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Abstract. Let p be a prime number, L a finite extension of the field Q,
of p-adic numbers, K a spherically complete extension field of L and G the
group of L-rational points of a split reductive group over L. We derive several
explicit descriptions of the center of the algebra D(G, K) of locally analytic
distributions on G with values in K. The main result is a generalization of
an isomorphism of Harish-Chandra which connects the center of D(G, K) with
the algebra of Weyl-invariant, centrally supported distributions on a maximal
torus of G. This isomorphism is supposed to play a role in the theory of locally
analytic representations of G as studied by P. Schneider and J. Teitelbaum.

Introduction

Let p be a prime number, L a finite extension of the field Q, of p-adic numbers,
K a spherically complete extension field of L and G a locally L-analytic group
of finite dimension with center Z and Lie algebra g.

The K-algebra D(G, K) of locally analytic distributions on G plays a central
role in the theory of locally analytic representations of G on locally convex K-
vector spaces which was given a systematic treatment by P. Schneider and J.
Teitelbaum (cf. [25] and [26]). Such representations appear in the cohomology
of p-adic symmetric spaces (cf. [27]), as an important tool of M. Emerton’s
construction of the Eigencurve of Coleman-Mazur (cf. [13]) and, most recently,
in C. Breuil’s hypothetical p-adic Langlands program (cf. [5]).

This paper is devoted to the study of the center of the ring D(G, K). Our ap-
proach relies on the observation that for locally analytic distributions on G there
is a well-defined notion of support and that the support supp(d) is a compact
subset of G for any distribution 6 € D(G, K). It follows from the definition of
the convolution product in D(G, K) that any invariant distribution, i.e. any
element of D(G, K)%, is supported on a union of relatively compact conjugacy
classes of G. If G is the group of L-rational points of a connected, reductive,
linear algebraic group over L all of whose simple factors are L-isotropic (e.g. an
L-split group) then the only such classes of G are the trivial ones, i.e. those
belonging to the elements of Z (Sit’s theorem). Therefore, we are led to the
investigation of the K-algebra D(G, K)z of centrally supported distributions
on G.

If 3 denotes the Lie algebra of Z then we let U(3, K) (resp. U(g, K)) be the



subalgebra of D(Z, K) (resp. D(G, K)) consisting of distributions supported in
the unit element. There is a natural continuous K-linear map

D(Za K)®U(5,K),LU(97 K) - D(Gv K)Z

of locally convex D(Z, K)-U (g, K)°P-bimodules (here ¢ indicates the inductive
tensor product topology). It is the main technical result of our work that under
the assumption that K is discretely valued this map is a topological isomorphism
(cf. Proposition 1.2.12). Its proof relies for one thing on certain compatibility
conditions for global charts of small open subgroups of G and Z, respectively (cf.
Proposition 1.3.5 and Corollary 1.3.6). On the other hand, we make extensive
use of the fact that D(G, K) is a K-Fréchet-Stein algebra (a notion introduced
by P. Schneider and J. Teitelbaum) and a structure theorem of D(G, K) as a
module over U(g, K) after a certain completion process. The latter is due to H.
Frommer who proved it for Q, as a ground field. We generalize it to any finite
extension L|Q, (cf. Theorem 1.4.2).

G acts on U(g,K) and D(G,K)z. If G is an open subgroup of the group
of L-rational points of a connected, algebraic group over L then we obtain a
topological isomorphism

D(Z, K)®U(3,K),LU(ga K)G - D(Ga K)g

of K-algebras (cf. Theorem 2.2.1). If moreover G satisfies the hypotheses of
Sit’s theorem then D(G,K)® = D(G,K)% and it remains to examine the in-
finitesimal center U(g, K)©.

Consider g as an abelian locally L-analytic group and let S(g, K) be the sub-
algebra of D(g, K) consisting of distributions supported in 0 € g. S(g, K) and
U(g, K) carry actions of G and g. We show that Duflo’s famous isomorphism
S(g)® — U(g)? extends to a topological isomorphism S(g, K)? — U(g, K)? of
K-Fréchet algebras (cf. Proposition 2.1.5; S(g) and U(g) denote the symmetric
and the universal enveloping algebra of g, respectively). If g is split semisimple
with split maximal toral subalgebra t and corresponding Weyl group 20 then
20 naturally acts on the algebra S(t, K) of locally analytic distributions on t
supported in 0 € t. We show that the classical isomorphism S(g)? — S(t)%
extends to a topological isomorphism S(g, K)? ~ S(t, K)¥ of K-algebras (cf.
Theorem 2.1.6). It follows that

Ulg, K)? ~ S(t, K)%.

Even more is true: Just as S(t)% is a polynomial ring in n := dimy,(t) variables,
S(t, K)¥ is the algebra of holomorphic functions on the rigid analytic affine
space (A% )" of dimension n over K (loc.cit.).

If G is the group of L-rational points of a connected, split reductive L-group
G then the above results enable us to give two different, explicit descriptions
of D(G,K)%. Using results on the Fourier transform of Z obtained by M.
Emerton, P. Schneider and J. Teitelbaum we deduce the existence of an explicitly
computable quasi-Stein rigid analytic K-variety X and a continuous, injective
homomorphism of K-algebras

D(G,K)Y — O(Xk)



with dense image (cf. Corollary 2.3.3 and Remark 2.3.4). If T is a maximal
L-split torus of G, T := T(L) and W := Ng(T)/T the corresponding Weyl
group then we also construct a topological isomorphism

D(G,K)® ~ D(T,K)¥

of separately continuous K-algebras extending Harish-Chandra’s isomorphism
U(g)® ~ S(t)"V (cf. Theorem 2.4.2). Since the latter plays a fundamental role
in the representation theory of the Lie algebra g our extension is hoped to be
of importance for the theory of locally analytic representations of the group G.
We point out that in the theory of smooth representations — subsumed by the
locally analytic theory — such an isomorphism does not exist.

The present work comprises parts of the author’s thesis. He is deeply indebted
to Prof. Dr. P. Schneider without whose guidance it would not have come into
existence. He is also grateful to Prof. Dr. S. Bosch and Dr. M. Strauch for
many helpful discussions, as well as to two anonymous referees for helping to
improve an earlier version of this article.

Conventions and notation. Throughout this paper p denotes a prime number
and L a finite extension of Q. Let oy, be the ring of integers of L with maximal
ideal m;, and uniformizer 7;,. We assume the valuation w on L to be normalized
such that w(wy) = 1. Let further e := w(p) be the ramification index of the
extension L|Q, and m its degree. The absolute value |-| of L corresponding to w
is assumed to be normalized through |p| = p~!. We let K be a fixed spherically
complete extension of L which for many results will have to be assumed to be
discretely valued (cf. subsection 1.4, in particular). Let ok denote its ring of
integers. We assume the absolute value | - | on K to extend the one on L. If
V is a locally convex vector space over K then we let V' := Hom$"(V, K)
denote the space of continuous functionals on V. We write V; for the locally
convex K-vector space V' endowed with the topology of strong convergence. G
will always be a locally L-analytic group of finite dimension d with center Z.
The Lie algebra of Z will be denoted by 3. We also fix an exponential map
exp: @ > @G defined locally around zero on the Lie algebra g of G.

1 Locally analytic distributions

1.1 Functoriality

Recall that a topological Hausdorff space M is called (strictly) paracompact if
any open covering of M admits a locally finite refinement by (pairwise disjoint)
open subsets. Let M be a paracompact, locally L-analytic manifold of finite
dimension d. We note that in this situation M is automatically strictly para-
compact (cf. [23], p. 35). The locally convex K-vector space C**(M,K) of
locally analytic functions on M with values in K is the locally convex inductive
limit
Co(M, K) = limy F (K)

where I runs through the inductive system of all “indices”. An index I is a family
of charts {(D;, ¢;)}icr of M such that (D;);er is a covering of M by disjoint



open subsets and such that each ¢;(D;) is an affinoid ball in L¢. Further,

Fi(K) =[] Fou(K)

el

is the locally convex direct product of the K-Banach spaces F,, (K) of functions
f + D; — K such that f o <pi_1 is a K-valued rigid analytic function on the
affinoid ball ¢;(D;). The space of locally analytic distributions on M is the
locally convex K-vector space

D(M, K) := C**(M, K),.

If (M;);crs is a covering of M by disjoint open subsets M; then there is a topo-

logical isomorphism

(1.1) C™(M, K) ~ ] C*™(M;, K)

iel
dualizing to a topological isomorphism

(1.2) D(M,K) ~ P D(M;, K)
i€l

(cf. [14], Korollar 2.2.4). If M is compact, then C**(M, K) is a K-vector space
of compact type and, in particular, is reflexive (cf. [25], Lemma 2.1 and [22],
Proposition 16.10). In this case D(M, K) is a nuclear Fréchet space (cf. [25]
Theorem 1.3).

There is an embedding M — D(M, K), sending m € M to the Dirac distribu-
tion 0y, := (f — f(m)).

Lemma 1.1.1. The subspace K[M] of D(M, K) generated by all Dirac distri-
butions 0,,, m € M, is dense.

Choosing a covering (M;);ec; of M by disjoint compact open subsets, (1.1) shows
that C'*"(M, K) is reflexive (cf. [22], Proposition 9.10 and Proposition 9.11).
Hence the proof of Lemma 1.1.1 can be done as in [25], Lemma 3.1.

Let N, M be paracompact, locally L-analytic manifolds of finite dimension and
¢ : N — M be a morphism. ¢ defines a K-linear map ¢* : C**(M,K) —
C"(N,K) via ¢*(f) == foyp for f € C*"(M,K). Using the definition of
C(M,K) and C°*(N,K) via indices one can show that ¢* is continuous
with respect to the locally convex topologies defined above (cf. [23], p. 65
or [14], Bemerkung 2.1.11). Thus, ¢* dualizes to a continuous K-linear map
v« : D(N,K) - D(M, K).

Proposition 1.1.2. Let ¢ : N — M be a closed embedding of paracompact,
locally L-analytic manifolds of finite dimension. Then ¢* : C"(M,K) —
C*(N,K) is a strict surjection and ¢, : D(N,K) — D(M, K) is a topolog-
ical embedding.

Proof: Let f € C**(N,K) and a € N. There is an open neighborhood
U, of a in N, an open neighborhood V, of ¢(a) in M and a locally ana-
lytic manifold Z, with the following properties: ¢ restricts to a morphism



wq + Uy — V, and there is an isomorphism g : V, — U, x Z, such that
pry, © g o @, = idy, (cf. [7], 5.7.1; here pry; is the projection onto Ug). Tt
follows that f|U, = ¢ ((pry, © 9)* (fIUa)) € im(p},).

Let C be a closed and open subset of M with ¢(N) C C C UgzenVa (cf. [23], p.
37). Choose a refinement (V;);cr of the open covering (CNV,)qen of C consist-
ing of disjoint open subsets V; of C. For each i € I choose a point a € N such
that V; C V,. There is a function g, € C*(V,, K) such that ¢%*(ga.) = f|Ua.
Set gi := ga|Vi € C"(V;, K) and gpp\¢ := 0 € C(M \ C, K). Then the family
9 = (9amn\c» (9i)ier) € C(M, K) satisfies ¢*(g) = f, proving the surjectivity
of ¢*.

If (M;);er is a covering of M by disjoint compact open subsets, N; := ¢~ (M;)
and ¢; := ¢|N; for i € I then ¢* is open if and only if all ¢! are. Hence we may
assume M and N to be compact.

In this case both C**(M, K) and C**(N, K) are locally convex K-vector spaces
of compact type. In particular, they carry the locally convex final topology with
respect to a countable family of BH-spaces. Therefore, the claim follows from
[22], Proposition 8.8, and the surjectivity of ¢*.

If (M;)icr and (N;);er are as above then @, is the direct sum of the maps
(pi)s : D(N;, K) — D(M;, K). Since ¢} is strict surjective and (¢;)« is the
corresponding dual map, (p;). is a topological embedding according to [25],
Proposition 1.2 (i). The same is then true for ¢, by [22], Lemma 5.3 (i). O

In the situation of Proposition 1.1.2 we will from now on write D(N,K) C
D(M, K) for the topological embedding ¢, : D(N,K) — D(M, K) of locally
convex K-vector spaces.

If we assume M = G to be a finite dimensional, locally L-analytic group then
D(G, K) carries the structure of a unital, associative K-algebra with separately
continuous multiplication such that the natural inclusion K[G] — D(G, K)
becomes a homomorphism of rings (cf. [25], section 2). It is explicitly given by

(1.3) (0-0")(f) =0"(g" — d(g— flg9))

with 6,0’ € D(G,K) and f € C**(G, K). If Gy is an open subgroup of G then
according to (1.2)

D(G.K)~ P D(g-Go,K)~ P 4, D(Go,K).
ge€G/Go 9€G/Go

If H is a closed locally L-analytic subgroup of G then the topological embedding
D(H,K) C D(G, K) is a homomorphism of algebras.

1.2 The notion of support

Definition 1.2.1. The support supp(d) of a distribution § € D(M, K) is the
complement of the largest open subset U of M such that 6(f) = 0 for all
feC™M,K) with supp(f) CU. If C is a subset of M and V C D(M,K) a
subspace then we denote by Vi the subspace of all distributions § € V whose
support is contained in C. Similarly, if W is a subspace of C**(M, K) then W¢
denotes the subspace of all locally analytic functions f € W with supp(f) C C.



Remark 1.2.2. The existence of supp(d) for § € D(M, K) follows from the
strict paracompactness of M: Let Uy, U be open subsets of M such that §(f) =
0 for all f € C*(M,K) with supp(f) C Uy or supp(f) C Uz, and let f €
C*(M, K) be supported on Uy UUs. There is a closed and open subset A of M
with supp(f) C A C U UU; (cf. [23], p. 37). Choose a refinement (V;);es of the
covering (U; N A,Us N A) of A consisting of disjoint open subsets V; of A. Then
flA € C™(AK) = [, C(Vi, K), ie. flA = (fi)ier with f; € C*(V}, K)
for all i € I. Set f/ := (f/)icr, j = 1,2, with f} == 0if V; € Uy N A (ie.
VinUy =0), fl = fifV, CUNA, f2:=0if V; CU1NAand f? = f; if
Vi € Uy N A. Then f1, f2 € C(A, K) with f! + f2 = f|A. Extending f*, f2
by zero outside of A we obtain functions f!, f2 € C*(M, K) with f! + f2 = f
and supp(f?) C U;, j = 1,2. By assumption 6(f) = 0(f!) +4(f?) = 0.

Remark 1.2.3. It follows from (1.2) that all locally analytic distributions on
M are compactly supported, i.e. supp(d) is a compact subset of M for all
e D(M,K).

If M = G is a locally L-analytic group, g € G and § € D(G, K) then according
to (1.3)

(1.4) supp(dq - 6) = g - supp(d) and supp(d - §4) = supp(d) - g.
More generally we still have:
Lemma 1.2.4. If 61,00 € D(G, K) then supp(d - d2) C supp(dy1) - supp(da).

Proof: Let g € supp(d1-92). Then for any open subgroup H C G there is a func-
tion f € C(G, K) supported on gH with (0102)(f) = da(h — 61(Rrf)) # 0
(here Ry, is the right translation operator associated with h). Hence there are
elements v, € supp(d2) and h € H such that supp(d1) N (supp(f)-h~ -v5') # 0.
Since supp(f) C gH there is ' € H and ;1 € supp(d1) such that v =
gh'h= vt e, g = yiyh(R)~1. Tt follows that g € supp(dy) - supp(da) be-
cause H is arbitrary and supp(dy) - supp(d2) is closed (even compact). O

For a closed subset C of G the locally convex K-vector space C&(G, K) of
generalized germs in C' is the quotient space

(1.5) Ce(G, K) := C"(G, K)/C*™™(G, K)e\c

(cf. [14], Definition 2.3.3). If C is compact then there is a topological isomor-
phism
Cé(G, K) = limyC*"(U, K)

with U running through the inductive system of open subsets of G containing
C and transition maps defined by restriction of functions. In this case the
inductive limit topology on C4(G, K) is Hausdorff. If C' = {g} is a singleton
we write C¢’(G, K) instead of C’?g}(G, K).

Lemma 1.2.5. C*(G,K)¢ is a closed subspace of C*(G, K) for any subset
C of G. If C is closed then D(G, K)¢ is a closed subspace of D(G, K) and there
is a topological isomorphism

(1.6) D(G,K)c ~ CE¢(G, K)y,.

If C is compact then this is an isomorphism of nuclear K-Fréchet spaces.



Proof: Let C' be a subset of G. As mentioned in [loc.cit.], section 2.3.1,
C(G,K)c¢ is equal to the intersection of the kernels of all continuous sur-

jections C**(G,K) — Cy(G,K) , g € G\ C, hence is closed in C*"(G, K).
If C is closed in G then D(G, K)¢ is the orthogonal space of C(G, K)e\c¢
with respect to the natural pairing

D(G,K) x C"(G,K) — K

so that D(G, K)¢ is closed, as well. Further, the reflexivity of D(G, K) implies
by means of [6], IV.2.2 Corollary, that

(D(GvK)C)Z = (GvK);)/D(G7 K)OC

where D(G, K)g, denotes the orthogonal subspace of D(G, K)c with respect
to the pairing D(G, K), x D(G,K) — K. Since C*(G, K) is reflexive and
C(G, K)g\c is closed D(G, K)¢, ~ C*(G, K)o = C*(G, K)g\c- It fol-
lows that

(D(G,K)c), =~ C*™(G,K)/C*™(G, K)a\c-

If Gy is a compact open subgroup of G then by (1.2) and [22], Lemma 5.3
D(G,K)c = @gec/c,D(9Go, K)gconc

showing that D(G, K)¢ is reflexive (D(gGo, K)g¢a,nc is a closed subspace of the
nuclear Fréchet space D(gGo, K)). Thus, (1.6) follows. The last claim follows
from C¢(G, K) being of compact type if C' is compact (cf. [14], Satz 2.3.2). O

Corollary 1.2.6. If C is a closed subset of G such that 1 € C and C-C C C
then D(G, K)c is a closed subalgebra of D(G, K). If in addition C is compact
then D(G, K)¢ is a nuclear K-Fréchet algebra. O

Remark 1.2.7. Let Gy be a compact open subgroup of G. If H is a locally
L-analytic subgroup of G and Hy := H N Gy then as seen above

DG, K)g = @ D(9Go,K)gconn
geG /Gy

as locally convex K-vector spaces. Noting that D(gGo, K)g¢q,nm # 0 if and
only if gGo N H # () we get

(1.7) DG K)p= @ 6n D(Go,K)n,.

heH/Hy

According to [14], Bemerkung 3.1.2 and Satz 3.3.4, the Lie algebra g of G acts
on C*"(G, K) via continuous endomorphisms defined by

(7)) = 5 Flemp(~1x)g)l o for € g and [ € C™(, K).

This action extends to an action of the universal enveloping algebra U(g) of g
on C"(G, K).

According to Lemma 1.2.5 and Corollary 1.2.6 CY(G,K);, ~ D(G,K)1y is a
K-Fréchet subalgebra of D(G, K). Fixing an ordered L-basis X = (r1,...,td)



of g the action of U(g) on C**(G, K) leads to the following explicit description
of CY(G, K);, (cf. [25], Lemma 2.4):

CY(G,K), = Z doX%| do € K,¥r > 0 :sup|dy - a!|r~1% < oo
aeNd «

where for a = (ay,...,aq) we set |a] ;= a1 + ...+ a4 and a! == aq!- ... a4l
Further, X := " -- -1 is viewed as a distribution via

(1.8) X)) = ((—r1)™ o...o(=ra)*(f))() for f € C(G, K).

Finally, the Fréchet topology of CY (G, K)j is defined by the family of norms
(V.)r>0 with v.(32,, doX?) = sup, |dq - al|r~lel.

Letting (3 — 3) denote the unique anti-automorphism of U(g) ® K extending
multiplication by —1 on g, the natural homomorphism (3 — (f — 3(f)(1))) :
U(g) ®r K — CY(G, K); of K-algebras is injective.

Proposition 1.2.8. U(g) ®, K is dense in CY (G, K);,. We have
(1.9) C¥(G,K), = {Z doX%| do € K, ¥r > 0 : sup |do|r~ 1 < oo}
a e}

and the Fréchet topology of CY (G, K); can be defined by the family of norms
(Ur)rs0 with v (3, daX*) = sup,, |da|r~1ol.

Proof: Since |a!| < 1 the right hand side of (1.9) is contained in CY (G, K)j.
Conversely, [a!|~! < pl@l/®=1) so that if sup,, |da|r~1* < oo for all r > 0 then
also sup,, |do/a!|r~1%l < 0o for all 7 > 0. This proves the reverse inclusion as
well as the fact that the two families of norms (v).),~0 and (v,.),>¢ are equivalent.
The density statement is clear. (Il

Remark 1.2.9. When working with C{¥ (G, K); we will henceforth use the
description given by (1.9) and assume its topology to be defined by the family
of norms (v,)r>o. To simplify notation we write U(g, K) := CY(G, K)j.

Lemma 1.2.10. If C is a closed subset of G then the U(g, K)-submodule of
D(G, K)¢ generated by all Dirac distributions ., ¢ € C, is dense.

Proof: Let A be the closure of »  .~d. - U(g,K) in D(G,K). It follows
from Lemma 1.2.4 and Lemma 1.2.5 that A C D(G,K)c. We know that
C"™G,K)/C™G,K)g\¢ is reflexive. Let £ be a continuous functional on
D(G, K)¢ vanishing on A. By (1.5) and (1.6), £ corresponds to an element
f of C"(G, K)/C"™G,K)ea\¢- To say £ vanishes on A is to say that any
representative f of f in C%*(G,K) vanishes in an open neighborhood of C.
Hence f € C(G, K)g\c, i-e. f=0,and A = D(G, K)c by the Hahn-Banach
theorem. (]

Remark 1.2.11. Let B and C be locally convex K-vector spaces carrying
separately continuous K-algebra structures with a common K-subalgebra A.
If B®g,C denotes the Hausdorff completion of the algebraic tensor product
B®k ,C endowed with its inductive tensor product topology then we let B& 4 ,C



be the quotient of B&x ,C by the closure of the subspace generated by all
elements of the form

ba ® c — b® ac, a€ Abe Band ce C.

We endow B® 4 ,C with the corresponding quotient topology. If B and C are K-
Fréchet spaces then the inductive and the projective tensor product topologies
on B ®k C coincide. Therefore, we omit the ¢ from the notation and simply
write B&xC and B&4C.

Note that B®4,C is naturally a B-C°P-bimodule (C°P being the K-algebra
opposite to C). If A is contained in the centers of B and C' then B®A,LC’ is
naturally a module over B ® x C' and even over B® 4 C.

Let H be a closed, locally L-analytic subgroup of G and b its Lie algebra. The
multiplication map

(1.10) DH,K)xU(g,K) — D(G,K)y
induces a continuous K-linear map
p: D(H, K)®y k), U, K) — D(G,K)g.

Proposition 1.2.12. If K is discretely valued then p is a topological isomor-
phism of D(H, K)-U (g, K)°P-bimodules.

Proof: In Corollary 1.3.6 and Corollary 1.4.3 we will prove that there is a
compact open subgroup Gg of G with the following properties: D(Gg, K) is
a K-Fréchet-Stein algebra with respect to a family of norms || - ||, 7 € p@,
1/p < r < 1, such that the completion D, (Go, K) of D(Gg, K) with respect to
the norm || || is finitely generated and free as a module over the closure U,.(g, K)
of U(g, K) in D,(Go, K); if Hy := H NGy then D(Hy, K) is a K-Fréchet-Stein
algebra with respect to the family of norms || - || restricted to D(Hy, K); for
each r the closure D,.(Hy, K) of D(Hy, K) in D,.(Gy, K) is finitely generated and
free as a module over the closure U, (h, K) of U(h, K) in D,(Hy, K); U,(g, K)
and U, (h, K) are noetherian K-Banach algebras.

Lemma 1.2.13. If (V;);c; and W are Hausdorff locally convex K -vector spaces
then there is a topological isomorphism

P Vi)&x W ~ P Vidw,W).

icl el

Proof: This is a straightforward generalization of [18], I.3.1 Proposition 14.1, to
the non-archimedean setting. O

By (1.7), Lemma 1.2.13 and [22], Lemma 5.3, it suffices to show that the map
D(H(), K)®U(5,K)U(g, K) — D(Go, K)Ho

is a topological isomorphism. We again denote it by pu.
Let r € p¢ with 1/p < r < 1. The multiplication in D, (Go, K) induces a
continuous K-linear map

pr 2 Dp(Ho, K) @k Uy (g, K) — Dy(Go, K) gy 5



here D,(Go, K)n, denotes the closure of D(Go, K)p, in D,(Go, K). In the
proof of Corollary 1.4.3 we will show that D,(Go, K)p, is free and finitely
generated as a module over U,.(g, K) and has a basis (b®)secas in K[Hp] which
is simultaneously a basis of the free U, (b, K)-module D, (Hy, K). Hence pu,
induces a continuous K-linear bijection

(1.11) D, (Hy, K) ®u,y,x) Ur(9, K) — Dr(Go, K) 1,

D, (Hy, K) and U,(g, K) are complete normed modules over the noetherian
K-Banach algebra U,.(h, K). Further, D,(Hp, K) is a finitely generated, free
U.(h, K)-module and therefore topologically isomorphic to a direct sum of copies
of U.(h,K) (cf. [26], Proposition 2.1 (iii)). A straightforward generaliza-
tion to the non-commutative setting of [2], 2.1.7 Proposition 6, shows that
D, (Ho, K) ®u,y,x) Ur(g, K) is a complete normed space with respect to the
tensor product norm. By the open mapping theorem (1.11) is a topological
isomorphism. In addition,

D, (Ho, K) @y, y,x) Ur(8, K) = (Dy(Ho, K) @k Ur(g, K))/kerp,
=~ (DT(H07K)®KUT(97K))/ker/1’r

where kery,. is the closure of kery, in D,.(Hy, K)®x U, (g, K). Thus, we obtain a
short exact sequence of strict continuous K-linear maps between Banach spaces

0— kerﬂr — DT(HOaK)®KUT(gaK) I DT(G07K)H

, — 0.

Recall that U := ker(D(Ho, K)®xU(g, K) — D(Ho, K)®u@,x)U(g, K)) is
the closure of the subspace of D(Hy, K)®@xU(g, K) generated by all elements
of the form

A R@r—A®uyr with A € D(Hy,K),p e U(h,K) and r € U(g, K).

Since by (1.11) the kernel of u, is the vector space generated by all elements of
the form

AR —A®ur with A € D,.(Hyp,K),y € U.(h,K) and ¢ € U,(g, K)

U C kerp, is dense for all 7. Therefore, the system (keru,) with r € p? and
1/p < r < 1 satisfies the Mittag-Leffler property as formulated in [17], 13.2.4.
By [loc.cit], 13.2.2, we obtain an exact sequence

0 — U = lim, kerp, — D(Ho, K)®xU(g, K) — D(Go, K)u

0 07

because
liﬂlr(Dr(Hm K)®KU’I‘(97 K)) = (liLnrDr(Hm K))®K(li£1rUr(ga K))
(cf. [12], Proposition 1.1.29). It induces a continuous K-linear bijection
D(Ho, K)®u @, ryU(g, K) — D(Go, K)u,

which is a topological isomorphism by the open mapping theorem. That it
coincides with p is clear from the fact that for each r the restriction of pu, to
D(Hy, K) @k U(g, K) is induced by the multiplication in D(Gg, K). O
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Remark 1.2.14. Assume there is a compact open subgroup Gy of G and a
closed locally L-analytic subgroup Cy of Gq such that Gy = Hy x Cy as locally
L-analytic groups with Hy := H N Gy. Then the above proposition can be
proved without any allusion to Fréchet-Stein structures and simplifies in the
following manner: According to Proposition A.3 and Remark A.4 of [28] there
is a topological isomorphism

D(Ho, K)@KD(C(), K) — D(G'()7 K)

induced by multiplication. It follows from Lemma 1.2.10 and [22], Corollary
17.5 (ii) and Proposition 19.10 (i), that the preimage of D(Gg, K)p, under this
map is D(Ho, K)®xU(c, K) where ¢ is the Lie algebra of Cp. Hence we obtain
from Lemma 1.2.13 that

D(GvK)H =~ D(Hv K)®K,LU(C7K)'

1.3 Restriction of the base field

Let Ly|Q, be an extension of fields with Ly C L and let RLILo be the functor
“restriction of the base field from L to Ly” from the category of paracompact
locally L-analytic manifolds to the category of locally analytic manifolds of the
same type over Lg (cf. [7], 5.14).

There is a natural embedding
7: C"G,K) — C™(RMP G, K)

mapping C**(G, K) homeomorphically onto its closed image (cf. [24], Lemma
1.2).

Lemma 1.3.1. The dual map 7' : D(RM0 G, K) — D(G, K) is a strict surjec-
tion and a homomorphism of K -algebras.

Proof: Since 7/ restricts distributions on RY0G to the subspace C*(G, K) of
C(RFIo @G, K) it is clear that 7/ is a homomorphism of K-algebras. To show
the surjectivity we may assume G to be compact. But then 7 is a topological
embedding of spaces of compact type so that the claim follows from [25], Propo-
sition 1.2 (i). O

Consider the ideal I := ker(7') of D(RMP°G, K). Tt is the orthogonal subspace
of C*"(G, K) with respect to the natural pairing

D(R*Fo@ K) x C(RM G K) — K.

Since D(R**° G, K) is reflexive we obtain by means of [6], IV.2.2 Corollary, that
I} is topologically isomorphic to Co(RMo @ K)/C*(G, K). The topological
isomorphism I ~ @gecq/q,ker((7|C*(gGo, K))') for a compact open subgroup
Gy of G shows that I itself is reflexive. Thus, there is a topological isomorphism

(1.12) I~ (C™(RM G, K)/C™(@E, K)),.

In order to give an explicit description of the locally L-analytic functions inside
Co(RMIo@, K) we follow the arguments given in section 1 of [24]. If we write
gz, for g viewed as a Lie algebra over L( then gy, can be identified with the
Lie algebra of REILoG.

11



Lemma 1.3.2. C**(G, K) is the closed subspace of all those functions f €
C™(RMI G K) for which (tr)(f) =t -x(f) for allt € L and all ¢ € gy, .

Proof: If we let W be the subspace of C**(REF0 G, K) consisting of all functions
with the above property then C**(G,K) CW. Let f e W. Ifr,n €gandt € L
then

tr)m(f) = o))+ [te.l(f) =t -2(£) + - [& ) (f)
= t-9@(f) +t-[e0](f) =t-x((f))

shows that W is gp,-invariant. Therefore, the proof of [loc.cit.], Lemma 1.1,
generalizes to the non-commutative setting in the following manner: Fix an
L-basis X = (r1,...,rq) of g. Choose an orthonormal basis (v1,...,v,) of L as
a vector space over Lo and put ) := (v1r1, v2k1,...,Unkd). The corresponding
system 6r,, of canonical coordinates of the second kind is defined by

QLU(Z tijvitj) == exp(tiivirr)ezp(tarvart) - - exp(tndvnka)
5]
for t;; sufficiently close to zero in Lo (cf. [4], II1.4.3 Proposition 3). Given
g € RMI0G we have the expansion

(Rgf o0, tyvixy) = Y cpt”

i, BENT xNd
i tfj” and Ry is the
right translation operator associated with g. Letting Q_)B(Rgf) = (v131) o
(v2r1)P21 0+ - 0 (Vpxa)Pe (R, f) it follows from the remarks after Lemma 4.7.2 of
[14] that

converging for all ¢;; near zero in Lg; here cg € K, t7 =]

—1)!8l —1)!8l
or = S0 1) = S ()
for all 3 € N x N? where |3| and 3! are as in subsection 1.2. Letting ¢(3) :=

(0417~ .. ,ad) with Qj = ﬂlj + ...+ ﬂnj, b@(ﬁ) = C(ay,0,...,a2,0,...,04,0,...) and
XPON (R, f) =15 001 (R, f) we deduce

n

D(f)(g) = [Jvl " 22 (f)(g)

i=1

from the assumption on f and the gr,-invariance of W. Thus

PO YT bt
cﬂ:btp(ﬁ) B Hviﬁﬁ_ i
i=1

for all 8. Since this is precisely the relation given in the proof of [24], Lemma
1.1, we may conclude that f is locally L-analytic at g. O

The proof of the following lemma uses the same Hahn-Banach argument as the
proof of Lemma 1.2.10.

Lemma 1.3.3. If J := 1IN (U(gr,) ®r, K) then the vector space )
s dense in 1.

96659 -
O
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Lemma 1.3.4. Let C C G be a closed subset, considered also as a subset of
REEOG. Then the image of D(RM G, K)o under 7' is dense in D(G, K)c.

Proof: That 7/(D(RM0 G, K)¢) is contained in D(G, K)¢ follows from
C"™G, K)e\c = C*"(RM° Gy, K)oy o N C(G, K).
The same equation shows that 7 induces a continuous injection
C*(G,K)/C™G, K)g\c — C"(RMG, K) /C™(RM0G, K) prizo o o

We know from the proof of Lemma 1.2.10 that the locally convex K-vector
spaces on both sides are reflexive so that as a consequence of the Hahn-Banach
Theorem the dual map 7/ : D(RY° G, K)e — D(G, K)c has to have dense
image. O

We recall the following basic definitions (cf. [9], Part I): If G is a pro-p group set
Pi(G) := G and P;41(G) := P’[P,(G),G] for i > 1. Here P;(G)?[P;(G),G] de-
notes the subgroup of G generated by the pth powers of elements of P;(G)
and by all commutators [a,b] with a € P;(G) and b € G; X denotes the
topological closure of a subset X of G. A pro-p group G is called powerful
if p is odd and G/GP is abelian or if p = 2 and G/G4 is abelian. A pro-p
group G is called uniform if it is topologically finitely generated, powerful and
if (P(G): Pi11(G)) = (G : P(@)) for all ¢ > 1.

One of the most fundamental properties of a uniform pro-p group G is given
by the following theorem ([loc.cit], Theorem 4.9): If (aq,...,aq) is a system of
topological generators of G with d = dim G then every element has a unique
expression of the form ai\l e aéd with Aq,...,Aq € Zy. The resulting bijection
Zg ~ (7 is a homeomorphism. In this way, uniform pro-p groups turn out to
be the fundamental examples of locally Q,-analytic groups ([loc.cit.], Theorem
8.32).

Assume Lo = Q,. For further applications we need the following technical
results:

Proposition 1.3.5. Let G be a locally L-analytic group. Then there is an open
subgroup Go of G and a Zy-lattice A C gq, with the following properties:

i) there is an L-basis (t1,...,rq) of g and a Z,-basis (vi,...,vy) of or such
that (vir1,...,Umka) s a Zp-basis of A;

i) the corresponding canonical coordinates of the second kind give a well de-
fined isomorphism 0g, : A — R Gy of locally Qp-analytic manifolds;

iii) RY® @Gy is a uniform pro-p group.

Proof: Let (r1,...,rq) be an L-basis of g and 6, the corresponding system of
canonical coordinates of the second kind. Since 6, is étale at 0 € g we may
choose an open subgroup G’ of G and an open neighborhood U of zero in g such
that 6y : U — G’ is an isomorphism of locally L-analytic manifolds. Let @ be
its inverse. According to [4], I11.7.3 Théoréme 4 and its proof there is A € L*
such that ®;mzr; € A - ®1(G’') = X - U and the group structure on &\~ 'mpx;
obtained by transport of structure from G’ is given by formal power series with
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coefficients in oy.

If p is odd set A := &; A" 'm%y; and A := &;A"'m?°y; otherwise. By [loc.cit.],
II1.7.4 Proposition 5, Gy := 61(A) is an open subgroup of G. Choosing a Z,-
basis (v1,...,vm) of oy, the canonical coordinates of the second kind

HQp : g@p > RLlQPG

corresponding to the decomposition gg, = @i’j(@p)\_lvj;ci coincide with 6, as
[vitj, vr;] = 0 in gz, and because of the properties of the exponential map.
Since m§ = poy, (resp. 4oy, if p = 2) (i) and (ii) are proved if for (i) we choose
(A~ pr;) as an L-basis of g (resp. (A\™4r;) if p = 2).

It remains to show that g, (A) = RMQ @Gy is a uniform pro-p group. According
to [9], Theorem 8.31, we only need to show that RY% Gy is a standard group in
the sense of [loc.cit.], Definition 8.22. This follows directly from the construc-
tion. (]

If H is a closed, uniform subgroup of a uniform pro-p group G then we say that
H is compatible with G if there is a basis of topological generators of H that
can be extended to a basis of topological generators of G.

Corollary 1.3.6. Let G be a locally L-analytic group and H a closed locally
L-analytic subgroup. Then there is an open subgroup Gy of G as in Proposition
1.8.5 such that Hy := H N Gg, as an open subgroup of H, satisfies conditions
(i) — (iii) of Proposition 1.8.5 and R¥ % Hy is compatible with R*1% Gy.

Proof: Extend an L-basis (r1,...,r;) of the Lie algebra h of H to an L-basis
(r1,...,rq) of g, 7 < d. We may assume U and G’ from the proof of Proposition
1.3.5 to satisfy &, (H N G') C h. Starting with G’ define A C U and Gy C
G’ as before. Then A’ := ANp is an open neighborhood of 0 in h and a
direct summand of A. Therefore, the restriction of 67 from A to A’ is an
isomorphism A’ — Hy := Go N H of locally L-analytic manifolds. It follows as
above that Hy satisfies conditions (i) — (iii) of Proposition 1.3.5 with respect to
A’. By definition, A (resp. A’) gives rise to the basis of topological generators
(exp(vgri)), 1 <k <m,1<i<d, (resp. 1 <k<m,1<i<j)of R G,
(resp. RM® Hy). Thus, R¥1% Gy and R*1% Hy are compatible. a

1.4 Explicit Fréchet-Stein structures

The notion of a K-Fréchet-Stein algebra was first introduced by P. Schneider
and J. Teitelbaum (cf. [26], section 3): A K-Fréchet algebra A is called a K-
Fréchet-Stein algebra if there is a sequence ¢; < g2 < ... of continuous algebra
seminorms on A defining its Fréchet topology such that for all n € N the Haus-
dorff completion A,, of A with respect to g, is a (left) noetherian K-Banach
algebra and a flat A, -module via the natural map A — Ag,. In this
subsection we will assume K to be discretely valued.

dn+1

Let Go be a uniform pro-p group with a basis (ay,...,aq) of topological gen-
erators. Putting b; := a; — 1 and b® := b7 ... 5" in K[G] for a multi-index
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a € N? D(Gy, K) admits the explicit description
D(Gy,K) = {Zdaba |do € K, VO <7 <1:sup|dy|r™ < oo}
[e3%

(loc.cit. section 4). Here 7o = Y 7;a; with rational numbers 7; depending on
the structure of Gg as a p-valued group. The Fréchet topology of D(Gg, K) can
be defined by the family of norms (|| - ||;)o<r<1 given by

| > dyb”

The norms || - ||,- are independent of the choice of a basis (a1, ...,aq) of topo-
logical generators. If we let D,.(Go, K) = {3, dab® | limg| o0 |da|r™ = 0} be
the completion of D(Gg, K) with respect to the norm || - || then

D(Go, K) = lim, D,.(Gy, K)

= sup |dq|r7.
(6%

T

as K -Fréchet spaces. We summarize some of the main results of [26] in the
following theorem (loc.cit. Theorem 4.5 and Theorem 4.9):

Theorem (Schneider-Teitelbaum). If K is discretely valued, r € p® and 1/p <
r < 1 then the algebra structure of D(Go, K) extends to D,.(Go, K) making it a
K-Banach algebra with multiplicative norm || - ||.. Moreover, for any two real
numbers r,7' € pQ with 1/p < v’ < r < 1 the natural inclusion D,(Gg, K) —
D, (Go,K) is a flat map of noetherian rings. In other words: D(Go, K) is
a K-Fréchet-Stein algebra with respect to the family of norms || - ||, r € p@,
1/p<r<l.

For 0 < r < 1 we let U,(g, K) be the closure of U(g, K) in D, (G, K) with
respect to the norm || - ||,. A careful analysis of orthogonal bases (cf. [16],
section 1) leads to the following result (loc.cit. 1.4 Lemma 3, Corollaries 1, 2
and 3):

Theorem (Frommer). Ifr € p® and 1/p < r < 1 then U,(g, K) is a noetherian
subalgebra of D,.(Go, K). In fact, there are integers ¢; > 0 depending on r such
that D,.(Go, K) is free as a (right) module over U,.(g, K) with basis consisting
precisely of those b® € K[Gy] for which 0 < a; < ¢; for alli =1,...,d. Further,
U.(g, K) is equal to the algebra

U (8. K) = {Zdoﬁ“ [doc € K, T |da|| X} = o},

where X is the Qp-basis (v; := log(l + b;))1<i<a of 8. The norm || - ||, can be
computed via || doX*|, = sup, |da[|X°]],

Using compatible uniform pro-p groups we can slightly extend this result:

Corollary 1.4.1. Let Go be a uniform pro-p group with closed, compatible
uniform subgroup Hy. Then D(Hy, K) is a K-Fréchet-Stein algebra with respect
to the family of norms || - ||, r € p@, 1/p < r < 1, restricted to D(Hy, K). The
conclusions of Frommer’s theorem hold for D(Hy, K). Ifr € p@ is a real number
with 1/p < r < 1 then the closure D, (Go, K), of D(Go, K)m, in Dy(Go, K) is
a finitely generated, free U, (g, K)-module possessing a basis contained in K[Hy).
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Proof: Choose a basis (ai,...,aq) of topological generators of Gy such that
(a1,...,a;) is a basis of topological generators of Hy, j := dim Hy < d. Clearly,
D(Hy, K) is a K-Fréchet-Stein algebra with respect to the restricted norms
|||, 7 €p®, 1/p <r < 1,if Hy is viewed as a p-valued group with respect to
the valuation coming from Gq. It is also clear that Frommer’s theorem applies
to D(Hy,K). Fix r € p@ with 1/p < 7 < 1. Let A C N? be the set of all
multi-indices satisfying 0 < «; < ¢; for all i and A’ C A be the subset of all «
such that aj11 = ... = ag = 0. If b denotes the Lie algebra of H then (b%)acar
is a basis of the free U,.(h, K)-module D,.(Hy, K): The proof of [16], 1.4 Lemma
3, shows that writing r; = log(1 +b;) = >, <, (—1)""!b!" /n one can choose

Ci = max{m > 1| sup[1/n|r"™ = [1/m|r™7}.
n>1

Hence for 1 < i < j the integers ¢; do not depend on whether we consider b; as
an element of K[Gy] or K[Hy].

If D denotes the free U, (g, K)-submodule of D, (Gy, K) generated by (b%),eca
then D C D,.(Go, K)pg,. Conversely, D contains D,.(Hy, K) and U,(g, K) and
thereby a dense subspace of D,.(Gy, K)p, (cf. Lemma 1.2.10). According to
[26], Proposition 2.1 (ii), D is closed. Hence D = D,.(Go, K) . O

We are now going to extend Frommer’s theorem and Corollary 1.4.1 to the
case of a finite extension L|Q,. Recall that if A is a K-Fréchet-Stein alge-
bra with respect to a sequence (g,)n>1 of continuous algebra seminorms and
if I is a closed ideal of A then according to [26], Proposition 3.7, A/I is a K-
Fréchet-Stein algebra with respect to the sequence (@), >1 of residue norms g,.
It follows that if Gy is a locally L-analytic group such that R¥1Q Gy is uni-
form pro-p then D(Gy, K) is a K-Fréchet-Stein algebra (loc.cit. Theorem 5.1).
Namely, D(Gy, K) is topologically isomorphic to the quotient of D(R*% Gy, K)
by I := ker(7’) (cf. Lemma 1.3.1).

For 1/p < r < 1 we denote by || - ||z the residue norm on D(Gg, K) induced
by || - || The completion of D(Gy, K) with respect to || - || is denoted by
D, (Go,K). Let I, be the closure of I in DT(RL‘QPGO,K) and consider the
projection

7t Dy (RM® Gy, K) — D, (R*% Gy, K)/I,.
According to the proof of [26], Proposition 3.7, we have
(1.13) D.(Go, K) = D, (RM% Gy, K)/1,.

As before we let U,(g, K) (resp. U,(gq,,K)) denote the closure of Uf(g, K)
(vesp. Ul(gg,,K)) in D,(Go, K) (resp. D,(RL® Gy, K)). Set further J, :=
I, N Ur(ng,K).

Theorem 1.4.2. Let G be a locally L-analytic group and Gy as in Proposition
1.3.5. If r € p2 with 1/p < r < 1 then D.(Go, K) is a free, finitely generated
module over the noetherian subalgebra U, (g, K) with the same basis in K[Gy)
as in Frommer’s theorem applied to R¥@ Gy. Further, there is an L-basis X of
g and a norm vr on U.(g, K) equivalent to || - ||z such that

Ur(g, K) = {Z doX%|dy € K, ozl|igloo |do | (%) = 0} .
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The norm vz can be computed via vr() ", doX®) = sup, |dq|v=(X%).

Proof: Let (b%)aeca be the U,(gg,, K)-basis of D, (RF% G, K) considered be-
fore and D the (right) U,(gq,, K)-submodule D := @©4cab®J,. Since I, is an
ideal of DT(RL‘QPGO,K) containing J,., we naturally have D C [.. On the
other hand, D contains a dense subspace of I,. according to Lemma 1.3.3 since
J:=1n(U(gg,) ®q, K) C J,. Since D is closed according to [26], Proposition
2.1 (ii), we also have I, C D. Hence D = I,.

It follows from (1.13) and Frommer’s theorem that there is an isomorphism

Dy (Go, K) ~ @acab® (U (g0, K)/Jr)

of (right) U, (gq,, K)-modules. It becomes topological if U, (gq,, K)/J, carries
the (Banach) quotient topology (cf. [26], Proposition 2.1). In particular, the
image of U,(gq,, K) under 7, is closed. According to Lemma 1.3.4 it contains
a dense subspace of U,.(g, K') whence there is a topological isomorphism

(L.14) Un(g. K) = Uy (gg,. K)/ -

This proves the first statement of the theorem. We claim that the assertions
concerning the explicit description of U,.(g, K) hold if we equip U, (g, K) with
the residue norm 15 coming from (1.14).

According to Proposition 1.3.5 there is an L-basis X = (r1,...,rq) of g and a
Zy-basis (v1,...,vn) of o such that the family 9) := (v;x;); ; gives rise to the
set of topological generators (exp(v;r;))i,; of RM@ @Gy. By Frommer’s theorem

Urlag, K) = § D¢ | Jim Jesll[97]], =0
B

with multiplicative norm || 375 D] = supg|esl||DP||r. If B = (Bi;) € N™ x
N¢ let o(B) := (3%, Bij)i<j<a € N% For any 3 with ¢(8) = a we have

(%) =11, J f” X* and |a| = |f]|. Since 7 continuously extends 7/ we have

Tr(z csY?) = ZTT(Cg@ﬁ) = Z Z CQHUE” x“
B B a€eNd \ p(B)=a ,J

and also

> e [Tvl | we(x) < max [esll[D7]], — 0 as |a] = oc.
e(B)=a  ij ¢(B)=

Therefore, U,(g, K) C {)_, daX® | lim|q|—oo [da|vr(X*) = 0}. The converse
inclusion is clear.

We claim that .J is dense in J,.. Note first that J is dense in INU(gq,, K): If 6 =
>5 59" € U(gg,, K) then by (1.9) lim g leglp~!Pl = 0 for all p > 0. Hence

T(0) =20 (X ppy=a 811, v f”)%"‘ converges in U(g, K). If § € INU(gq,, K)
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i 0% — 0 and hence
g Y

Y p(B)=a csY” € J for all a. Now (310 1<n 2 ()= csY?)N>o converges to &
as N — oo, proving the claim.

To see that I N U(gg,, K) is dense in .J. we note that as a direct consequence
of Frommer’s theorem U(gg,, K) is a K-Fréchet-Stein algebra with respect to
the norms || - |[,. As a closed ideal I N U(gq,,K) is a coadmissible module
over U(gg,,K). Since J is dense in I N U(gg,,K) we know from Theorem
A (cf. [26], section 3) that the corresponding coherent sheaf is given by the
U (gq,, K)-ideals J| where J] is the closure of .J in U, (gg,, K). The same rea-
soning as above shows that I, = @,ecab®J/. Since also I, = @4cab*J,. and
JI. C J. we obtain J. = J,.

then due to uniqueness in U(g, K) we have Zw(ﬂ)za el

Let us now prove the last assertion on vr. Assume § = ) doX* € U, (g, K),
ie. limjg| oo |da|vr(X®) = 0. Let € > 0 be given and choose N € N so large
that
sup |do|vr(XY) = sup |da|v=(XY) and vx( Z daX%) < e.
«

lal<N la|>N

Note that the preimage of E|a\ <N @ X under 7, contains elements in U(gg,)

®q, K. By our above claim there is an element 3, s’ € Ulgg,) ®q, K
mapping to ZIa\SN doX® under 7, such that

vr( > daX®) > (1D esD?lr — e

|| <N B

Uniqueness in U(g) @ K implies that 7(3_,5)_, csY?) = d, X for all a with
|a| < N. Therefore,

la|<N | o(8)=a

IIZcﬁ@%=s%p\cﬁ\|@ﬂ|\rz sup { sup mnmﬁnr} > sup |de pr(X%).
B ¢ ¢

Hence for all e > 0

max{e, v7(8)} > vr( Z doX%) > sup |do |v7(XY) — ¢,
la|<N “

ie. vr(d) > sup, |da|vr(X*). As one always has v7(0) < sup, |da|vF(X%), this
finishes the proof. O

Corollary 1.4.3. Let G be a locally L-analytic group, H a closed locally L-
analytic subgroup and Gy as in Corollary 1.3.6. If Hy := HNGq then D(Hy, K)
is a K-Fréchet-Stein algebra with respect to the family of norms || - ||z, © €
p@, 1/p < r < 1, restricted from D(Go, K) to D(Hy, K). The conclusions
of Theorem 1.4.2 hold for D(Hy,K). If r € p@ is a real number with 1/p <
r < 1 then the closure D,(Go, K)u, of D(Go, K)nu, in D.(Go, K) is a finitely
generated, free U,(g, K)-module with the same basis in K[Hy] as in Corollary
1.4.1 applied to the pair (R¥% Gy, R¥1 Hy).

Proof: Since R*1@ Hj is compatible with R*1 G we know from Corollary 1.4.1
that D(RF® Hy, K) is a K-Fréchet-Stein algebra with respect to the family of
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norms || - ||, 7 € p¢, 1/p < r < 1, obtained by restriction from D(R*% Gy, K).
The commutativity of the diagram

D(R"% Hy, K)— D(R"® Gy, K)

D(Ho, K)C—> D(G(), K)

shows that the kernel of the left vertical arrow is I’ := I N D(RY% Hy, K).
Applying Theorem 1.4.2 to H, shows that if we let I be the closure of I’ in
D, (R¥% Hy, K) then D(Hy, K) is a K-Fréchet-Stein algebra with respect to
the corresponding quotient norms and

D,(Ho,K) = D,(R*% Hy, K) /I,
(cf. (1.13) applied to Hp). Recall that we have

D, (R*%Go, K) = P bV, (gg,. K)
acA

as K-Banach spaces and similarly

D.(RM%¥ Hy, K) = €D b"U.(hg,, K)
acA’

with A" C A (cf. Corollary 1.4.1 and its proof). Moreover, we know from the
proof of Theorem 1.4.2 that I, = ®qcab®J, with J, := I,NU,(gq,, K) and sim-
ilarly I = @acab®(I.NU,(hg,, K)). It follows that I = I, N D, (R% Hy, K)
and hence that

(1.15) D.(Hy, K) = D,.(R"% Hy, K)/(I, N D,.(R"% Hy, K)).

We need to show that the image of D,.(R*% Hy, K) under 7, is closed.

Making use of the above direct sum decompositions it suffices to show that the
image of U, (hq,, K) under 7, is closed. We make use of the notation introduced
earlier: By construction we may assume X' := (r1,...,1;), 1 < j:=dim Hy <d,
to be an L-basis of h. Since U,(g,K) = {>_, doa X | lim|g| o0 |da|vr(X*) = 0}
with vz(3",, daX®) = sup, |da|v=(X%), a straightforward calculation shows that

(U (b, K)) = { 3 da(X)?| lim |dalr((X)?) = 0}
aEeNJ

which is a closed subspace of U,.(g, K).

According to the proof of Corollary 1.4.1 there is a finite basis (b%),e 4 of the free
U, (9g,, K)-module D, (RY1% Gy, K) and a subset A’ C A such that (b®)aeca is
a basis of the free, finitely generated U, (gg,, K )-module D, (R¥% Go, K)y,. It

follows from the decomposition I, = ®qecab®J, that I, N D, (R¥® Gy, K) g, =
Dacab®J,. Thus, by (1.14)

(1.16) D (RM% Gy, K)y, /(I N D.(RM% Gy, K)p,) ~ ®acab®U,(g, K).
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In particular, the image of D,.(R¥% Gy, K) H, under 7, is closed. It follows by
means of Lemma 1.3.4 and (1.13) that the left hand side of (1.16) is topologically
isomorphic to D, (G, K) g, .

Note that by Theorem 1.4.2 (b%),c 4+ is also a basis of the free U,.(§, K)-module
D,.(Hy, K) and the free U, (hg,, i )-module D, (R*% Hy, K). O

Corollary 1.4.4. If Ly|Q, and L|Ly are finite extensions of fields and if G is
a locally L-analytic group then the natural homomorphism

D<RL|L0G7 K)®U(9LO,K),LU(97K) - D(G7K)

of D(RMoG, K)-U(g, K)°P-bimodules is a topological isomorphism.
Proof: Let Gy be an open subgroup of G as in Proposition 1.3.5. Using

D(G,K) = ®,e6/G,0 - D(Go, K) (resp. with REL0G and REIL0Gy) it suf-
fices to show that the map

(1.17) D(RM* Gy, K)&u (g, 1)U (8, K) — D(Go, K)

is a topological isomorphism. One easily verifies that also RFI“0 G satisfies con-
ditions (i) — (iii) of Proposition 1.3.5 (replacing L by Lg) so that according to
Theorem 1.4.2 the modules D, (R Gy, K), resp. D,(Gy, K), are finitely gen-
erated and free over the noetherian Banach algebras U, (g1, K), resp. U,(g, K),
with a common basis (b®),c4. It follows that the base change map

DT(RLILOGO;K) ®UT(QLO,K) Ur(g»K) — DT(GOaK)

is an isomorphism of D, (R0 Gy, K)-U,(g, K)°P-bimodules. As in Proposition
1.2.12 one shows that it is bi-continuous and that we may pass to the projective
limit in order to obtain that (1.17) is a topological isomorphism. O

The same line of proof gives:

Corollary 1.4.5. Let Ly|Q, and L|Ly be finite extensions of fields and G be a
locally L-analytic group. If H is a closed, locally L-analytic subgroup of G then
the map 7 : D(RM G, K)y — D(G, K) g is surjective. O

2 Invariant distributions

G acts on itself via conjugation inducing an action by continuous automorphisms
on the space C*"(G, K) of locally analytic functions on G. The contragredient
action on D(G, K) is explicitly given by (g * 6)(f) = 6(h — f(ghg™?!)) =
(04004-1)(f) for g € G, 6 € D(G,K) and f € C*(G,K) , i.e.

(2.1) g% = 5,06,1.

We call a distribution § € D(G, K) invariant if gx0 = for all g € G. If U is a
G-invariant subspace of D(G, K) we denote by U the subspace of all invariant
distributions contained in U.

The separate continuity of the multiplication together with the density of K|[G]|
in D(G, K) imply by means of (2.1) that the subspace D(G, K)¢ of all invariant
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distributions on G coincides with the center of the ring D(G, K).
For later use we introduce the subspace

D™MG,K) = > &, (U(g) ®L K)

geG

of D(G, K). It is the space of all point distributions in the sense of [7], 13.2.1.

2.1 The infinitesimal center

Viewing g as an abelian locally L-analytic group the space C{'(g, K) is defined
as in (1.5). The exponential map exp induces a topological isomorphism

exp* : CY (G, K) — C§ (g, K)

which does not depend on the choice of exp (cf. the remark following 111.4.3
Définition 1 of [4]). Dualizing, we obtain a topological isomorphism

€xP, - Cé)d(gvK);) - U(g’K) = CT)(GvK);)

of locally convex vector spaces which for § € C§ (g, K); and [f] € CY(G, K) is
explicitly given by

(exp,0)([f]) = d(eap”[f]) = 0([x = f(eap(x))])-

Here [f] denotes the germ in 1 of a locally analytic function f defined in an
open neighborhood of 1 € G.

Viewing g as its own Lie algebra Proposition 1.2.8 shows that
C¢(g,K), = {Zda}ia |dy € K,¥r > 0:sup|dy|r~ol < oo}

in terms of power series with commutative multiplication. Since the symmetric
algebra S(g) ®r K of g is dense in C{'(g, K); we prefer to change notation and
write S(g, K) instead of C§ (g, K)j.

The action of G on C*"(G, K) by conjugation descends to C% (G, K) (cf. (1.5))
which is a locally analytic G-representation in the sense of [25], section 3: if
Gy is a compact open subgroup of G then the natural projection C**(G, K) —
C¥ (G, K) factors Go-equivariantly through C'*"(Gy, K). By [14], Satz 3.3.4, the
Go-action on C'*"(Gy, K) is locally analytic whence so is the Gg-action on the
barrelled quotient CY¥ (G, K) = C{(Go, K) (cf. [12], Lemma 3.6.14). Since Gg
is open in G the claim follows.

Similarly, the action of G on g via the adjoint representation Ad induces an
action on C¥ (g, K). Using the formula g- ezp(z) - ¢! = exp(Ad(g)(x)) for g € G
and all ¢ in a neighborhood of zero in g depending on g (cf. [4], II1.4.4 Corollaire
3) one deduces that ezp* is G-equivariant.
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Recall that if n € N, 91,...,9, € g and vy - -y, is their product in S(g) then
the symmetrization map sym : S(g) — U(g) is defined by

1
sym(Dy -+ Yp) 1= ol Z o(1) " " Vo(n)
’ oe6,

through L-linear continuation. Here &,, denotes the symmetric group on n
letters.

Proposition 2.1.1. exp* : CY(G,K) — C§ (g, K) is an isomorphism of locally
analytic G-representations on locally convex K-vector spaces of compact type.
The corresponding dual map exp, : S(g, K) — U(g, K) is an isomorphism of
separately continuous (left) D(G, K)-modules. Its restriction to S(g) ®r K co-
incides with sym ® id and maps isomorphically onto U(g) @, K. Further, if the
D(G, K)-actions on S(g,K) and U(g, K) are denoted by * then the following
formulae hold:

i) txy =g, v] for all t,y € g where ¢ is considered as an element of D(G, K)
and v, [r,9] as elements of S(g, K) (or U(g, K));

i) rx0=p-0—0-2inU(g,K) forally € g and § € U(g, K);

1) gk (01--0p) = (x*%01)02- 0+ ...+ 01 0p_1(x*0y) for allr € g and
91,...,0n € S(g, K).

Proof: The first statement follows from what was said above. By general princi-
ples the dual map ezp, : S(g, K) — U(g, K) is a topological isomorphism of nu-
clear Fréchet spaces carrying separately continuous D(G, K)-module structures
for which exp, is a homomorphism (cf. [25], Corollary 3.3). For the statement
about the restriction of ezp, to S(g) ® K confer [4], II1.4.3 Théoréme 4 and
I1.1.5 Proposition 9.

Forge G,ype gand f € C(G, K) we have

d

- = — . . -1
n(g 1*f)fdtf(g exp(tn) - g7 ")]i=o

= & Fern(tAd(g) ()= = Ad(g) () )

showing that g ®, K carries the structure of a D(G, K)-submodule of U(g, K)
coming from the adjoint representation of G on g. By [4], II1.3.12 Proposition
44, we have r xy = d/dt(Ad(ezxp(tr))(v))i=0 = ad(x)(y) = [r,p]. Note that if
V' is a Banach space then the notion of a locally analytic G-representation as
given in [25], section 3, coincides with the notion of an analytic Banach space
representation in the sense of Bourbaki (cf. [14], Korollar 3.1.9).

(9% 9)(f)

By [4], II1.3.11 Proposition 41 and (i) we have

e+ (J]v) = le.oalv2 00 + .o+ 91 001 [r, 00

for all r € g. Since [r, ;] = ry; — v;x in U(g) we obtain (ii). The statements on
S(g, K) are proved analogously. a
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If§ =3, daX* € S(g,K)orU(g, K)and n > 0 then we let =" := 2 laj<n Ao X
and 6" := Zla\>n doX“. Note that if g € G then g * §<" is of degree < n for
every n € N. This follows from writing g *x r; = Zj ajrj, a; € L, and noting

that by (2.1)
g*x(A- H;clo‘) =\ H(g*;i)‘“.

In particular, G acts on S(g) @1 K and U(g) ®r K.

Proposition 2.1.2. U(g)® ®1 K and U(g)® ®7, K are dense in U(g, K)® and
Ul(g, K)9, respectively.

Proof: Since exp, is equivariant for the actions of g and G we may equally well
show that S(g)? ®7 K and S(g)® ®1 K are dense in S(g, K)?® and S(g, K)¢,
respectively. If 6 € S(g, K) is homogeneous of degree n then it follows from
Proposition 2.1.1 that for ¢ € g either  *d = 0 or ¢ * § is again homogeneous
of degree n (write [r,z;] = Zj a;r; for r € g, a; € L). We have seen above that
similarly g * ¢ will again be homogeneous of degree n. Thus, if § € S(g, K)*?
(resp. S(g, K)) then also 6=" and §>" are g-invariant (resp. G-invariant).
Since 6=" € S(g) ®;, K and §=" — § for n — oo, the assertion follows. O

Remark 2.1.3. If G is an open subgroup of the group of L-rational points
of a connected algebraic group over L then [25], Proposition 3.7, shows that
U(g)? @, K = U(g)® @1 K. According to Proposition 2.1.2 U(g, K)¢ =
Ul(g, K)€. Similarly, S(g, K)® = S(g, K)¢ in this case.

Remark 2.1.4. Let v denote a norm on S(g) ® K with respect to which the
action of G (resp. g) is continuous. If the completion S, (g, K) of S(g)®r K with
respect to v has the explicit description {)__ doX® | lim|q| o |da|v(X*) = 0}
with

I/(Z doX%) = sup |da |V (XY),

then the above proof shows that S(g)¢ ®; K and S(g)? @1, K are even dense
in S, (g, K)¢ and S, (g, K)?, respectively.

In general, the restriction of ezp, to S(g, K)? is not an isomorphism of alge-
bras although both S(g, K)? and U(g, K)? are commutative. Making use of
a construction by M. Duflo we will show, however, that one does obtain an
isomorphism

n:5(g, K)? — Ulg, K)*

of K-algebras if exp, is suitably normalized. This result is similar to the con-
jecture of Kashiwara and Vergne for real Lie groups (cf. [1]) involving, however,
distributions on germs of functions rather than germs of distributions.

Recall the following construction (cf. [10], p. 55): let k be a field of character-
istic zero and h a Lie algebra of finite dimension over k. Choosing dual k-bases
(r1,...,za) and (xf,..., ;) of h and b*, respectively, we identify S(h) with the
algebra of polynomial functions on h* and S(h*) with the algebra of differential
operators with constant coefficients on h* (denoting by D(q) the operator de-
fined by an element ¢ € S(h*)). The completion S(h*) of S(h*) with respect to
the topology defined by the maximal ideal (xf,...,r};) may be identified with the
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algebra of formal power series in the variables ¢f over k. If f € S(h) is given and
the first non-zero coefficient of ¢ € S(h*) appears in sufficiently high order then
D(q)(f) = 0. Hence for ¢ € S(h*) one can define D(¢)(f) by continuity and set
(g, f) == D(q)(f)(0). This identifies S(h) with the space S(h*)" of continuous

functionals on S(h*).

If S(h) is identified with the algebra of constant coefficient differential operators
on h and f € S(h) then we let D*(f) be the corresponding operator. D*(f)
is an endomorphism of S(h*). If ¢ € S(h*) is a power series we let ¢(0) be its
constant term. According to the remarks preceding Lemme I1.2 of [loc.cit.] we
have

(2:2) D*(f)(g)(0) = D(g)(f)(0) = (g, f)

for all ¢ € S(h*) and f € S(p).

Let ad(X) € Mg(k[x],...,x)]) be the matrix ad(X) := >, 1;A; where A; €
My(k) represents ad(r;) € Endg(h) with respect to the k-basis (r1,...,rq) of b.

If By, € Q denote the Bernoulli numbers of even degree and ezp(t) € Q[[t]] is
the usual exponential series then the formula

exp(ad(X)/2) — exp(—ad(X)/2) ) 1z
ad(X%)

tr[ad(X)*"])

(2.3) q=q(i,. .., 1) =det <

o0

BQn

= (Y D
— 4n(2n)!

defines a formal power series in the indeterminates r; with coefficients in &, i.e.
an element of S(h*) (for the second formula cf. [1]). One of the main results of
[11] is the following theorem (loc.cit. Théoreme 2):

Theorem (Duflo). If § is a finite dimensional Lie algebra over a field k of
characteristic zero then the normalized symmetrization map

n:=symo D(q) : S(h)" — U(h)"
is a well-defined isomorphism of k-algebras.

It is known that in the case of Lie algebras h over the fields k¥ = R or C, the
formal power series ¢ defines an analytic function around 0 in §. This is also
true for the Lie algebra g over the non-archimedean field L:

Proposition 2.1.5. The formal power series q defines an analytic function in
a neighborhood of 0 in g. If we let [q] € C§ (g, K) denote its germ in O then the
normalized exponential map n: S(g, K) — U(g, K) defined by

n(0)([f]) := 6(lg] - ezp™([f])) for 6 € S(g, K) and [f] € CTY(G, K),

restricts to a topological isomorphism of K-Fréchet algebras

n:5(g, K)* — U(g, K)®.
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Proof: Using the estimates |n!| > p~™/ =Y and |By,| < p (cf. [21], Lemma
5.3.1 and Corollary 5.5.5) it is straightforward to show that ¢ defines an analytic
function in a neighborhood of zero in g.

The normalized exponential map 7 : S(g, K) — U(g, K) is a topological iso-
morphism of K-Fréchet spaces: Note that ¢(0) = 1 so that [¢] is invertible in
Cy(g,K). If § € S(g) and [p] € C¥(g, K) is represented by a formal power
series p € S(g*) then by (2.2) and [10], Lemme II.1,

o([gl-[p]) = D*(6)(gp)(0) = D(gp)(6)(0) = {(gp,9)
= (p,D(q)(6)) = D(q)(d)([p])-

Since the restriction of exp, to S(g) ® K coincides with sym (cf. Proposition
2.1.1) it follows that n|S(g, K)? extends Duflo’s isomorphism. Since by Proposi-
tion 2.1.2 S(g)? @, K (resp. U(g)? ®r, K) is dense in S(g, K)? (resp. U(g, K)?)
it follows that 7 is an isomorphism of algebras onto U(g, K)®. O

We are now going to explicitly compute U(g, K)? in the case that g is semisimple
and contains a split maximal toral subalgebra t (cf. [8], 1.9.10). The Weyl
group W = W(g,t) acts on t* by L-linear endomorphisms and dually on t.
Thus, 20 acts continuously on C*"(t, K). Since the subspace C*"(t, K)q qo} is
W-invariant W acts on the quotient CY (¢, K) and hence on S(t, K).

Theorem 2.1.6. If g is split semisimple with t and 20 as above then there are
isomorphisms

U(g, K)® = S(t, K)¥ ~ O((A%)™")
of K-Fréchet algebras with n = dimg(t). Here O((A%)*") is the K-Fréchet
algebra of holomorphic functions on the rigid analytic affine space (A%)*" of
dimension n over K.

In order to construct the above isomorphisms we need some preparation. Let
k be a field which is complete with respect to a non-trivial, non-archimedean
valuation and (-)®" be the rigid analytification functor on the category of k-
schemes which are locally of finite type.

Proposition 2.1.7. Let X be an affine scheme of finite type over k, I a finite
group of k-automorphisms of X and w : X — X/T be the canonical quotient
map. The presheaf F on (X/T)%" defined by F(U) := Oxan((7*")"L(U))" is
an O(x ryan-submodule of m!"Oxan via the natural map (mam)# Ox/ryan —
7Oxan. In fact, (1*™)# is an isomorphism onto F.

Proof: With 7 also 7" is surjective and we have the following commutative
diagram of locally G-ringed spaces:

(2.4) xon T (X/T)n

X — = X/I.

We see that if U C (X/T")® is admissible open then V := (7¢")~1(U) C X% is
admissible open and I-invariant. Thus, I' acts on Oxan (V') so that the presheaf
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F is well-defined. It is straightforward to check that it is in fact a sheaf of
Oxan-modules. By [2], 9.4.1 Proposition 2, it suffices to prove the claim for an
admissible open covering (U;);¢cr of (X/T')*". By construction, (X/T")*" admits a
countable, ascending covering by open affinoid subdomains U; := Sp(B;), 7 € N.
Setting A := Ox(X) and B := A" the algebra A; := B; ®p A is finite over
B; and hence k-affinoid. In fact, the maps A;1; — A; induced by B;;1 — B;
define (Sp(A4;))icr as an admissible covering of X ™ with (w%")~1(U;) = Sp(4;)
(this is the way one shows that with 7 also its analytification is finite). Since
B, is flat over B (cf. [20], Satz 2.1) we have

A{ = (.BZ XpB A)F = B,; ®p Al = B;
(cf. [3], 1.2.3 Remark 2 and 1.2.6 Remark 1). O

Remark 2.1.8. It follows from (2.4) that the underlying point space of (X /I")*"
is the set theoretical quotient of X * modulo I". According to Proposition 2.1.7
the structure sheaf of (X/I')*" is given by O(x,/ryan(U) = Oxan((x*)~1(U))"
so that (X/T")*" can be identified with the rigid analytic quotient X **/T" whose
existence is claimed (but not proved) in [15], 6.4.

Proof of Theorem 2.1.6: Let t = (t1,...,t,) be an L-basis of t considered also as
a K-basis of t®, K. Proposition 1.2.8 shows that there is a topological isomor-
phism S(t, K) — O((A%)*") of K-Fréchet algebras identifying the subalgebra
S(t) @y K with the polynomial algebra K[t1,...,t,] in the variables ¢;, i.e. with
the algebra of regular functions on the affine space A% of dimension n over K.
There is a family s = (s, ..., $,) of n algebraically independent, homogeneous
elements in (S(t) @ K)¥ such that the inclusion homomorphism

©:K[s1,...,8,] — (S(t) @1 K)¥

is an isomorphism (cf. [8], 11.1.14). According to Proposition 2.1.7 it extends
to an isomorphism
v O((AF)™) — S(t K)™

of K-algebras. If ¢ € K* with |¢| > 1 and 7 € N we denote by |-|; the norm on the
left hand side for which the family (s*),enn is orthogonal with |s;.xj li = |ct]e.
Similarly, v; := |-+ is the multiplicative norm on S(t, K') for which (t%)aen»
is orthogonal with v;(t77) = [¢|*. We view S(t, K)¥ as a (closed) subspace of
S(t, K). Given ¢ € N choose 39 € N such that max;{v;(¢(s;))} < |¢’°|. Then

Vi(ﬂa(z dasa)) < |Zdasa|iov

so that ¢ is continuous and in fact a topological isomorphism due to the open
mapping theorem.

Let ® = ®(g,t) be the root system of g with respect to t and choose an eigenvec-
tor X, of ain g for any a € . Extend t to the L-basis X = (t1,...,tn, (Xo)acs)
of g and let J be the closed ideal of S(g, K) generated by { X, }aca. The explicit
descriptions of S(g, K) and S(t, K) show that

S(g,K)=S(t,K)® T
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first as abstract vector spaces but then also topologically due to the open map-
ping theorem. We claim that the induced continuous, surjective homomor-
phism S(g, K) — S(t, K) of K-algebras restricts to a topological isomorphism
6:5(g, K)® — S(t, K)®. By the open mapping theorem we only need to show
that @ is bijective. If J := S(g)NJ then S(g) = S(t) ® J and the corresponding
projection S(g) — S(t) restricts to an isomorphism

(2.5) S(g)? ~ S(H)¥
of algebras (cf. [8], Théoréme 7.3.7).

As in the proof of Proposition 2.1.2 one sees that if § is an element of S(g, K)¢
(resp. J) then both =" and §~" are elements of S(g, K)? (resp. .J). Since
(S(g)? @ K)N(J®r K) =0 it follows that S(g, K)* N J = 0.

Let 7 € S(t, K)¥™. Tt follows from (1.3) that for 11,12 € S(t) ®7 K and w € 23
w-(r1-r2) = (w-r1) - (- r2).

Thus, the homogeneous components 7, of 7 of degree k with respect to the
variables t are 20-invariant for all & > 0. Write 7, = > do(k)s® and let
&1,...,&, € S(g)? be preimages of si,..., s, under the map (2.5). Then ~; :=
Yoada(k)é™ € S(g)? @1 K maps to 7, and we need to show that the series
>k Yk converges in S(g, K). Note that the Fréchet topology on S(g, K) can be
defined by a family of multiplicative norms (v;);en extending the norms v; on
S(t, K) because X extends the L-basis t of t (cf. Proposition 1.2.8). Since ¢!
is continuous we have limy_, |¢ 1 (7x)|; = 0 for all i € N. Given i € N, choose
ip € N such that max;{v;(&;)} < |cio|. Then

IN

vi(k) sup |da ()[v5(6%) < sup|da (k)||c "]

1> da(k)s®liq = ¢~ ()]s — 0

as k — o0o. Composing 6 with the inverse of Duflo’s isomorphism we obtain the
isomorphism ¢ := 0 on~!: U(g, K)? — S(t, K)® of K-Fréchet algebras. O

2.2 Centrally supported invariant distributions

The conjugation action of G on D(G, K) restricts to U(g, K), D(Z,K) and
D(G, K)z, inducing an action on D(Z, K)®U(37K),LU(9, K).

Theorem 2.2.1. If K is discretely valued and G is an open subgroup of the
group of L-rational points of a connected, algebraic group defined over L then
there are K-linear topological isomorphisms

D(Za K)®U(3,K),LU(97K)G = (D(Z7 K)®U(3,K)7LU(93K))G = D(G7K)§

of separately continuous K -algebras induced by multiplication in D(G,K)$. In
particular, the subspace Dpt(G,K)g of centrally supported invariant point dis-
tributions is dense in D(G, K)$.
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Proof: We endow D(Z, K)®y;.x),U(g, K)¢ and (D(Z, K)®u;.x),U(g, K))©
with the D(Z, K) ®U 5.6 U g,K)G-module actions of Remark 1.2.11. Since
D(Z,K) and U(g, K)“ are contained in the center of D(G, K) it is clear that
the maps

D(Z7 K)®U(3,K)7LU(97K)G — D(GaK)g
(D(Z7 K)®U(3,K),LU(gaK))G - D(GaK)g

induced by multiplication are homomorphisms of D(Z, K) ®u ;. i) Ul(g, K)¢-
modules. If we can show them to be topological isomorphisms then, by the
density of D(Z, K) ®u ;) U(g, K)¢ in the space D(Z, K)®u;,x),.U(g, K)C,
both D(Z, K)®U(37K),LU(9, K)% and (D(Z, K)®U(37K),LU(9, K))% carry unique
K-algebra structures extending the action of D(Z, K) ® ;1) U(g, K)¢ and for
which the above maps are homomorphisms.

The D(Z, K)-U(g, K)°P-bimodule isomorphism
s D(Za K)®U(5,K),LU(97 K) — D(G7 K)Z

of Proposition 1.2.12 is G-equivariant by definition of the respective G-actions.
This gives the second isomorphism of the theorem.

If Gy is a compact open subgroup of G and Zy := Gy N Z then, using Lemma
1.2.13, it suffices to show that the map

D(Zy, K)®u ;. 10)U (8, K)¢ — D(Go, K)%,

induced by multiplication is a topological isomorphism.

According to [4], ITI1.7.2 Proposition 3, there are compact open subgroups A4 and
Gy of g and G, respectively, such that Ag lies in the domain of the exponential
map and exp : Ag — Gy is an isomorphism of locally L-analytic manifolds. In
fact, Ag may be chosen to be contained in any open neighborhood of zero in g.
If therefore A, := Ag N3 and Zy := G N Z then we may assume exp to restrict
to an isomorphism A; — Zy (note that exp is also an exponential map for Zj).
The K-linear topological isomorphism ezp, : D(Ag, K) — D(Gy, K) therefore
restricts to isomorphisms

exp, : D(A;, K) — D(Zy, K)
id: SG3,K) —U(3 K) and
exp, : S(g,K) — U(g, K).
Lemma 2.2.2. If A € D(A;,K) and 0 € D(Ag, K) then exp, (X -96) = exp,(N) -
Proof: Let y € A; and f € C*(Gy, K). Then
exp,(6y - 6)(f) = (0y-0)(exp™f)
= 6(x+ f(ezp(y +1)))
= 0(x— f(exp(y) - exp(r)))
= (exp,(dy) - exp.(9))(f),
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since y commutes with all ¢ € g. Since K[A;] is dense in D(A;, K'), the assertion
follows from the linearity and continuity of exp,. O

Together with Lemma 1.2.10 we obtain that ezp, restricts to an isomorphism
D(Ag, K)a, — D(Go, K)z, and that the diagram

[¢]

D(A;, K)&s(; 5)5(9, K) —————> D(Ag, K),

exp, Qerp, i 2 2 l exp,

D(ZO,K)®U(3,K)U(97K) D(G07K)Z0

is commutative. G acts trivially on D(A;, K) and D(Zp, K). Moreover, G
acts on S(g, K) in such a way that exp, : S(g, K) — U(g, K) is G-equivariant.
Thus, there is an action of G on D(Ag, K)a, such that ewp, : D(Ag, K)a, —
D(Gy, K)z, is G-equivariant and we may equally well show the above state-
ments in the setting of Ay and A;.

Passing to an open subgroup of Ay, we may assume that Ay and A; satisfy the
compatibility conditions of Corollary 1.3.6. Hence for € p with 1/p < r < 1
the K-Banach algebra D,.(Ag, K),, admits a finite direct sum decomposition

Dr(AgaK)Aa = @ baST(QaK)

acA’
with b® € K[A;] for all @ € A’ (cf. Corollary 1.4.3).

Lemma 2.2.3. The action of g on D(Ag, K)a, induced by that of G extends to
a g-action on Dy (Mg, K)4, .

Proof: It suffices to show that the action of g on S(g, K) is continuous with
respect to the norm |- ||=. Note that by Corollary 1.4.5 there is a continuous K-
linear surjection 7’ : S(gqg,, KK) — S(g, ) which is seen to be g-equivariant (use
Proposition 2.1.1). As a direct consequence of Frommer’s theorem S(gg,, i)
is a K-Fréchet-Stein algebra. Therefore, S(g, K) and the kernel J of 7' are
coadmissible modules over S(gg,, /). According to Theorem B (cf. [26], sec-
tion 3) the coherent sheaf corresponding to J is given by the kernels J, of the
surjections S, (gq,, K) — Sy(g, K) (cf. (1.14)). Since J is g-invariant and dense
in J, (cf. Theorem A of [26], section 3), we may assume L = Q, and hence

[|-ll==1]"1|~ to be multiplicative.
Recall from Frommer’s theorem that there is a Q,-basis X = (r1,...,zq4) of g
such that

Sr(g, K) = {Z daX®|da € K, lim |da[[[ X%l = o}

with || Y, doX?|, = supa{|doé|l_[;i:1 [[xi|[7}. For ¢ € g choose A € Qy such
that |[ad(\x)(xs)||» < ||xil], for all 4. It follows that |[x * &|], < [A"1]-[d]], for

all § € S(g, K). O

29



We obtain
g _ (e}
D,(Ag, K)§, = €D b*S, (s, K)°.
acA’
Since, as remarked in the proof of Corollary 1.4.3, (b®),ca/ is also a basis for
the free S, (3, K)-module D, (A;, K) we obtain a topological isomorphism

Dr(Aaa K) ®8,.(3,K) Sr(97 K)g — DT(AEJ K)?\j .
Passing to the projective limit we obtain a topological isomorphism
D(Ag7 K)®S(3,K)S(g7 K)g B D(A97 K)%a

as in the proof of Proposition 1.2.12: To satisfy the Mittag-Leffler condition
we need to know that S(g, K)? is dense in S,(g, K)? for all ». This is true
according to Remark 2.1.4 and Theorem 1.4.2 and is in fact the reason for our
working with Ay and A; instead of with Gy and Z,. By our assumption on G
and Remark 2.1.3 D(Ag,K)f\5 = D(Ag,K)/C\i’.

Since by Lemma 1.1.1 and Proposition 2.1.2 K[Zy] and U(g)® ®1, K are dense in
D(Zy, K) and U(g, K)“, respectively, it follows from [22], Lemma 19.10 (i), that
the space K[Zy|®5 (U(g)? ®1 K) is dense in D(Zy, K)&xU(g, K). Therefore,
so is its image in the quotient space D(Zg, K)®U(57K)U(g, K)%. Since the image
of K[Zo] @k (U(9)® @1 K) under p is precisely DP*(Go, K)F , the proof of the
theorem is complete. (I

Let G be a connected, reductive, linear algebraic group defined over L. G is
the almost direct product of its center and the finitely many minimal, closed,
connected, normal L-subgroups G; of positive dimension of its derived subgroup
D. Let us call G sufficiently L-isotropic if all G; are L-isotropic. This is the
case, for example, if G is L-split. For the following cf. [29], Theorem 2.4:

Theorem (Sit). Assume G to be the group of L-rational points of a connected,
reductive, sufficiently L-isotropic L-group G. If the conjugacy class of an ele-
ment g € G is relatively compact in G (endowed with the topology induced from
L) then g is contained in the center of G.

Corollary 2.2.4. Assume G to be the group of L-rational points of a connected,
reductive, sufficiently L-isotropic L-group G. Then D(G, K)¢ = D(G,K)$. Let
D be the derived group of G, D the group of L-rational points of D and 0 the Lie
algebra of D. If K is discretely valued then there is a topological isomorphism

(2.6) D(G,K)Y ~ D(Z,K)® U0, K)?
of separately continuous K -algebras.

Proof: According to (2.1), (1.4) and Remark 1.2.3 any invariant distribution
on G is supported on a union of relatively compact conjugacy classes. As a
consequence of Sit’s theorem we have D(G, K)¢ = D(G, K)$.

Since G = D - Z with finite intersection D N Z it follows from Remark 1.2.14
that there is a topological isomorphism

D(G,K)Z — D(Z7 K)@K,LU(avK)
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of D(Z, K)-U(0d, K)°P-bimodules. The image of DP*(G, K)“ under this isomor-
phism is DP(Z, K) @k (U(d)® ®1 K) (cf. Remark 2.1.3). Since DP*(G, K)¢,
DPY(Z,K) and U(0)° ®1, K are dense in D(G,K)%, D(Z,K) and U(d, K)?, re-
spectively, (cf. Theorem 2.2.1, Lemma 1.1.1 and Proposition 2.1.2) the above
isomorphism restricts to an isomorphism D(G,K)¢ ~ D(Z, K)&k U0, K)®.
The arguments given at the beginning of the proof of Theorem 2.2.1 show that
it may naturally be viewed as a homomorphism of K-algebras. [

2.3 The Fourier transform

Let k& be a field which is complete with respect to a non-trivial and non-
archimedean absolute value. Recall that a rigid analytic k-variety X is called
quasi-Stein if there is a countable, admissible affinoid covering (X;);en of X
such that X; C X,1; and the image of the map O(X;11) — O(X;) is dense
for all « € N (cf. [19], Definition 2.3). It is easy to see that if X and Y are
quasi-Stein then so is their fibred product X x, Y. Also, if X’ is a rigid analytic
k-variety admitting a finite morphism to a quasi-Stein k-variety X then X' is
quasi-Stein itself. If ¥’ is a complete, valued field extension of k then any rigid
analytic, quasi-Stein k-variety X admits a base extension to k¥’ and the resulting
rigid analytic k’-variety Xy is quasi-Stein.

Remark 2.3.1. If X is quasi-Stein over k and k' is a complete valued field
extension of k then the algebra of global sections of Xy is a k’-Fréchet-Stein
algebra: If (X;);en is a covering of X as a quasi-Stein space then

Ox,, (X)) = lIm;Ox,, ((Xi)w')-

For each i € N the algebra Ox,, ((X;)s) is a noetherian k’-Banach algebra for
which the map Ox,, (Xs41)w) — Ox,, ((Xo)rr) is flat (cf. [2], 7.3.2 Corollary
6). Moreover, the natural map Ox,, (X)) — Ox,,((X;)r) has dense image
because this is true for all transition maps.

Recall that if Z is a commutative locally L-analytic group and X is a rigid
analytic L-variety then the group Z (X) of locally analytic characters of Z with
values in X consists of the homomorphisms Z — Ox (X)* of groups such that
for any admissible open affinoid subset Xo = Sp(A) of X the induced homo-
morphism Z — A* is an element of C*(Z, A) (cf. [12], Definition 6.4.2). It
is shown in [loc.cit.], Corollary 6.4.4, that Z is a functor on the category of all
rigid analytic L-varieties.

Theorem (Emerton-Schneider-Teitelbaum). If Z is a commutative, locally L-
analytic, topologically finitely generated group then the functor Z is representable
by a strictly o-affinoid rigid analytic space over L.

Recall that according to [loc.cit.], Definition 2.1.17, a rigid analytic L-variety X
is called strictly o-affinoid if X has an admissible covering (X;);en by affinoid
subdomains X; such that for every i € N X is relatively compact in X;y; in
the sense of [2], 9.6.2. As a corollary to the construction of Z we obtain:

Corollary 2.3.2. Z is quasi-Stein.

Proof: By [12], Proposition 6.4.1, there is an isomorphism Z — A x Zj of lo-
cally L-analytic groups where A is a free abelian group of finite rank, say r, and
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Zy is a compact open subgroup of Z. Consequently, there is an isomorphism
Z — A x Zy. A is represented by the r-fold direct product of the rigid ana-
lytification Gy’ of the multiplicative group Gy, 1 over L which is quasi-Stein.
Further, Zo admits a finite morphism to a finite direct product of copies of o7,
which is quasi-Stein by [24], p. 456. O

The ring of global sections of the structure sheaf of Zx is denoted by O(Z K)-
Since Zk is quasi-Stein and strict}y o-affinoid it follows from Remark 2.3.1 and
[12], Proposition 2.1.16, that O(Zk) is a nuclear K-Fréchet-Stein algebra.

Theorem (Emerton-Schneider-Teitelbaum). If Z is a commutative, locally L-
analytic, topologically finitely generated group then there is a natural continuous
injection D(Z,K) — O(Zk) of K-algebras with dense image.

We briefly recall the construction of this map: As above we choose an isomor-
phism Z — A x Zy. According to [28], Proposition A.3, there is a topological
isomorphism

D(Z,K) ~ DA, K)®k ,D(Zy, K).

A being discrete, D(A, K) = K[A] is the topological direct sum of one dimen-
sional K-vector spaces. Hence D(A, K) Qg , D(Zy, K) is complete (cf. Lemma
1.2.13 and [22], Lemma 7.8) so that

D(Z,K) ~ K[\ ®k,, D(Zy, K).

On the other hand, the Fourier transform of [24], Theorem 2.3, extends to an
isomorphism D(Z, K) ~ O((Zo) ) of K-Fréchet algebras. Further, D(A, K) =
K[A] can be interpreted as the algebra of regular functions on the algebraic
Cartier dual D(A) = Gj,, j of A. It admits an embedding into O((G}, ;)*") =

O(Af) with dense image. Since

O(Zk) ~ O(Ag)2KkO((Zo) k) ~ O(AK)® K., O(Z) k)
the claim follows.
Corollary 2.3.3. Let G be a locally L-analytic group and assume that either
i) G is commutative and topologically finitely generated or

ii) G is the group of L-rational points of a connected, split reductive L-group

G.

If K is discretely valued then there is a quasi-Stein rigid analytic L-variety X
and an injective, continuous homomorphism D(G, K)¢ — O(Xk) of K -algebras
with dense image.

Proof: Case (i) is just the previous theorem because D(G, K)¢ = D(G, K). In
case (ii) let Z be the center of G and n be the dimension of the derived group of
G. Since Z is topologically finitely generated we may define X := Z x, (A})*"

Writing Z = A x Zy we have O(Xf) =~ (’)([\K)®KO((2\0)K)®KO((A7}<)“").
Further, Corollary 2.2.4 yields

(2.7) D(G, K)C ~ KIA] @1, D(Zo, K)o U2, K,
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where 0 denotes the Lie algebra of the derived group of G. It follows from
our assumptions on G that 0 is semisimple and L-split whence by Theorem
2.1.6 there is a topological isomorphism U (9, K)° ~ O((A%)*") of K-Fréchet
algebras. Tensoring the embedding K[A] € O(Ax) with

D(Zo, K)&1,U (0, K)® = O((Zo) k)@, O((AF)™")

gives a continuous K-linear injection D(G, K)¢ — O(Xk). Since K[A] is dense
in O(Ak) it has dense image (cf. [22], Lemma 19.10) and, by construction, is a
homomorphism of K-algebras. (]

Remark 2.3.4. The isomorphism (2.7) makes it possible to explicitly compute
the center of D(G, K) if G is L-split. The structure of U(0, K)® has been deter-
mined in Theorem 2.1.6: if n is the rank of @ then U (0, K)° ~ O((A%)") is the
K-algebra of all power series in n variables with infinite radius of convergence.
Moreover, if r is the dimension of Z then Z contains an open subgroup isomor-
phic to o}7. Thus, Z ~ A x o} as locally L-analytic groups with a discrete,
finitely generated abelian group A. Consequently,

D(Z,K) ~ K[A] @k, D(op, K)®k --- @ D(or, K)

r-times

(cf. [28], Proposition A.3). The structure of D(oy, K) has been investigated in
[24]. Tt is the K-algebra of holomorphic functions on a twisted form of the open
unit disk.

Corollary 2.3.5. Under the assumptions of Corollary 2.3.3 any mazimal ideal
of D(G, K)% which is closed with respect to the topology induced by O(Xg) is
of finite codimension.

Proof: Let m be a maximal ideal of A := D(G, K)“ which is closed with respect

to the metric topology induced by A := O(Xg) and let m be the closure of

min A. A/ = m gives rise to a non-zero, coherent module F on X (cf.
[26], Lemma 3.6). There is a point € Xk such that F, # 0. By Nakayama’s
lemma also Fg/m, # 0, where m; is the maximal ideal of Ox, ,. However,
dimg F, /m, < oo, and F,/m, is also a module over A/m. O

2.4 An extension of Harish-Chandra’s isomorphism

Let G be a connected, split reductive, linear algebraic group defined over L with
a maximal L-split torus T. Let D and Z be the center and the derived group of
G, respectively. Then D is L-split and T := (DN T)® is a maximal L-split torus
of D. Let G,Z,D, T and T’ be the group of L-rational points of G,Z,D, T and
T’, respectively, and g,3,0,t and t' be the respective Lie algebras. Note that
0 = [g,g] is a semisimple Lie algebra and that t' is an L-split maximal toral
subalgebra of 9. Let finally W = W(G,T) := Ng(T)/T be the Weyl group of G
with respect to T. W acts on T by conjugation and hence on D(T, K) such that
the subalgebra S(t, K') of D(T, K) is stable under W. W is also the Weyl group
of D with respect to T”, hence acts on 7" and D(T',K). The corresponding
action on S(t', K) is induced by the adjoint action of W on t' (cf. the proof
of Proposition 2.1.1). Recall that S(t', K) is also acted on by the Weyl group
0 = W(0,t) of the pair (9,t) (cf. subsection 2.1). This action, too, is induced
by viewing 20 as a subgroup of Auty (t'). The following fact is well known.
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Lemma 2.4.1. Ad : W — 20 is an isomorphism of groups. In particular,
S, K)" =S(t, K)%. O

Theorem 2.4.2. Let G be the group of L-rational points of a connected, split
reductive L-group G with T and W as above. If K is discretely valued then there
is a topological isomorphism

D(G,K)¢ ~D(T,K)¥
of separately continuous K-algebras.
Proof: According to Corollary 2.2.4 there is a topological isomorphism
k:D(G,K)¢ — D(Z,K)®k,U®®d,K)°
of separately continuous K-algebras.

Since T'= Z-T’ with finite intersection ZNT" one proves in an analogous manner
that there is a topological isomorphism of separately continuous K-algebras

¢ :D(Z, K)ok, S, K)V — D(T,K)Y .

According to Theorem 2.1.6 and Lemma 2.4.1 there is a topological isomorphism
€:U(0,K) — S(t', K)W of K-Fréchet algebras so that

Yo (id&€) ok : D(G,K)¢ — D(T, K)Y
is as required. ([l

Remark 2.4.3. If G is semisimple then Z is finite and x and v are the obvious
isomorphisms

K[Z]®KU(9’K)G — D(G’K)g
K[Z)®k S(t, K)'V — D(T,K)Y.

Since the isomorphism ¢ : U(g, K)¢ — S(t, K)" was constructed without any
restriction on K it follows that we have an isomorphism D(G, K)¢ ~ D(T, K)%¥
for any spherically complete coefficient field K.
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