabilizer of pr~=!(F) in G is the group of o-rational
points

Gr(0) CGrp(K)=G(K)=G

of a smooth group scheme G over o with generic fiber G (cf. [45], §3.4.1).
We denote by G the connected component of G and by

Pp = Gp(o)

its group of o-rational points. It is called the parahoric subgroup of G
associated with F. Let mp : Pr = Gp(0) — Gp(k) denote the group
homomorphism induced by the residue class map o — k, and let R“(ka)
denote the unipotent radical of the special fiber G F of G . We then obtain
the pro-p group .

Ir = np (R*(Grp) (k) C Pr

which is in fact the pro-p radical of Pp.

The origin g of & = X, (T/C)®zR is a hyperspecial vertex in :Z". Through-
out the article we fix a chamber C' in & containing xy and set

I=1s and I' =Pc.

The subgroups I and I’ are called a pro-p Iwahori subgroup and an Iwahori
subgroup of G, respectively. The chamber C' determines a set ®* of positive
roots of the root system ® C X*(T/C) of (G,T). We shall also view the
elements of ® as characters of T and T'.

If Ty denotes the maximal compact subgroup of 7" and if Ng(T') denotes the
normalizer of T in GG then we denote by

W = Ng(T)/TO = T/TO x Wy

the extended Weyl group of (G,T'). Here Wy = Ng(T')/T denotes the finite
Weyl group of (G, T). The action of G on 2 restricts to an action of W on
o/ by affine automorphisms. We denote by (-,-) : X*(T/C) x X,.(T/C) —» Z
the canonical pairing and by v : T — X,(T/C) the group homomorphism
chacterized by

(a,v(t)) = —val(a(t)) forall o€ .



The action of t € T' on 7 is then given by translation with v(¢).

If F” and F' are faces of 2" such that F’ is contained in the topological
closure F' of F then by [11], Proposition 4.6.24 (i), or [45], §3.4.3, we have
the inclusions

(3) I CIp C Pp C Pe C P,

in which Ip and Pps are normal in P;,,. Moreover, we have I N P;r7 =INPgp
by [30], Lemma 4.10, which combined with (3) yields

(4) INPL=INnP-CINPp=1NP},.

By [47], Proposition 1, the group W is equipped with a length function
¢ : W — N such that
Q={weW|l(w)=0}

is an abelian subgroup of W contained in P(Tj7 hence normalizes I and I'.
According to [48], Appendice, the group €2 is isomorphic to the quotient
of X,(T) modulo the subgroup generated by the coroots ®. Consequently,
Q) is finite if and only if G is semisimple. Further, W = Wyog x Q is the
semidirect product of €2 and the so-called affine Weyl group W,g. This is an
affine Coxeter group generated by the reflections about the affine roots of
G (cf. [30], §4.3). Moreover, the length function ¢ is constant on the double
cosets Q\W/Q. Let T} denote the unique pro-p Sylow subgroup of Tj and

W = Ng(T) /Ty = (To/Ty) x W.

We denote by  and W,g the preimage of  and W,g under the surjection
W — W, respectively, so that W/ Q =~ W,q. We extend the length func-
tion £ to W by inflation, i.e. we have f(www’) = £(w) for all w,w’ € Q and
w € W. Note that the group W acts on o7 through its quotient W.

Denote by G, the subgroup of GG generated by the parahoric subgroups Pr
of all faces F of 2". By [11], Proposition 5.2.12, and [45], §3.3.1, we have
the Bruhat decompositions

5) G= ] I'wl'=[] vl and Gug= [[ I'wI'= [[ IwI
weW WEW WEW,sg WEW g

Here we follow the usual abuse of notation using that the double cosets
I'wI" and IwI do not depend on the choice of representatives of w and
in Ng(T') because Ty C I' and Ty = Ty NI C I. The group homomorphism
To/Th — I'/1 is actually bijective.

10



For any face F of 2 contained in C' we adopt the notation of [30], §4, and
denote by Wr the subgroup of W generated by all affine reflections fixing F'
pointwise. Further, we let Qp = {w € Q | wF = F}. The subgroup W} of
W generated by Wr and Qp is the semidirect product Wi = WrxQp. The
group W is always finite whereas Qg is finite if and only if G is semisimple.
We also note that the canonical surjection W — Wy restricts to an isomor-
phism W,, = Wy (cf. [45], §1.9).

Let Q P, WF and VV} denote the preimages of Qp, Wr and W;, in W, re-
spectively. By [30], Lemma 4.9, these groups give rise to the decompositions

6) Pp= [[ r'wl’= ] 1wl and Pf= [] I'wl’'= ][ Il

weWr weWr weWw}, @eW},
It follows that P}./Pr = W},/Wr = Qp.

We continue to assume that £ C C. There is a set Dp C W of representa-
tives of the left cosets W/W g which is characterized by the property that for
any d € Dp the element d is of minimal length in dWp (cf. [30], Proposition
4.6). The set D is stable under right multiplication with elements of Qg
(cf. [30], Lemma 4.11). Moreover, if F” is a face with F’ C F C C then we
have Wy C Wgr. Therefore, any element which is of minimal length in its
left coset modulo Wy is also of minimal length in its left coset modulo Wg.
Thus,

(7) Dy C Dr  whenever F' C F CC.

Remark 1.1. Note that Q C D for any face FF C C. Indeed, if w € © and
w € W then (ww) = ¢(w) whence w is of minimal length in wWp.

We denote by Dr C W the preimage of Dp in W under the surjection
W — W. The length function ¢ : W — N factors through W whence [30],
Proposition 4.6 (i), implies

(8) {(dw) = €(d) + {(w) forall de Dp,we Wg.

Lemma 1.2. For any face F of 2" there is a unique face [F| of 2~ which is
contained in C and G.g-conjugate to F.If F' is another face of 2" and if
[F'] denotes its unique Gag-conjugate in C, then F' C F implies [F'] C [F].

Proof. Since 2 is a building there is an apartment containing F' and C' (cf.
[10], Théoréme 7.4.18 (i)). By [10], Corollaire 7.4.9 (i), there is an element
1€ P(JE with iF" C /. By we may even assume i € [. By [7], V.3.2,
Théoreme 1, there is an element w € W,og with wif" C C. This proves
the existence of [F]. The uniqueness follows from P}; N Gag = Pr (cf. [30],
Lemma 4.10). The last statement is a direct consequence of the uniqueness

because G.g acts by simplicial automorphisms. ]

11



1.2 Hecke algebras
Following the notation of [30], §2, we set
X = ind¥(R) € Rep%(G).
Note that X is a right module over its opposite endomorphism ring
H = Endg(X)°P,

the so-called pro-p Iwahori-Hecke algebra of G. By Frobenius reciprocity
(cf. [46], Proposition 1.5.7 (ii)), H can be identified with the R-module

H = Homg(X, X) = X! =ind¥(R)! = R[I\G/I]

of I-biinvariant compactly supported maps G — R. Under this identifica-
tion, the multiplication of H is the convolution product

(f- 1) =D f@)f g9

geG/I

Let V' € Rep®(G). By Frobenius reciprocity again, the R-module v =~
Homg (X, V) of I-invariants of V naturally is a left H-module via f-¢ = ¢o f
for any f € H = Endg(X)°? and ¢ € Homg(X, V), i.e. we have the functor

()' : Rep¥(G) — Mody, V= VI

Interpreting f as an element of R[I\G/I] and ¢ as an element of V', the
above module structure is given by

9) fro= Y > flo)gg-peVh,

geING/I g’el/(INgIg—1)

Given w € W we set 7, = Iwl € R[I\G/I] = H and call 7,, the Hecke
operator associated with w. By the R-module H is free with basis
(Tw) perir- The ring structure of H is determined by the relations

(10) Tow = ToTw if L(vw)=L(v)+{(w) and
(11) T2 = qT82+7-898

s

for any element s € W whose image in W belongs to the set of distinguished
generators of the Coxeter group Wag (cf. [47], Theorem 1). Here 6; is a spe-
cific element of R[Ty/T1] C H.

The following result is essentially proven in [30], Proposition 4.13.
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Lemma 1.3. Let F be a face of Z°. Among all chambers of 2 which
contain F in their closure there is a unique one C'(F) with minimal gallery
distance to C. It satisfies Iopy = Ip(I N P};) =Irp(INPr) and IN P} =
In Pg(F) = INPgpy. The chamber C(F) is contained in any apartment of
2 containing F and C. Moreover, we have gC(F) = C(gF) for all g € I.

Proof. Let &/’ be an arbitrary apartment of 2" containing F' and C. As seen
in the proof of Lemma there is v € I with v/’ = /. Thus, vF C & .
According to [30], Proposition 4.13, there is a unique chamber C'(yF) in
&/ containing vF' in its closure and which has minimal gallery distance to
C. Note that the gallery distance of [30], Proposition 4.13, refers to the
gallery distance computed in /. By the existence of retractions, however,
this agrees with the gallery distance computed in the entire building 2~ (cf.
[2], Corollary 4.34). Let us put C(F) =y 1C(yF) C &/'. Clearly, this is a
chamber of 2" containing F' in its closure.

Let us denote by d(-,-) the gallery distance function and assume that D is
a chamber of £ containing F' in its closure and which has minimal gallery
distance to C. As above, there is g € I such that gD C /. This implies
gF C & and hence gF = vF because &/ contains a unique [-conjugate of
F (cf. [30], Remark 4.17 (2)). On the one hand, this gives

d(gD,C) = d(C(vF),0)

because gD contains gF' = v F' in its closure and because of the minimality
property of C'(vF). On the other hand,

d(¢D,C) = d(D,C) < d(g~'C(vF),C) = d(C(yF),C)

because of the minimality property of D and since g fixes C'. Note that
g 1C(yF) contains g~'yF = F in its closure. Therefore, d(gD,C) =
d(C(yF),C) and gD = C(yF) by the uniqueness of C(yF). By [30],
Proposition 4.13 (ii), we have g7~ € IN Pl C Ioyp) C pgwp),
D = g 'C(yF) = v 1C(yF) = C(F). This proves the first part of the
lemma. By (4) and [30], Proposition 4.13 (ii), we have Io(yr) = 7F(Iﬁl:’;rF)
and INPyp = INP! . =INP, ) = INPoyr). Conjugation with v~ € T
yields the second part of the lemma. The final assertions follow directly
from the construction. d

whence

Let F' be a face of 2" and let the chamber C(F) be as in Lemmall.3] Since
Icry € PR C P} we have the objects

P}
Ic(r)

Xl =ind;” (R) € RepX(P}) and Xp =ind*

Ic(r)

(R) € Repg (Pr),
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following the notation of [30], §3.3. They are naturally right modules over
their opposite endomorphism rings

(12) Hi = End (X[)® and Hp = Endp, (Xp)P,

the so-called Hecke algebras at F'. As above, the R-algebras H} and Hp
can be identified with the R-modules

H} = R[Io(m\PL/Icm) and  Hp 2 Rllo)\Pr/lomrm)

of I¢(p)-biinvariant compactly supported maps P}; — R and Pr — R, re-
spectively. The multiplication is again the convolution product. It makes
Hp an R-subalgebra of H};

If F C C then the R-modules Hr and H:rp are free with bases (Tw) ¢y, and
(Tw),, cvirt.» respectively. This follows from (6). Moreover, the R-algebra H}
F

may then be viewed as a subalgebra of H.

Lemma 1.4. As an R-algebra, H is generated by the subalgebras H;L with
FCC.

Proof. By the braid relations the R-algebra H is generated by the Hecke
operators 7, with w € Q and the Hecke operators 7, such that the image of
s in W belongs to the set of distinguished generators of the Coxeter group
Wag. Note that 7, € Hg for all w € Q. Further, any s as above induces an
affine reflection of & pointwise fixing a unique codimension one face F'(s)
in C. Thus, 7, is an element of Hpe) C H}(S). O

Let F be an arbitrary face of 2°. If F” is a face of 2 with F' C F C C(F")
then C(F) = C(F’) by the uniqueness assertion of Lemma In this case

Hf N H}, = RlIow)\(PE 0 PL) To)]
inside the R-module of all compactly supported maps G — R. Note that
by we have IC(F) = IC(F/) C Pr C Ppv so that in this situation Xp is a
Pp-subrepresentation of Xz and

Hp D Hp CHLNHL,.

If F C C then any Gug-conjugate of F' is of the form gdF for some d € Dp
and g € I (cf. the proof of Lemma . As a consequence of Lemma
and [30], Proposition 4.13, we have

(13) gdC = C(gdF) and gdI(gd)™" = Io(gar)-
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Thus, we have the isomorphisms
T i
XIT: — X%dF,
Hy — Hng,
Xr — Xyar,
HF — Hng7

(14) Pgd,F -

of R-modules all of which are given by f + (¢’ — f(gdg’(gd)™")). Here
conjugation with d is defined by choosing a representative in N¢g(T'). Note,
however, that 77 C Ir. Therefore, the Ir-biinvariance of f and the fact that
Ir is a normal subgroup of I imply that the value f(gdg’d~'g~') does not
depend on the choice of a representative of d in Ng(T)).

Clearly, on H} and Hp the map pgq r is an isomorphism of R-algebras. On
X;r; (resp. XF) it is an isomorphism of representations of P}; (resp. of Pr) if
the action on XgT 4 (resp. on Xggr) is pulled back along conjugation with gd.

Note that if I C F C C then the restrictions of ¢4 p and @4q g to H}HH}/
agree for all g € [ and d € Dp» C Dp. Here the last inclusion results from
. In particular, we have @yq /|, = @ga,F as isomorphisms Hr — Hyqp.

If R is a field then the structural results in Proposition [I.5] and Proposition
below all appear in [30]. However, the proofs work more generally.

Proposition 1.5. Let F' be a face of Z .

(i) H}; is free as a left and as a right module over Hp.

(ii) If F C C then H is a free left and a free right module over Hp and H;

(iii) If F' is a face of 2 with F' C F and C(F') = C(F) then Hp: is
finitely generated and free as a left and as a right module over Hp.

Proof. As for (i), let [F] C C be as in Lemma By construction, there
are elements g € I and w € W,g with F = gw[F]. If d € lN)[F} is chosen
so that its image in W is the element of minimal length in wW [z we also
have gd[F| = F. The compatible isomorphisms ¢gq 7 in (13|) then allow us
to assume F C C. In this situation, the decomposition and the braid
relations imply that if S C Qp denotes a complete set of representatives
of the coset space Qp/(Tp/Ty) = Qp then the family (7,)wes is a basis of
H} as a left and as a right Hp-module.

The proof of (ii) is identical to that of [30], Proposition 4.21 (i). It relies

only on the braid relations of H which hold over any coefficient ring R. We
note that a basis of H as a right H}—module is given by the elements 74 if
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d runs through a system of representatives of Dr modulo Q.

As for (iii), the above arguments, Lemma and the relation pgq r |, =
©gd,r again allow us to assume F' C F C C. In this situation, and the
braid relations imply that the family (74-1) deW oDy (resp. the family
(Td)deWFmDp) is a basis of Hpr as a left (resp. as a right) Hp-module. Note

that the group WF/ and its subset WF/ N DF are finite. ]

Remark 1.6. If F C C then there is a more precise version of Proposition
(i). In fact, the decomposition @ implies that mapping w € Qp to
the Hecke operator 7, = Twl = wl € H} gives a well-defined and injective
homomorphism R[Qr] — H} of R-algebras. As in [30], Lemma 4.20 (i), the
R-algebra H} is a twisted tensor product of Hr and R[Qp] over R[Ty/Ti].
Note that 7, is a unit in H}T7 with inverse 7! = 7,1, If V € Rep%f(P})
and if m € V! then 7, - m = w-m by @

Proposition 1.7. Let F' be a face of Z .

(i) The map XF®HFH}; — X};, f®h — h(f), is a well-defined isomorphism
of (R[Pr], H})—bimodules.

ii) If F C C then the maps Xp @y, H — XIF (deT® i H — X1r,
F P <H
F

f®h — h(f), are well-defined isomorphisms of (R[Pr|, H)- and (R[P}], H)-
bimodules, respectively.

(iii) If F' is a face of 2 with F' C F and C(F') = C(F) then the map
Xr Qu, Hpr — XII},V, f®h — h(f), is a well-defined isomorphism of
(R[Pr), Hpr)-bimodules.

Proof. The inclusions Pp C P}; and Hrp C H}; make Xp a subobject of
the (R[Pr|, Hr)-bimodule X]T;. Since HITJ acts on Xp ®p, HZT; and X} by
homomorphisms of left R[Pp|-modules, the map in (i) is well-defined and
(R[Pr], H;)-linear. The corresponding assertions in (ii) and (iii) are proved
similarly, noting that the actions of Ir on Xy and X} are trivial. The rest
of the proof of part (i) is identical to that of [30], Lemma 4.24. Note that
as in the proof of Proposition (i) we may assume F C C.

Now consider part (ii). Using (i) it suffices to prove the bijectivity of the
map Xr ®p, H — XTF, Fix d € Dp and let XéF denote the R-submodule
of X'r consisting of all functions supported on Ppd~'I. As in the proof of
[30], Proposition 4.25, it suffices to see that the map Xp — XéF given by
f > 14-1(f) is bijective. Note that this makes use of Proposition (ii).
By @ we have the decomposition

Pr = H H guwl.

weWF gel /(wlw—1NI)
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The characteristic functions of the sets gwl form a basis of the R-module
Xr. Applying 74-1 each of them is mapped to the characteristic function of
the set gwId—'I. We need to see that these form a basis of the R-module
XCIlF or equivalently that the decomposition

Prd 'I= | U quld ‘I
weWg g€l /(wIw=1NI)

is disjoint and consists of double cosets modulo (I, ). According to the
proof of [30], Proposition 4.25, we have Id~'I = Ipd='I where Ir is a
normal subgroup of Pr. Therefore, gwld I = gwlpd I = Ipgwd™'I is
indeed a double coset as required. In order to see that the above union is
disjoint, let g, ¢’ € I and w,w’ € Wy be such that Ipgwd I = Ipg'w'd=1.
Since Ir C I left multiplication with I gives w = w’ by . Consequently,
wlgTlgw € Ipd='Id N w™Tw. Now dC = C(dF) by [30], Proposition
4.13, whence

Ipd ' IdNw w = Ip(d'IdnPp)Nnw 1w
= d ' (Iyp(INPyp))dNnw Hw
= d_lfc(dp)d Nw w=TnwTw

by Lemma Note that wIw™! and Ir are subgroups of Pr. This proves
(ii). Given Proposition (iii), the proof of part (iii) is analogous. O

2 Coefficient systems

2.1 Coefficient systems and diagrams

Let % be a polysimplicial complex or more generally any subset of a polysim-
plicial complex which is a union of some of its faces. Following [15], §1.3.3,
[34], §1, or [39], §IL.2, a coefficient system of R-modules on % is a family
F = ((Fr)r, (rE) pes) of R-modules Fr indexed by the faces F of %,
together with R-linear maps 7“5, : Fr — Fp for any pair of faces F, F’ of
% with F' C F such that

. !/
rk = idr, and rhy =rL,ork,

whenever " C ol C F. The maps 7“11::, are usually called the restriction
maps of the coefficient system F.

A homomorphism f : F — G of coefficient systems of R-modules on & is a
family (fp)r of R-linear maps fr : Fr — G indexed by the faces F' of &
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such that the diagram

FrtGp

F F
TF,\L \LTF/

Fpr ——=Gpr
fr
commutes whenever F and F’ are faces of % with F/ C F. We denote
by Coeff(#') the category of R-linear coefficient systems on %, oppressing
the symbol R from the notation. It is an R-linear abelian category in the
obvious way.

Example 2.1. For any R-module M the family KCps = (M), (ida) pr5)
is a coefficient system of R-modules on %, It is called the constant coefficient
system on % associated with M.

Assume there is a group J which acts on ¢ by simplicial automorphisms.
Given j € J and F € Coeff(#') we let j,F denote the object of Coeff(%')
defined by j.Fr = Fjr with transition maps j*rg, = rﬁz,. Note that
we have j,i,.F = (ij)«F for any j,i € J. Further, any homomorphism
f:+F — G in Coeff (#') naturally induces a homomorphism j, f : j.F — j.G
by (j«f)r = fjr. A J-equivariant coefficient system of R-modules on % is
an object F € Coeff(%') together with a family (¢;);cs of homomorphisms
cj + F — ji«F in Coeff(#') such that ¢; = idr and j.c; o ¢; = ¢ for all
J,1 € J. The latter is usually called the cocycle relation. In particular, this
gives an action of the stabilizer group of F' on Fr for any face F. In the case
of interest to us, J will always be a topological group and we will assume
that these actions of the stabilizer groups are smooth.

If 7 and G are J-equivariant coefficient systems on % and if (c;)jes and
(d;)jes denote the J-actions on F and G, respectively, then a morphism
f:F — G in Coeff(#) is called J-equivariant if j.f oc; = d; o f for all
j € J. We denote by Coeff ;(#') the category of J-equivariant coefficient
systems of R-modules on . Note that a morphism f = (fr)r in Coeff ; (%)
is an isomorphism if and only if fr is bijective for all faces F' of #.

If F € Coeff ;(#) with J-action (¢j);es and if F is a face of # then the
stabilizer of F' in J acts on Fg by jm = ¢;(m) for all m € Fp. If F/ and F
are faces of % with F’' C F then the restriction map r?, is equivariant for
the intersection of the stabilizer groups of F' and F”.

In the particular case of the Bruhat-Tits building # = 2" and J = G, we
say that F is of level zero if the action of Ir on FF is trivial for any face F' of
2. We denote by Coeff%(.2") the full subcategory of Coeff¢(.2") consisting
of all G-equivariant coefficient systems on 2~ which are of level zero.
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Example 2.2. Given a smooth R-linear G-representation V' € Rep% (G) the
associated fixed point system Fy, € Coeff&(2") is defined by (Fy)p = VIF
with the inclusions induced by as restriction maps. For any face F' of
Z and any element g € G the map ¢y : Vie — Vier — V9Irg™" is defined
by ¢g.r(v) = gv.

Let ¢ be a polysimplicial complex of dimension d. For 0 < i < d we denote
by #; the set of i-dimensional faces of % and by %(; the set of oriented
i-dimensional faces of # in the sense of [39], §II.1. The elements of %(;
are pairs (F,c) where c is an orientation of F' with the convention that the
0-dimensional faces always carry the trivial orientation. Note that if ¢ > 0
then also (F, —c) € %(;) where —c denotes the orientation opposite to c. If
(F,c) € ;) and if F' € %_, with F/ C F then we denote by 9f,(c) the
induced orientation of F’. It satisfies 0L, (—c) = —0%,(c).

Given an object F € Coeff(%') we denote by (C"(#(s), F),Ds) the oriented

chain complex

(15) 0 — C(Fap, F) 25 2 0o (), F) 25 €O (Fg), F) — 0

of F in analogy to [39], §I1.2. Recall that CZ"(%(;), F) denotes the R-module
of i-dimensional oriented chains on % with values in F, i.e. the R-module
of finitely supported maps

such that f((F,c)) € Fp for any element (F,c) € %(; and such that
f((F,—c)) = —f((F,c)) in case i > 1. The R-linear differentials are de-
fined by

(16) (H(F', ) = > ri(f(F,c)
(ij) € Yit1)
F'CF, 05 (c)=¢

for any f € CI"(#i11), F) and (F',c) € #;) with 0 < i < d — 1. Formally,
we let 0441 = 0—1 = 0. For 0 <i < d the R-module
HZ(@,]:) = ker(ﬁi_l)/im(&»)

is called the i-th homology group of % with coefficients in F. If # carries a
simplicial action of the group J and if F is a J-equivariant coefficient system
on % with J-action (c;)jes then is a complex of smooth R-linear J-
representations via

(G- F)(F.e)=c;j-p(fGTF ).

In this situation, the homology groups of %" with coefficients in F are objects
of Rep® (J), as well.
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Definition 2.3. A coefficient system F € Coeff(#/) is called locally con-
stant if the transition maps 7"5, : Fr — Fp are bijective for all faces F’/, F’
of  with F! C F.

Recall that the open star of a face F’ of % is defined as

St(F)= |J F.
F'CF
It is a contractible open neighborhood of F’ in %#. Note also that for any

subset & of % which is a union of faces we have the restriction functor
Coeff (%) — Coeff (%) defined by sending a coefficient system F on % to

Fle = (Fr)rce, (ng)plgfgg) in Coeff(2).

Remark 2.4. A coefficient system F is locally constant if and only if for all
faces F' of % the restriction of F to St(F”) is isomorphic to a constant co-
efficient system. Indeed, if F is locally constant then (7“5,) e - Flsyry —
K7, is an isomorphism in Coeff(St(F”)). One can show that on a simply
connected polysimplicial complex any locally constant coefficient system is
isomorphic to a constant coefficient system as in Example

We view C as a finite subcomplex of 2". The following terminology was
first introduced in [33], §5.5.

Definition 2.5. A diagram of R-modules on C is a Pg—equivariant coef-
ficient system ((Dp)r, (rh) pcs, (Cg)gEPT) on C together with an R-linear
= C

action of P} on D for each face FF C C such that

(i) the (Pl:r7 N Pg)—action agrees with the action induced by (Cg)gePT APt
F C

ii) for all g € P\, and for all h € P}, we have ghg~Loc, p = c, p o h,
c F 9, 9,
(iii) for all faces F' C F the restriction map rk, is (P;L N P},)-equivariant.

In other words, a diagram is a Pg—equivariant coefficient system of R-
modules on C such that on each face F C C the action of P(Tj N P} on
Dr is extended to PIJ; in a way which is compatible with restriction and
such that for any g € Pg the maps cg p : Dp — Dyp are P}-equivariant if
the action on DyF is pulled back along conjugation with g.

A homomorphism f : D — £ of diagrams is a homomorphism of the under-
lying Pg—equivariant coefficient systems on C such that for any face F C C
the R-linear map fr : Dp — Ef is P}—equivariant. We denote by Diag(C)
the corresponding category of diagrams on C. A diagram D is called of level
zero if the action of Ir on D is trivial for any face ' C C. We denote
by Diag?(C) C Diag(C) the full subcategory of diagrams on C which are of
level zero.
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Remark 2.6. If G = GL2(K) then the notion of a diagram was originally
introduced by Paskunas (cf. [33], Definition 5.14). His definition does not
literally agree with ours. Namely, in the case of a tree the closed chamber C
is an edge with two adjacent vertices whereas Paskunas only works with an
edge and one of its vertices. Since these form a complete set of representa-
tives of the G-orbits in 2" there is indeed some redundance in Definition 2.5
However, the case of a tree is special in that the above set of representatives
also reflects all possible face relations in 2. In the general case, it is not
clear that a complete system of representatives can be chosen in such a way
that any two incident faces also have incident representatives. In any case,
the aim is to use the transitivity properties of the G-action on 2" to reduce
the information encoded in a G-equivariant coefficient systems to a finite
amount of data. Taking into account [33], Theorem 5.17, and Proposition
below, the two definitions lead to equivalent categories.

Proposition 2.7. The restriction functor

res : Coeff(2°) — Diag(C)
(Fr)rca, (Tgf)pfgfgj{v (cglgec) +— ((-FF)FQ@ (Tg')pfgfgéa (Cg)gepé)

(fr)rca +— (fr)pce

is a well-defined equivalence of categories. It restricts to an equivalence of
categories Coeff%(2") — Diag?(C).

Proof. Let F be a G-equivariant coefficient system on 2°. Endowing Fpr
with the induced R-linear action of P}T;, the family res(F) is clearly a dia-
gram on C' and res is a functor. Since it preserves objects of level zero, it
suffices to prove the first assertion.

For any face F of 2~ we fix an element gr € G.g such that gpF C C (cf.
Lemma . If F C C then we choose g = 1. Depending on these choices
we shall construct a quasi-inverse of the restriction functor as follows. We
let [F] = gpF which is independent of gr € G, by Lemma Let D be
a diagram on C with Pg—action (cq) If F is a face of 2 we define the

R-module

.
IS

If F' is a face of 2" with F' C F then grF' C grF C C whence gpF' =

[F'] = g F’ by the uniqueness assertion of Lemma In other words,

gr g;l € P[TFq NGag = P where the last equality comes from [30], Lemma

4.10. We define

— F
T?’ = gF’gFl o T%Fl]a

using the given P[]},}—action on Dip. Let us first check that the family
F = ((Fr)F, (rE) picg) lies in Coeff(27). Clearly, rk = idz, for all faces
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Fof . If F, F' and F" are faces of 2 with F” C I’ C F then gpg,' €
Prr C Ppn by and we have

F — F
rpn = gF”gFl OT%FL]

_ _ F' F
= grrgp o grgp o T{F,,}] o T{FJ]

_ F' — F
= (QF”QF/1 o T{p/;}) © (gF’gpl o r%pl])

’
= 7’{::// 9} 7'5/

[F”]

because of the (PJr NP )-equivariance of e

[F"] (F"']

In order to define the required G-action on F let g € G. Then ggpggl;1
maps [F] = grF to [gF], both of which are contained in C. By [30], Lemma
4.12 (ii) and Remark 4.14, there are elements g; € P(E and g2 € P&T] with

ggpggl;1 = g1g2. We then define ¢y r : Fr — F4r as the composition
g2 Cg1,[F]
FF =Dipp — Dy — Digr) = Fgr

using the Pg—action on D and the P} -action on Dipy. Note first that
the R-linear map ¢, r is independent of the chosen product decomposi-
tion. Indeed, if g € Pg and gb € P[J%] with g,rg9p" = 9192 = ¢} g} then

919 = 92(g5) 7" € P, Pl whence

Co[F] 092 = Cquir)©92(g5) 65
= Cg1,[F] © Cga(gh)~1[F] © 9

o /
= Cg,[F) ° Cgflg{,[F} © 92

/
= Cg[F]1° 92

as R-linear maps Djp] — D p) by the compatibility of the actions of Pg on

D and P[JIF] on Dgy. Consequently, if F' C Candifg e Pg then gp = ggr = 1
by convention and the action map ¢4 r : Fp = D — Dyp = Fyr agrees
with the original one of the diagram D. Similarly, if F C C and if g € P};
then ¢4 r is equal to the original action of g on Fr = Df as an element of

P}. Moreover, we have c; r = idf, for all faces F' of 2 .

Let us now show that the families ¢, = (¢4 r) pc 2 satisfy the cocycle relation
hycg o cp, = cgp for all h,g € G. To see this, let I be an arbitrary face of
Z . Choose elements g1,9] € Pg, g2 € P[}] and g5 € P[];L ) such that
ghthE1 = g192 and gghpgg}:; = ¢195. In particular, we have ¢;[F| = [hF]
and ¢j[hF] = [ghF] whence

9onrghgr' = gonragy e ghrhgpt = g5 - 9192 = gig1 - (97 "ghar) - g2
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where g1 and g} are contained in P(Tj and g; lgégl and go are contained in
P[}]. We use this decomposition and Definition (ii) to compute

-1
CghF = Copgu[F]° 91 929192
-1
= Cg{ [nF] © Cqy,[F] © 91 9291 © G2
Cyt [hF) © 95 © Cgy [F] © G2
= Cg,hF OCh,F-
Using the cocycle relation we can also show that ¢, = (cq,r)F : F — g« F

is a homomorphism of coefficient systems on 2". Fix faces F’ and F of 2
with £’ C F and choose g1, g} € Pl g€ P[J%] and ¢ € P[TF,} with

-1 —1
9or99r = 192 and  gor g9 = g1 g5

Since PgP} = PgPF by @ we may assume g2 € Pr, whence g2 € (P}QP},)
by . Recall that gp F' = g F' = [F'], ggrgF’ = ggrgF' = [gF"'] and that
consequently g1g2[F'] = ggrggp' [F'] = [gF']. We can therefore consider

g2 Cg1,[F]
Dipy Dipy Digry
1P i lrm irlgm
[F'] [F'] [gF']
Dipy—— = Dir——, o P

Since the two small squares are commutative by the definition of D, also the
outer square is commutative and we get

gl o = ~1s [9F] o o
Tgpr ©Cg.F = 9gF'Ygp © Tigpr) © Cg1,[F] © 92
—1 [F]
= ggF/ggFOCgh[F/] OggOT[F,]

[F]
= CoypragpilaF) © CoulE'] © Con,[FY] © T
c -1 pe) ’I“[FJ
9gr19yp9192,[F'] = T [F]

= C. -1 ’ OT[F]

91929p1 95 H[F'] 7 [FY]
Co 0 g o grgnt orl = ¢, ipnork,
g, [F'1 © Y2 9F' 9p [F1] g,[F'] © T F"-

If f : D1 — D5 is a homomorphism of diagrams and if ; and F> denote the
associated G-equivariant coefficient systems on 2" as above, then we extend
f to homomorphism f : F; — F3 in Coeffg(2") by setting fr = fip). If F’
and F are faces of 2 with F’ C F then

frrorp = fipyogrgp' o 7“[% = grgp' © fi o 7"[[?%

= gmgp' o TH;J] o fir) =i o fr
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by the properties of f : D1 — Ds because gpr g;l € P[TF,]. Moreover, if g € G
write ggpgg;1 = g1g2 with g1 € P(Tj and go € P[TF]. Since ¢1[F] = g192[F] =
ggFggIEl[F] = ggrgF = [gF] we can compute

forocgr = flgr)ocg [p) 092 = fg[F] © Cqy [F) © 92
= Cgy[F) © flr) © 92 = gy [F) © 92 © fip)
cg,F O fF

by the properties of f: D1 — Ds.

Clearly, these constructions yield a functor Diag(C) — Coeff(2") whose
composition with the restriction functor is the identity on Diag(C). Con-
versely, if 7 € Coeffg(Z) and if £ denotes the G-equivariant coefficient
system on 2" constructed from the diagram res(F), then the family ¢ =
(cgp.p)rca + Fr — Fgor = Ep of R-linear maps is an isomorphism in

Coeffg(2Z"). Indeed, each map cy, r is bijective with inverse Cort gpF by

the cocycle relation. If F” and F are faces of 2 with F’ C F then

rk o rEioc =c orlfl oc
FrotE = TR PG B = Cg, gt [P 2 T F) © CoroF

— F
Coprgpt [F1] © Cor B O TE

Cqp F' © rh = ork,

using that gp F’ = [F']. Finally, if g € G and if ggpgglg1 = g1g9o with g1 € Pg
and go € P[TF} then

ngF OLlF = Cng © CngF = Cgl,[F] © 6927[F] © CngF

Cg1929rF = Cggp.gF © Cg,F = LgF © Cg,F-

Clearly, the formation of the isomorphism ¢ is functorial in the coefficient
system F. This completes the proof of the proposition. O
2.2 Acyclic coefficient systems on the standard apartment

Let F € Coeff&(2) be of level zero. Denote its restriction maps by rE,
and its G-action by (cg)geq. Slightly generalizing [30], §3.2, we define the
coefficient system F! € Coeff(2/) by setting

t t
FL = féﬂPF — f]{f(mPF) = ]—'éc(F) € Modg for any face F C &7,

where the chamber C(F) C & is as in Lemma The restriction maps
th, . F l{ﬂ - F }Ip, are defined by setting

th/(m) = Z g-rk/(m) for all faces F' CF C o,

ge(INP},)/(INPL)

24



making use of the inclusion relation . By the same reference the sum does
not depend on the choice of the representatives g because m is (I N PT)
invariant and r£, 1w 1s equivariant for the action of I ﬁP} =INPr C (P}HP},)
This also shows t£, = — ¢ iy oth w if 7 C F C F so that we obtain the functor

(F = F1) : Coeffd (") — Coeff().

We need the following straightforward generalization of [30], Proposition
3.3. The idea of the proof goes back to Broussous (cf. [9], Proposition 11).

Proposition 2.8. Let F € Coeff&(2). Restricting I-invariant oriented
chains from 2 to o induces an isomorphism

(C"(2(0): F)' . 00) — (€I (A0, FT), 00)
of complezes of R-modules.

Proof. Let 0 < i < d. That restriction C"(2{;), F)! — C&" (), F') is a
well-defined isomorphism of R-modules is proven exactly as in [30], Proposi-
tion 3.3. In order to see that the restriction maps commute with the differ-
entials we only slightly need to adjust the notation. Letting (F”,c') € Zj;
and f € Cc"r(e%”(iﬂ),f)[ we rewrite equation (3.7) of [30] as

dia(N)F ) = > o W (cr(f(F.0)

Fed
el ge(InPL) /(InPh)

= > S (e r(f(F. )

Fegf i
; i+1 ge(INP},)/(INP})

= > > g-ri(f(F,c)

Fed,
E, i+1 ge(INP},)/(INP])

= Z th (f(F,c)) = 01 (f)(F', ),

Fedip
FICF

where ¢ always induces the orientation ¢/. Here we use that any face of 2
has a unique I-conjugate in &7 and that g(F’,¢') = (F', ) for any g € IﬂP},
(cf. [30], Lemma 3.1 and Remark 4.17.2). O

The coefficient system F! € Coeff(27) carries some additional structure
coming from the G-action on F. First of all, by Frobenius reciprocity

Fh = F0® = Homy, (XF, Fr) € Mod

is a left module over the Hecke algebra H}; introduced in Moreover,
if F" and F are faces of & with F/ C F C C(F') then C(F') = C(F)
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by the uniqueness assertion of Lemma In this case, the restriction
map t&, : .7-"}1; — .7-"{,, is obtained from rllj:, : Fr — Fp by passage to the
invariants under Io(py = Ig(pr). Since rk, is (P];f7 N P},)—equivariant it fol-
lows once more from Frobenius reciprocity that t?, is linear with respect to
Hf.0H}, = RlIcp)\(P} 0 PL) /Togr)-

Let V € Rep¥(G) and let Fyr € Coeffd(.27) denote the associated fixed
point system (cf. Example . If F’ and F are faces of .« with F/ C F and
C(F') = C(F) then the restriction map t&, of i € Coeff(</) is the identity
on (Fl)p = View = view) = (FL)pr. As was observed in [30], Theorem
3.4, this leads to the fact that the complexes C2"(2(e), Fv)! = CI" (A0, Fi,)
have trivial homology in positive degrees. This can be proven in the following
slightly more general situation.

Proposition 2.9. Let F € Coeff&(2") and assume that the restriction
maps th, : FL — ]:{;, of the coefficient system F! € Coeff(o7) are bijective
for all faces F' and F of o/ with F' C F and C(F') = C(F). Then the
following is true.

(i) The complezes CI"(2(e), F)' and CI™ (A ey, F') are acyclic in positive
degrees.

(ii) For all faces F C C and all vertices x € F the map

F
i Fh 5 FLes @ Fl =0 (240, F) = Ho(CT (2, F)')
yeZo

s an isomorphism of H}—modules which is independent of the choice of x.
(iii) If F' and F are faces of o with F' CF C C then tp = vpr o th,.

Proof. As for (i), by Proposition it suffices to prove that the complex
CI (A oy, F ) is acyclic. The proof is almost identical to that of [30], Theo-
rem 3.4. We just indicate the few formal changes that have to be made.

For any n € N denote by ¢/ (n) the subcomplex of all faces F' of &7 such that
C(F) and C have gallery distance less than or equal to n. By assumption,
GAPE IC]_-é — F!|z is an isomorphism from the constant coefficient

system IC]—'é on C = &/(0) to ]:I|6. Since C is contractible the complex
Co"(Cley, Fllg) is acyclic and the map

tg ~ 0T (Y or (Y
fi‘ — ]:xl — @ 'Fyl :Cc (C(O)vfl) — HO(CC (C(o)afqé))
yeCo

is bijective. In order to complete the proof one shows inductively that the
complexes CgT(sz(n)(.),.7-"I|M(n))/Cg7"(sz(n - 1)(.),]—"[|M(n,1)) are exact for
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any n > 1. Given a chamber D of distance n from C set oD = DU (n—1).
Again, the restriction of ! to D\ (n — 1) is isomorphic to the constant
coeflicient system with value F 1[)- Therefore, one can proceed as in the proof
of [30], Theorem 3.4.

As for (ii), let y be another vertex of </ contained in F. Since F is a
polysimplex there is a sequence of vertices x = xg, z1,...,x, = y of &/ such
that z; and x;41 lie in a common one dimensional face contained in F for
all 0 <4 < n. By induction on n and the transitivity of the restriction maps
of F! we may assume that F is one dimensional with vertices = and y. Let
meF z{ﬂ and let ¢ denote the orientation of F' inducing the trivial orientation
on x. Note that this implies 85(—0) = 1. Define the oriented 1-chain f,, on
A by

m, if (F',d)=(F,c¢),

fm(F' . )=< —m, if (F',d)=(F,—c),
0, else.

Then Jo(fin)(x) = t7 (m), do(fm)(y) = —t}(m) and do(fm)(z) = 0 for all
vertices z of &/ distinct from = and y. This shows that ¢t£'(m) — tf (m) =
90 (fm) in D,y FI. hence maps to zero in Ho(</, F!) = coker(dy). This

proves the independence of tr from the choice of x and we get (iii) as an
immediate consequence.

That ¢ is bijective was shown in the course of the proof of (i). In order to
F

see that it is H}—linear note that the map Fp —= F, —> CI( 20y, F) is

Pr-equivariant because Pp C P;L N P;f by . Passing to I-invariants we

conclude that ¢p is Hp-linear. According to Remarg it remains to show

that tp is Qp-equivariant. More generally, if w € Q and m € .7-"}[; consider
the commutative diagram

F
FL L Fle L 0on( 2, F) — Ho(COM (2, F)T)

an e l Jomr. lw

FiF fogr( Cgr(‘%f(ﬂ)w]:)l HHO(CCOT(‘%—wF)I)'

wF
L2

Since the upper horizontal composition is ¢ and since the lower one is ¢, p
we obtain ¢,r (¢, r(m)) = w-tp(m). In case w € Qp this shows the required
equivariance property of tp. ]

If p is invertible in R and if F € Coeff%(.2") then the condition imposed on
F in Proposition admits the following characterization .
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Lemma 2.10. Let F € Coeffd(2"), let F be a face of 2~ and let y € P}. If

Ty € H} denotes the characteristic function of the double coset IcmyvIc(r)
then the diagram

tg(F) Ic(r)

For) Fr
(18) Cy,C(F) im
oA —

~C(F) t}C(F) F

commutes. If p is invertible in R then F satisfies the hypotheses of Propo-
sition if and only if the coefficient system F' € Coeff() is locally
constant in the sense of Definition [2.5

Proof. Letting D = vC(F) the action of 7, on ]-"émF) is given by

7y (m) = > gym = > gym.

g€l /ey MicEv™) 9€lc(ry/Uc)NID)

By Proposition we have Igpy = Ip(I N Pp) and Ip = Ip(I N Pp) with
Ip C Ip. Thus, IC(F)QID = IF(IDOIOPF) = IF(IQID) because Ip C Pr.
On the other hand, the equality Ip = Ip(I N Pp) implies INPp C Ip NI
whence I N Ip = I N Pp. Altogether, Iy N Ip = Ip(I N Pp). There-
fore, the inclusion I N Pr C I¢(r) induces a bijection (I N Pr)/(I N Pp) =
Icory/(Icrpy N Ip). This proves the commutativity of .

Assume that F satisfies the hypotheses of Proposition [2.9] and that p is
invertible in R. In order to see that F! is locally constant let D be an
arbitrary chamber of & with F C D. By the transitivity of restriction
it suffices to see that t? is bijective. By the proof of Lemma there
are elements g,h € Ng(T') N Gag with gD = hC(F) = C. Moreover, the
uniqueness assertion in Lemma implies that v = g~ 'h € P}. Since the
maps ¢, r and tg(F) in are bijective it suffices to see that 7, induces a

bijective endomorphism of F FC<F>. However, if p is invertible in R then 7, is

a unit in H}; Indeed, pulling back along the isomorphism this follows
from the fact that 7, is a unit in H for any w € W (cf. [47], Corollary 1). O

Assume that p is invertible in R and that F € Coeff%,(.2") satisfies the
hypotheses of Proposition It follows from Remark and Lemma
that F! € Coeff(/) is isomorphic to a constant coefficient system.
The acyclicity result in Proposition (i) is then obvious because &7 is
contractible. This situation was considered by Broussous in [9], page 746.
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3 The equivalence of categories

3.1 Representations and Hecke modules of stabilizer groups

Throughout this subsection we fix an arbitrary face F' of 2" and let the
chamber C(F') be as in Lemma In the case of finite dimensional rep-
resentations over a field, the following condition was first introduced by
Cabanes (cf. [13], Definition 1).

Definition 3.1. (i) We say that an object V' € Repy (Pr) satisfies con-
dition (H) if V' = ligjE ;Vj is isomorphic to the inductive limit of objects
V; € Rep% (Pr) such that the transition maps of the inductive system are
injective and such that for each j € J there is a non-negative integer n; and
an element ¢; € Endp, (X7) with V; 2 im(p;) in Rep¥ (Pr). We denote
by Repg (Pr) the full subcategory of Rep% (Pr) consisting of all represen-
tations satisfying condition (H).

(ii) We say that an object V € RepORO(P;,) satisfies condition (H) if it is
an object of Repg (Pr) when viewed as a Pp-representation via restriction.
We denote by Rep? (P;r?) the full subcategory of Rep%"(P}) consisting of all
representations satisfying condition (H).

The notation (H) is supposed to reflect the close relation to the respective
categories of Hecke modules described below.

Remark 3.2. Apparently, the condition V; = im(p;) in Definition (i)
is equivalent to V; being both a quotient and a submodule of a finite direct
sum of copies of Xg. It follows that the action of Ir is trivial on any
smooth representation satisfying condition (H). If a representation satisfies
condition (H) and if its underlying R-module is noetherian then there is
an isomorphism of Pp-representations V 2 im(p) for some non-negative
integer n and some element ¢ € Endp, (X%). The categories Repf (Pr) and
Rep#! (P};) are closed under arbitrary direct sums and inductive limits with
injective transition maps.

Condition (H) is preserved under induction in the following sense.
. H . Pl H/pt
Lemma 3.3. (i) If V € Repp (Pr) then indp/ (V) € Repg (Pr).

(ii) Let F' be a face of 2 with F' C F and C(F') = C(F). IfV €
Repfl (Pr) then ind, (V) € Repfl (Ppr).

Proof. As for (i), note that compact induction preserves inductive limits
with injective transition maps. Thus, we may assume V = im(p) for some

T T
¢ € Endp.(X}). Setting ¥ = indy (p) this yields indF (V) = im()

:
where 1) is an endomorphism of the P}—representation indg (Xp) = (X}L,)”
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As a Pp-representation (X})" = @jcgXr is a direct sum of copies of Xp
(cf. Proposition (i)). If J* C J is finite then there is J” C J finite
with (®,cy XF) C ®;c v XF because the Pp-representation X is finitely
generated. Thus, ¢¥(®jc Xr) and im(¢)) satisfy condition (H). Part (ii)

follows from indg: "(XF) = X and the exactness of compact induction. [J

We say that a representation V' € Rep® (Pr) (resp. V € RepoRo(P})) is
generated by its I¢(p-invariants if

R[Pr] View — v (resp. R[P;H view) = V).

Clearly, Xp and X;[, have this property. Like condition (H) it is insensitive
to restriction.

Lemma 3.4. If V € Rep¥(PL) then R[P}]- Vet = R[Pp] - View .

Proof. By conjugation and transport of structure we may assume F C C.
But then P}/PF >~ Qp and wlw™! = T for any element w € Ng(T) N P};
whose image in W lies in Qp. Since any such element stabilizes V!, the
claim follows. O

We now clarify the relation between condition (H) and the condition (A+A*)
of [13], Proposition 8. In the case of a finitely generated R-module the
latter means that V and its R-linear contragredient V* are both generated
by their I¢(p)-invariants. Recall that a ring is called quasi-Frobenius if it is
noetherian and selfinjective (cf. [23], §15).

Lemma 3.5. Let V' be a smooth R-linear representation of Pr or of P}.
(i) If V satisfies condition (H) then it is generated by its Io(p)-invariants.

(i) Assume that R is a quasi-Frobenius ring and that the underlying R-
module of V' is finitely generated. Then V satisfies condition (H) if and
only if V' and its contragredient V* = Hompg(V, R) are generated by their
Ic(py-invariants.

(iii) Assume that R is a quasi-Frobenius ring and that the order of the finite
group Pp/Ip is invertible in R. If V is generated by its I (py-invariants and
if the underlying R-module of V' is finitely generated projective then also V*
is generated by its Io(py-invariants. In particular, V satisfies condition (H).

Proof. In part (i) we may assume V' = im(y) for some ¢ € Endp, (X}). But
then V' is a quotient of X hence is generated by its I¢(p)-invariants.

As for (ii) we can write V = im(y) as above. Dualizing the embedding
V = im(p) — X} yields a surjection (X7)" — V* because R is self-
injective. Note that Xp = X} in Rep® (Pr). Indeed, for p € Pp let
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1y € X} denote the element determined by v, (f) = f(p). Then the map
(f — ZPEPF/IC(F) f(p)p) : Xp — X} is an isomorphism in Rep® (Pr).
Consequently, also V* is generated by its I (p)-invariants.

Conversely, assume that V' and V* are generated by their /¢ (p)-invariants.
Since V is finitely generated and R is noetherian also V€ is a finitely
generated R-module. Choose a non-negative integer n and an R-linear sur-

jection R" — Ve of trivial Io(p)-representations. Applying ind;” = and

composing with the natural map indf (f(p) (VIetn) - V we obtain a homo-
morphism X7 — V in Rep% (Pr) which is surjective because V' is generated
by its Ig(p)-invariants. In a similar manner, one constructs a surjection
X7 — V*. Passing to the R-linear dual, we obtain an injective homo-
morphism V' = (V*)* — X' because over a selfinjective ring any finitely
generated module is reflexive (cf. [23], Theorem 15.11). Thus, V satisfies

condition (H).

As for (iii), we construct a surjection X7 — V in Rep® (Pr) as above.
Passing to the R-linear dual, there is an injection V* — (X})" =2 X} in
Rep% (Pr). It admits an R-linear section because over a quasi-Frobenius
ring the classes of projective and injective modules coincide (cf. [23], The-
orem 15.9). By our assumption, the embedding V* — X} even admits a
Pr/Ip-linear section by the usual averaging construction. Consequently, V*
is generated by its I (p)-invariants and satisfies (H) by (ii). O

Over fields, the following fundamental results are due to Sawada, Tinberg,
Schneider and Ollivier, respectively (cf. [35], Theorem 2.4, [44], Proposition
3.7 and [30], Proposition 5.5). However, the proofs work more generally.

Proposition 3.6. (i) The ring homomorphism R — Hp is an idg-Frobe-
nius extension. In particular, the rings R and Hp have the same injective
dimension. If R is a quasi-Frobenius ring then so is Hp.

(ii) Assume that G is semisimple. Then the ring homomorphism R — ij
is an idg-Frobenius extension. In particular, the rings R and H} have the

same injective dimension and if R is a quasi-Frobenius ring then so is H}

Proof. Using the isomorphisms we may assume F C C. As for (i), the
group Pp is compact and the R-module Hp is finitely generated and free of
rank |Wpg|. In particular, if R is noetherian then so is Hp.

By [30], Example 5.1, the ring homomorphism R — R[Ty/T}] is an idg-
Frobenius extension. Choose an element wy € Wy which is of maximal
length and consider the R-linear ring automorphism « of R[Ty/T1] given by
§ = wolwy ! By the transitivity of Frobenius extensions it suffices to see
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that the canonical injection R[Ty/T1] — Hp is an a-Frobenius extension.
We fix representatives & € W of the elements v € Wr = Wg/(Tp/T1). The
R[T,/T:]-algebra Hr admits the two bases (75)vew, and (Ty-14, Jwew,. We
define the map 0 : Hrp — R[Ty/T1] by

9( Z awrw): Z CngOTg.

weEWp EeTo/Th

It suffices to see that the matrix (0(757g-14,))v,wew, over R[1p/T1] is in-
vertible (cf. [30], Lemma 5.2 and Lemma 5.3). This is done as in [30],
Proposition 5.4 (i), relying on the relation and of H which hold
over any coefficient ring R (cf. [47], Theorem 1). Alternatively, it suffices to
see that the above matrix is invertible after reduction modulo every maxi-
mal ideal of the commutative ring R. However, this leads to the case of a
field which is treated in [44], Proposition 3.7. If G is semisimple then also
P} is compact. The arguments for H} are then similar on replacing Wg by

the finite group W} O

Remark 3.7. If G is not semisimple then H} is not selfinjective unless
R = 0. In fact, as in [30], Proposition 5.5, its selfinjective dimension is equal
to the rank of the center C of G for any non-zero quasi-Frobenius ring R.

The following theorem is essentially due to Cabanes (cf. [I3], Theorem 2).
We follow his arguments over arbitrary quasi-Frobenius rings and also treat
representations whose underlying R-modules are not finitely generated.

Theorem 3.8. Assume that R is a quasi-Frobenius ring. The functor of
Ic(p)-invariants restricts to an equivalence Repg(Pp) — Modpy,. of addi-
tive categories.

Proof. As before, we may assume F C C. Denote by Repg (Pp)fe the
full subcategory of Rep# (Pr) consisting of all objects whose underlying
R-modules are finitely generated. Moreover, denote by ModigIF the category
of finitely generated Hp-modules. In a first step we show that the functor
(-)! induces an equivalence of categories Rep (Pr)® — Modl;i. Note that
an Hp-module is finitely generated if and only if its underlying R-module is
finitely generated because Hp is finitely generated over R.

To prove the essential surjectivity, let M be a finitely generated Hp-module.
Since Hp is quasi-Frobenius (cf. Proposition (i)) there is a non-negative
integer n and an Hp-linear embedding M — H}: (cf. [23], Theorem 15.11).
Since H% = (X7)! we may set V = R[Pg|- M viewed as a subrepresentation
of X We claim that V! = M where M C V7 is true by definition.

Since VI C HY, the Hp-module V1 /M is finitely generated. As above, there
is a non-negative integer m and an Hp-linear embedding g : V! /M — HE.
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The Hp-linear map V! — VI/M EN H}? extends to an Hp-linear map
g : HY — H™ by the selfinjectivity of Hp. Note that the functor (-)7
induces an isomorphism Homp, (X%, X}?) — Hompy,(H}, Hf). Conse-
quently, there is an element f € Homp, (X%, X™) such that g = f is the re-
striction of f to the I-invariants of X}. By construction, f(M) = g(M) =0
whence f(V') = 0 because f is Pp-equivariant and M generates V. This im-
plies g(VI/M) = g(V1) = f(VI) = 0 whence V!/M = 0 by the injectivity
of g. Therefore, VI = M as claimed.

By construction, V' is a subobject of X7. Since VI = M is a finitely gen-
erated Hp-module it is also finitely generated over R. As in the proof of
Lemma (ii) we see that V is also a quotient of X}. for n sufficiently
large. Consequently, V satisfies condition (H) and its underlying R-module
is finitely generated.

Now let V and W be arbitrary objects of RepH (Pr)®. Since V is gen-
erated by its [-invariants (cf. Lemma (i)) any non-zero element f €
Hom p, (V, W) restricts to a non-zero element f! € Homy, (VI, WT), i.e. the
functor (-)! : Rep? (Pr)f — ModEF is faithful.

In order to see that it is full, let g € Homp, (V! W). We may assume V =
im(p) and W = im(v) for some non-negative integer n and elements ¢,y €
Endp,(X}%). In particular, this realizes V,W as Pp-subrepresentations of
X% and VI, W as Hp-submodules of H7.. By the selfinjectivity of Hp, the
Hp-linear map VI — W/! — H7F extends to an Hp-linear endomorphism of
H}. As above, the latter is the restriction of an element f € Endp, (X}) to
the space of I-invariants. Since V' and W are generated by their I-invariants
(cf. Lemma (i)) we have

f(V) = [f(R[PF]- V") = R[PF]- f(V!) = R[Pp]- g(V)
C R[Pp]-WI=W,

i.e. f restricts to an element of Homp, (V, W) with f I' = ¢. This establishes
the equivalence of categories (-)! : Repk (P)fs — Modl;gIF.

Before going on, note that the image of the homomorphism f constructed
above is equal to the Pp-subrepresentation of X7 generated by f (vl =
g(V1). By the first part of our proof this is a representation satisfying con-
dition (H) with im(f)! = g(V!). Now if g happens to be injective then
f:V — im(f) is a homomorphism in RepZ (Pr)® such that the induced
homomorphism on I-invariants g : V! — im(f)! = g(V'!) is an isomorphism.
Therefore, f : V' — im(f) is an isomorphism itself because of our equiva-
lence of categories. Thus, f: V — W is injective, too.
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Let us now treat the general case. Given V,W € Repg (Pp) write V' =
hgjeJ Vjand W = hﬂj’e‘]’ W as in Definition 3.1{ (i). Since the underlying
R-modules of V; and VjI are finitely generated and since the transition maps
in the inductive systems (W;/);» and (WJI, );j» are injective the natural maps

Homp, (lim V;, lim Wj)  —  lim lim Homp, (Vj, Wj) and

jeJ  jleJ’ JeJj'ed’
Homp, (lim V/', lim W) — lim lim Homp,(V},W})
jed j'eJ’ JeJ j'eJ’

are bijective. Since the natural maps hﬂjeg} VjI — VI and ligj,6 J WjI, —
W1 are isomorphisms of Hp-modules, the functor (-)! is fully faithful in

general.

Finally, let M € Mody, and write M = ligje ;M as the filtered union of
a familiy of finitely generated Hp-modules M;. By what we have already
proven there are objects V; € Repg(PF)fg with VjI = Mj for all j € J. For
j < j' the map Homp, (V},V;) — Homp, (M;, Mj) is bijective and we let
;i Vj — Vi denote the homomorphism corresponding to the inclusion
M; — Mj. As was noted above, the map ¢,; is automatically injective.
Moreover, the bijectivity implies that the family (V}, ¢;;/);<; is an inductive
system. Setting V = liﬂje‘]V} € Repk (Pr) we have VI = MjeJ V;.I —

hﬂjeJ M;=M.
The essential surjectivity in Theorem |3.8 was proved by an inductive limit
procedure. This can be avoided through the following construction.

Proposition 3.9. Assume that R is a quasi-Frobenius ring. If M € Modg,,
and if E is an injective Hp-module containing M then the Pp-subrepresen-
tation V = im(Xr @u, M — Xr ®u, E) of Xp ®u, E generated by the
image of the natural map M — E — Xp®py, E satisfies condition (H) and
view = M.

Proof. Note first that F is a projective Hp-module because Hr is a quasi-
Frobenius ring (cf. Lemma [3.6|and [23], Theorem 15.9). Therefore, the map
E — X ®p, E is injective and (Xr ®@p, E)IC(F) = X;C(F) ®ap, E=E.

Let E' be a free Hp-module containing E as a direct summand and let M be
a finitely generated Hp-submodule of M. Then Mj is contained in a finitely
generated free direct summand H}: of E' and the Pp-subrepresentation V; =
R[Pr]-M; of V is contained in Xp®p, H: = X}:. By the proof of Theorem

. . " . I
the Pp-representation V; satisfies condition (H) with V; ‘O =M. O

The previous construction allows us to prove an analog of Theorem for
the pair (P};, H}) Note that the strategy of Cabanes does not apply directly
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if G is not semisimple (cf. Remark [3.7]). Instead, one has to reduce to the
situation in Theorem [3.8

Theorem 3.10. Assume that R is a quasi-Frobenius ring.

(i) If M € Mod ;+ and if E is an injective H}—module containing M then
F
the P}—subr@pr@sentation V= im(X}L ®H; M — X} ®H} E) of X} ®H; E
generated by the image of the natural map M — E — X}; @y E satisfies
F
condition (H) and Vet = M.

(ii) The functor (:)'¢(F) restricts to an equivalence Repg(P}) — ModH;
of additive categories.

Proof. As for part (i), note that E is an injective Hp-module by restric-
tion of scalars because H} is free over Hp (cf. Proposition (i) and [23],
Corollary 3.6A). Moreover, for any H}—module N there is a natural Pp-
equivariant bijection X}; ® Hi, N = Xr ®pu, N because of Proposition
(i). The statements in (i) therefore follow from Proposition

In (ii) it remains to see that the functor is fully faithful. That it is faithful is
again a consequence of Lemma (i). We assume once more that F C C.
Let VW € Repg(P};) and let g : VI — W/ be H}—linear. By Theorem
there is an R-linear Pp-equivariant map f : V — W with f/ = g. We claim
that it is P;L—equivariant. Let ve V and g € P;L. Since R[Pr|- VI =V we
may assume v = hw with h € Pp and w € V!. By @ there are elements
q € Prand w € Ng(T) ﬂP}; such that gh = qw and such that the image of w
in W lies in Qp. Note that this gives ww = 7,w by Remark [1.6] Therefore,
we obtain f(gv) = f(ghw) = f(quww) = qf(row) = q9(Tww) = qTug(w) =
qf(w) = ghf(w) = gf(hw) = gf(v). O

Although the categories Modp, and Mod i are abelian, the categories
F

Rep (Pr) and Rep# (PIJ;) are generally not. This has to do with the fail-
ure of the exactness of the functor (-)/¢(®. However, some of the abelian
structure of the module categories is visible in the respective categories of
representations.

Corollary 3.11. Assume that R is a quasi-Frobenius ring. Let P € { Pp, P}}
and write S = Hp if P = Pp and S = H} if P = PIJ;. Moreover, let
V,W € RepZ% (P) and f € Homp(V,W).

(i) Assume that 'V satisfies condition (H). If M is an S-submodule of Vo)
then the P-subrepresentation of V' generated by M satisfies condition (H)
and has Ic(p)-invariants M. In particular, any subrepresentation of V' which
is generated by its Io(py-invariants also satisfies condition (H).
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(i) If V and W satisfy condition (H) then so does im(f).

(i1i) Assume that V' and W satisfy condition (H). Then f is injective if and
only if flew . view) — wilcw s injective.

(iv) Assume that V' and W satisfy condition (H). Then f is surjective if
and only if flew . View — Wicw) js surjective.

Proof. As for (i), the arguments in Lemma allow us to assume P = Pp
and S = Hp. Choose an Hp-linear embedding V! < E where E is an
injective Hp-module. Then V is isomorphic to the Pr-subrepresentation of
Xr ®u, E generated by V1 (cf. Theorem and Proposition . Under
this isomorphism the subrepresentation of V' generated by M is isomorphic
to the subrepresentation of Xr ®p, E generated by M. By Proposition
this satisfies condition (H) and has I-invariants M.

Part (ii) follows from (i) and Lemma (i). Note that im(f) is a quotient
of V and hence is generated by its I (p)-invariants.

As for (iii), the injectivity of f clearly implies the injectivity of its restriction
flew) | Conversely, assume that f/¢() is injective. In order to see that f is
injective we may replace V' and W by suitable Pr-subrepresentations whose
underlying R-modules are finitely generated. This case was treated in the

proof of Theorem

As for (iv), if flet) is surjective then so is f because of Lemma (1).
Conversely, if f is surjective then f(VIc() is an S-submodule of Wicw
with R[P] - f(VIiewm) = f(R[P] - View) = f(V) = W by Lemma 3.5 (i)
once more. Thus, f(VIiew) = Wlew by (i). O

The construction of a quasi-inverse of the equivalences in Theorem and
Theorem (ii) relies on choices as in Proposition and Theorem
(i). However, there is an alternative construction of a quasi-inverse which is
closer to our intuitive idea of a functor. This approach is inspired by [31],
81.2. We continue to let P € {PF,P;,}. If P = Pr we set S = Hp and
Y=Xp. If P= P}; we set S = H} and Y = X}. Note that if M € Modg
then Y ®g M and Homg(Homg(Y, S), M) are naturally objects of Rep% (P).
For the second case note that the action of the open subgroup I is trivial.
Further, there is a unique homomorphism

v, p Y ®s M — Homg(Homg (Y, S), M),

of smooth R-linear P-representations sending x ® m to the S-linear map
(¢ = ¢(x) -m) : Homg(Y,S) — M. Note that if we view the unit element
1 € S as an element of Y via S = Y/¢(" then the map M — im(rpsp) e
given by m — 7y, (1 ® m) is a homomorphism of S-modules.
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Theorem 3.12. Assume that R is a quasi-Frobenius ring. The assignment
tp = (M — im(7ar,r)) is functorial in M and quasi-inverse to the equiva-
lences of Theorem|[3.8 and Theorem (i), respectively.

Proof. Clearly, the formation of tp(M) is functorial in M. Let us first
treat the case P = Pp. Since the functor Homg(Homg(Y, S), ) preserves
injections, so does ty. Moreover, the S-module Homg (Y, S) is finitely gen-
erated because its underlying R-module is contained in Hompg(Y,S) which
is finitely generated and free. Therefore, the functor Homg(Homg(Y, S), )
commutes with filtered unions and so does tp. As a consequence, it suf-
fices to show that if M € Modgg then tp(M) satisfies condition (H) and
tp Modfg — Repk (P)® is quasi-inverse to (-)¢t". Here ()% refers to the
notation introduced in the proof of Theorem [3.8

If M is a finitely generated S-module then there is an embedding M — S™
into a finitely generated free S-module (cf. Proposition (i) and [23],
Theorem 15.11). Consider the commutative diagram

Y @ M —" - Homg(Homg(Y, S), M)
Y ®g8" —" . Homg(Homg(Y, S), S™).

We claim that the map 7g» r is bijective. To see this we may assume n =1
in which case 75 can be identified with the duality map of the S-module
Y. The latter is bijective because over a quasi-Frobenius ring every finitely
generated module is reflexive (cf. [23], Theorem 15.11). As a consequence,
tr(M) = im(Y ®s M — Y ®g S™). It follows from Proposition that
tp(M) satisfies (H) and that the natural map M — tp(M)%() constructed
above is bijective.

Conversely, if V € RepH (P)f8 then there is an embedding Vet < §™ of
S-modules and the proof of Theorem [3.8] shows that inside Y =Y ®g S™
we have V = R[P] - VIicr) = im(Y @g Ve 5 Y @g87) = tp(View),

Now we treat the case P = P}. By Proposition (i) there is a natural
isomorphism X;r, @yt (1) & XF @pp (1), Together with [6], 1.2.9 Propo-
F

sition 10, this also gives Hom (X},H}) = Hompy, (Xr, Hr) @, H} as
F

left Hp-modules because X is finitely generated over Hr and H} is free
over Hp (cf. Proposition (i)). We thus obtain a natural isomorphism
HomH} (HomH}(X},H}), - ) =2 Hompy, (Hompy,(Xr, Hp), - ). Altogether,
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up to isomorphism the diagram

t
RepH (P}.) —— Mod at

res l l res

Rep! (Pr) =~ Mody,

commutes if the vertical arrows denote restriction of scalars. Therefore, the
case P = P} follows from the case P = Pr already treated. O

We continue to let P € {Pp, P}} If R — R’ is a homomorphism of com-
mutative rings then we have the functor

R @g () : Rep% (P) — Repy (P).
Under suitable flatness assumptions it preserves condition (H).

Lemma 3.13. (i) If the ring homomorphism R — R’ is flat then the func-
tor R' ®g () preserves condition (H).

(ii) Assume that R is a quasi-Frobenius ring. If V € Rep (P) and if the
underlying R-module of V' is finitely generated and projective then R’ @grV €
Rep%, (P).

Proof. As for (i), consider the isomorphism R'® Rindf gm (R) = indfg - (R)
in Rep% (Pr) and note that the functor R'®@p(+) commutes with direct sums,
images and filtered unions because R — R’ is flat.

As for (ii), write V' = im(p) with ¢ € Endp, (X}) for some non-negative
integer n. The underlying R-module of V is injective because the ring R
is selfinjective (cf. [23], Theorem 15.1). Therefore, the injection V' & Xp
admits an R-linear section. This implies that R'@rV = im(R' @ pr ) satisfies
condition (H). O

Finally, let F’ be a face of 2 with F/ C F. Recall from (3) that we have
I C Ip C Pp C Ppr in which Ig is a normal subgroup of Pr. Consequently,
we have the functors

Mp

MFE
Rep% (Pgr) ()—> Rep% (Pr) and Repj’%o(P},) L Rep%o(P}T;)

of Ip-invariants. The non-trivial case of the following result is again due to
Cabanes who works over a field of characteristic p (cf. [13], Theorem 10).
We will sketch his proof in order to convince the reader that it works for
more general coefficients.
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Proposition 3.14. Assume that R is a quasi-Frobenius ring. If F' and F
are faces of X with F' C F C C then the functors (-)'¥ : Rep® (Pp) —
Rep¥ (Pr) and (-)IF : Rep%o(P;r,,) — Rep%o(P}) preserve condition (H).

Proof. By definition it suffices to treat the pair (Pg/, Pr). Since the functor
(\)IF preserves filtered unions we only need to treat representations whose
underlying R-modules are finitely generated. By Proposition (iii) we
have the isomorphism X{,ﬁ = Xr ®Qu, Hp of smooth Pp-representations
and right Hp/-modules. Since Hpr is free over Hp (cf. Proposition [1.5 (iii)),
it follows that X 1{5 satisfies condition (H). Given V' € Rep¥ (Pp/) which is
finitely generated over R we can embed V into X7, for some non-negative
integer n and obtain a Pp-equivariant embedding V/F < (X fﬁ )™. By Corol-
lary (i) it remains to see that R[Pg]- VI = VIF,

Note that R is artinian (cf. [23], Theorem 15.1) hence is a direct product of
local artinian rings. In any of the factors p is either invertible or nilpotent.
Thus, we may write R = Rj X Rp such that p is invertible in R; and nilpotent
in Ryo. For any R-module M this induces a decomposition M = M; x M>
such that the action of R on M; factors through R;. Since R; and Ry are
both quasi-Frobenius (cf. [23], Corollary 3.11 B) we may assume that p is
invertible or nilpotent in R.

If p is invertible in R then the functor (-)/% : Rep$ (Pp/) — Rep% (Pr) is ex-
act by the usual averaging argument. Note that I is a pro-p group. Choose
a Pps-equivariant surjection X%, — V. It gives rise to the Pr-equivariant
surjection (X{ﬁ)” — VIF in which (Xl{ﬁ)” = X% ®p, Hp is generated by
its I-invariants over Pp. Therefore, so is V.

If p is nilpotent in R we mimick the proof of [13], Theorem 10. All repre-
sentations we consider are representations of the finite split reductive group
H = Ppi/Ip = [prk/R“(GF/k)](k) Note that I'/Ips is a Borel subgroup
of H with unipotent radical U = I/If». We denote by U the unipotent
radical of the Borel subgroup opposite to I’/Ir/. Denoting by J and J the
augmentation ideals of the group rings R[U] and R[U], respectively, we will
first show that

v=vlelJ vl
Note that VY 4+J-VY = R[U]-VY. Thus, in order to prove V = VUV 4+J.VV
it suffices to see that R[U]-VV is H-stable because V = R[H]-VY by Lemma
(i). This is done as in [I3], Lemma 7, which relies only on the structure
theory of the group H and works over any coefficient ring. As a consequence,
we have

JVv=J.-vV+T.vH=T7.vY

In order to prove VU nJ - VYU = 0 note that also the H-representation
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V* is generated by its U-invariants (cf. Lemma (ii)) and hence that
V* = R[U] - (V*)V as for V. Since U and U are conjugate in H we obtain

V* = R[U] - (V*)V. For any R-submodule M of V* we set
M+ ={veV|sw)=0foral§c M}

and claim that 0 = (R[U] - (V¥)V)L = Nuep - J - VY. The left equality
comes from V* = R[U] - (V*)V and the fact that any finitely generated R-
module is reflexive (cf. [23], Theorem 15.11). That the right hand side is

contained in the intermediate term is a straightforward computation using
that J = > _ z(1-w)R. Now v € VVNJ-VV implies v € (), u-J- VY =0.

By abuse of notation we write Pr = Pp/Ip C H which is a parabolic
subgroup of H with unipotent radical Up = Ip/Ip. We let Pp denote the
parabolic subgroup of H opposite to Pr, Lr = PrN P their Levi subgroup
and Up the unipotent radical of Pr. Further, we set Ury = UN Lp,
Uwry = UN Lp and denote by Jp, Jp, Jr) and J(p) the augmentation
ideals of the group rings R[Ur], R[UF|, R[U)] and R[U )], respectively.
Since Urp C U and since Uy is normalized by U (F) C Pr we have

R[U@p)) VYV Cvlr.

Moreover, the decomposition U = U -U( ) implies

V = R[U|-VY=R[Up] RUF)] VY
= R[Uw)]- VY +Jp RUp)] VY
C R[U(F)] VY 4 Jp-vUr
whence V = R[U(F)] Vs —i—jp - VUF_ Note that U(F) C Lp =PFPr QPF
normalizes both Up and Up so that VUF N Jp - VUF jst U(F)—stable. Since
VN Jp - VIR cyUrtlong. v=vVnJg. vV =0

we get VUF N Jp - VUF =0 from the fact that U(r) is a p-group and since p
is nilpotent in R (cf. Lemma . Now if v € VUF C V then we can write
v=1"+v" with v/ € R[U(p)]- VY CVUF and v" € Jp-VUF, as seen above.
But then v” € VUr N Jp - VU =0 and v = v’ € R[U(p)] - VY. This shows
VUF = R[U(F)] VY. O

3.2 Coefficient systems and pro-p Iwahori-Hecke modules

If 7 € Coeffg(Z") then the oriented chain complex C"(Z(,), F) is a com-
plex of smooth R-linear G-representations and the corresponding complex
Co™(Z (o), F)! of I-invariants is a complex of H-modules. Let

M(F) = Ho(C (2{a), F)')
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denote its homology in degree zero so that we obtain the functor
(19) M(:) : Coeff(Z") — Mody.

The purpose of this subsection is to show that if the ring R is quasi-Frobenius
then the functor M(-) yields an equivalence of additive categories when
restricted to a suitable full subcategory of Coeffg(Z2").

Definition 3.15. Let C denote the full subcategory of Coeff(2") consisting
of all objects F satisfying the following conditions:

(i) For any face F' of 2" the smooth R-linear P}—representation Fr satisfies
condition (H) (cf. Definition [3.1] (ii)).

(ii) For any two faces F' and F of & such that F' C F and C(F') = C(F)
the restriction map t£, of F! € Coeff(</) is bijective (cf. §2.2)).

Note that by Definition (i) and Remark[3.2]any coefficient system F € C
is automatically of level zero, i.e. C is a full subcategory of Coeff&,(.27). Fur-
ther, recall that if C(F) = C(F’) then tf, : ]-";Cw) — }"Iff(F) is obtained

from the restriction map r?, of the coefficient system F by passage to the
invariants under Io(p) (cf. §2.2).

As suggested by Theorem the transitivity properties of the G-action on
Z imply that it suffices to check the conditions of Definition [3.15] on the
closed chamber C.

Lemma 3.16. For an object F € Coeff;(2") the following are equivalent.
(i) F is an object of the category C.

(ii) For all faces F' and F of 2 with F' C F C C we have Fr € Repg(P;L)
and the transition map tk, : .7-"{; — ]-"ﬁ, is bijective.

Proof. Clearly, (i) implies (ii). Conversely, assume that F satisfies the con-
ditions in (ii). An arbitrary face of 2" is of the form gdF for some face
FCC,de Dp and g € I (cf. the proof of Lemma . Using the isomor-
phisms and the isomorphism cyq r : Fp — Fyqr it is straightforward
to see that Fp € Repg(P}) implies Fyqr € Repg(PgTdF).

If F/ and F are faces of & with F/ C F and C(F') = C(F) then there
is an element w € Wyg with wC = C(F) (cf. [7], V.3.2, Théoreéme 1). In
the notation of Lemma we have [F'] = w™'F', [F] = w™!'F and may
consider the diagram

C
T w,[F] lo(r)
‘F[F] —Fp

[F]
ten l ltﬁ,

I,
I o)
TP ot T F
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with bijective horizontal arrows. Note that since C'(F) = C(F”") the verti-
cal maps are obtained from the restriction maps r[g% and 7'1};, by passage
to the invariants under I and Ig(p), respectively. Therefore, the diagram
commutes. It follows that together with t?,] also tg, is bijective. O
Remark 3.17. Assume that G = GL2(K) and that R is a field of character-
istic p. It follows from Lemma[3.16|that under the equivalence Coeff(27) =
Diag(C) of Theorem the category C corresponds to the full subcategory
of basic 0-diagrams (D1, Dy, r) considered in [§], §9, for which Dy satis-
fies condition (H) as a representation of 8y = P,. Note that this implies
R[P,,] - m(D1) = Dy by Lemma (i). The latter condition, as well as the
condition in Definition (ii) is also satisfied by the coefficient systems
corresponding to the canonical diagrams of Hu (cf. [18]).

For trivial reasons, the fixed point system JFy associated to a representation
V € Rep® (G) (cf. Example always satisfies condition (ii) of Definition
However, it does not always satisfy condition (i) even if R[G]-V! = V.
If R is an algebraically closed field of characteristic p, for example, and if
G = GL2(Qp) then there is an irreducible G-representation V' for which the
P,,-representation V’=0 is not generated by its I-invariants (cf. [30], Remark
3.2.3). By Lemma (i) V1=0 does not satisfy condition (H). On the other
hand, if V = X then Fx € C as follows from Proposition (ii), Proposi-

tion (ii) and Lemma (1).

Still, there is a rather strong connection between the objects of C and suitable
fixed point systems. In order to explain this, assume that R is a quasi-
Frobenius ring and let F € Coeff(2"). Once the P,-representation F,
satisfies condition (H) for all vertices x € Zp, we have F € C if and only
if locally around x the system F is isomorphic to a fixed point sheaf in the
sense of Ronan-Smith (cf. [34], page 322). More precisely, recall that the
star St(x) of z is the union of all faces of 2 containing x in their closure.
It is an open neighborhood of z in 2~ with a simplicial action of the group
P,. In particular, we have the category Coeffp (St(x)) of P,-equivariant
coefficient systems on St(z) at our disposal. Given a representation V, €
Rep% (Py), for example, the family Fy, = (VmIF)FgSt(a:) is naturally an object
of Coeff p, (St(z)). Note that by (3) we have Pr C P, for any face F' C St(z).

Proposition 3.18. Assume that R is a quasi-Frobenius ring. For any object
F € Coeffg(Z") the following are equivalent.

(i) F is an object of the category C.

(ii) For every vertex x € 2y there is a representation V, € RepH (P,) and
an isomorphism F|s(z) = Fy, in Coeffp, (St(z)).
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(iii) For every vertex x € C there is a representation V, € Rep¥(P,) and
an isomorphism F|sy gy = Fy, in Coeffp, (St(z)).

Proof. Assume that F € C, let x be a vertex of 2" and set D = C(z). Let
F be a face of 2 with x € F C D. Note that in this situation we have
C(F) = D by the uniqueness assertion in Lemma We claim that the
restriction map rf : Fr — F is injective with image ]—"Q{F . Since FF satisfies
condition (H), the action of Ir on Fp is trivial (cf. Remark. Since L is
Pr-equivariant, its image is contained in ]-";fF . The Pg-representation ]-";fF
satisfies condition (H) by Proposition [3.14 By Corollary [3.11] (iii) it suffices
to see that rf is bijective on Ip-invariants. Choosing g € I with gD C &/
(cf. the proof of Lemma the diagram

ID Cqg,F IgD
‘FF F, F

g
F
rfl lrgz

[D IQD
Flp —— Fyf

is commutative with bijective horizontal arrows. Note that C(gz) = gD =
C(gF) by Lemma so that the right vertical arrow is equal to the restric-
tion map tgf of the coefficient system F' on 7. Since this is bijective (cf.
Definition (ii)) so is the vertical arrow on the left.

If F' is an arbitrary face of 2 with F’ C St(z) then there are elements
h,W € Gag with W'C(F') = C = hD (cf. Lemma[l.2)). This implies hz, 'z €
C and hence hx = h'z by the uniqueness assertion in Lemma Thus,
v =h"'h' € Gag N P} = P, (cf. [30], Lemma 4.10) with z = vz € vF C
vC(F") = D = C(x). As a consequence, the uniqueness assertion of Lemma
gives C(vF') = C(vyz) = C(x) = D. The commutativity of the diagram

Cy,F!
FF/ —_— f,YF/

F’ F!
Tz J{ i?’;’

and the above arguments show that % s injective with image ]-"iF ". Setting
Vo =F; € Repg(Pz) the family (rf)FgSt(x) : Flst(z) — Fv, is an isomor-
phism in Coeffp, (St(z)).

Trivially, (ii) implies (iii). Thus, it remains to show that any coefficient
system F € Coeff satisfying (iii) is an object of the category C. If F’ and
F are faces of 2~ with I C F C C choose an arbitrary vertex € F'. By
assumption, Fp = ]-"I/f satisfies condition (H) as a representation of Pg (cf.
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Proposition D and hence of P};. Moreover, the transition map t?, may
be identified with the identity map on V,!, hence is bijective. It follows from
Lemma that F € C. O

Remark 3.19. Let F € Coeff(2"). We point out that the Ronan-Smith
sheaves F |St(x) >~ Fy, with € C do not necessarily determine F as an
object of Coeff(2"). In fact, they only capture the actions of the parahoric
subgroups Pr with F C C. However, in order to spread out a coefficient
system on C to all of 2" in a G-equivariant way, one needs compatible
actions of the stabilizer groups P;-, (cf. Definition and Theorem .

Theorem 3.20. If R is a quasi-Frobenius ring then the functor M(-) : C —
Modys is an equivalence of additive categories.

Proof. Recall that we set X = ind¥(R) € Rep®(G) and denote by Fy =
(XIF)p € Coeff(27) the corresponding fixed point system (cf. Example
. Since the G-representation X carries a commuting right H-module
structure Fx is a G-equivariant coefficient system of right H-modules. Given
M € Mody we set Fx @y M = (X'F @y M) and obtain the functor

(M — Fx @g M) : Modyg — Coeffg(2").

In order to prove the essential surjectivity we choose an embedding M — E
of M into an injective H-module E and set

F(M) =im(Fx ®g M — Fx @ E) € Coeff¢(Z).

Let us first show that (M) € C by checking the conditions in Lemma

3.16| (ii). If F' is a face of 2 with F' C C then there is an isomorphism

XIFr @y M~ X} @yt M in Rep%o(P}) (cf. Proposition (ii)). Since H
F

is free over H} (cf. Proposition (ii)) E is an injective H}—module via
restriction of scalars (cf. [23], Corollary 3.6A). Therefore,

F(M)p = im(X], @yt M — X}, @yt E)

is an object of Rep# (PIE) and the natural map M — F(M)L is an isomor-
phism of H}-modules (cf. Theorem [3.10| (i)). If F/ C F with C(F') = C(F)
then the commutativity of the diagram

o)

M F(M)E
id]wl \Lti/
M — F(M),
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implies that tf, is bijective. Thus, F(M) € C as claimed. Further, by
Proposition [2.9| we have the commutative diagram

M F(M)L, ——— M(F(M))

idMl J{t% lidM(F(M))

M F(M)L M(F(M))

=~ F LR

in which all arrows are bijective and the lower horizontal arrows are H}—
linear. It follows that the upper horizontal map M — M (F(M)) is bijective
and H}—linear for all faces FF C C. Since the subalgebras H;L of H with
F C C generate H (cf. Lemma the map M — M (F(M)) is an isomor-
phism of H-modules. This proves the essential surjectivity of M(-).

To prove that M(-) is fully faithful let F,G € C and f € Hom¢(F,G) =
Homcoefry, (27)(F,G). If Fis a face of 2 with F C C we have the commu-
tative diagram

F £ M(F)

4| s

Gr M(G)

LF

of H}—modules in which the horizontal arrows are bijective (cf. Proposition
m (ii)). Thus, M(f) = 0 implies fL = 0. Since both P}—representations
Fr and Gp satisfy condition (H) we have fr = 0 by Proposition (i) and
then f = 0 by Theorem

If g € Hompy(M(F),M(G)) and if F C C we define gr = (' 0 goip €
HomH} (FL,GL). By Theorem [3.10|(ii) there is a homomorphism fr : Fp —

G of P}—representations such that fl{ﬂ = gr. Let F' be a face of 2" with
F’ C F and denote by rll::, : Frp — Fprand sf;, : Gr — Gp the corresponding
restriction maps of F and G, respectively. We claim that fpz or?, = 3?, ofp.
By and Remark the maps rg, and sg, take values in FX and gfﬁ ,
respectively. Thus, we need to prove that the diagram

f
Fr z Gr
T?/ i \Lsil
Fi G
fr

is commutative. Since Pr C Ppr by (3) the latter may be viewed as a
diagram in Repf (Pp) (cf. Proposition [3.14). By Corollary [3.11] (iii) the
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commutativity can be checked on [I-invariants where it holds by construc-
tion and because of Proposition (iii).

Finally, given g € Pg we claim that the diagram

Fr—T" G
]:gF For ggF

is commutative. Since I C P;Q N PgTF both fr and fyr are I-equivariant.
Therefore, the decomposition @ of Pg and the properties of the G-actions
on F and G allow us to assume g = w € Ng(T) N Pg such that the image
of win W lies in . We endow the PI} p-representations F,r and G, r with
an action of P}; through conjugation with w. Then the above diagram may

. Note that Q € Dp by Remark By Corollary [3.11] (iii) it suffices
to prove the commutativity after passage to the I-invariants where it fol-

lows from , the H-linearity of g, as well as from f} = LI_,l ogotp and

I_ -1
wF = lyr 090 -

n be viewed as a diagram in Rept (P};) because of the isomorphisms
(14) L1

Altogether, we have shown that the family (fr)pcg @ res(F) — res(G) is
a homomorphism of diagrams. By Proposition it extends to a homo-
morphism f € Homggeg,(27)(F,G). Choosing an arbitrary face F' of 2~
contained in C' we have M (f) = tp o f§ o L;l = ¢ by construction. O

For any H-module M it follows that up to isomorphism the coefficient sys-
tem F(M) € C constructed in the proof of Theorem does not depend
on the choice of the embedding M — FE into an injective H-module E. Of
course, this can easily be proved directly. What is more, since M (-) is an
equivalence and since M (F(M)) = M by the proof of Theorem such an
isomorphism is unique and the assignment M +— F (M) is a functor which is
quasi-inverse to M (-). Once again a presumably more natural construction
of a quasi-inverse can be given by making use of an idea of [31], §1.2, as
follows.

Let M € Mody and let F' be an arbitrary face of 2°. As in the action
of P} on X'F makes X'F @y M and Homy(Homp (X7, H), M) objects of
RepORO(P}). Moreover, there is a unique homomorphism

vr s X'F @y M — Hompy (Hompg (X%, H), M)

of smooth R-linear P}-representations sending * ® m to the H-linear map
(¢ = @(x) - m). We denote by tp(M) = im(rp,F) its image and obtain
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the functor (M +— tp(M)) : Mody — RepORO(P;L). Varying F' the family
F(M) = (tp(M))F is a G-equivariant coefficient system on 2~ because of
the G-action on X. We thus obtain the functor

F()={tr())r : Modyg — Coeffg(Z).

Theorem 3.21. Assume that R is a quasi-Frobenius ring. The functor
F() : Modyg — Coeff¢(Z") takes values in the category C and is quasi-
inverse to the equivalence M(-) : C — Mody of Theorem|3.20,

Proof. Let F be a face of 2” with F' C C. By Proposition|1.7] (ii) there is an

isomorphism X'F@y M = X }@ 5t M of smooth R-linear Pp-representations.
F

Further, by Proposition (i) and (ii), and by [6], I1.2.9 Proposition 10, we

have

Hompy (XF H) = Homp,(Xr, H) = H @y, Homy,.(Xp, Hr)
~ Hopu H} @y, Homp, (Xr, Hp)
=~ H®,1 Homy (X}, H})
as left H-modules because X is finitely generated over Hr and H is free

over HZT; and Hp (cf. Proposition (ii)). Consequently, there is a commu-
tative diagram

X'P @y M—""" . Hompy(Hompy (X', H), M)
i bt
Xp ®H} M E HomH;(HomH}(XF,HF),M)

in which the vertical arrows are isomorphisms and the lower horizontal arrow
was introduced in Actually, it turns out now that giving the same
name to both horizontal arrows was only a minor abuse of notation. By
Theorem (i) we have F(M)p = tp(M) € Repg(P}) and the natural
map M — tp(M)! is an isomorphism of H}—modules. From this point on
one can simply copy the proof of Theorem to see that F(M) € C and
that F(-) is quasi-inverse to M(-). O

Finally, let us recall the construction of [31], §1.2, which we have alluded
to already twice. Given M € Modpy the G-action on X induces G-actions
on X ®y M and Hompy(Hompgy (X, H), M). Moreover, there is a unique
homomorphism

v : X @y M — Hompy (Hompy (X, H), M)
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of R-linear G-representations sending x ® m to the homomorphism of H-
modules (¢ — ¢(z)-m). We denote by (M) = im(7ps) its image and obtain
the functor

t=(M+— t(M)): Modyg — Rep% (G).

Note that (M) naturally is a quotient of X ®y M so that the G-action is
smooth. If F'is a face of 2~ then the (P;r;, H)-equivariant inclusion X/r C
X induces a homomorphism Hompy (X, H) — Hompy(X'F, H) of left H-
modules and a commutative diagram

TM,F

X1Ir @y M Homy (Homp (X1F, H), M)

| |

X ®@g M Hompy (Hompy (X, H), M)

™

of R-linear P}—representations. This in turn gives rise to a homomorphism
tpr(M) — t(M) in RepORO(P;). Since the action of Ir on tp(M) is trivial,
it factors through the inclusion tz(M) — t(M)'F < t(M). Letting F vary,
one obtains homomorphisms

(20) Fx @g M — F(M) —>]:t(M) — ]Ct(M)

of G-equivariant coefficient systems on 2" where Fy(j) and Ky, denote
the fixed point system and the constant coefficient system associated with
the smooth G-representation t(M), respectively (cf. Examples and .
Passing to the homology in degree zero we obtain the following result.

Proposition 3.22. For any M € Mody there are surjective homomor-
phisms
X@g M —Hy(Z,F(M)) - t(M)

of smooth R-linear G-representations which are functorial in M.

Proof. By [39], Theorem II.3.1, and [30], Remark 3.2.1, there is an iso-
morphism Ho(Z2, Fx) = X whence Hy(Z , Fx g M) =2 X @y M it M
is free over H. The right exactness of the functor Ho(Z2,-) then implies
Ho(Z',Fx g M) =2 X @y M for any M € Mody. On the other hand,
Ho(2, Kyary) = (M) because 2 is contractible. Altogether, applying
Ho(Z,) to yields homomorphisms

X @y M — Ho(Z,F(M)) — (M)

in Rep% (G) the left one of which is surjective by the right exactness of
Ho(Z,-). Unwinding definitions, the composition turns out to be 7ps, hence
is surjective, too. Thus, also the right homomorphism is surjective. O
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If V € RepF (G) and if M € Mody then there are natural homomorphisms
of G-equivariant coefficient systems

(21) Fx@p V!l — Fy and Fx @y M — F(M)

on % the second one of which is part of the construction of the functor
F(-). In order to construct the first one consider the G-equivariant map
X @y VI = V sending f ® v to deG/I f(g)gv. For any face F' of 2 it

induces a P}—equivariant map X'F @p VI - (X @y VHIF — VIF, Letting
F vary, the family of these is the required homomorphism Fx @z V! — Fy .
Note that via the construction in these in turn induce homomorphisms

Fx @p VI — (Fx ou VI)! F and

Fk ©og M — (Fx @g M)f —— F(M)"
of coefficient systems of R-modules on 7.

Proposition 3.23. Assume that R is a quasi-Frobenius ring. If V €
Rep% (G) and if M € Mody then the homomorphisms F% @y VI — FL
and Ft @y M — F(M)! in Coeff(</) are isomorphisms.

Proof. For the first homomorphism this is shown in [30], Proposition 6.3, but
the proof also works in the second case. Since we are working over general
coefficients let us quickly recall the argument. By conjugation as in and
since the homomorphisms are induced by homomorphisms of G-equivariant
coefficient systems it suffices to prove that the maps (FL@u V1 )p — (FL)F
and (FL @y M)p — F(M)L are isomorphisms for any face FF C C. In the
first case, this is the isomorphism H @y V! — V!, In the second case this
is the natural map H ®y M = M — tp(M)! = F(M)L which was shown
to be bijective in Theorem O

Remark 3.24. If M € Mody then Proposition [2.8] and Proposition [3.23
give isomorphisms of complexes

CI( Xy, FIM))' = CI ey, F(IM)") = C" (Ha), Fx @1 M)
= CCOT(JZ{(O)PF)I() Qy M gCc(g&/(o)a'FX)I ®p M.

If R is a field then this is the Gorenstein projective resolution of M con-
structed in [30], §6.

Given a representation V' € Rep% (G) we have the G-equivariant coefficient
systems Fyr and F(VI) on 2. As seen above, they are linked through
natural homomorphisms

(22) F(V)<—Fx @y VI — Fy.
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Corollary 3.25. If V € Rep®% (G) then there is an isomorphism
FvhH'=F|
in Coeff(«7) which is natural in V.

Proof. As seen above, the homomorphisms induce a diagram

]:)I( QH Vi

|

FWVH —— (Fx o V)Y —= FL.

in Coeff(<7) which is natural in V. Since the oblique arrows are isomor-
phisms (cf. Proposition [3.23)) the claim follows. O

Remark 3.26. If R is a field of characteristic zero then we shall see in The-
orem that all comparison morphisms in and are isomorphisms.
This is also true for any R if G = GL,(F) and if V is a principal series
representation (essentially, this follows from Ollivier’s result in [28], Propo-
sition 4.6). Moreover, if R is a field of characteristic p there are important
classes of H-modules for which the canonical morphism X ® g M — t(M) is
bijective (cf. [31], Theorem 3.33 for the case of non-supersingular modules
in the case of SLy(K); this was extended by Abe in [I]). Whenever this is
true, all the surjections X @y M — Ho(Z, F(M)) — ¢(M) in Proposition
[3:22) are isomorphisms because their composition is injective. However, if p
is nilpotent in R then the comparison homomorphism Fx @y M — F(M)
will not be bijective in general (cf. Proposition [4.16)).

4 Applications to representation theory

4.1 Homology in degree zero

Consider the 0-th homology functor Ho(.2",-) : Coeff¢(Z) — Rep®H(G)
introduced in §2:1]

Definition 4.1. Let Rep%(G) be the full subcategory of Rep$ (G consisting
of all objects which are isomorphic to a representation of the form Hy(Z2", F)
for some object F € C (cf. Definition |3.15)).

Recall also that we have the functor (-)! : Rep®(G) — Mody. The aim
of this subsection is to study its behavior on the full subcategory RepCR(G).
The most complete results will be obtained in the case that p is invertible
in R or that R is even a field of characteristic zero. If p is nilpotent in R we
will discuss the case of semisimple rank one at the end of this section.
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Theorem 4.2. Assume that R is a quasi-Frobenius ring. If p is invertible in
R then the functor (-)! : Rep%(G) — Mody is an equivalence of categories
with quasi-inverse Ho(2 ", F(+)) : Modg — Rep%(G).

Proof. Since p is invertible in R and since [ is a pro-p group the functor
()1 : Rep% (G) — Mody is exact by the usual averaging argument. Given
M € Modpg we therefore have a natural isomorphism of H-modules

Ho(2, F(M)) = (Ho(CI(Z(ey, F(M)))
Ho(CO" (), F(M))F)
= M(FM)=M

12

by Theorem In order to show that also the other composition is iso-
morphic to the identity functor we may start with a representation of the
form V = Ho (2", F) for some object F € C. As above, the exactness of (-)’
implies that there is a natural isomorphism V! = M(F) of H-modules and
thus a natural isomorphism

Ho(2', F(V')) = Ho(Z', F(M(F))) = Ho(Z', F) =V

in Rep%(G) by Theorem again. O

Corollary 4.3. If R is a quasi-Frobenius ring in which p is invertible then
the functor Ho(Z,-) : C — Rep%(G) is an equivalence of categories.

Proof. As seen above, the functors Ho(2',-)! = () o Ho(2",-) and M (-)
from C to Mody are isomorphic. Therefore, the corollary is a consequence

of Theorem [B:20 and Theorem [£.2] O

Of course, there is a much more direct way to realize Mody as a full sub-
category of Rep%' (G) if p is invertible in R. If J is an open pro-p subgroup
of G and if V' € Rep% (G) then we have the R-linear endomorphism

e V—V, v (J:J,)! Z gv,
QEJ/JU

of V where J, denotes the centralizer of v in J. Note that (J : J,) is a power
of p hence is invertible in R. Clearly, e; is idempotent and equivariant for
the action of the normalizer of J in G. It gives rise to the decomposition
V = im(e;) @ ker(ey) of R-modules with im(e;) = V”/. By definition e,
commutes with any J-equivariant endomorphism of the R-module V.

We shall denote by Repk(G) the full subcategory of Rep(G) consisting

of all representations V' which are generated by their I-invariants, i.e. for
which R[G]- VI =V.
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Lemma 4.4. Assume that p is invertible in R. If M € Modpy then the
natural map M — (X®@gM)! is an isomorphism of H-modules. The functor
X ®p (-) : Mody — Reph(G) is fully faithful.

Proof. Denote by 1 € H the unit element of H viewed as an [-invariant
element of X. If y =} . 2;®m; € X @y M is I-invariant then y = e(y) =
dojer(xj) @my = 1@ (32; er(x;)m;) lies in the image of M — X @y M.
Since X = H @ ker(ey) is a decomposition of right H-modules this map is
also injective, proving the first assertion.

Note that the G-representation X ® gy M is generated by M whence the map
Homg(X @y M, X ®y N) — Homg (X @y M), (X @y N)!) is injective
for all N € Mody. By what we have just proved its composition with the
map Hompy (M, N) — Homg(X ®py M, X ®py N) is bijective. This implies
the second assertion. O

In fact, Rep%(G) is always a full subcategory of Reph(G) without any as-
sumptions on R.

Proposition 4.5. If F € Coeff¢(2") such that Fr € RepORO(P}) is gen-
erated by its Io(p)-invariants for all faces F' of 2 then the oriented chain
complex CZ"(Z(a), F) consists of objects of Reph(G). In particular, the G-
representation Ho(2, F) is generated by its I-invariants and Rep%(Q) is a
full subcategory of Repﬁ(G).

Proof. For any 0 < ¢ < d there is an isomorphism of G-representations

(23) Co (L), F) & @ indl‘ile (er ®p Fr)
F

where F' runs through a set of representatives of the finitely many G-orbits in

Zi and the character e : P}; — {£1} describes how P}; changes any given

orientation of F. By Lemmal[l.2]we may assume the corresponding faces F to

be contained in C'. Now the G-representation indIGDT (er ®r FF) is generated
F

by the P;r;—subrepresentation er @r Fr. Moreover, (cr @r Fr)! = cr®p .7-"11;
by [30], Lemma 3.1, which generates ep ®pr Fr over PI]; by assumption.
This proves the first assertion. The second assertion follows from the fact
that the category Repé(G) is closed under quotients in Rep% (G). The final
assertion then follows from Lemma (1). O

If R is a field of characteristic zero then the categories Rep%(G) and Reph(G)
coincide and the equivalences in §3.2]admit more classical descriptions. Some
of this relies on the following fundamental theorem of Bernstein (cf. [4],
Corollaire 3.9). Since we could not find an explicit reference pertaining
to the pro-p Iwahori group I we will give a quick argument reducing the
statement to a known case of Bernstein’s theorem.
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Theorem 4.6 (Bernstein). Assume that R is a field of characteristic zero.
As a full subcategory of Rep%(G) the category Reph(G) is stable under
subquotients. The functors

(!

Repkh(G) Modgy

X®H(-)

are mutually quasi-inverse equivalences of abelian categories. In particular,
the right H-module X 1is flat.

Proof. Let V be an object of Repé(G) and let U C V be a G-subrepresen-
tation. We claim that the natural map X @y U/ — U is bijective. To
see this, we may assume that the field R is uncountable and algebraically
closed. Recall that we fixed the special vertex zo € C and that I, C I.
By [4], Corollaire 3.9, the full subcategory of Rep% (G) generated by their
I,,-invariants is stable under subquotients (cf. the reasoning in [4], page 29,

r [39], Theorem 1.3). Note that from [4], §1.8 onwards, Bernstein works
over the complex numbers. However, his arguments are valid for any un-
countable and algebraically closed field of characteristic zero.

Since X ®pz U! and V are generated by their I-invariants they are also gen-
erated by their I,,-invariants. By Bernstein’s result, so is U. In order to
see that the natural map X @y U! — U is injective, it suffices to check
this after passage to I,,-invariants because the kernel of this map is also
generated by its I,-invariants. As in the proof of Lemma [£.4] the decom-
position X = Xf=0 @ ker(ey,, ) of right H-modules gives (X ®p UNle =
Xleo @y U, Using Proposition (ii) we need to see that the natural
map Xz, @p,, U! — U0 is injective. Since the category Repp(Puo/Is)
is semisimple its kernel W' is a quotient of X, ®mu,, U hence is generated
by its I-invariants. However, the map U! = (X, ®m,, UhH! — U is the
identity whence W1 =0 and W = 0.

In order to see that the natural map X ®g U — U is surjective, consider
the commutative diagram

XeopU —= XV —= X @y (V/U) —=0

| | |

0 U 1% vV/U 0

in which all vertical arrows are injective by our above reasoning. Moreover,
the lower row is exact by definition and the upper row is exact because of
the exactness of the functor (-)! in characteristic zero. The middle and the
right vertical arrow are surjective because V' and its quotient V/U are ob-
jects of the category Rep{%(G). By the snake lemma, the left vertical arrow
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is surjective, too.

This proves that Repé(G) is a full subcategory of Rep% (G) which is stable
under subquotients and hence is abelian. That the two functors are quasi-
inverse to each other follows from our above reasoning and Lemma [£.4] If
g : M — N is an injective homomorphism of H-modules then the kernel of
the induced map f : X ® g M — X ®g N is generated by its [-invariants.
However, ker(f)! = ker(f!) = ker(g) = 0. Thus, X ® g M — X @y N is
injective and the right H-module X is flat. O

Recall that for any field R an object V' € Rep% (G) is called admissible if the
R-subspace V' of J-invariants is finite dimensional for any open subgroup J
of G. We note that the equivalence of (i) and (iv) in the following corollary
also holds in other situations (cf. [33], Lemma 6.18).

Corollary 4.7. Assume that R is a field of characteristic zero. For any
object V € Rep{%(G) the following statements are equivalent.

(i) V is admissible.

(ii) V is of finite length.

(i4i) The H-module V! is of finite length.

(iv) The H-module V' is finite dimensional over R.

Proof. This follows directly from Theorem together with the fact that
an H-module is of finite length if and only if it is of finite R-dimension (cf.
[30], Lemma 6.9) O

If R is a field of characteristic zero then the functor F(-) can be reinterpreted
as follows. Note that this does not rely on Bernstein’s Theorem

Theorem 4.8. Assume that R is a field of characteristic zero.

(i) There is an isomorphism F(-) = Fx ®p (-) : Modyg — Coeffg(Z").

(ii) There is an isomorphism Ho(2", F(-)) 2 X ®@p (-) : Mody — Reph(G).
(i4i) There is an isomorphism F((-)T) = Fey: Reph(G) — Coeffg(Z).

Proof. As for (i), let M € Mody and let F be a face of 2~ contained in C.
As in the proof of Theorem [3.21| one constructs a commutative diagram

TM,F

Xr @y M Hompy (Homp (X7, H), M)

S lg

XF ®HFM HOInHF(HOInHF(XF,HF),M)

TM,F

54



by making use of Proposition (ii). We claim that 7y p is injective and
need to prove this for its lower version only. The decomposition Xp =
Hp @ ker(er) of right Hp-modules shows that 7 p induces a bijection on
I-invariants. Since the category Repp(Pr/IF) is semisimple, the kernel of
Tm,F is a quotient of X ®p, M and hence is generated by its I-invariants.
Thus, ker(7a,r) = 0 as claimed. Together with Proposition it follows
that the comparison homomorphism Fx ® g M — F(M) in a natural
isomorphism. This proves (i). As seen in the proof of Proposition one
obtains (ii) by passing to the homology in degree zero.

Now let V' € Repkh(G) and consider the fixed point system Fy € Coeffo(.2").
We continue to assume that F' is a face of 2~ with F C C. The natural
surjection X ®x V! — V induces a surjection (X @ V!)IF — VIF because
p is invertible in R. Using Proposition (ii) and the H-equivariant de-
composition X = XTF @ker(e 1) this map can be identified with the natural
map

Xrop, VI2XFopv!i2(X oy VHir — viF,

As before, it induces an isomorphism on [-invariants and hence is bijective
because the category Repg(Pr/Ir) is semisimple. Since X'F @y VI — VIr
is the term at F' of the comparison homomorphism Fx @y V! — Fy in
it follows from Proposition that the latter is an isomorphism. O

As a consequence, we can finally clarify the relation between the categories
Rep%(G) and Repk(G). Moreover, we can reprove a special case of Schnei-
der’s and Stuhler’s theorem concerning the exactness of oriented chain com-
plexes of fixed point systems on 2" (cf. [39], Theorem II.3.1). We note that
the strategy of our proof is due to Broussous who treated the analogous case
of the Iwahori subgroup I’ of G (cf. [9], §4).

Corollary 4.9. Assume that R is a field of characteristic zero.
(i) The categories Rep%(G) and Reph(G) coincide.

(ii) For any representation V € Reph(G) the augmented oriented chain
complex 0 — CI"(Z(a), Fv) — V — 0 is evact.

Proof. Let V € Reph(G). By Theorem and Theorem (ii) we have
V2 Xep V! 2Hy(2,F(V!) which is an object of Rep%(G) by Theorem
Using Proposition [4.5| this proves (i).

~Y

As for (ii), the exactness in degrees —1 and 0 follows from Ho (2", Fy) =
X @y VI 2V (cf. Theorem 4.6/ and Theorem . Since the functor (-)! is
exact Proposition (i) implies that the higher homology groups of the aug-
mented oriented chain complex of Fy have trivial I-invariants. Since these
homology groups are objects of Repﬁ(G) (cf. Proposition and Theorem
it follows from Theorem that the homology groups are trivial. [
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We would also like to point out that if R is a field of characteristic zero then
the equivalence in Theorem can be used to reinterprete the Zelevinski
involution on Repé(G) and to reprove its major properties. Given a smooth
R-linear left (resp. right) G-representation V' and a non-negative integer i
we consider the R-linear right (resp. left) G-representation

EWV) = ExtiRep%g(G)(V, CZ(G, R)).

Here C°(G, R) denotes the R-module of compactly supported maps G — R
endowed with its G-actions by left and right translation. In order to simplify
the formulation of the following statements we identify the categories of left
and right G-representations through the anti-automorphism g — g~! of G.

Lemma 4.10. Assume that R is a field of characteristic zero. If V €
Reph(G) admits a central character or if G is semisimple then EY(V) is the
i-th homology group of the complex

(24) HOmG(CCOT(g%f(.)’fv),CgO(G, R))

If V is admissible then this is a complex in Reph(G). In this case EX(V) is
an object of Repé(G) for any i > 0.

Proof. The augmented oriented chain complex of Fy is a resolution of V
by Corollary (ii). If V admits a central character then it consists of
projective objects of the category Rep% (G) (cf. [39], Proposition I1.2.2). If
G is semisimple then this is true more generally because of and by
Frobenius reciprocity. Note that if G is semisimple then the groups P} are

compact and the categories are Repy (P}) semisimple. Therefore, com-
putes E*(V).

If V is admissible then implies that the oriented chain complex of Fy
consists of finitely generated G-representations. Therefore, the G-action on
(24)) is smooth. More precisely, for any term in the decomposition there
are GG-equivariant isomorphisms

Homg(indgbt (er ®@rV'™),CX(G,R)) 2 Hompi(er ®r VT, C(Ir\G, R))

[(nd%. (R) ® (e ®r V'r)*]FF
indZ; ((er @ V'7)").

I

As seen in the proof of Proposition the P}—representation VIr is gener-
ated by its I-invariants and so is (V/#)* by Lemma (iii). Moreover, ep
is trivial on I by [30], Lemma 3.1. Therefore, is a complex in Reph(Q).
It follows from Theorem that so are its homology groups. ]

The following proof of the Zelevinski conjecture for Repﬁ(G) makes essential
use of results of Ollivier and Schneider concerning the homological properties
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of the pro-p Iwahori-Hecke algebra H (cf. [30], §6). In this case we can
avoid the more sophisticated methods employed by Schneider and Stuhler
(cf. [39], §TI1.3). We denote by Repk(G)2d™ the full subcategory of Rep$s (G)
consisting of admissible representations generated by their I-invariants.

Theorem 4.11. Assume that R is a field of characteristic zero and that G
is semisimple. If V € Reph(G)*™ then (V) = 0 unless i = d. Moreover,
ENV) € Reph(G)* ™. The functor £ : Reph(G)*I™ — Reph(G)*™ is an
anti-involution of categories. In particular, it preserves irreducible objects.

Proof. For any object W € Repkh(G) the isomorphism W = X @y W of
Theorem [4.6] induces an isomorphism

Homg (W, C(G, R)) Homg (X @y W!,C°(G, R))
Hompy (W, Homg(X,C(G, R)))

o HomH(WI, C(I\G,R))

12

of right G-representations. Note once more that C2°(I\G, R) = H & ker(ey)
whence passage to the [-invariants yields an isomorphism of right H-modules

Homg (W, C°(G, R))! = Homy (W', H).

By the proof of Proposition the Pp-representation VIF is generated
by its I-invariants for all ¥ C C. By Proposition the chain complex
C°(Z(e); Fv) is a complex in Reph(G). As seen in the proof of Lemma
it consists of projective objects. It follows from Proposition (i),
Theorem and Theorem that C2°(Z(s), Fv)' is a projective resolution
of the H-module V. Together with Lemma we obtain a functorial
isomorphism

W) = Extt, (VI H)

of right H-modules for all @ > 0. By [30], Theorem 6.16, the ring H is
Auslander-Gorenstein. Since V' is of finite length this implies £/(V)! = 0
for i < d by [30], Corollary 6.17, and thus (V) = 0 by Theorem and
Lemma Moreover, the functor Ext%[(-, H) is an equivalence between
the categories of left and right H-modules of finite length, respectively, which
is quasi-inverse to itself (cf. [I9], Theorem 8). Together with Theorem
and Corollary this proves the remaining statements. O

Remark 4.12. The arguments in the proof of Theorem and [3], Theo-
rem 1.2, show more generally that the functors (£*)p<;<q induce a (d+1)-step
duality on the full subcategory of Repﬁ(G) consisting of all objects V for
which the H-module V' is finitely generated. This goes way beyond the
case of admissible representations considered classically.
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If R is a field of characteristic zero and if M € Modgy then the oriented
chain complex CZ"(Z(q), F(M)) is exact in positive degrees (cf. Theorem
Theorem and Corollary (ii)). In general, its exactness properties
remain an open question. If p is nilpotent in R we can at least treat the
case of semisimple rank one.

Lemma 4.13. Assume that p is nilpotent in R and that U is a pro-p group.
If V € Rep$ (U) is non-zero then VYV # 0.

Proof. Let v € V' \ {0}. Since p is nilpotent there is a positive integer n
with p"v = 0 and p" v # 0. Set w = p"~'v and let W = R[U] - w denote
the subrepresentation of V' generated by w. Since U is compact and the
stabilizer of w in U is open, W is an F,-vector space with a linear action
of U that factors through a finite p-group. By [36], §8, Proposition 26, we
have WU % 0 (cf. also [33], Lemma 2.1, for the case R = F,). O

Proposition 4.14. Assume that R is a quasi-Frobenius ring in which p is
nilpotent and that the semisimple rank of G is equal to one. If M € Modg
then the augmented oriented chain complex

0 — C"(Z(), F(M)) — C" (Z(0), F(M)) — Ho(Z, F(M)) — 0

is exact and there is a natural H-linear injection M — Ho(2 , F(M))!. In
particular, the functor (M — Ho(Z,F(M))) : Modg — Repx (G) maps
non-zero modules to non-zero G-representations.

Proof. Since F(M) € C by Theorem the map CZ" (21, F(M))! —
Co (2 0y, F(M))! is injective by Proposition (i). It follows from the
left exactness of (-)! and Lemma m that the map CZ"(Z(y), F(M)) —
CI"(Ziy, F(M)) is injective, too. The remaining assertions are a conse-
quence of Theorem [3.21 O

Remark 4.15. Recall from that the oriented chain complex of F(M)
is a finite direct sum of representations of the form indIGJT (er ®r F(M)F)
F

for suitable faces ' C C. If the underlying R-module of M is finitely
generated then so is the underlying R-module of e @ g F(M)p because it
is a quotient of Xr ®p, M. Under the assumptions of Proposition the
G-representation Ho(.2", F(M)) may therefore be called finitely presented
as in [I8], §4.1. Now assume that K is of characteristic p, G = GLa(K),
R =TF, and M is simple and supersingular. Then [I8], Corollaire 1.4, and
[32], Theorem 5.3, imply that the G-representation Ho(.2", F(M)) cannot
be admissible and irreducible. Moreover, Lemma, implies that in this
situation the inclusion M < Ho(.2", F(M))! has to be proper.

Assume that R = F, with p # 2 and that G = GL2(Q,) or G = SL2(Qy).
By fundamental results of Ollivier and Koziol (-)! : Reph(G) — Modg and
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X®p(-) : Modg — Reph(G) are mutually inverse equivalences of categories
(cf. [26], Théoreme 1.2 (a) and [22], Corollary 5.3 (1)). In part, this relies
on exceptional flatness properties of the H-module X (cf. [22], Corollary
4.10 (1)). The following proposition relies on analogous flatness properties
of the finite universal Hecke modules Xz over Hr. In exceptional cases we
can thus generalize the results found in Theorem We content ourselves
with formulating them for the groups SL2, GLy and PGLs.

Proposition 4.16. Assume that R is a quasi-Frobenius ring in which p
is milpotent and that G = SLy(K), G = GLa(K) or G = PGLy(K) with
k| = p.

(i) There is an isomorphism F(-) = Fx ®p (+) : Modyg — Coeff(Z").

(ii) The complezes C"(Z(a), F(M)) and C2"(Z(a), Fx)@u M are naturally
isomorphic with vanishing higher cohomology for any M € Mody .

(11i) There is an isomorphism Ho(Z", F(+)) = X®u(-) : Modg — Rep® (G).

Proof. Note first that if F is a face of 2" contained in C then the Hp-module
X is projective. If F = C' then this follows from X¢ = Ho & R[Ty/Th].
Now assume that F is a vertex. The group GLa(K) acts transitively on the
set of vertices of Z". Moreover, it acts on SLy(K') by outer automorphisms.
In all cases we may therefore assume F' = xg. There is an integer n with
p"R = 0. If X}, and HJ, denote the corresponding objects defined over
Z/p"Z then Hp = H}; Qz/pnz R and X};‘ ®H}7 Hrp = X;—‘ Kz /prz R = Xp.
We may therefore assume R = Z/p"Z.

If G = SLo(K) then Pp/Ip = SLy(k) and the assertion is proved in [16],
Lemma 2.2. Let us therefore assume G = GLy(K) or G = PGL2(K) whence
Pp/Ip = GLy(k) or Pp/Ir = PGLy(k). By [6], IIL.5.4 Proposition 3, we
may assume n = 1. By faithfully flat base change we may further assume
R = F,. The case of GLa(k) is then treated in [29], Théoreme B (2) and
Proposition 2.15. In order to deduce the case of PGLy(k) let Hj and X/
denote the corresponding objects for GLa(k). Viewing X as a GLa(k)-
representation via inflation the natural map X ® m, Hr =X " ® m, X L
X is bijective by [29], Théoreme A and Théoreme B (2). Since it is Hp-
right linear the claim follows.

Conjugation as in and Proposition (ii) imply that the H-module
XTF i finitely generated projective for any face F of 2. Thus, all maps

vr: X'F @y M — Hompy (Hompg (X%, H), M)

are injective. This proves part (i). Together with Proposition part (ii)
is an immediate consequence using the trivial relation CZ" (2 4y, Fx®@u M) =
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CI"(Ziey; Fx) @y M. By [30], Remark 3.2.1, the augmented oriented chain
complex

(25) 0 — C" (2, Fx) — CI(Z(0), Fx) — X — 0

is exact. Therefore, part (iii) follows from (ii) and the right exactness of the
functor (-) @y M. O

4.2 Homotopy categories and their localizations

Over an arbitrary coefficient ring R, the functor (-)! : Reph(G) — Mody is
faithful but not necessarily full. This concerns, for example, the case where
R is an algebraically closed field of characteristic p and G = GLa(K) with
K of characteristic zero and ¢ > p or K = F,((T")) with p # 2 (cf. [26],
Théoréeme). However, one can single out an important full subcategory of
Repkh(G) on which the functor (-)! is fully faithful. The following result
generalizes [27], Lemma 3.6.

Proposition 4.17. If F is a face of 2 with F C C and if V € Rep%f(P})
then the P}—equivariant inclusion V. — ind% (V') induces an isomorphism
F

H @y VI — ind% (V1)
F

of H-modules given by h @ m +— h - m.

Proof. By and we have G = [[4ep, ol dP}. Fixing a system of

represenatives of D /Qr the corresponding Hecke operators 74 form a basis

of the right H},—modules H (cf. the proof of Proposition (ii)). Therefore,

it suffices to see that (m — 74-m) : VI — indgT (V)T maps isomorphically
F

onto the R-submodule Wy of [-invariant elements with support I dP}; and
values in V¥ for any d.

It follows from @ that 74 - m is the function with support I dP} and values
(14-m)(idp) =p~'mforalli € I and p € P}. Note that this is an element

of VIF because Ir C I and I is a normal subgroup of P;Q. Therefore, the
map (m +— 74-m) : VI — Wy is well-defined and injective.

On the other hand, let f € Wy. Then f(idp) = p~'f(d) where f(d) is
an element of V which is invariant under (d~*Id N Pg)Irp = I. Here the
last equation results from Lemma and [30], Proposition 4.13 (i). Thus,
f =r7q- f(d) and the map in question is surjective. O

If V € Rep% (G) and if F is a face of 2~ then we may view V and V¥ as
objects of Rep% (P}) via restriction.
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Proposition 4.18. Let R be quasi-Frobenius ring and let F' and F' be faces
of Z contained in C.

(i) If V € RepX(Pp) then indIG::F,(V)IF is an object of Rep (Pr).

(i) If V € RepR( /) then 1ndG (V)IF is an object of Repg(P}).

F/
Proof. We first show that (ii) follows from (i). Indeed, the Bruhat decom-
positions and @ show that Q/Qp is a system of representatives of the

double cosets G.g\G/ P}T,,. Therefore, we have the G,g-equivariant Mackey
decomposition

ind% (V)= € indi - (V¥).
wGQ/QF/ aff )

Here wF' C C and Gag N PTF, = P,p by [30], Lemma 4.10. Now V €
Repp (PT ) implies V¥ € Rep R( wF'). A second suitable Mackey decompo-
sition shows that the Pp-representation md (V“’) is a direct summand of
1ndG (V). By Corollary - ii) it sufﬁces to prove (i).

Choose vertices x and y of 2~ which are contained in F and F’, respectively.
Then indGF, (V)= indIGDy (ind?;, (V') where ind]]jy,(V) satisfies condition (H)
as a representation of P, according to Lemma (ii). Without loss of gen-
erality we may therefore assume F’' = y. Further, by Proposition it
suffices to show that indIG;y (V)%= satisfies condition (H) as a representation
of P, i.e. we may assume F = z.

It follows from the decompositions and @ together with the braid rela-
tions that G = HdeWw\W/Wy P,dP, (cf. also [10], Proposition 7.4.15).
Consequently, we have the P,-equivariant Mackey decomposition

indIG;y (V)= @ mdpl’
AEW\W/W,

P,NdPyd—1! (Vd)

where the group P, N dPyd acts on the R-vector space VI =V via g-v =
d~tgd - v. We identify a fixed double coset d € W, \W/W, with its unique
representative of minimal length in W (cf. [7], Chapitre IV, §1, Exercise 3,
applied to the Coxeter group W2 noting that Wi, Wy € Wag and W =
Wt 5 Q with f(ww) = £(w) for all w € W™ and w € Q). We may thus
assume d € D, and at the same time d~! € D,. We need to see that the
P,-representation

1ndP (VI = indfz

d\I,NdPyd—!
(Borapya-y1, (V) e

PyNdPyd—1
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satisfies condition (H). Here (V@)/="@Pyd™" is viewed as a representation of
(P, NdP,d~1)I, through the homomorphism

(P.NdP,d "I, — (P,NdP,d "I, /I, = (P,NdP,d')/(I,NdP,d").

Clearly, we may assume that the underlying R-module of V' is finitely gener-
ated. By Lemmaand [30], Proposition 4.13 (i), we have (d~'IdNP,)I, =
(d=r1dNI)I, = I whence I' C (d~'P,dNP,)I, C P,. Since P,/I, is a group
with a (B, N)-pair in which B = I'/I, this implies that

(d~*P,dN P,)I, = P

for a face F of 2" with y € F C C (cf. [I1], Théoréme 4.6.33). Note that
we give a new meaning to the symbol F' here which also appears in the
formulation of the proposition. As in [I0], (7.1.2), any element of ®,¢ de-
termines a closed half space of 2/ which is again called an affine root. With
this terminology we let cl(d~'z,y) denote the intersection of all affine roots
containing {d~'z,y} and claim that F' = cl(d~'z,y) N C. In order to prove
this, note that F is precisely the set of fixed points of Pp in &7 (cf. [11],
Corollaire 4.6.29 (i)).

Setting Y = cl(d~tz,y) N C, any element of I, C I fixes C' pointwise and
hence Y. Let Z = C(K) denote the group of K-rational points of the
connected center C of G. In the notation of [I0], Théoréme 6.5, we have
G’ = ZG,g. Therefore, it follows from [30], Lemma 4.10, and [10], (4.1.1),
that the group d~1P,d N P, is the pointwise stabilizer of cl(d 'z,y) D Y in
G, Consequently, Pr fixes Y pointwise and Y C F as explained above.
Conversely, any point of F lies in C and is fixed by d~'P,d N P, because
d~'P,dN P, C Pp. By [11], Proposition 4.6.24 (i), the group d~1P,d N P,
contains the group denoted by (’521(d,1$’y)(0) in [I1], §4.6.26. By [11], Corol-
laire 4.6.29 (i), we get F' C cl(d~'w,y) and thus F C Y.

Next we claim that I = (d~11,dN I)I,. Note that I, is a normal subgroup
of P, and hence of Pr. As seen above d I, dNTI =d'I,dn P, because
I, C I. Since d~'I,d N P, a normal subgroup of d'P,dn P, we obtain
that (d~'I,d N 1), is a normal subgroup of Pp. Since it is contained in I
it is contained in the pro-p radical of Pg, i.e. in Ir. In order to prove the
reverse inclusion we have to make a digression into the theory of the Iwahori
decomposition. For any real number r we denote by r+ the smallest integer
strictly greater than r. For any face F’' of 2" and any root a € ® we set

fr(a) = —inf{a(z) |z € F'} and
() = fr(a)+, if o|F' is constant,
F B fri(a),  otherwise.
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Recall that the root subgroup U, of G corresponding to o admits an ex-
haustive, separated and decreasing filtration by subgroups U, with r € R
as in [39], page 103. Since the group G is split the jumps of this filtration
are precisely the integers. According to [39], Proposition 1.2.2, the group Ir
is generated by 77 and the groups U,, F2(a) with o € ®. To prove our claim
it remains to see that Uy, (q) is contained in (d*,dN 1)1, for all a € ®.
Note that we always have fr(a) = —a(y)+.

If a|F is constant then fj(a) = —a(y)+ because y € F. In this case,
Ua,fr(0) = Uny—a(m)+ E 1y So assume that «|F is not constant and hence
that fi(a) = fr(a) = fy(a) = —a(y). If a(y) € Z then again U, yx(a) C
Ua,—aly) = Ua,—a(y)+ S Iy. We may therefore assume that aly) € 2. It
fr(a) > —a(y) and if s = min{n € Z | n > fr(a)} then s > —a(y) +1
and hence an7fl’§(a) = Ua,fr(a) = Ua,s € Uq —a(y)+1 € Iy. We may therefore
assume fh(a) = fr(a) = —a(y), i.e. a(z) > a(y) for all z € F. In this
situation, a(d~'x) > a(y) because otherwise cl(d~'z,y) and hence F would
be contained in the affine root {z € & | a(z) < a(y)}. However, this would
imply «a(z) = a(y) for all z € F in contradiction to our assumption that
a|F is not constant. Writing d = (A, w) € W = X (T) x Wy we have

aly) < a(d'z) = a(w™z + ) = wa(z) + a(),
whence —wa(z)+ < —a(y) — a(N) because a(y) + a(\) € Z. Therefore,

e fr(@)d™" = dUsa()d " = Upa,—a@m)-a)
- Uwcx,—wa(z)—l— e

which implies Ua,f;;(a) Cd'I,dnIr C d'I,dN1I. This completes the
proof that Ir = (d1I,dN1)I, = (d"'I,dN P,)I,.

Since d~! € D, the same arguments show that (P, N dPyd_l)Ix = Pps for
some face I of 2 with x € F’ C C such that I, = (I Ndl,d '), and
(INndld=Y)I, = (INdP,d~')I, = I. Again the notation is not to be confused
with the meaning of F” in the initial formulation of the proposition. To com-
plete the proof it suffices to see that the Pp/-representation (Vd)ImdP yd ™!
satisfies condition (H) (cf. Lemma (ii)). We claim it is generated by its
I-invariants. By definition of the Pp/-action

((Vd)lzﬂdPyd_l)I — (Vd)l — ((Vd)(lﬁdld_l)lz — (Vd)lﬂdld_l

)

and the claim is equivalent to V¢ 24Py being generated by V¢ 14N ag

a representation of d~!'P,d N P,. Since I, acts trivially on V' we have
Va  zdnPy — (A 2dNP)L, — yIF g YA AN — oy (d AN, — T

Since (d~'P,d N P,)I, = Pr the claim follows from Lemma (i) and
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Proposition Likewise, ((V4)T=ndld™ ) — (Y Irydyx — (VIF)*)d ig gen-
erated by its I-invariants as a representation of Pgs because this is true of
the Pp-representation (VIF)*. By Lemma (ii) the Ppr-representation
(VA)L=ndId™" gatisfies condition (H). O

Remark 4.19. We take up the notation of the proof of Proposition If
T = y = ¢ then the fact that (d_ledﬂPy)Iy = P for some facey € F C C
with Ip = (d~*IdN1)I, is also proved in [17], Proposition 3.8, and [27], §3.3
Fact 2. In this case the set @ of affine roots vanishing on F' is given by
Sp=d,N d~'®,. We note that the latter formula is wrong in the general
situation considered above. For example, if & = Aq, if x = y # z¢ and if
d=1 = A\ + \g is the sum of the two fundamental dominant cocharacters
then ®, Nd~'®, = () whereas F = cl(d'z,y) N C = {y}. Thus, &5 = ®,.

Definition 4.20. (i) Let Repltd(G) denote the full subcategory of Rep$s (G)

consisting of all representations which are isomorphic to finite direct sums

of representations of the form indgf (VE) for some face F' of 2 contained in
F

C and some P};—representation Vi satisfying condition (H).

(ii) We denote by Modi3¢ the full subcategory of Mody consisting of all

modules which are isomorphic to finite direct sums of modules of the form

H® ut My for some face I’ of 2" contained in C and some H}-module Mp.
F

We continue to denote by Reph(G) the full subcategory of Rep®(G) con-
sisting of all objects generated by their /-invariants. It follows from Lemma
m (i) that Repitd (@) is a full subcategory of Reph(G).

Theorem 4.21. If R is a quasi-Frobenius ring then the functor () :

Repiﬁd(G) — Modd is an equivalence of additive categories.

Proof. The faithfulness follows from the fact that Reptd(G) is a full sub-
category of Repé(G). The essential surjectivity is a direct consequence of
Theorem (ii) and Proposition Let F (resp. F') be a face of 2
contained in C, and let V (resp. W) be a representation of P} (resp. P},)
satisfying condition (H). By Remark [3.2] Theorem [3.10] (ii), Proposition [4.17]
and Proposition we have

Homg(ind% (V),ind% (W)) = Hom s (V,ind%y (W)'r)
F jall F !
= HomH;(VI,indg;/(W)I)
> Hompy(H @, V!, indG; (W)")
F jall
= HomH(indg; (W, indg;, W),
Unwinding definitions, this is precisely the map induced by (-)?. O
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Remark 4.22. Assume that R =TF,. If F = F/ = zp and if V and W are
irreducible then the above chain of isomorphisms already appears in [27],
Corollary 3.14 (i) and [50], Proposition 7.5.

If R is a field of characteristic zero then Theorem shows that any repre-
sentation V € Reph(G) admits a finite resolution by objects of Rep'sd(G).
If R =F, and if K is of characteristic p then this is generally no longer true
(cf. [18], Corollaire 5.5). Consequently, even on a derived level Repltd(G)
may be a rather small subcategory of Repﬁ(G). In contrast, if R is a quasi-
Frobenius ring then the categories Modiﬁd and Modpy are always derived
equivalent in a suitable sense.

In order to make this precise, let D be any additive category and denote
by KD the homotopy category of bounded complexes of D. Note that if
D’ is a full additive subcategory of D then KD’ is naturally a triangulated
subcategory of KD, i.e. a full additive subcategory for which the inclusion
functor is an exact functor of triangulated categories (cf. [42], Proposition
13.10.3 and Lemma 13.10.6).

In our situation, let ¥’ (resp. X) denote the class of quasi-isomorphisms
in K*Modi2¢ (resp. K?Modp), i.e. the class of morphisms inducing isomor-
phisms on all homology groups. It is known that ¥’ and ¥ are multiplicative
systems and that the corresponding localizations are triangulated categories
in a natural way (cf. [42], Lemma 13.5.4 and Proposition 13.5.5). Note that
by [42], Lemma 13.11.6 (3), the localization

K’Mody [~ 7! = DY(H)
is triangle equivalent to the bounded derived category D°(H) of Modz.
Proposition 4.23. If R is a quasi-Frobenius ring then the functor
K*Modi4[(2')~!] — DP(H)

induced by the inclusion functor KbModi}r}d — K*Mody is an equivalence of
triangulated categories. On the full subcategory Mody of DY(H) a quasi-
inverse is given by assigning to M € Mody the complex Cgr(%.),f(M))I.

Proof. Arguing dually to [20], Corollary 7.2.2, it suffices to see that for any
bounded complex M, of H-modules there is a bounded complex N, of ob-
jects of Modifjd and a quasi-isomorphism N, — M,.

In order to construct N, note first that if M € Mody then the complex
CIM(Zie)s F(M))! is a complex of objects of Mod¢ with trivial higher ho-
mology and whose homology in degree zero is naturally isomorphic to M.
This follows from Proposition (i), Theorem Proposition and
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the decomposition . In other words, we can augment the above complex
to an exact resolution 0 — Cé’r(ﬁ”(.),}“(M))I My M — 0 of M.

Now let M, be a bounded complex of H-modules. We consider the bounded
double complex Ce o = C"(Z(4), F(M,))! and its subcomplex C4 o obtained
by replacing the row 0 — C2"(2{q), F(Mo))" — -+ - = C"(Z(0), F (M) —
0 by the row 0 — ker(ep) — -+ — ker(ear,) — 0. Denoting by Ny =
Tot(Cse) and Ny = Tot(C, ,) the corresponding total complexes we obtain
an exact sequence 0 — N, — Ny — M, — 0 of complexes of H-modules in
which N, is a complex over Modi}}d. Since the columns of C, , are exact, so
is N/ by the usual spectral sequence argument. The long exact homology
sequence then shows that N, — M, is a quasi-isomorphism. O

Remark 4.24. The only non-formal part of the proof of Proposition
concerned the essential surjectivity. We note once more that if R is a field
then the necessary input from can be replaced by the results of [30], §6,
on canonical Gorenstein projective resolutions (cf. also Remark [3.24)).

The additive functor (-)! : Rep4(G) — Mody induces an exact triangle
functor K’Rep'sd(G) — K*Mody (cf. [42], Lemma 13.10.6) that we continue
to denote by (-)!. Let " denote the class of all morphisms f in K’Repltd(G)
such that f! is a quasi-isomorphism.

Theorem 4.25. If R is a quasi-Frobenius ring then X" is a multiplicative
system and the functor

K'Repjg(G)[(2") "] — D"(H)

induced by () Repiﬁd(G) — Modpg is an equivalence of triangulated cate-
gories. On the full subcategory Modg of D*(H) a quasi-inverse is given by
assigning to M € Mody the oriented chain complex CJ"(Z(4), F (M)) of the
G-equivariant coefficient system F (M) on Z .

Proof. This follows directly from Theorem and Proposition O

We note that if R is a field of characteristic p and if I is p-torsion free
then a fundamental result of Schneider shows that the unbounded derived
category of Repf (G) is equivalent to the unbounded derived category of
DG-modules over a certain DG-version of H (cf. [38], Theorem 9). We point
out that the equivalence in Theorem is generally not compatible with
the homological properties of the two categories. Therefore, it is currently
unclear how Theorem [£.25 relates to Schneider’s result.

4.3 The functor to generalized (¢, [')-modules

Let P and P be the Borel subgroups of G corresponding to & and &,
respectively, and let U and U denote their unipotent radicals. Setting
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P =PK), P=PK), U =U(K) and U = U(K) we have the Levi de-
compositions P=U xT and P=U xT. Welet Uy=UNI, U, =UNI
so that I = U1T Uy by [39], Proposition 1.2.2. Consider the submonoid T
of T defined by

Tt = {teT|Vaed :(a,v(t)) >0}
= {teT|tUitt CUL}
= {teT |t Ut C Uy}

Remark 4.26. For a € ¢ let U, be the corresponding root subgroup with
its filtration by subgroups U, , as in [39], §1.1. The last two descriptions
of T follow from tU,,t~! = Usy—(apy forallt € T, o € ® and r € R.
Recall that the homomorphism v : T' — X,(T/C) is normalized through
(a,v(t)) = —val(a(t)) for all @ € ®. Thus, v(TF) = X (T/C) is the set of
dominant cocharacters with respect to the chosen set ®* of positive roots.
The literature contains other normalizations for which 7" is defined as the
submonoid of T' consisting of all elements ¢ contracting Up, i.e. such that
val(a(t)) > 0 for all & € ®*. In our notation this would be (7).

Note that G = IT"I is a submonoid of G. Indeed, if ¢,# € T" and if
A, A denote the respective images in T'/Typ € W then £(AN) = £(N\) + £(N)
by [49], Example 5.12. By the braid relations this implies ItI - It'] =
Itt'I = It'T-1t1. We let H' be the commutative subalgebra of H consisting
of all maps supported on G™.

The monoid G+ contains the submonoid P' = U;T+ of P. Denote by
¢ C o the closure of the vector chamber with apex x( containing C (cf.
[10], (1.3.10)). Given any closed vector chamber € contained in €° we let
X T (€) = GTE, viewed as a subcomplex of 2. We write 2+ = 27 (¢Y),
for short. Note that €V is the convex envelope of Tz in o7, whence €° and
€ are stable under TF. Moreover, since Uy C tUpt ! fixes txg for any t € T+
it follows from [10], Proposition 2.5.4 (iii), that Uy fixes ¢° and hence ¥
pointwise. Since G+ = IT+I = U, T+Uj we obtain 2 +(€) = P ¢ = U1 %.

Remark 4.27. If the semisimple rank of G is equal to one then 2 is a tree
and any 2 (%) is a closed half tree as considered in [16], §3.

Let F be a face of 2 contained in ¢° and let C(F) C & be the cham-
ber associated to F' as in Lemma We claim that C(F') is contained
in 4°. Otherwise, there would be a root a € ®+ with a(C(F)) < 0. Let
(Co, ..., Cp) be aminimal gallery connecting Cy = C and C,, = C(F). Since
F C CO(F)N%"Y we get a(F) = 0. Moreover, a(C) > 0 implies that there
is an index ¢ such that C; and C;y1 are separated by the wall determined
by a. If s, € W denotes the corresponding reflection then s,Cjy1 = C;
and (Co, ..., Cy, 80012, ..., 54Cy) is a gallery with F = s, F C 5,C,,. This
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contradicts the minimality property of C,, = C(F). Therefore, C(F) C €°.

Due to this result we obtain the following variants of Propositions and
Given a coefficient system F € Coeff%(2") we let F! € Coeff(</) be
as in and consider F! as a coefficient system on %€ via restriction.

Proposition 4.28. Let F € Coeff&,(2").

(i) Restricting I-invariant oriented chains from 2+ to €° induces an iso-

morphism of complexes (COT(C%”(T),]:) ,0s) —> (COT(‘K(O.) FN,0) of R-
modules.

(ii) Assume that the restriction maps tL, : FL — FL, of the coefficient
system F! € Coeff(€) are bijective for all faces F' and F of ¢° with

F' C F and C(F') = C(F). Then the complexes (Cé’r(ﬁif(f), F),0s) and

(COT(%(O.) F1),0,) are are exact in positive degrees and the natural map

= (P F) =c (25, F) = HoC (25, F))
ye 9”*

is an R-linear bijection.

Proof. The proof of (i) is identical to that of Proposition As for (ii),
the proof of Proposition carries over once we can prove analogs of [30],
Lemma 4.15 and Proposition 4.16. For any non-negative integer n let €°(n)
denote the set of faces I of € such that C'(F) and C have gallery distance
less than or equal to n. If Ch(4°(n)) denotes the set of chambers in €
whose gallery distance to C' is less than or equal to n then we have the
disjoint decomposition

') =¢"n-1)U |J D\E -1
DeCh(%9(n))

for all n > 0. Moreover, if n > 0 and if D € Ch(%°(n)) then the subcom-
plexes €°(n—1) and DU%°(n—1) of € are contractible. This follows from
the proof of [30], Proposition 4.16, because ¢ is convex and the intersection
of two star-like subsets of a Fuclidean space is again star-like and therefore
contractible. O

Let % be an arbitrary closed vector chamber contained in ¢°. Given F €
Coeff(2") and g € G we denote by ¢, the endomorphism of the complex
COT(%”J (¢),F) given by

Gy CT (L 5(6), F) = CON (20, F) 2 C(Zi0)s F) 255 C (25 (6), F).

Here the leftmost map is the extension by zero of oriented chains on 21 (%)

to oriented chains on Z". Note that this makes Ccm"(,%”(f) (¢),F) a GT-stable
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subcomplex of C"(Z(q), F). Indeed, if f € Ccor(ﬁlf(j)(‘ﬁ),]:) CC (X, F)
and (F,c) € %5(‘5) then g(f)(F,c) = ¢y g-17(f(g ' F,g'¢c)). This is zero
if [ & 271(%) because 2" (%) is GT-stable and f is supported on 3&”(5(‘5)
Thus, also g(f) is supported on ,%”(;;(‘5) More precisely, the support of

©g(f) is contained in g2 " (%) as is clear from the explicit formula

0g(f)(F,c) = { Cg,gle(f(g_lF,g_lc)), if g7LF C 277(%)

0, otherwise.

Note that if g, h € G and if F is a face of 27 (%) with g7'h=1F C 27(%¥)
then also h™'F C g2 (€¢) C 2 (%) since Z T (¥) is G*-stable. It then
follows directly from the definitions that

p1=1id and @gop =g, forall g,heGT.

Altogether, Cg?“(%(j) (€),F) is a complex of smooth R-linear G*-represen-
tations via g- f = pg(f) and H;(Z (%), F) is an object of Repf (GT) for all
i > 0. By abuse of notation we continue to write ¢4 for the endomorphism
of Hi(Z 1 (%¥),F) induced by ¢,.

Remark 4.29. The inclusion Cé’r(ﬂé"(f) (€),F) CC"(Z(a),F) of complexes
of G*-representations induces an inclusion Cé”"(%”(f) (€), F)L CCI" (2, F)!
of complexes of Ht-modules. This in turn gives rise to H "-linear maps on
the homology groups. Assume that R is a quasi-Frobenius ring. If M €
Modpy then Proposition [2.9] Theorem [3.21] and Proposition [£.28] imply that
for the closed vector chamber ¥ = % the map HO(CC"T(Q”(T),}"(M))I) —
Ho(C™(2e), F(M))') = M(F(M)) = M is an isomorphism of H "-modules.
Thus, the restriction of F(M) to 2°T determines the scalar restriction of
M to HT.

If g € G we denote by v, the endomorphism of C2" (2

*) (€¢),F) given by

Wy 1 CT (L8 (€), F) = CO (i), F) T CT (R0, F) 25 € (25 (€), F).

Explicitly, if 0 < i < d, f € cgf(%g(%),f) and (F,c) € %@3(%) then
Vg(f)(F,¢) = g1 4p(f(gF, gc)) because g2 T(€) € 27F(€). This formula
shows that

Y1 =1id and g0, =y, forall g,heGT.

Consequently, CC‘”(Q”(.)(CK),F) is a complex of smooth R-linear (G+)71-

representations via ¢! - f = 9,(f) and H;(2 (%), F) is an object of
Repr((G*)™1) for all i > 0. Again, we also denote by 1, the induced
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R-linear endomorphism of H;(Z 1 (%), F) for all i > 0. As a formal conse-
quence of the definitions we have

Ygop,=id forall g€ GT.

Note that if g € I € GT N (GT)7! then we also have g 0 1, = id, and we
will write 5 =g = 1g-1.

Assume that the ring R is quasi-Frobenius and hence artinian (cf. [23],

Theorem 15.1). We note that the more general definitions and constructions
of [40] can also be carried out over R. Thus, we let
S+ ~ BB S+

R[P*] 2 RIP N\ 1) @gpry RIP'),

in analogy to [40], §1, where this ring is denoted by A(P,). If g € P" then
we denote by 64 the image of g under the maps P R[ﬁJr] — R[[?ﬂ].

Given an object V € RepORO((FJF)_l) its R-linear dual V* = Hompg(V, R) is
a pseudocompact R-module in the sense of [12], §1, and carries the structure
of a left R[[ﬁﬂ]—module characterized by

(8- 0)(v) =L(g~"v) forall ge P  feV*andveV.

Since the ring R is selfinjective the functor V +— V* is exact. Using that
any finitely generated R-module is reflexive (cf. [23], Theorem 15.11) one
can show that it is in fact an equivalence of abelian categories between
Rep%o((FJr)_l) and the category of pseudocompact R-modules M endowed
with a continuous R-linear action P x M — M of P'. The latter extends
to an R[?Jr]]—module structure in a canonical way (cf. [21], Theorem 1.5, for
a related result). Likewise, if V € RepoRo(PJr) then the R-module V* is an

R[[(?Jr)*l]]—module in a natural way.

If € runs through the closed vector chambers contained in 4° then the
subcomplexes 2 T(%€) of 2" form a directed set with respect to reverse
inclusion. A cofinal subset is given by the complexes 2+ (t¢°) with t € T+,
Consequently, for any 0 < ¢ < d the family (Cé”"(%;;(‘ﬁ),f)*)ggggo is an
inductive system of R[[(PJF)_l]]— and R[[FJr]]—modules whose transition maps
are dual to the inclusion maps C2" (21 (¢"), F) C C" (21 (¥), F) whenever

(@) (2)
¢' C € C €Y. Thus,

(26) lim CZ(275(6), F)"
EC¢0

is a complex of R[[(?+)_1]— and R[[Pﬂ]—modules. Recall that the R[[?Jr]]-
module structure is induced by the operators v, with p € P
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Proposition 4.30. If R is a quasi-Frobenius ring and if F € Coeff¢(2")
then the complex (@ and its cohomology groups consist of étale R[[FJF]]—
modules in the sense of [40], Definition 1.2.

Proof. As in [40], Proposition 1.3, the category of étale R[[FJF]]—modules is
abelian. Therefore, it suffices to show that each member of the complex
is étale. Fixing 0 < ¢ < d and t € T, it suffices to see that the
endomorphism

Y Whogfogiowi

uEUl/tﬁlt_l
of lim . CC"T(Q”(;S(‘K),]:)* is the identity (cf. [41], Remark 3.3.1). Let 6 €
CI"(Z,

(5(55),}_)* and choose s € T such that v(s) is strictly dominant.
By definition of the transition maps in the inductive limit it suffices to see
that the linear form 3 77 i, ,—1 %7 © ¥ 0 ¢f 0 1p_1(8) coincides with ¢
upon restriction to Cgr(%;g (ts€),F). To prove this we need to see that the
endomorphism }°, 77 /y7,4-1 UO P oo u~t of CCOT(:%”(;S(%), F) restricts to
the identity on the R-submodule Cé”"(ﬁf(zg(ts%), F).

Let f € CgT(%zS(ts%),}") and (F,c) € %S(ts%) Since 2t (ts%) =
Uits€ we can write F' = ovtsF’ with v € U; and F/ C ¥. Assume
that v € Uj such that t tu=tvtsF’ C 27H(%), i.e. t lu"lvtsF' = u'F"
for some v/ € Uy and F” C €. Let g = (v/) 't lu~lvts so that F/' =
g 'F" C o/ Ng~'a/. By [10], Proposition 7.4.8, there exists an element
n € Ng(T) with n=!g € Pps. Note that n=1g = n~1sii where n='s € Ng(T)
and @ = s (u/) " tu"tvts € U. Choosing a vertex * € F’ we have
nlsi € Pp C P, and P,n~'sU = Pyn~'saU = P,U. The Iwasawa
decomposition in [10], Corollaire 7.3.2 (i), implies n=ts € Ng(T) N P,
and @ = s 'n-n"lg € UN P,. Recall from [I1], §5.2.4, that P, =
ToU, for a normal subgroup U, C P, such that the multiplication map
(UNU,) x (Ng(T)NU,) x (UNU,) — U, is bijective and such that U N U,
is generated by the subgroups U, _o(,) with a € ®7. Write u = ayby
with @ € Ty, 7 € UNUyg, b € Ng(T)NU, and y € U N U,. Then
UU = UaU = UabU and the Bruhat decomposition G = [], oy UwToU
implies b € Ty. Writing @ = afja™! - ab-y the injectivity of the multiplication
map U x T x U — G then implies ab =y = 1 and @ = aga™' € UNU,.
This is contained in the subgroup U of U generated by the subgroups Uag o
with @ € ®~ because € €. Since v(s) is strictly dominant we obtain
sUps™ 1 CU; and u v € tU 1t~ 1.

Altogether, there is a unique class u € Uy/tUit~! for which t~u=1F C
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2 H(€), namely v - tUt~1. By definition of ¢; we obtain

Z (u oprorout)(f)(F,c) = (voproov)(f)(F,c) = f(F.c)
U1t

€./
proving the claim. O

If 7 € Coeff(2") and if 0 <4 < d then C"(Z(;), F) is a smooth R-linear
G-representation and hence an object of Rep® (P) via restriction. Assume
that R is a quasi-Frobenius ring. As in [40], §2, there is a functor D from
Rep% (P) to the category of R[[(FJF)_l]]—modules given by

D(V) = lim M*,
M

where M runs through the filtered family of F+—subrepresentations of V
satisfying R[P]- M = V.

Proposition 4.31. Assume that R is a quasi-Frobenius mnf If F €
Coeffg(2") and if 0 < i < d then there is a canonical R[(P")~']-linear
surjection

(27) lig € (2

(), F) — DCT (20, F)).
ECeE0

If Fr is a finitely generated R-module for any face F of Z then the map
s an tsomorphism.
Proof. We will first show that Cé”"(,%”(;s (€), F) generates CJ" (2, F) as a
P-representation for any ¢ C €°. To see this let f € CI"(Zy, F) and note
that f is a finite sum of oriented chains f; such that f; is supported on
(Fj, £c;) for some oriented face (Fj,¢;). By Lemma [1.2) and the Iwasawa
decomposition G = UW I there is an element uj € U with u;jF; C o/, Since
T -%¢ = o there is an element g; € P with g; - F; C 4. This implies
47y € (25 (6), F) and [ = 350597y € RIP)-C(205(4), )
We thus obtain the required R[[(P+)_1ﬂ—linear map which is surjec-
tive because R is selfinjective. For the final statement assume that Fr is a
finitely generated R-module for any face F' of Z". We need to see that any
P -subrepresentation M of V = Co" (2, F) with R[P]- M =V contains
Cg’"(ﬂ&”(;; (€),F) for some closed vector chamber € C %°.
Let A C &' be the set of positive simple roots. For o« € A let A\, be the
corresponding fundamental dominant coweight characterized by (8, A\y) =
dap for all B € A. If n denotes the index of X,(T) in the coweight lattice
of ® we choose elements t, € T with v(t,) = n), for all « € A. The set
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J of closed chambers D contained in ¢° with min{(a, z) | z € D} < n for
all a € A is finite. Indeed, let ¢ = max{|(3,2)| | 2 € C,8 € ®} and write
D = wC + X with w € Wy and A € X,(T/C). Let o € A and choose z € D
such that (a, z) attains the above minimum. If 2’ € D then

0<{a,?') < [a,2' =2)|+n
= wla,w (@ =N —w(z=A)|+n<n+2c

Thus, D is contained in a compact subset of .o, proving the above finiteness
claim. Any other closed chamber in €° is of the form [] . theD with
suitable non-negative integers n, and D € J, i.e. Upes TTD = %" and
Upe,TD = T¢ = o = WC. The Iwasawa decomposition G = PWT
therefore implies 2 = GC = UDEJP D. Ifwelet J;={Fe 2| FC
D for some D € J} then we obtain P'J; = UyTHJ; = U1 %0 = 2:1(6°)
and PJ; = 2;. As a consequence,

V=Cl(24),F) =2 Y indD

FeJ;

PP} (er ®r FF)

as a P-representation where e is as in the proof of Proposition Assume

that any Fp is finitely generated over R and put Vi = indZ (er Qr FF).

PNP},
By [40], Lemma 2.3, the P-representation Vp is generated by its P _subre-
presentation Mp = M N Vg. Since the underlying R-module of ep Qg Fr is
finitely generated we can argue as in [40], Lemma 3.1, and find an element
tp € Tt such that P tp - (er ®p Fr) € M. Setting t = [[pc, tr € T+
we see that M contains the subspace of all oriented chains supported on
{pt(F,£1) | p € P F ¢ Ji} = %g(t%o) because P tJ; = UtT+J; =

U t6 = 2,7 (t€"). Therefore, Cgr(ﬁif(zg(t%o),]:) C M, as claimed. O

Given an H-module M we now study the exactness properties of the complex

of étale R[[Fﬂ]—modules it 7 = F(M). Our results in this direction
are limited by the corresponding exactness results for CZ"(Z(q, F(M)) in

Proposition [£.14]

Proposition 4.32. Assume that R is a quasi-Frobenius ring in which p is
nilpotent and that the semisimple rank of G is equal to one. If M € Modp
then the compler lim_, CC"T(%”(;;(%),}"(M))* is exact in positive degrees. If

M is non-zero then its 0-th cohomology group does not vanish.

Proof. The acyclicity simply means that the map

or +
iy C(Z )
ECE0 GCE0

(%), F(M))" — lim CZ" (23,

5(%), F(M))*

is surjective. By the exactness of hgn and (-)* this amounts to showing

that the map CC‘”(,%”('B (€),F(M)) — Cg’“(,%(g) (¢),F(M)) is injective for
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any vector chamber 4. However, this is simply the restriction of the map
CIM( 2y, F(M)) — C"(Z(0y, F(M)) which is injective by our hypotheses
and Proposition

Let t € T" be an element for which v(t) € X,(T/C) is strictly dominant. If
% is a vector chamber contained in 4° then there is a non-negative integer
n with 2T (t"€°) C 2+(¥). Since Cé’r(%”(f) (t"€°), F(M)) is the image

of the endomorphism ¢} of CgT(%f),F (M)) the 0-th cohomology group of

the complex lim  C Or(ﬁlf(f) (¢),F(M))* is isomorphic to

o Le
limg Ho (2", F(M))",
n>0
where the transition maps are given by ;. If M is non-zero then so is the
R-module Hy(2™, F(M)) because M = F(M)L — Ho(2 ", F(M))" by
Theorem [3.21] and Proposition From this point on, the non-vanishing
statement is an exercise in linear algebra. Namely, let V be any non-zero
R-module and let ¢ be an injective R-linear endomorphism of V. We claim
that the R-module hﬂn>0 V* is non-zero if the transition maps are given
by ¢*. In order to see this we claim there is an R-linear map 6 : V — R
such that 6 o "™ # 0 for all n > 0. The image of § under the canonical

map V* — lign>O V* will then be non-zero. In order to construct § we first

consider the case that the submodule W = N,>0im(¢") of V is non-zero.
Since R is selfinjective any finitely generated submodule Wy of W is reflex-
ive (cf. [23], Theorem 15.11). Choosing Wy # 0 there is a non-zero element
dp € Wy Since R is selfinjective dp can be extended to a linear form § € V*
with the required properties.

Now assume Np>oim(p™) = 0. Since V # 0 and since ¢ is injective we have
im(p" 1) S im(p") for all n > 0. For any n > 0 choose v, € im(¢™) with
vp, & im(p™*1) and set V,, = > _ Rup,. We will inductively construct
linear forms o, : V;, = R with d,+1|y, = 0n and 6,(v,) # 0 for all n > 0.
Since Vo # 0 we have V" # 0 as above and choose 0 # Jg € V' arbitrary.
Assume that d,, has been constructed. Since R is selfinjective we can extend
dp to a linear form o), : Vo1 — R. If 0] (vpt1) # 0 we set 0pp1 = 0.
Otherwise, we choose a non-zero linear form 4! : V,,41/V;, — R, using that
Unt1 & Vi. We view 0] as an R-linear form V41 — R vanishing on V,, and
set Op41 = 0), + 9. We thus obtain a linear form oo : Y, <o Rv, — R with
Soo(vn) # 0 for all n > 0. The selfinjectivity of R allows us to extend 64 to
an R-linear map ¢ : V — R with the required properties. ]

For any F € Coeff(2") and any i > 0 the smooth R-linear G-representation
H;(Z,F) can be viewed as an object of Rep% (P) via restriction. In the
situation considered in [40], Schneider and Vignéras associate with this ob-

ject a family of étale R[[?Jr]]—modules (D'H; (%2, F))j>0. These are related
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to the complex of étale R[[Fﬂ]—modules as follows. As before, we let
Z = C(K) where C is the connected component of the center of G.

Proposition 4.33. Assume that K = Q, and that R = o/n"o for some
positive integer n where o is the valuation ring of a finite field extension of
Qp. Let F € Coeffg(X2").

(i) If 0 < i < d and if j > 0 then DI (CY" (2, F)) = 0. If Z acts on Fp
through a character for any face F of 2 then we have DO(CCOT(C%”@),}")) =
D(C" (20, F))-

(ii) Assume that the R-module Fr is finitely generated and that Z acts on

Fr through a character for any face F of Z . Then there is an Fa-spectral
) ++

sequence of étale R[P " ]-modules

DIH(2, F) = W ( lim C"(2(€), F)").
CCeO

If the semisimple rank of G is equal to one and if F = F(M) for some
M € Modgy whose underlying R-module is finitely generated and on which
R[ZI/I) C H acts through a character then this spectral sequence degener-
ates. In this case the étale R[[ﬁ+]] -module DIHo(2", F(M)) is the j-th coho-
mology group of the complex (@ In particular, we have D'Ho(2 , F(M)) =
0 for all j > 1 with Ho(2 , F(M)) = X @y M by Proposition [{.16 (iii).

Proof. In order to see that the P-representations C2" (%), F) are acyclic for
the o-functor (D7);>¢ we generalize the proof of [40], Lemma 11.8 (i). Let
G denote the direct product of Z and the group of K-rational points of the
universal cover of the derived group of G (cf. [5], Proposition 2.24). We let
f : G — G denote the canonical group homomorphism. By [5], Théoréme
2.20, we can choose a parabolic subgroup Q and maximal K-split torus S
such that on K-rational points f restricts to morphisms Q = Q(K) — P
and S = S(K) — T. By the proof of [5], Théoréme 2.20, we may identify
the unipotent radicals of Q and P. Letting ST = {s € S | sUys~! C Uy}
and Q+ = U1 5+ we obtain f(ST) = £(S)NT+ and f(QF) = f(Q) NP .

Given V € Rep%(P) we view V as a representation of @ via inflation
along f. We claim that the R[(QT)~!]-module D(V) (computed from
the Q-representation V using the monoid Q%) is the scalar restriction of
the R[[(PJF)_I]]—module D(V) (computed from the P-representation V using
the monoid PT) along the ring homomorphism R[(Q*)™!] — R[[(F+)’1]]
induced by f. To see this we first show that T = f(S)T" and thus
P = f(Q)TT. Reducing modulo Ty the first of equality is equivalent to
X, (T) = X (T) + X.(S). Note that f identifies X,(S) with a finite index
subgroup of X, (T). Let n denote the index of X, (S) in the coweight lattice A
of ®. We extend a Z-basis of X,(C) by the fundamental dominant coweights
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to a Z-basis (\;)icr of A. If A =" r;\; € X, (T) choose an integer m with
nm+r; > 0for alli € I. Then N =Y, nm); € X.(S), \+ N € X (T) and
A=A+ XN =X € XHT)+ X.(S) as claimed.

Now let M be a P+—subrepresentation of V which generates V over P.
Then M is Q'-stable with R[Q] - M = R[f(Q)]- M = R[P]-M =V
because M is stable under T+ C P’ and f(@Q)T*T = P. Conversely,
let M be a Q'-subrepresentation of V which generates V over . The
monoid X (T) is finitely generated by Gordon’s lemma. Moreover, the in-
dex (T : f(9)) is finite because f is an isogeny. Therefore, also the index
(To : £(S)NTy) is finite and there are finitely many elements ¢y, ..., t, € T"
with 7 = UL, ¢; f(ST). Let M’ be any finitely generated R-submodule of
M. Since ) ;t;M" C V = R[Q]M we can argue as in [40], Lemma 3.1,
and find an element s(M') € f(S™) with }°; ¢;s(M')M" C M. This implies
R[PT]s(M')M' C M because T+ = Ujt; f(ST) and because M is QT -stable.
Now consider the P -subrepresentation N = >om R[PJF]S(M "M’ of V in
which the sum runs over all finitely generated R-submodules M’ of M. If
v € V = R[Q]M there are finitely many elements ¢; € @ and m; € M with
v =Y ,¢m Setting M’ =Y. Rm; we have s(M')m; € N for all i and
therefore v = . ¢;s(M’)"1s(M')m; € R[Q]N. In particular, R[P|N = V.
Since N C M a cofinality argument proves our claim concerning D(V'). As
a formal consequence, we have analogous assertions for D’(V) if j > 0.
Namely, the universal resolution of V' € Rep¥ (P) in 0], §4, is also acyclic
for the functor D computed in Rep¥(Q). Since the d-functor (D7);>¢ is
coeffaceable this resolution may be used to compute D?(V) in Rep¥(Q).

Note that 2 is also the semisimple Bruhat-Tits building of G and that G
acts on 2" through f. Likewise, we may use f to view F as a G-equivariant
coefficient system on 2. The G-representation CI" (2, F) we obtain is
the inflation of the G-representation we need to analyze. Altogether, our
arguments allow us to assume in (i) that G is the direct product of its center
and its simply connected derived group.

Passing to a suitable subset of J; as introduced in the proof of Proposition
M we see that the P-representation CJ"(2(;), F) is a finite direct sum of

representations of the form indg (er ®g FF). Since the derived group

NP}
of G is simply connected we have Q = Z/(Z NTp) and PIJE = ZPr by @
To ease notation let us put Uy = er ®r Fr and Py = P N Pr so that
Pn PIT-, = Z Py. Note that Zy = PyN Z is the maximal compact subgroup of
Z and that Z/Z is a free abelian group of finite rank. Choosing generators
Cly---,C € Z/Zy the elements (3 — 1,...,( — 1 € 0[Z/Zp] form a regular
sequence and we consider the associated exact and o[Z/Zp|-linear Koszul
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complex
0— /\0®0 olZ/Zy) — 0o — 0.

By construction it is the tensor product of o-linearly split short exact se-
quences hence is o-linearly split itself. We view it as an exact sequence
of smooth ZPy-representations via ZPy — ZPy/Py = Z/Zy. Applying
the functor indIZDP0 (Up ®, (+)) and using the isomorphism indlZDSD °(Uy) =
Uo ®o 0[Z/Zy] given by [ = 3. c7/7 2f(2) ® z, we obtain the exact se-

quence

0 — /\ 0®, indf, (Uo) — ind5p, (Up) — 0

in Rep®(P). Let us denote by D7(P,-) the functors of [40], §4, with re-
spect to the subgroup Py of P. Note that Py = To(U N Py) by [11], §5.2.4.
If » = 1 then the arguments given in the proof of [40], Lemma 11.8, show
that D’ (P, indgpo(Ug)) = 0 for all j > 1. The general case is proved in-
ductively by splitting up the above resolution into short exact sequences. It
now follows from the base change property in [40)], Proposition 7.1, that also

DJ (indgpo(Uo)) = 0 for all j > 1. This uses that the ring homomorphisms
A(P;) — A(PY) considered in [40], §7, are faithfully flat.

In order to prove the second assertion in (i) we need to see that the natural
map D(ind?PO(UO)) — DO(indEPO(UO)) is bijective. The same base change
techniques together with equation (12) of [40] allow us to work with Py in-
stead of with PN I. Note that by assumption Z acts via a central character
not only on Uy but on the entire P-representation indgpo (Uy). We let G’
denote the group of K-rational points of the derived group of G and set
P =PnG,T"=TNG and P} = PyNG'. Note that U is also the unipo-
tent radical of P’ so that P, = (TonG")(U N Py) and the submonoid P of
P’ defined by P} is equal to P =P NG NowifV isan arbitrary object
of Rep® (P) on which Z acts by a central character then an R-submodule M
of V is P -stable (resp. generates V over P) if and only if M is P stable
(resp. generates V' over P/) because P = ZP and PT = ZP'". As above this
implies that the scalar restriction of D(V') along R[[(P/+)_1]] — RH(F+)_1]]
can also be computed in the category Rep%’ (P/) using the monoid P Since
Z also acts by a central character on any member of the universal resolution
of V € Rep¥ (P) in [40], §4, the above coeffaceability arguments show that
we have an analogous statement for the modules D’(V'). In other words,
in order to show that D(indEPO(UO)) — Do(indgpo(Uo)) is bijective we may
view ind?PO(Uo) as a representation of P via restriction. However, there is
a P'-equivariant isomorphism indEPO(UO) = indﬁ(; (Up) and the assertion is
proved in [40], Lemma 4.3. Note that our assumption on central characters
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is stronger than the hypothesis of [40], Lemma 11.8 (ii), whence our proof
is easier.

As for (ii), there is an isomorphism

ling Cf' (775 (€): ) = DICE' (210 F) = D'(C (710 )
of complexes of Rﬂ(?ﬂ‘ﬂ]—modules by (i) and Proposition Note that
both sides are étale R[[?ﬂ]—modules. The R[[(FJF)*I]]-linearity implies that
the canonical left inverses of the étale module structures coincide (cf. [40],
Remark 6.1, as well as the proof of Proposition . But then the lin-
earization isomorphisms in [41], Definition 3.1, have identical inverses. This
implies that the above isomorphism is R[[ﬁﬂ]—linear. Therefore, we can ap-
ply the cohomological formalism developed in [40], §4. We take the functorial
resolution Z,(-) of each member of the oriented chain complex CZ"(Z 4y, F),
apply the functor D(-) and obtain the double complex D(Zo(CZ"(Z(a), F)))-
Consider the two standard spectral sequences converging to the cohomology
of the associated total complex.

Fixing j > 0 the Ej-terms of one of them are given by the cohomology
groups of the complex D(Ze(CS"(Z(;), F))). Since the functor Zp = indg1
is exact, the snake lemma and induction on j show that the functors ker p;
considered in [40], §4, are exact for any j > —1. By [40], Lemma 4.1, the
functors D o Z; are exact for any j > 0. Therefore, the Eq-terms of the first
spectral sequence are D(Z;(H;(2",F))). Passing to the cohomology in the

j-direction gives the required Eo-terms D7 (H;(2", F)).

The cohomology groups of the total complex are now computed using the
other spectral sequence. Its E)-terms are D7 (CS"(2{;), F)). According to (i)
the second spectral sequence degenerates. Its abutments are the cohomology
groups of the complex

DY(C(Z(a)s F)) = D(C (Z(a), F)) 2 L " (25(€), F)*".
€
The final assertion of the proposition follows from Proposition Note
that if F is a face of 2~ with F' C C then F(M)p is a quotient of Xp®p, M
by Proposition (ii), hence is a finitely generated R-module. Moreover,
since F (M) is generated by F(M)L = M over P} (cf. Lemma (i) and
Theorem [3.21]) the group Z acts on F(M)p by a character (cf. Remark [L.6)).
Both conditions hold for any F' because of Lemma [I.2] O

Remark 4.34. Assume K = Q, and R = o/n"o for the valuation ring
o of some finite field extension of @, and some positive integer n. One
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can then apply the complete localization and specialization techniques of
[40] to the complex of étale R[[Fﬂ]—modules. One obtains a complex
of not necessarily finitely generated (¢, I')-modules in the classical sense of
Fontaine. Assume more specifically that G = GL2(Qp), n = 1 and that
V € Reph(G) is admissible. We then have V = X @y VI = Ho(2', F(V1))
for a suitable choice of o as follows from Proposition [£.16] (iii) and [26],
Théoreme 1.2 (a). If V admits a central character then the complex ([26)
with F = F(V!) computes the étale R[[?ﬂ]—modules DI(V) for j > 0 (cf.
Proposition 4.33)). In fact, D/(V) = 0 for j > 0. Moreover, the results of
[40], §11, show that DY(V) gives rise to the (¢, T')-module associated to V
in Colmez’s p-adic local Langlands correspondence for GL2(Q)) (cf. [14]).
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