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Abstract. Let p be a prime number, L a finite extension of the field Qp

of p-adic numbers, K a spherically complete extension field of L and G the
group of L-rational points of a split reductive group over L. We derive several
explicit descriptions of the center of the algebra D(G,K) of locally analytic
distributions on G with values in K. The main result is a generalization of
an isomorphism of Harish-Chandra which connects the center of D(G,K) with
the algebra of Weyl-invariant, centrally supported distributions on a maximal
torus of G. This isomorphism is supposed to play a role in the theory of locally
analytic representations of G as studied by P. Schneider and J. Teitelbaum.

Introduction

Let p be a prime number, L a finite extension of the field Qp of p-adic numbers,
K a spherically complete extension field of L and G a locally L-analytic group
of finite dimension with center Z and Lie algebra g.

The K-algebra D(G,K) of locally analytic distributions on G plays a central
role in the theory of locally analytic representations of G on locally convex K-
vector spaces which was given a systematic treatment by P. Schneider and J.
Teitelbaum (cf. [25] and [26]). Such representations appear in the cohomology
of p-adic symmetric spaces (cf. [27]), as an important tool of M. Emerton’s
construction of the Eigencurve of Coleman-Mazur (cf. [13]) and, most recently,
in C. Breuil’s hypothetical p-adic Langlands program (cf. [5]).

This paper is devoted to the study of the center of the ring D(G,K). Our ap-
proach relies on the observation that for locally analytic distributions on G there
is a well-defined notion of support and that the support supp(δ) is a compact
subset of G for any distribution δ ∈ D(G,K). It follows from the definition of
the convolution product in D(G,K) that any invariant distribution, i.e. any
element of D(G,K)G, is supported on a union of relatively compact conjugacy
classes of G. If G is the group of L-rational points of a connected, reductive,
linear algebraic group over L all of whose simple factors are L-isotropic (e.g. an
L-split group) then the only such classes of G are the trivial ones, i.e. those
belonging to the elements of Z (Sit’s theorem). Therefore, we are led to the
investigation of the K-algebra D(G,K)Z of centrally supported distributions
on G.

If z denotes the Lie algebra of Z then we let U(z,K) (resp. U(g,K)) be the

1



subalgebra of D(Z,K) (resp. D(G,K)) consisting of distributions supported in
the unit element. There is a natural continuous K-linear map

D(Z,K)⊗̂U(z,K),ιU(g,K) −→ D(G,K)Z

of locally convex D(Z,K)-U(g,K)op-bimodules (here ι indicates the inductive
tensor product topology). It is the main technical result of our work that under
the assumption that K is discretely valued this map is a topological isomorphism
(cf. Proposition 1.2.12). Its proof relies for one thing on certain compatibility
conditions for global charts of small open subgroups of G and Z, respectively (cf.
Proposition 1.3.5 and Corollary 1.3.6). On the other hand, we make extensive
use of the fact that D(G,K) is a K-Fréchet-Stein algebra (a notion introduced
by P. Schneider and J. Teitelbaum) and a structure theorem of D(G,K) as a
module over U(g,K) after a certain completion process. The latter is due to H.
Frommer who proved it for Qp as a ground field. We generalize it to any finite
extension L|Qp (cf. Theorem 1.4.2).

G acts on U(g,K) and D(G,K)Z . If G is an open subgroup of the group
of L-rational points of a connected, algebraic group over L then we obtain a
topological isomorphism

D(Z,K)⊗̂U(z,K),ιU(g,K)G −→ D(G,K)GZ

of K-algebras (cf. Theorem 2.2.1). If moreover G satisfies the hypotheses of
Sit’s theorem then D(G,K)G = D(G,K)GZ and it remains to examine the in-
finitesimal center U(g,K)G.

Consider g as an abelian locally L-analytic group and let S(g,K) be the sub-
algebra of D(g,K) consisting of distributions supported in 0 ∈ g. S(g,K) and
U(g,K) carry actions of G and g. We show that Duflo’s famous isomorphism
S(g)g → U(g)g extends to a topological isomorphism S(g,K)g → U(g,K)g of
K-Fréchet algebras (cf. Proposition 2.1.5; S(g) and U(g) denote the symmetric
and the universal enveloping algebra of g, respectively). If g is split semisimple
with split maximal toral subalgebra t and corresponding Weyl group W then
W naturally acts on the algebra S(t,K) of locally analytic distributions on t
supported in 0 ∈ t. We show that the classical isomorphism S(g)g → S(t)W

extends to a topological isomorphism S(g,K)g ' S(t,K)W of K-algebras (cf.
Theorem 2.1.6). It follows that

U(g,K)g ' S(t,K)W.

Even more is true: Just as S(t)W is a polynomial ring in n := dimL(t) variables,
S(t,K)W is the algebra of holomorphic functions on the rigid analytic affine
space (AnK)an of dimension n over K (loc.cit.).

If G is the group of L-rational points of a connected, split reductive L-group
G then the above results enable us to give two different, explicit descriptions
of D(G,K)G. Using results on the Fourier transform of Z obtained by M.
Emerton, P. Schneider and J. Teitelbaum we deduce the existence of an explicitly
computable quasi-Stein rigid analytic K-variety XK and a continuous, injective
homomorphism of K-algebras

D(G,K)G −→ O(XK)
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with dense image (cf. Corollary 2.3.3 and Remark 2.3.4). If T is a maximal
L-split torus of G, T := T(L) and W := NG(T )/T the corresponding Weyl
group then we also construct a topological isomorphism

D(G,K)G ' D(T,K)WZ

of separately continuous K-algebras extending Harish-Chandra’s isomorphism
U(g)g ' S(t)W (cf. Theorem 2.4.2). Since the latter plays a fundamental role
in the representation theory of the Lie algebra g our extension is hoped to be
of importance for the theory of locally analytic representations of the group G.
We point out that in the theory of smooth representations – subsumed by the
locally analytic theory – such an isomorphism does not exist.

The present work comprises parts of the author’s thesis. He is deeply indebted
to Prof. Dr. P. Schneider without whose guidance it would not have come into
existence. He is also grateful to Prof. Dr. S. Bosch and Dr. M. Strauch for
many helpful discussions, as well as to two anonymous referees for helping to
improve an earlier version of this article.

Conventions and notation. Throughout this paper p denotes a prime number
and L a finite extension of Qp. Let oL be the ring of integers of L with maximal
ideal mL and uniformizer πL. We assume the valuation ω on L to be normalized
such that ω(πL) = 1. Let further e := ω(p) be the ramification index of the
extension L|Qp and m its degree. The absolute value | · | of L corresponding to ω
is assumed to be normalized through |p| = p−1. We let K be a fixed spherically
complete extension of L which for many results will have to be assumed to be
discretely valued (cf. subsection 1.4, in particular). Let oK denote its ring of
integers. We assume the absolute value | · | on K to extend the one on L. If
V is a locally convex vector space over K then we let V ′ := Homcont

K (V,K)
denote the space of continuous functionals on V . We write V ′b for the locally
convex K-vector space V ′ endowed with the topology of strong convergence. G
will always be a locally L-analytic group of finite dimension d with center Z.
The Lie algebra of Z will be denoted by z. We also fix an exponential map
exp : g // G defined locally around zero on the Lie algebra g of G.

1 Locally analytic distributions

1.1 Functoriality

Recall that a topological Hausdorff space M is called (strictly) paracompact if
any open covering of M admits a locally finite refinement by (pairwise disjoint)
open subsets. Let M be a paracompact, locally L-analytic manifold of finite
dimension d. We note that in this situation M is automatically strictly para-
compact (cf. [23], p. 35). The locally convex K-vector space Can(M,K) of
locally analytic functions on M with values in K is the locally convex inductive
limit

Can(M,K) = lim−→IFI(K)

where I runs through the inductive system of all “indices”. An index I is a family
of charts {(Di, ϕi)}i∈I of M such that (Di)i∈I is a covering of M by disjoint

3



open subsets and such that each ϕi(Di) is an affinoid ball in Ld. Further,

FI(K) :=
∏
i∈I
Fϕi

(K)

is the locally convex direct product of the K-Banach spaces Fϕi(K) of functions
f : Di → K such that f ◦ ϕ−1

i is a K-valued rigid analytic function on the
affinoid ball ϕi(Di). The space of locally analytic distributions on M is the
locally convex K-vector space

D(M,K) := Can(M,K)′b.

If (Mi)i∈I is a covering of M by disjoint open subsets Mi then there is a topo-
logical isomorphism

(1.1) Can(M,K) '
∏
i∈I

Can(Mi,K)

dualizing to a topological isomorphism

(1.2) D(M,K) '
⊕
i∈I

D(Mi,K)

(cf. [14], Korollar 2.2.4). If M is compact, then Can(M,K) is a K-vector space
of compact type and, in particular, is reflexive (cf. [25], Lemma 2.1 and [22],
Proposition 16.10). In this case D(M,K) is a nuclear Fréchet space (cf. [25]
Theorem 1.3).

There is an embedding M ↪→ D(M,K), sending m ∈ M to the Dirac distribu-
tion δm := (f 7→ f(m)).

Lemma 1.1.1. The subspace K[M ] of D(M,K) generated by all Dirac distri-
butions δm, m ∈M , is dense.

Choosing a covering (Mi)i∈I of M by disjoint compact open subsets, (1.1) shows
that Can(M,K) is reflexive (cf. [22], Proposition 9.10 and Proposition 9.11).
Hence the proof of Lemma 1.1.1 can be done as in [25], Lemma 3.1.

Let N,M be paracompact, locally L-analytic manifolds of finite dimension and
ϕ : N → M be a morphism. ϕ defines a K-linear map ϕ∗ : Can(M,K) →
Can(N,K) via ϕ∗(f) := f ◦ ϕ for f ∈ Can(M,K). Using the definition of
Can(M,K) and Can(N,K) via indices one can show that ϕ∗ is continuous
with respect to the locally convex topologies defined above (cf. [23], p. 65
or [14], Bemerkung 2.1.11). Thus, ϕ∗ dualizes to a continuous K-linear map
ϕ∗ : D(N,K)→ D(M,K).

Proposition 1.1.2. Let ϕ : N → M be a closed embedding of paracompact,
locally L-analytic manifolds of finite dimension. Then ϕ∗ : Can(M,K) →
Can(N,K) is a strict surjection and ϕ∗ : D(N,K) → D(M,K) is a topolog-
ical embedding.

Proof: Let f ∈ Can(N,K) and a ∈ N . There is an open neighborhood
Ua of a in N , an open neighborhood Va of ϕ(a) in M and a locally ana-
lytic manifold Za with the following properties: ϕ restricts to a morphism
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ϕa : Ua → Va and there is an isomorphism g : Va → Ua × Za such that
prUa

◦ g ◦ ϕa = idUa
(cf. [7], 5.7.1; here prUa

is the projection onto Ua). It
follows that f |Ua = ϕ∗a((prUa

◦ g)∗(f |Ua)) ∈ im(ϕ∗a).

Let C be a closed and open subset of M with ϕ(N) ⊆ C ⊆ ∪a∈NVa (cf. [23], p.
37). Choose a refinement (Vi)i∈I of the open covering (C ∩Va)a∈N of C consist-
ing of disjoint open subsets Vi of C. For each i ∈ I choose a point a ∈ N such
that Vi ⊆ Va. There is a function ga ∈ Can(Va,K) such that ϕ∗a(ga) = f |Ua.
Set gi := ga|Vi ∈ Can(Vi,K) and gM\C := 0 ∈ Can(M \C,K). Then the family
g := (gM\C , (gi)i∈I) ∈ Can(M,K) satisfies ϕ∗(g) = f , proving the surjectivity
of ϕ∗.

If (Mi)i∈I is a covering of M by disjoint compact open subsets, Ni := ϕ−1(Mi)
and ϕi := ϕ|Ni for i ∈ I then ϕ∗ is open if and only if all ϕ∗i are. Hence we may
assume M and N to be compact.
In this case both Can(M,K) and Can(N,K) are locally convex K-vector spaces
of compact type. In particular, they carry the locally convex final topology with
respect to a countable family of BH-spaces. Therefore, the claim follows from
[22], Proposition 8.8, and the surjectivity of ϕ∗.

If (Mi)i∈I and (Ni)i∈I are as above then ϕ∗ is the direct sum of the maps
(ϕi)∗ : D(Ni,K) → D(Mi,K). Since ϕ∗i is strict surjective and (ϕi)∗ is the
corresponding dual map, (ϕi)∗ is a topological embedding according to [25],
Proposition 1.2 (i). The same is then true for ϕ∗ by [22], Lemma 5.3 (i). �

In the situation of Proposition 1.1.2 we will from now on write D(N,K) ⊆
D(M,K) for the topological embedding ϕ∗ : D(N,K) → D(M,K) of locally
convex K-vector spaces.
If we assume M = G to be a finite dimensional, locally L-analytic group then
D(G,K) carries the structure of a unital, associative K-algebra with separately
continuous multiplication such that the natural inclusion K[G] ↪→ D(G,K)
becomes a homomorphism of rings (cf. [25], section 2). It is explicitly given by

(1.3) (δ · δ′)(f) = δ′(g′ 7→ δ(g 7→ f(gg′)))

with δ, δ′ ∈ D(G,K) and f ∈ Can(G,K). If G0 is an open subgroup of G then
according to (1.2)

D(G,K) '
⊕

g∈G/G0

D(g ·G0,K) '
⊕

g∈G/G0

δg ·D(G0,K).

If H is a closed locally L-analytic subgroup of G then the topological embedding
D(H,K) ⊆ D(G,K) is a homomorphism of algebras.

1.2 The notion of support

Definition 1.2.1. The support supp(δ) of a distribution δ ∈ D(M,K) is the
complement of the largest open subset U of M such that δ(f) = 0 for all
f ∈ Can(M,K) with supp(f) ⊆ U . If C is a subset of M and V ⊆ D(M,K) a
subspace then we denote by VC the subspace of all distributions δ ∈ V whose
support is contained in C. Similarly, if W is a subspace of Can(M,K) then WC

denotes the subspace of all locally analytic functions f ∈W with supp(f) ⊆ C.
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Remark 1.2.2. The existence of supp(δ) for δ ∈ D(M,K) follows from the
strict paracompactness of M : Let U1, U2 be open subsets of M such that δ(f) =
0 for all f ∈ Can(M,K) with supp(f) ⊆ U1 or supp(f) ⊆ U2, and let f ∈
Can(M,K) be supported on U1∪U2. There is a closed and open subset A of M
with supp(f) ⊆ A ⊆ U1∪U2 (cf. [23], p. 37). Choose a refinement (Vi)i∈I of the
covering (U1 ∩A,U2 ∩A) of A consisting of disjoint open subsets Vi of A. Then
f |A ∈ Can(A,K) =

∏
i∈I C

an(Vi,K), i.e. f |A = (fi)i∈I with fi ∈ Can(Vi,K)
for all i ∈ I. Set f j := (f ji )i∈I , j = 1, 2, with f1

i := 0 if Vi 6⊆ U1 ∩ A (i.e.
Vi ∩ U1 = ∅), f1

i := fi if Vi ⊆ U1 ∩ A, f2
i := 0 if Vi ⊆ U1 ∩ A and f2

i := fi if
Vi 6⊆ U1 ∩ A. Then f1, f2 ∈ Can(A,K) with f1 + f2 = f |A. Extending f1, f2

by zero outside of A we obtain functions f1, f2 ∈ Can(M,K) with f1 + f2 = f
and supp(f j) ⊆ Uj , j = 1, 2. By assumption δ(f) = δ(f1) + δ(f2) = 0.

Remark 1.2.3. It follows from (1.2) that all locally analytic distributions on
M are compactly supported, i.e. supp(δ) is a compact subset of M for all
δ ∈ D(M,K).

If M = G is a locally L-analytic group, g ∈ G and δ ∈ D(G,K) then according
to (1.3)

(1.4) supp(δg · δ) = g · supp(δ) and supp(δ · δg) = supp(δ) · g.

More generally we still have:

Lemma 1.2.4. If δ1, δ2 ∈ D(G,K) then supp(δ1 · δ2) ⊆ supp(δ1) · supp(δ2).

Proof: Let g ∈ supp(δ1 ·δ2). Then for any open subgroup H ⊆ G there is a func-
tion f ∈ Can(G,K) supported on gH with (δ1δ2)(f) = δ2(h 7→ δ1(Rhf)) 6= 0
(here Rh is the right translation operator associated with h). Hence there are
elements γ2 ∈ supp(δ2) and h ∈ H such that supp(δ1)∩ (supp(f) ·h−1 ·γ−1

2 ) 6= ∅.
Since supp(f) ⊆ gH there is h′ ∈ H and γ1 ∈ supp(δ1) such that γ1 =
gh′h−1γ−1

2 , i.e. g = γ1γ2h(h′)−1. It follows that g ∈ supp(δ1) · supp(δ2) be-
cause H is arbitrary and supp(δ1) · supp(δ2) is closed (even compact). �

For a closed subset C of G the locally convex K-vector space CωC(G,K) of
generalized germs in C is the quotient space

(1.5) CωC(G,K) := Can(G,K)/Can(G,K)G\C

(cf. [14], Definition 2.3.3). If C is compact then there is a topological isomor-
phism

CωC(G,K) = lim−→UC
an(U,K)

with U running through the inductive system of open subsets of G containing
C and transition maps defined by restriction of functions. In this case the
inductive limit topology on CωC(G,K) is Hausdorff. If C = {g} is a singleton
we write Cωg (G,K) instead of Cω{g}(G,K).

Lemma 1.2.5. Can(G,K)C is a closed subspace of Can(G,K) for any subset
C of G. If C is closed then D(G,K)C is a closed subspace of D(G,K) and there
is a topological isomorphism

(1.6) D(G,K)C ' CωC(G,K)′b.

If C is compact then this is an isomorphism of nuclear K-Fréchet spaces.

6



Proof: Let C be a subset of G. As mentioned in [loc.cit.], section 2.3.1,
Can(G,K)C is equal to the intersection of the kernels of all continuous sur-
jections Can(G,K) // // Cωg (G,K) , g ∈ G \ C, hence is closed in Can(G,K).
If C is closed in G then D(G,K)C is the orthogonal space of Can(G,K)G\C
with respect to the natural pairing

D(G,K)× Can(G,K)→ K

so that D(G,K)C is closed, as well. Further, the reflexivity of D(G,K) implies
by means of [6], IV.2.2 Corollary, that

(D(G,K)C)′b ' D(G,K)′b/D(G,K)◦C

where D(G,K)◦C denotes the orthogonal subspace of D(G,K)C with respect
to the pairing D(G,K)′b × D(G,K) → K. Since Can(G,K) is reflexive and
Can(G,K)G\C is closed D(G,K)◦C ' Can(G,K)◦◦G\C = Can(G,K)G\C . It fol-
lows that

(D(G,K)C)′b ' Can(G,K)/Can(G,K)G\C .

If G0 is a compact open subgroup of G then by (1.2) and [22], Lemma 5.3

D(G,K)C = ⊕g∈G/G0D(gG0,K)gG0∩C

showing that D(G,K)C is reflexive (D(gG0,K)gG0∩C is a closed subspace of the
nuclear Fréchet space D(gG0,K)). Thus, (1.6) follows. The last claim follows
from CωC(G,K) being of compact type if C is compact (cf. [14], Satz 2.3.2). �

Corollary 1.2.6. If C is a closed subset of G such that 1 ∈ C and C · C ⊆ C
then D(G,K)C is a closed subalgebra of D(G,K). If in addition C is compact
then D(G,K)C is a nuclear K-Fréchet algebra. �

Remark 1.2.7. Let G0 be a compact open subgroup of G. If H is a locally
L-analytic subgroup of G and H0 := H ∩G0 then as seen above

D(G,K)H =
⊕

g∈G/G0

D(gG0,K)gG0∩H

as locally convex K-vector spaces. Noting that D(gG0,K)gG0∩H 6= 0 if and
only if gG0 ∩H 6= ∅ we get

(1.7) D(G,K)H =
⊕

h∈H/H0

δh ·D(G0,K)H0 .

According to [14], Bemerkung 3.1.2 and Satz 3.3.4, the Lie algebra g of G acts
on Can(G,K) via continuous endomorphisms defined by

x(f)(g) :=
d

dt
f(exp(−tx)g)|t=0 for x ∈ g and f ∈ Can(G,K).

This action extends to an action of the universal enveloping algebra U(g) of g
on Can(G,K).

According to Lemma 1.2.5 and Corollary 1.2.6 Cω1 (G,K)′b ' D(G,K){1} is a
K-Fréchet subalgebra of D(G,K). Fixing an ordered L-basis X = (x1, . . . , xd)
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of g the action of U(g) on Can(G,K) leads to the following explicit description
of Cω1 (G,K)′b (cf. [25], Lemma 2.4):

Cω1 (G,K)′b =

∑
α∈Nd

dαXα| dα ∈ K, ∀r > 0 : sup
α
|dα · α!|r−|α| <∞

 ,

where for α = (α1, . . . , αd) we set |α| := α1 + . . . + αd and α! := α1! · . . . · αd!.
Further, Xα := xα1

1 · · · x
αd

d is viewed as a distribution via

(1.8) Xα(f) = ((−x1)α1 ◦ . . . ◦ (−xd)αd(f))(1) for f ∈ Can(G,K).

Finally, the Fréchet topology of Cω1 (G,K)′b is defined by the family of norms
(ν′r)r>0 with ν′r(

∑
α dαXα) := supα |dα · α!|r−|α|.

Letting (z 7→ ż) denote the unique anti-automorphism of U(g)⊗L K extending
multiplication by −1 on g, the natural homomorphism (z 7→ (f 7→ ż(f)(1))) :
U(g)⊗L K → Cω1 (G,K)′b of K-algebras is injective.

Proposition 1.2.8. U(g)⊗L K is dense in Cω1 (G,K)′b. We have

(1.9) Cω1 (G,K)′b =

{∑
α

dαXα| dα ∈ K,∀r > 0 : sup
α
|dα|r−|α| <∞

}

and the Fréchet topology of Cω1 (G,K)′b can be defined by the family of norms
(νr)r>0 with νr(

∑
α dαXα) := supα |dα|r−|α|.

Proof: Since |α!| ≤ 1 the right hand side of (1.9) is contained in Cω1 (G,K)′b.
Conversely, |α!|−1 ≤ p|α|/(p−1), so that if supα |dα|r−|α| <∞ for all r > 0 then
also supα |dα/α!|r−|α| < ∞ for all r > 0. This proves the reverse inclusion as
well as the fact that the two families of norms (ν′r)r>0 and (νr)r>0 are equivalent.
The density statement is clear. �

Remark 1.2.9. When working with Cω1 (G,K)′b we will henceforth use the
description given by (1.9) and assume its topology to be defined by the family
of norms (νr)r>0. To simplify notation we write U(g,K) := Cω1 (G,K)′b.

Lemma 1.2.10. If C is a closed subset of G then the U(g,K)-submodule of
D(G,K)C generated by all Dirac distributions δc, c ∈ C, is dense.

Proof: Let ∆ be the closure of
∑
c∈C δc · U(g,K) in D(G,K). It follows

from Lemma 1.2.4 and Lemma 1.2.5 that ∆ ⊆ D(G,K)C . We know that
Can(G,K)/Can(G,K)G\C is reflexive. Let ` be a continuous functional on
D(G,K)C vanishing on ∆. By (1.5) and (1.6), ` corresponds to an element
f of Can(G,K)/Can(G,K)G\C . To say ` vanishes on ∆ is to say that any
representative f of f in Can(G,K) vanishes in an open neighborhood of C.
Hence f ∈ Can(G,K)G\C , i.e. f = 0, and ∆ = D(G,K)C by the Hahn-Banach
theorem. �

Remark 1.2.11. Let B and C be locally convex K-vector spaces carrying
separately continuous K-algebra structures with a common K-subalgebra A.
If B⊗̂K,ιC denotes the Hausdorff completion of the algebraic tensor product
B⊗K,ιC endowed with its inductive tensor product topology then we letB⊗̂A,ιC
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be the quotient of B⊗̂K,ιC by the closure of the subspace generated by all
elements of the form

ba⊗ c− b⊗ ac, a ∈ A, b ∈ B and c ∈ C.

We endow B⊗̂A,ιC with the corresponding quotient topology. If B and C are K-
Fréchet spaces then the inductive and the projective tensor product topologies
on B ⊗K C coincide. Therefore, we omit the ι from the notation and simply
write B⊗̂KC and B⊗̂AC.
Note that B⊗̂A,ιC is naturally a B-Cop-bimodule (Cop being the K-algebra
opposite to C). If A is contained in the centers of B and C then B⊗̂A,ιC is
naturally a module over B ⊗K C and even over B ⊗A C.

Let H be a closed, locally L-analytic subgroup of G and h its Lie algebra. The
multiplication map

(1.10) D(H,K)× U(g,K) −→ D(G,K)H

induces a continuous K-linear map

µ : D(H,K)⊗̂U(h,K),ιU(g,K) −→ D(G,K)H .

Proposition 1.2.12. If K is discretely valued then µ is a topological isomor-
phism of D(H,K)-U(g,K)op-bimodules.

Proof: In Corollary 1.3.6 and Corollary 1.4.3 we will prove that there is a
compact open subgroup G0 of G with the following properties: D(G0,K) is
a K-Fréchet-Stein algebra with respect to a family of norms || · ||r, r ∈ pQ,
1/p < r < 1, such that the completion Dr(G0,K) of D(G0,K) with respect to
the norm ||·||r is finitely generated and free as a module over the closure Ur(g,K)
of U(g,K) in Dr(G0,K); if H0 := H ∩G0 then D(H0,K) is a K-Fréchet-Stein
algebra with respect to the family of norms || · ||r restricted to D(H0,K); for
each r the closure Dr(H0,K) of D(H0,K) in Dr(G0,K) is finitely generated and
free as a module over the closure Ur(h,K) of U(h,K) in Dr(H0,K); Ur(g,K)
and Ur(h,K) are noetherian K-Banach algebras.

Lemma 1.2.13. If (Vi)i∈I and W are Hausdorff locally convex K-vector spaces
then there is a topological isomorphism

(
⊕
i∈I

Vi)⊗̂K,ιW '
⊕
i∈I

(Vi⊗̂K,ιW ).

Proof: This is a straightforward generalization of [18], I.3.1 Proposition 14.I, to
the non-archimedean setting. �

By (1.7), Lemma 1.2.13 and [22], Lemma 5.3, it suffices to show that the map

D(H0,K)⊗̂U(h,K)U(g,K) −→ D(G0,K)H0

is a topological isomorphism. We again denote it by µ.
Let r ∈ pQ with 1/p < r < 1. The multiplication in Dr(G0,K) induces a
continuous K-linear map

µr : Dr(H0,K)⊗K Ur(g,K) −→ Dr(G0,K)H0 ;
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here Dr(G0,K)H0 denotes the closure of D(G0,K)H0 in Dr(G0,K). In the
proof of Corollary 1.4.3 we will show that Dr(G0,K)H0 is free and finitely
generated as a module over Ur(g,K) and has a basis (bα)α∈A′ in K[H0] which
is simultaneously a basis of the free Ur(h,K)-module Dr(H0,K). Hence µr
induces a continuous K-linear bijection

(1.11) Dr(H0,K)⊗Ur(h,K) Ur(g,K) −→ Dr(G0,K)H0 .

Dr(H0,K) and Ur(g,K) are complete normed modules over the noetherian
K-Banach algebra Ur(h,K). Further, Dr(H0,K) is a finitely generated, free
Ur(h,K)-module and therefore topologically isomorphic to a direct sum of copies
of Ur(h,K) (cf. [26], Proposition 2.1 (iii)). A straightforward generaliza-
tion to the non-commutative setting of [2], 2.1.7 Proposition 6, shows that
Dr(H0,K) ⊗Ur(h,K) Ur(g,K) is a complete normed space with respect to the
tensor product norm. By the open mapping theorem (1.11) is a topological
isomorphism. In addition,

Dr(H0,K)⊗Ur(h,K) Ur(g,K) = (Dr(H0,K)⊗K Ur(g,K))/kerµr
' (Dr(H0,K)⊗̂KUr(g,K))/kerµr

where kerµr is the closure of kerµr in Dr(H0,K)⊗̂KUr(g,K). Thus, we obtain a
short exact sequence of strict continuous K-linear maps between Banach spaces

0 −→ kerµr −→ Dr(H0,K)⊗̂KUr(g,K) −→ Dr(G0,K)H0 −→ 0.

Recall that U := ker(D(H0,K)⊗̂KU(g,K) −→ D(H0,K)⊗̂U(h,K)U(g,K)) is
the closure of the subspace of D(H0,K)⊗̂KU(g,K) generated by all elements
of the form

λy⊗ x− λ⊗ yx with λ ∈ D(H0,K), y ∈ U(h,K) and x ∈ U(g,K).

Since by (1.11) the kernel of µr is the vector space generated by all elements of
the form

λy⊗ x− λ⊗ yx with λ ∈ Dr(H0,K), y ∈ Ur(h,K) and x ∈ Ur(g,K)

U ⊆ kerµr is dense for all r. Therefore, the system (kerµr) with r ∈ pQ and
1/p < r < 1 satisfies the Mittag-Leffler property as formulated in [17], 13.2.4.
By [loc.cit], 13.2.2, we obtain an exact sequence

0 −→ U = lim←−rkerµr −→ D(H0,K)⊗̂KU(g,K) −→ D(G0,K)H0 −→ 0,

because

lim←−r(Dr(H0,K)⊗̂KUr(g,K)) ' (lim←−rDr(H0,K))⊗̂K(lim←−rUr(g,K))

(cf. [12], Proposition 1.1.29). It induces a continuous K-linear bijection

D(H0,K)⊗̂U(h,K)U(g,K) −→ D(G0,K)H0

which is a topological isomorphism by the open mapping theorem. That it
coincides with µ is clear from the fact that for each r the restriction of µr to
D(H0,K)⊗K U(g,K) is induced by the multiplication in D(G0,K). �
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Remark 1.2.14. Assume there is a compact open subgroup G0 of G and a
closed locally L-analytic subgroup C0 of G0 such that G0 = H0 × C0 as locally
L-analytic groups with H0 := H ∩ G0. Then the above proposition can be
proved without any allusion to Fréchet-Stein structures and simplifies in the
following manner: According to Proposition A.3 and Remark A.4 of [28] there
is a topological isomorphism

D(H0,K)⊗̂KD(C0,K) −→ D(G0,K)

induced by multiplication. It follows from Lemma 1.2.10 and [22], Corollary
17.5 (ii) and Proposition 19.10 (i), that the preimage of D(G0,K)H0 under this
map is D(H0,K)⊗̂KU(c,K) where c is the Lie algebra of C0. Hence we obtain
from Lemma 1.2.13 that

D(G,K)H ' D(H,K)⊗̂K,ιU(c,K).

1.3 Restriction of the base field

Let L0|Qp be an extension of fields with L0 ⊆ L and let RL|L0 be the functor
“restriction of the base field from L to L0” from the category of paracompact
locally L-analytic manifolds to the category of locally analytic manifolds of the
same type over L0 (cf. [7], 5.14).

There is a natural embedding

τ : Can(G,K) −→ Can(RL|L0G,K)

mapping Can(G,K) homeomorphically onto its closed image (cf. [24], Lemma
1.2).

Lemma 1.3.1. The dual map τ ′ : D(RL|L0G,K)→ D(G,K) is a strict surjec-
tion and a homomorphism of K-algebras.

Proof: Since τ ′ restricts distributions on RL|L0G to the subspace Can(G,K) of
Can(RL|L0G,K) it is clear that τ ′ is a homomorphism of K-algebras. To show
the surjectivity we may assume G to be compact. But then τ is a topological
embedding of spaces of compact type so that the claim follows from [25], Propo-
sition 1.2 (i). �

Consider the ideal I := ker(τ ′) of D(RL|L0G,K). It is the orthogonal subspace
of Can(G,K) with respect to the natural pairing

D(RL|L0G,K)× Can(RL|L0G,K) −→ K.

Since D(RL|L0G,K) is reflexive we obtain by means of [6], IV.2.2 Corollary, that
I ′b is topologically isomorphic to Can(RL|L0G,K)/Can(G,K). The topological
isomorphism I ' ⊕g∈G/G0ker((τ |Can(gG0,K))′) for a compact open subgroup
G0 of G shows that I itself is reflexive. Thus, there is a topological isomorphism

(1.12) I ' (Can(RL|L0G,K)/Can(G,K))′b.

In order to give an explicit description of the locally L-analytic functions inside
Can(RL|L0G,K) we follow the arguments given in section 1 of [24]. If we write
gL0 for g viewed as a Lie algebra over L0 then gL0 can be identified with the
Lie algebra of RL|L0G.
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Lemma 1.3.2. Can(G,K) is the closed subspace of all those functions f ∈
Can(RL|L0G,K) for which (tx)(f) = t · x(f) for all t ∈ L and all x ∈ gL0 .

Proof: If we let W be the subspace of Can(RL|L0G,K) consisting of all functions
with the above property then Can(G,K) ⊆W . Let f ∈W . If x, y ∈ g and t ∈ L
then

(tx)(y(f)) = y((tx)(f)) + [tx, y](f) = y(t · x(f)) + (t · [x, y])(f)
= t · y(x(f)) + t · [x, y](f) = t · x(y(f))

shows that W is gL0-invariant. Therefore, the proof of [loc.cit.], Lemma 1.1,
generalizes to the non-commutative setting in the following manner: Fix an
L-basis X = (x1, . . . , xd) of g. Choose an orthonormal basis (v1, . . . , vn) of L as
a vector space over L0 and put Y := (v1x1, v2x1, . . . , vnxd). The corresponding
system θL0 of canonical coordinates of the second kind is defined by

θL0(
∑
i,j

tijvixj) := exp(t11v1x1)exp(t21v2x1) · · · exp(tndvnxd)

for tij sufficiently close to zero in L0 (cf. [4], III.4.3 Proposition 3). Given
g ∈ RL|L0G we have the expansion

(Rgf ◦ θL0)(
∑
i,j

tijvixj) =
∑

β∈Nn×Nd

cβtβ

converging for all tij near zero in L0; here cβ ∈ K, tβ :=
∏
i,j t

βij

ij and Rg is the
right translation operator associated with g. Letting Yβ(Rgf) := (v1x1)β11 ◦
(v2x1)β21 ◦ · · · ◦ (vnxd)βnd(Rgf) it follows from the remarks after Lemma 4.7.2 of
[14] that

cβ =
(−1)|β|

β!
Yβ(Rgf)(1) =

(−1)|β|

β!
Yβ(f)(g)

for all β ∈ Nn × Nd where |β| and β! are as in subsection 1.2. Letting ϕ(β) :=
(α1, . . . , αd) with αj := β1j + . . . + βnj , bϕ(β) := c(α1,0,...,α2,0,...,αd,0,...) and
Xϕ(β)(Rgf) := xα1

1 ◦ · · · ◦ xαd

d (Rgf) we deduce

Yβ(f)(g) =
n∏
i=1

vβi1+...+βid

i · Xϕ(β)(f)(g)

from the assumption on f and the gL0 -invariance of W . Thus

cβ = bϕ(β)
ϕ(β)!
β!

n∏
i=1

vβi1+...+βid

i

for all β. Since this is precisely the relation given in the proof of [24], Lemma
1.1, we may conclude that f is locally L-analytic at g. �

The proof of the following lemma uses the same Hahn-Banach argument as the
proof of Lemma 1.2.10.

Lemma 1.3.3. If J := I ∩ (U(gL0) ⊗L0 K) then the vector space
∑
g∈G δg · J

is dense in I. �
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Lemma 1.3.4. Let C ⊆ G be a closed subset, considered also as a subset of
RL|L0G. Then the image of D(RL|L0G,K)C under τ ′ is dense in D(G,K)C .

Proof: That τ ′(D(RL|L0G,K)C) is contained in D(G,K)C follows from

Can(G,K)G\C = Can(RL|L0G0,K)G\C ∩ Can(G,K).

The same equation shows that τ induces a continuous injection

Can(G,K)/Can(G,K)G\C ↪→ Can(RL|L0G,K)/Can(RL|L0G,K)RL|L0G\C .

We know from the proof of Lemma 1.2.10 that the locally convex K-vector
spaces on both sides are reflexive so that as a consequence of the Hahn-Banach
Theorem the dual map τ ′ : D(RL|L0G,K)C → D(G,K)C has to have dense
image. �

We recall the following basic definitions (cf. [9], Part I): If G is a pro-p group set
P1(G) := G and Pi+1(G) := P pi [Pi(G), G] for i ≥ 1. Here Pi(G)p[Pi(G), G] de-
notes the subgroup of G generated by the pth powers of elements of Pi(G)
and by all commutators [a, b] with a ∈ Pi(G) and b ∈ G; X denotes the
topological closure of a subset X of G. A pro-p group G is called powerful
if p is odd and G/Gp is abelian or if p = 2 and G/G4 is abelian. A pro-p
group G is called uniform if it is topologically finitely generated, powerful and
if (Pi(G) : Pi+1(G)) = (G : P2(G)) for all i ≥ 1.
One of the most fundamental properties of a uniform pro-p group G is given
by the following theorem ([loc.cit], Theorem 4.9): If (a1, . . . , ad) is a system of
topological generators of G with d = dimG then every element has a unique
expression of the form aλ1

1 · · · a
λd

d with λ1, . . . , λd ∈ Zp. The resulting bijection
Zdp ' G is a homeomorphism. In this way, uniform pro-p groups turn out to
be the fundamental examples of locally Qp-analytic groups ([loc.cit.], Theorem
8.32).

Assume L0 = Qp. For further applications we need the following technical
results:

Proposition 1.3.5. Let G be a locally L-analytic group. Then there is an open
subgroup G0 of G and a Zp-lattice Λ ⊂ gQp with the following properties:

i) there is an L-basis (x1, . . . , xd) of g and a Zp-basis (v1, . . . , vm) of oL such
that (v1x1, . . . , vmxd) is a Zp-basis of Λ;

ii) the corresponding canonical coordinates of the second kind give a well de-
fined isomorphism θQp : Λ→ RL|QpG0 of locally Qp-analytic manifolds;

iii) RL|QpG0 is a uniform pro-p group.

Proof: Let (x1, . . . , xd) be an L-basis of g and θL the corresponding system of
canonical coordinates of the second kind. Since θL is étale at 0 ∈ g we may
choose an open subgroup G′ of G and an open neighborhood U of zero in g such
that θL : U → G′ is an isomorphism of locally L-analytic manifolds. Let ΦL be
its inverse. According to [4], III.7.3 Théorème 4 and its proof there is λ ∈ L∗
such that ⊕imLxi ⊆ λ · ΦL(G′) = λ · U and the group structure on ⊕iλ−1mLxi
obtained by transport of structure from G′ is given by formal power series with
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coefficients in oL.

If p is odd set Λ := ⊕iλ−1me
Lxi and Λ := ⊕iλ−1m2e

L xi otherwise. By [loc.cit.],
III.7.4 Proposition 5, G0 := θL(Λ) is an open subgroup of G. Choosing a Zp-
basis (v1, . . . , vm) of oL the canonical coordinates of the second kind

θQp : gQp
// RL|QpG

corresponding to the decomposition gQp
= ⊕i,jQpλ

−1vjxi coincide with θL as
[vixj , vkxj ] = 0 in gL and because of the properties of the exponential map.
Since me

L = poL (resp. 4oL if p = 2) (i) and (ii) are proved if for (i) we choose
(λ−1pxi) as an L-basis of g (resp. (λ−14xi) if p = 2).

It remains to show that θQp
(Λ) = RL|QpG0 is a uniform pro-p group. According

to [9], Theorem 8.31, we only need to show that RL|QpG0 is a standard group in
the sense of [loc.cit.], Definition 8.22. This follows directly from the construc-
tion. �

If H is a closed, uniform subgroup of a uniform pro-p group G then we say that
H is compatible with G if there is a basis of topological generators of H that
can be extended to a basis of topological generators of G.

Corollary 1.3.6. Let G be a locally L-analytic group and H a closed locally
L-analytic subgroup. Then there is an open subgroup G0 of G as in Proposition
1.3.5 such that H0 := H ∩ G0, as an open subgroup of H, satisfies conditions
(i) – (iii) of Proposition 1.3.5 and RL|QpH0 is compatible with RL|QpG0.

Proof: Extend an L-basis (x1, . . . , xj) of the Lie algebra h of H to an L-basis
(x1, . . . , xd) of g, j ≤ d. We may assume U and G′ from the proof of Proposition
1.3.5 to satisfy ΦL(H ∩ G′) ⊆ h. Starting with G′ define Λ ⊆ U and G0 ⊆
G′ as before. Then Λ′ := Λ ∩ h is an open neighborhood of 0 in h and a
direct summand of Λ. Therefore, the restriction of θL from Λ to Λ′ is an
isomorphism Λ′ → H0 := G0 ∩H of locally L-analytic manifolds. It follows as
above that H0 satisfies conditions (i) – (iii) of Proposition 1.3.5 with respect to
Λ′. By definition, Λ (resp. Λ′) gives rise to the basis of topological generators
(exp(vkxi)), 1 ≤ k ≤ m, 1 ≤ i ≤ d, (resp. 1 ≤ k ≤ m, 1 ≤ i ≤ j) of RL|QpG0

(resp. RL|QpH0). Thus, RL|QpG0 and RL|QpH0 are compatible. �

1.4 Explicit Fréchet-Stein structures

The notion of a K-Fréchet-Stein algebra was first introduced by P. Schneider
and J. Teitelbaum (cf. [26], section 3): A K-Fréchet algebra A is called a K-
Fréchet-Stein algebra if there is a sequence q1 ≤ q2 ≤ . . . of continuous algebra
seminorms on A defining its Fréchet topology such that for all n ∈ N the Haus-
dorff completion Aqn of A with respect to qn is a (left) noetherian K-Banach
algebra and a flat Aqn+1-module via the natural map Aqn+1 → Aqn . In this
subsection we will assume K to be discretely valued.

Let G0 be a uniform pro-p group with a basis (a1, . . . , ad) of topological gen-
erators. Putting bi := ai − 1 and bα := bα1

1 . . . bαd

d in K[G0] for a multi-index
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α ∈ Nd D(G0,K) admits the explicit description

D(G0,K) =

{∑
α

dαbα | dα ∈ K, ∀ 0 < r < 1 : sup
α
|dα|rτα <∞

}
(loc.cit. section 4). Here τα =

∑
τiαi with rational numbers τi depending on

the structure of G0 as a p-valued group. The Fréchet topology of D(G0,K) can
be defined by the family of norms (|| · ||r)0<r<1 given by∣∣∣∣∣

∣∣∣∣∣∑
α

dαbα
∣∣∣∣∣
∣∣∣∣∣
r

:= sup
α
|dα|rτα.

The norms || · ||r are independent of the choice of a basis (a1, . . . , ad) of topo-
logical generators. If we let Dr(G0,K) = {

∑
α dαbα | lim|α|→∞ |dα|rτα = 0} be

the completion of D(G0,K) with respect to the norm || · ||r then

D(G0,K) = lim←−rDr(G0,K)

as K-Fréchet spaces. We summarize some of the main results of [26] in the
following theorem (loc.cit. Theorem 4.5 and Theorem 4.9):

Theorem (Schneider-Teitelbaum). If K is discretely valued, r ∈ pQ and 1/p <
r < 1 then the algebra structure of D(G0,K) extends to Dr(G0,K) making it a
K-Banach algebra with multiplicative norm || · ||r. Moreover, for any two real
numbers r, r′ ∈ pQ with 1/p < r′ < r < 1 the natural inclusion Dr(G0,K) ↪→
Dr′(G0,K) is a flat map of noetherian rings. In other words: D(G0,K) is
a K-Fréchet-Stein algebra with respect to the family of norms || · ||r, r ∈ pQ,
1/p < r < 1.

For 0 < r < 1 we let Ur(g,K) be the closure of U(g,K) in Dr(G0,K) with
respect to the norm || · ||r. A careful analysis of orthogonal bases (cf. [16],
section 1) leads to the following result (loc.cit. 1.4 Lemma 3, Corollaries 1, 2
and 3):

Theorem (Frommer). If r ∈ pQ and 1/p < r < 1 then Ur(g,K) is a noetherian
subalgebra of Dr(G0,K). In fact, there are integers `i > 0 depending on r such
that Dr(G0,K) is free as a (right) module over Ur(g,K) with basis consisting
precisely of those bα ∈ K[G0] for which 0 ≤ αi < `i for all i = 1, . . . , d. Further,
Ur(g,K) is equal to the algebra

Ur(g,K) =

{∑
α

dαXα | dα ∈ K, lim
|α|→∞

|dα|||Xα||r = 0

}
,

where X is the Qp-basis (xi := log(1 + bi))1≤i≤d of g. The norm || · ||r can be
computed via ||

∑
α dαXα||r = supα |dα|||Xα||r.

Using compatible uniform pro-p groups we can slightly extend this result:

Corollary 1.4.1. Let G0 be a uniform pro-p group with closed, compatible
uniform subgroup H0. Then D(H0,K) is a K-Fréchet-Stein algebra with respect
to the family of norms || · ||r, r ∈ pQ, 1/p < r < 1, restricted to D(H0,K). The
conclusions of Frommer’s theorem hold for D(H0,K). If r ∈ pQ is a real number
with 1/p < r < 1 then the closure Dr(G0,K)H0 of D(G0,K)H0 in Dr(G0,K) is
a finitely generated, free Ur(g,K)-module possessing a basis contained in K[H0].
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Proof: Choose a basis (a1, . . . , ad) of topological generators of G0 such that
(a1, . . . , aj) is a basis of topological generators of H0, j := dimH0 ≤ d. Clearly,
D(H0,K) is a K-Fréchet-Stein algebra with respect to the restricted norms
|| · ||r, r ∈ pQ, 1/p < r < 1, if H0 is viewed as a p-valued group with respect to
the valuation coming from G0. It is also clear that Frommer’s theorem applies
to D(H0,K). Fix r ∈ pQ with 1/p < r < 1. Let A ⊂ Nd be the set of all
multi-indices satisfying 0 ≤ αi < `i for all i and A′ ⊆ A be the subset of all α
such that αj+1 = . . . = αd = 0. If h denotes the Lie algebra of H then (bα)α∈A′
is a basis of the free Ur(h,K)-module Dr(H0,K): The proof of [16], 1.4 Lemma
3, shows that writing xi = log(1 + bi) =

∑
n≥1(−1)n+1bni /n one can choose

`i = max{m ≥ 1 | sup
n≥1
|1/n|rnτi = |1/m|rmτi}.

Hence for 1 ≤ i ≤ j the integers `i do not depend on whether we consider bi as
an element of K[G0] or K[H0].

If D denotes the free Ur(g,K)-submodule of Dr(G0,K) generated by (bα)α∈A′
then D ⊆ Dr(G0,K)H0 . Conversely, D contains Dr(H0,K) and Ur(g,K) and
thereby a dense subspace of Dr(G0,K)H0 (cf. Lemma 1.2.10). According to
[26], Proposition 2.1 (ii), D is closed. Hence D = Dr(G0,K)H0 . �

We are now going to extend Frommer’s theorem and Corollary 1.4.1 to the
case of a finite extension L|Qp. Recall that if A is a K-Fréchet-Stein alge-
bra with respect to a sequence (qn)n≥1 of continuous algebra seminorms and
if I is a closed ideal of A then according to [26], Proposition 3.7, A/I is a K-
Fréchet-Stein algebra with respect to the sequence (qn)n≥1 of residue norms qn.
It follows that if G0 is a locally L-analytic group such that RL|QpG0 is uni-
form pro-p then D(G0,K) is a K-Fréchet-Stein algebra (loc.cit. Theorem 5.1).
Namely, D(G0,K) is topologically isomorphic to the quotient of D(RL|QpG0,K)
by I := ker(τ ′) (cf. Lemma 1.3.1).

For 1/p < r < 1 we denote by || · ||r the residue norm on D(G0,K) induced
by || · ||r. The completion of D(G0,K) with respect to || · ||r is denoted by
Dr(G0,K). Let Ir be the closure of I in Dr(RL|QpG0,K) and consider the
projection

τr : Dr(RL|QpG0,K) −→ Dr(RL|QpG0,K)/Ir.

According to the proof of [26], Proposition 3.7, we have

(1.13) Dr(G0,K) = Dr(RL|QpG0,K)/Ir.

As before we let Ur(g,K) (resp. Ur(gQp
,K)) denote the closure of U(g,K)

(resp. U(gQp ,K)) in Dr(G0,K) (resp. Dr(RL|QpG0,K)). Set further Jr :=
Ir ∩ Ur(gQp ,K).

Theorem 1.4.2. Let G be a locally L-analytic group and G0 as in Proposition
1.3.5. If r ∈ pQ with 1/p < r < 1 then Dr(G0,K) is a free, finitely generated
module over the noetherian subalgebra Ur(g,K) with the same basis in K[G0]
as in Frommer’s theorem applied to RL|QpG0. Further, there is an L-basis X of
g and a norm νr on Ur(g,K) equivalent to || · ||r such that

Ur(g,K) =

{∑
α

dαXα | dα ∈ K, lim
|α|→∞

|dα|νr(Xα) = 0

}
.
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The norm νr can be computed via νr(
∑
α dαXα) = supα |dα|νr(Xα).

Proof: Let (bα)α∈A be the Ur(gQp
,K)-basis of Dr(RL|QpG0,K) considered be-

fore and D the (right) Ur(gQp ,K)-submodule D := ⊕α∈AbαJr. Since Ir is an
ideal of Dr(RL|QpG0,K) containing Jr, we naturally have D ⊆ Ir. On the
other hand, D contains a dense subspace of Ir according to Lemma 1.3.3 since
J := I ∩ (U(gQp

)⊗Qp
K) ⊆ Jr. Since D is closed according to [26], Proposition

2.1 (ii), we also have Ir ⊆ D. Hence D = Ir.
It follows from (1.13) and Frommer’s theorem that there is an isomorphism

Dr(G0,K) ' ⊕α∈Abα(Ur(gQp
,K)/Jr)

of (right) Ur(gQp
,K)-modules. It becomes topological if Ur(gQp

,K)/Jr carries
the (Banach) quotient topology (cf. [26], Proposition 2.1). In particular, the
image of Ur(gQp ,K) under τr is closed. According to Lemma 1.3.4 it contains
a dense subspace of Ur(g,K) whence there is a topological isomorphism

(1.14) Ur(g,K) ' Ur(gQp ,K)/Jr.

This proves the first statement of the theorem. We claim that the assertions
concerning the explicit description of Ur(g,K) hold if we equip Ur(g,K) with
the residue norm νr coming from (1.14).

According to Proposition 1.3.5 there is an L-basis X = (x1, . . . , xd) of g and a
Zp-basis (v1, . . . , vm) of oL such that the family Y := (vixj)i,j gives rise to the
set of topological generators (exp(vixj))i,j of RL|QpG0. By Frommer’s theorem

Ur(gQp
,K) =

∑
β

cβY
β | lim
|β|→∞

|cβ |||Yβ ||r = 0


with multiplicative norm ||

∑
β cβY

β ||r = supβ |cβ |||Yβ ||r. If β = (βij) ∈ Nm ×
Nd let ϕ(β) := (

∑m
i=1 βij)1≤j≤d ∈ Nd. For any β with ϕ(β) = α we have

τ ′(Yβ) =
∏
i,j v

βij

j Xα and |α| = |β|. Since τr continuously extends τ ′ we have

τr(
∑
β

cβY
β) =

∑
β

τr(cβYβ) =
∑
α∈Nd

 ∑
ϕ(β)=α

cβ
∏
i,j

v
βij

i

Xα

and also∣∣∣∣∣∣
∑

ϕ(β)=α

cβ
∏
i,j

v
βij

i

∣∣∣∣∣∣ νr(Xα) ≤ max
ϕ(β)=α

|cβ |||Yβ ||r → 0 as |α| → ∞.

Therefore, Ur(g,K) ⊆ {
∑
α dαXα | lim|α|→∞ |dα|νr(Xα) = 0}. The converse

inclusion is clear.

We claim that J is dense in Jr. Note first that J is dense in I∩U(gQp ,K): If δ =∑
β cβY

β ∈ U(gQp
,K) then by (1.9) lim|β|→∞ |cβ |ρ−|β| = 0 for all ρ > 0. Hence

τ ′(δ) =
∑
α(
∑
ϕ(β)=α cβ

∏
i,j v

βij

i )Xα converges in U(g,K). If δ ∈ I∩U(gQp
,K)
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then due to uniqueness in U(g,K) we have
∑
ϕ(β)=α cβ

∏
i,j v

βij

i = 0 and hence∑
ϕ(β)=α cβY

β ∈ J for all α. Now (
∑
|α|≤N

∑
ϕ(β)=α cβY

β)N≥0 converges to δ
as N →∞, proving the claim.
To see that I ∩ U(gQp

,K) is dense in Jr we note that as a direct consequence
of Frommer’s theorem U(gQp

,K) is a K-Fréchet-Stein algebra with respect to
the norms || · ||r. As a closed ideal I ∩ U(gQp ,K) is a coadmissible module
over U(gQp ,K). Since J is dense in I ∩ U(gQp ,K) we know from Theorem
A (cf. [26], section 3) that the corresponding coherent sheaf is given by the
Ur(gQp

,K)-ideals J ′r where J ′r is the closure of J in Ur(gQp
,K). The same rea-

soning as above shows that Ir = ⊕α∈AbαJ ′r. Since also Ir = ⊕α∈AbαJr and
J ′r ⊆ Jr we obtain J ′r = Jr.

Let us now prove the last assertion on νr. Assume δ =
∑
α dαXα ∈ Ur(g,K),

i.e. lim|α|→∞ |dα|νr(Xα) = 0. Let ε > 0 be given and choose N ∈ N so large
that

sup
|α|≤N

|dα|νr(Xα) = sup
α
|dα|νr(Xα) and νr(

∑
|α|>N

dαXα) ≤ ε.

Note that the preimage of
∑
|α|≤N dαXα under τr contains elements in U(gQp

)
⊗QpK. By our above claim there is an element

∑
β cβY

β ∈ U(gQp) ⊗Qp K
mapping to

∑
|α|≤N dαXα under τr such that

νr(
∑
|α|≤N

dαXα) ≥ ||
∑
β

cβY
β ||r − ε.

Uniqueness in U(g)⊗LK implies that τr(
∑
ϕ(β)=α cβY

β) = dαXα for all α with
|α| ≤ N . Therefore,

||
∑
β

cβY
β ||r = sup

β
|cβ |||Yβ ||r ≥ sup

|α|≤N

{
sup

ϕ(β)=α

|cβ |||Yβ ||r

}
≥ sup

α
|dα|νr(Xα).

Hence for all ε > 0

max{ε, νr(δ)} ≥ νr(
∑
|α|≤N

dαXα) ≥ sup
α
|dα|νr(Xα)− ε,

i.e. νr(δ) ≥ supα |dα|νr(Xα). As one always has νr(δ) ≤ supα |dα|νr(Xα), this
finishes the proof. �

Corollary 1.4.3. Let G be a locally L-analytic group, H a closed locally L-
analytic subgroup and G0 as in Corollary 1.3.6. If H0 := H∩G0 then D(H0,K)
is a K-Fréchet-Stein algebra with respect to the family of norms || · ||r, r ∈
pQ, 1/p < r < 1, restricted from D(G0,K) to D(H0,K). The conclusions
of Theorem 1.4.2 hold for D(H0,K). If r ∈ pQ is a real number with 1/p <
r < 1 then the closure Dr(G0,K)H0 of D(G0,K)H0 in Dr(G0,K) is a finitely
generated, free Ur(g,K)-module with the same basis in K[H0] as in Corollary
1.4.1 applied to the pair (RL|QpG0, R

L|QpH0).

Proof: Since RL|QpH0 is compatible with RL|QpG0 we know from Corollary 1.4.1
that D(RL|QpH0,K) is a K-Fréchet-Stein algebra with respect to the family of
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norms || · ||r, r ∈ pQ, 1/p < r < 1, obtained by restriction from D(RL|QpG0,K).
The commutativity of the diagram

D(RL|QpH0,K) � � //

����

D(RL|QpG0,K)

τ ′

����
D(H0,K) � � // D(G0,K)

shows that the kernel of the left vertical arrow is I ′ := I ∩ D(RL|QpH0,K).
Applying Theorem 1.4.2 to H0 shows that if we let I ′r be the closure of I ′ in
Dr(RL|QpH0,K) then D(H0,K) is a K-Fréchet-Stein algebra with respect to
the corresponding quotient norms and

Dr(H0,K) = Dr(RL|QpH0,K)/I ′r

(cf. (1.13) applied to H0). Recall that we have

Dr(RL|QpG0,K) =
⊕
α∈A

bαUr(gQp
,K)

as K-Banach spaces and similarly

Dr(RL|QpH0,K) =
⊕
α∈A′

bαUr(hQp
,K)

with A′ ⊆ A (cf. Corollary 1.4.1 and its proof). Moreover, we know from the
proof of Theorem 1.4.2 that Ir = ⊕α∈AbαJr with Jr := Ir∩Ur(gQp ,K) and sim-
ilarly I ′r = ⊕α∈A′bα(I ′r ∩Ur(hQp

,K)). It follows that I ′r = Ir ∩Dr(RL|QpH0,K)
and hence that

(1.15) Dr(H0,K) = Dr(RL|QpH0,K)/(Ir ∩Dr(RL|QpH0,K)).

We need to show that the image of Dr(RL|QpH0,K) under τr is closed.
Making use of the above direct sum decompositions it suffices to show that the
image of Ur(hQp

,K) under τr is closed. We make use of the notation introduced
earlier: By construction we may assume X′ := (x1, . . . , xj), 1 ≤ j := dimH0 ≤ d,
to be an L-basis of h. Since Ur(g,K) = {

∑
α dαXα | lim|α|→∞ |dα|νr(Xα) = 0}

with νr(
∑
α dαXα) = supα |dα|νr(Xα), a straightforward calculation shows that

τr(Ur(hQp
,K)) = {

∑
α∈Nj

dα(X′)α | lim
|α|→∞

|dα|νr((X′)α) = 0}

which is a closed subspace of Ur(g,K).

According to the proof of Corollary 1.4.1 there is a finite basis (bα)α∈A of the free
Ur(gQp

,K)-module Dr(RL|QpG0,K) and a subset A′ ⊆ A such that (bα)α∈A′ is
a basis of the free, finitely generated Ur(gQp ,K)-module Dr(RL|QpG0,K)H0 . It
follows from the decomposition Ir = ⊕α∈AbαJr that Ir ∩Dr(RL|QpG0,K)H0 =
⊕α∈A′bαJr. Thus, by (1.14)

(1.16) Dr(RL|QpG0,K)H0/(Ir ∩Dr(RL|QpG0,K)H0) ' ⊕α∈A′bαUr(g,K).
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In particular, the image of Dr(RL|QpG0,K)H0 under τr is closed. It follows by
means of Lemma 1.3.4 and (1.13) that the left hand side of (1.16) is topologically
isomorphic to Dr(G0,K)H0 .
Note that by Theorem 1.4.2 (bα)α∈A′ is also a basis of the free Ur(h,K)-module
Dr(H0,K) and the free Ur(hQp ,K)-module Dr(RL|QpH0,K). �

Corollary 1.4.4. If L0|Qp and L|L0 are finite extensions of fields and if G is
a locally L-analytic group then the natural homomorphism

D(RL|L0G,K)⊗̂U(gL0 ,K),ιU(g,K) −→ D(G,K)

of D(RL|L0G,K)-U(g,K)op-bimodules is a topological isomorphism.

Proof: Let G0 be an open subgroup of G as in Proposition 1.3.5. Using
D(G,K) = ⊕g∈G/G0δg · D(G0,K) (resp. with RL|L0G and RL|L0G0) it suf-
fices to show that the map

(1.17) D(RL|L0G0,K)⊗̂U(gL0 ,K)U(g,K) −→ D(G0,K)

is a topological isomorphism. One easily verifies that also RL|L0G0 satisfies con-
ditions (i) – (iii) of Proposition 1.3.5 (replacing L by L0) so that according to
Theorem 1.4.2 the modules Dr(RL|L0G0,K), resp. Dr(G0,K), are finitely gen-
erated and free over the noetherian Banach algebras Ur(gL0 ,K), resp. Ur(g,K),
with a common basis (bα)α∈A. It follows that the base change map

Dr(RL|L0G0,K)⊗Ur(gL0 ,K) Ur(g,K) −→ Dr(G0,K)

is an isomorphism of Dr(RL|L0G0,K)-Ur(g,K)op-bimodules. As in Proposition
1.2.12 one shows that it is bi-continuous and that we may pass to the projective
limit in order to obtain that (1.17) is a topological isomorphism. �

The same line of proof gives:

Corollary 1.4.5. Let L0|Qp and L|L0 be finite extensions of fields and G be a
locally L-analytic group. If H is a closed, locally L-analytic subgroup of G then
the map τ ′ : D(RL|L0G,K)H → D(G,K)H is surjective. �

2 Invariant distributions

G acts on itself via conjugation inducing an action by continuous automorphisms
on the space Can(G,K) of locally analytic functions on G. The contragredient
action on D(G,K) is explicitly given by (g ∗ δ)(f) = δ(h 7→ f(ghg−1)) =
(δgδδg−1)(f) for g ∈ G, δ ∈ D(G,K) and f ∈ Can(G,K) , i.e.

(2.1) g ∗ δ = δgδδg−1 .

We call a distribution δ ∈ D(G,K) invariant if g ∗ δ = δ for all g ∈ G. If U is a
G-invariant subspace of D(G,K) we denote by UG the subspace of all invariant
distributions contained in U .

The separate continuity of the multiplication together with the density of K[G]
in D(G,K) imply by means of (2.1) that the subspace D(G,K)G of all invariant

20



distributions on G coincides with the center of the ring D(G,K).

For later use we introduce the subspace

Dpt(G,K) :=
∑
g∈G

δg · (U(g)⊗L K)

of D(G,K). It is the space of all point distributions in the sense of [7], 13.2.1.

2.1 The infinitesimal center

Viewing g as an abelian locally L-analytic group the space Cω0 (g,K) is defined
as in (1.5). The exponential map exp induces a topological isomorphism

exp∗ : Cω1 (G,K) ∼−→ Cω0 (g,K)

which does not depend on the choice of exp (cf. the remark following III.4.3
Définition 1 of [4]). Dualizing, we obtain a topological isomorphism

exp∗ : Cω0 (g,K)′b
∼−→ U(g,K) = Cω1 (G,K)′b

of locally convex vector spaces which for δ ∈ Cω0 (g,K)′b and [f ] ∈ Cω1 (G,K) is
explicitly given by

(exp∗δ)([f ]) = δ(exp∗[f ]) = δ([x 7→ f(exp(x))]).

Here [f ] denotes the germ in 1 of a locally analytic function f defined in an
open neighborhood of 1 ∈ G.

Viewing g as its own Lie algebra Proposition 1.2.8 shows that

Cω0 (g,K)′b =

{∑
α

dαXα | dα ∈ K,∀r > 0 : sup |dα|r−|α| <∞

}

in terms of power series with commutative multiplication. Since the symmetric
algebra S(g)⊗L K of g is dense in Cω0 (g,K)′b we prefer to change notation and
write S(g,K) instead of Cω0 (g,K)′b.

The action of G on Can(G,K) by conjugation descends to Cω1 (G,K) (cf. (1.5))
which is a locally analytic G-representation in the sense of [25], section 3: if
G0 is a compact open subgroup of G then the natural projection Can(G,K)→
Cω1 (G,K) factors G0-equivariantly through Can(G0,K). By [14], Satz 3.3.4, the
G0-action on Can(G0,K) is locally analytic whence so is the G0-action on the
barrelled quotient Cω1 (G,K) = Cω1 (G0,K) (cf. [12], Lemma 3.6.14). Since G0

is open in G the claim follows.
Similarly, the action of G on g via the adjoint representation Ad induces an
action on Cω0 (g,K). Using the formula g · exp(x) · g−1 = exp(Ad(g)(x)) for g ∈ G
and all x in a neighborhood of zero in g depending on g (cf. [4], III.4.4 Corollaire
3) one deduces that exp∗ is G-equivariant.
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Recall that if n ∈ N, y1, . . . , yn ∈ g and y1 · · · yn is their product in S(g) then
the symmetrization map sym : S(g)→ U(g) is defined by

sym(y1 · · · yn) :=
1
n!

∑
σ∈Sn

yσ(1) · · · yσ(n)

through L-linear continuation. Here Sn denotes the symmetric group on n
letters.

Proposition 2.1.1. exp∗ : Cω1 (G,K)→ Cω0 (g,K) is an isomorphism of locally
analytic G-representations on locally convex K-vector spaces of compact type.
The corresponding dual map exp∗ : S(g,K) → U(g,K) is an isomorphism of
separately continuous (left) D(G,K)-modules. Its restriction to S(g)⊗L K co-
incides with sym⊗ id and maps isomorphically onto U(g)⊗LK. Further, if the
D(G,K)-actions on S(g,K) and U(g,K) are denoted by ∗ then the following
formulae hold:

i) x∗y = [x, y] for all x, y ∈ g where x is considered as an element of D(G,K)
and y, [x, y] as elements of S(g,K) (or U(g,K));

ii) x ∗ δ = x · δ − δ · x in U(g,K) for all x ∈ g and δ ∈ U(g,K);

iii) x ∗ (δ1 · · · δn) = (x ∗ δ1)δ2 · · · δn + . . .+ δ1 · · · δn−1(x ∗ δn) for all x ∈ g and
δ1, . . . , δn ∈ S(g,K).

Proof: The first statement follows from what was said above. By general princi-
ples the dual map exp∗ : S(g,K)→ U(g,K) is a topological isomorphism of nu-
clear Fréchet spaces carrying separately continuous D(G,K)-module structures
for which exp∗ is a homomorphism (cf. [25], Corollary 3.3). For the statement
about the restriction of exp∗ to S(g) ⊗L K confer [4], III.4.3 Théorème 4 and
II.1.5 Proposition 9.

For g ∈ G, y ∈ g and f ∈ Can(G,K) we have

(g ∗ y)(f) = y(g−1 ∗ f) =
d

dt
f(g · exp(ty) · g−1)|t=0

=
d

dt
f(exp(tAd(g)(y)))|t=0 = Ad(g)(y)(f)

showing that g⊗L K carries the structure of a D(G,K)-submodule of U(g,K)
coming from the adjoint representation of G on g. By [4], III.3.12 Proposition
44, we have x ∗ y = d/dt(Ad(exp(tx))(y))t=0 = ad(x)(y) = [x, y]. Note that if
V is a Banach space then the notion of a locally analytic G-representation as
given in [25], section 3, coincides with the notion of an analytic Banach space
representation in the sense of Bourbaki (cf. [14], Korollar 3.1.9).

By [4], III.3.11 Proposition 41 and (i) we have

x ∗ (
∏
i

yi) = [x, y1]y2 · · · yn + . . .+ y1 · · · yn−1[x, yn]

for all x ∈ g. Since [x, yi] = xyi − yix in U(g) we obtain (ii). The statements on
S(g,K) are proved analogously. �
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If δ =
∑
α dαXα ∈ S(g,K) or U(g,K) and n ≥ 0 then we let δ≤n :=

∑
|α|≤n dαXα

and δ>n :=
∑
|α|>n dαXα. Note that if g ∈ G then g ∗ δ≤n is of degree ≤ n for

every n ∈ N. This follows from writing g ∗ xi =
∑
j ajxj , aj ∈ L, and noting

that by (2.1)
g ∗ (λ ·

∏
i

xαi
i ) = λ ·

∏
i

(g ∗ xi)αi .

In particular, G acts on S(g)⊗L K and U(g)⊗L K.

Proposition 2.1.2. U(g)g ⊗L K and U(g)G ⊗L K are dense in U(g,K)g and
U(g,K)G, respectively.

Proof: Since exp∗ is equivariant for the actions of g and G we may equally well
show that S(g)g ⊗L K and S(g)G ⊗L K are dense in S(g,K)g and S(g,K)G,
respectively. If δ ∈ S(g,K) is homogeneous of degree n then it follows from
Proposition 2.1.1 that for x ∈ g either x ∗ δ = 0 or x ∗ δ is again homogeneous
of degree n (write [x, xi] =

∑
j ajxj for x ∈ g, aj ∈ L). We have seen above that

similarly g ∗ δ will again be homogeneous of degree n. Thus, if δ ∈ S(g,K)g

(resp. S(g,K)G) then also δ≤n and δ>n are g-invariant (resp. G-invariant).
Since δ≤n ∈ S(g)⊗L K and δ≤n → δ for n→∞, the assertion follows. �

Remark 2.1.3. If G is an open subgroup of the group of L-rational points
of a connected algebraic group over L then [25], Proposition 3.7, shows that
U(g)g ⊗L K = U(g)G ⊗L K. According to Proposition 2.1.2 U(g,K)g =
U(g,K)G. Similarly, S(g,K)g = S(g,K)G in this case.

Remark 2.1.4. Let ν denote a norm on S(g)⊗L K with respect to which the
action of G (resp. g) is continuous. If the completion Sν(g,K) of S(g)⊗LK with
respect to ν has the explicit description {

∑
α dαXα | lim|α|→∞ |dα|ν(Xα) = 0}

with
ν(
∑
α

dαXα) = sup
α
|dα|ν(Xα),

then the above proof shows that S(g)G ⊗L K and S(g)g ⊗L K are even dense
in Sν(g,K)G and Sν(g,K)g, respectively.

In general, the restriction of exp∗ to S(g,K)g is not an isomorphism of alge-
bras although both S(g,K)g and U(g,K)g are commutative. Making use of
a construction by M. Duflo we will show, however, that one does obtain an
isomorphism

η : S(g,K)g → U(g,K)g

of K-algebras if exp∗ is suitably normalized. This result is similar to the con-
jecture of Kashiwara and Vergne for real Lie groups (cf. [1]) involving, however,
distributions on germs of functions rather than germs of distributions.

Recall the following construction (cf. [10], p. 55): let k be a field of character-
istic zero and h a Lie algebra of finite dimension over k. Choosing dual k-bases
(x1, . . . , xd) and (x∗1, . . . , x

∗
d) of h and h∗, respectively, we identify S(h) with the

algebra of polynomial functions on h∗ and S(h∗) with the algebra of differential
operators with constant coefficients on h∗ (denoting by D(q) the operator de-
fined by an element q ∈ S(h∗)). The completion Ŝ(h∗) of S(h∗) with respect to
the topology defined by the maximal ideal (x∗1, . . . , x

∗
d) may be identified with the
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algebra of formal power series in the variables x∗i over k. If f ∈ S(h) is given and
the first non-zero coefficient of q ∈ S(h∗) appears in sufficiently high order then
D(q)(f) = 0. Hence for q ∈ Ŝ(h∗) one can define D(q)(f) by continuity and set
〈q, f〉 := D(q)(f)(0). This identifies S(h) with the space Ŝ(h∗)′ of continuous
functionals on Ŝ(h∗).

If S(h) is identified with the algebra of constant coefficient differential operators
on h and f ∈ S(h) then we let D∗(f) be the corresponding operator. D∗(f)
is an endomorphism of Ŝ(h∗). If q ∈ Ŝ(h∗) is a power series we let q(0) be its
constant term. According to the remarks preceding Lemme II.2 of [loc.cit.] we
have

(2.2) D∗(f)(q)(0) = D(q)(f)(0) = 〈q, f〉

for all q ∈ Ŝ(h∗) and f ∈ S(h).

Let ad(X) ∈ Md(k[x∗1, . . . , x
∗
d]) be the matrix ad(X) :=

∑
i x
∗
iAi where Ai ∈

Md(k) represents ad(xi) ∈ Endk(h) with respect to the k-basis (x1, . . . , xd) of h.
If B2n ∈ Q denote the Bernoulli numbers of even degree and exp(t) ∈ Q[[t]] is
the usual exponential series then the formula

(2.3) q = q(x∗1, . . . , x
∗
d) := det

(
exp(ad(X)/2)− exp(−ad(X)/2)

ad(X)

)1/2

= exp(
∞∑
n=1

B2n

4n(2n)!
tr [ad(X)2n])

defines a formal power series in the indeterminates x∗i with coefficients in k, i.e.
an element of Ŝ(h∗) (for the second formula cf. [1]). One of the main results of
[11] is the following theorem (loc.cit. Théorème 2):

Theorem (Duflo). If h is a finite dimensional Lie algebra over a field k of
characteristic zero then the normalized symmetrization map

η := sym ◦D(q) : S(h)h → U(h)h

is a well-defined isomorphism of k-algebras.

It is known that in the case of Lie algebras h over the fields k = R or C, the
formal power series q defines an analytic function around 0 in h. This is also
true for the Lie algebra g over the non-archimedean field L:

Proposition 2.1.5. The formal power series q defines an analytic function in
a neighborhood of 0 in g. If we let [q] ∈ Cω0 (g,K) denote its germ in 0 then the
normalized exponential map η : S(g,K)→ U(g,K) defined by

η(δ)([f ]) := δ([q] · exp∗([f ])) for δ ∈ S(g,K) and [f ] ∈ Cω1 (G,K),

restricts to a topological isomorphism of K-Fréchet algebras

η : S(g,K)g ∼−→ U(g,K)g.
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Proof: Using the estimates |n!| ≥ p−n/(p−1) and |B2n| ≤ p (cf. [21], Lemma
5.3.1 and Corollary 5.5.5) it is straightforward to show that q defines an analytic
function in a neighborhood of zero in g.

The normalized exponential map η : S(g,K) → U(g,K) is a topological iso-
morphism of K-Fréchet spaces: Note that q(0) = 1 so that [q] is invertible in
Cω0 (g,K). If δ ∈ S(g) and [p] ∈ Cω0 (g,K) is represented by a formal power
series p ∈ Ŝ(g∗) then by (2.2) and [10], Lemme II.1,

δ([q] · [p]) = D∗(δ)(qp)(0) = D(qp)(δ)(0) = 〈qp, δ〉
= 〈p,D(q)(δ)〉 = D(q)(δ)([p]).

Since the restriction of exp∗ to S(g)⊗L K coincides with sym (cf. Proposition
2.1.1) it follows that η|S(g,K)g extends Duflo’s isomorphism. Since by Proposi-
tion 2.1.2 S(g)g⊗LK (resp. U(g)g⊗LK) is dense in S(g,K)g (resp. U(g,K)g)
it follows that η is an isomorphism of algebras onto U(g,K)g. �

We are now going to explicitly compute U(g,K)g in the case that g is semisimple
and contains a split maximal toral subalgebra t (cf. [8], 1.9.10). The Weyl
group W = W(g, t) acts on t∗ by L-linear endomorphisms and dually on t.
Thus, W acts continuously on Can(t,K). Since the subspace Can(t,K)t\{0} is
W-invariant W acts on the quotient Cω0 (t,K) and hence on S(t,K).

Theorem 2.1.6. If g is split semisimple with t and W as above then there are
isomorphisms

U(g,K)g ' S(t,K)W ' O((AnK)an)

of K-Fréchet algebras with n := dimL(t). Here O((AnK)an) is the K-Fréchet
algebra of holomorphic functions on the rigid analytic affine space (AnK)an of
dimension n over K.

In order to construct the above isomorphisms we need some preparation. Let
k be a field which is complete with respect to a non-trivial, non-archimedean
valuation and (·)an be the rigid analytification functor on the category of k-
schemes which are locally of finite type.

Proposition 2.1.7. Let X be an affine scheme of finite type over k, Γ a finite
group of k-automorphisms of X and π : X → X/Γ be the canonical quotient
map. The presheaf F on (X/Γ)an defined by F(U) := OXan((πan)−1(U))Γ is
an O(X/Γ)an-submodule of πan

∗ OXan via the natural map (πan)# : O(X/Γ)an →
πan
∗ OXan . In fact, (πan)# is an isomorphism onto F .

Proof: With π also πan is surjective and we have the following commutative
diagram of locally G-ringed spaces:

(2.4) Xan πan// //
_�

��

(X/Γ)an
_�

��
X

π // // X/Γ.

We see that if U ⊆ (X/Γ)an is admissible open then V := (πan)−1(U) ⊆ Xan is
admissible open and Γ-invariant. Thus, Γ acts on OXan(V ) so that the presheaf
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F is well-defined. It is straightforward to check that it is in fact a sheaf of
OXan -modules. By [2], 9.4.1 Proposition 2, it suffices to prove the claim for an
admissible open covering (Ui)i∈I of (X/Γ)an. By construction, (X/Γ)an admits a
countable, ascending covering by open affinoid subdomains Ui := Sp(Bi), i ∈ N.
Setting A := OX(X) and B := AΓ the algebra Ai := Bi ⊗B A is finite over
Bi and hence k-affinoid. In fact, the maps Ai+1 → Ai induced by Bi+1 → Bi
define (Sp(Ai))i∈I as an admissible covering of Xan with (πan)−1(Ui) = Sp(Ai)
(this is the way one shows that with π also its analytification is finite). Since
Bi is flat over B (cf. [20], Satz 2.1) we have

AΓ
i = (Bi ⊗B A)Γ = Bi ⊗B AΓ = Bi

(cf. [3], I.2.3 Remark 2 and I.2.6 Remark 1). �

Remark 2.1.8. It follows from (2.4) that the underlying point space of (X/Γ)an

is the set theoretical quotient of Xan modulo Γ. According to Proposition 2.1.7
the structure sheaf of (X/Γ)an is given by O(X/Γ)an(U) = OXan((πan)−1(U))Γ

so that (X/Γ)an can be identified with the rigid analytic quotient Xan/Γ whose
existence is claimed (but not proved) in [15], 6.4.

Proof of Theorem 2.1.6: Let t = (t1, . . . , tn) be an L-basis of t considered also as
a K-basis of t⊗LK. Proposition 1.2.8 shows that there is a topological isomor-
phism S(t,K) → O((AnK)an) of K-Fréchet algebras identifying the subalgebra
S(t)⊗LK with the polynomial algebra K[t1, . . . , tn] in the variables ti, i.e. with
the algebra of regular functions on the affine space AnK of dimension n over K.
There is a family s = (s1, . . . , sn) of n algebraically independent, homogeneous
elements in (S(t)⊗L K)W such that the inclusion homomorphism

ϕ : K[s1, . . . , sn] −→ (S(t)⊗L K)W

is an isomorphism (cf. [8], 11.1.14). According to Proposition 2.1.7 it extends
to an isomorphism

ϕ : O((AnK)an) −→ S(t,K)W

of K-algebras. If c ∈ K∗ with |c| > 1 and i ∈ N we denote by |·|i the norm on the
left hand side for which the family (sα)α∈Nn is orthogonal with |sαj

j |i = |ci|αj .
Similarly, νi := ν|c−i| is the multiplicative norm on S(t,K) for which (tα)α∈Nn

is orthogonal with νi(t
αj

j ) = |ci|αj . We view S(t,K)W as a (closed) subspace of
S(t,K). Given i ∈ N choose i0 ∈ N such that maxj{νi(ϕ(sj))} ≤ |cio |. Then

νi(ϕ(
∑
α

dαsα)) ≤ |
∑
α

dαsα|i0 ,

so that ϕ is continuous and in fact a topological isomorphism due to the open
mapping theorem.

Let Φ = Φ(g, t) be the root system of g with respect to t and choose an eigenvec-
torXα of α in g for any α ∈ Φ. Extend t to the L-basis X = (t1, . . . , tn, (Xα)α∈Φ)
of g and let J be the closed ideal of S(g,K) generated by {Xα}α∈Φ. The explicit
descriptions of S(g,K) and S(t,K) show that

S(g,K) = S(t,K)⊕ J
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first as abstract vector spaces but then also topologically due to the open map-
ping theorem. We claim that the induced continuous, surjective homomor-
phism S(g,K) → S(t,K) of K-algebras restricts to a topological isomorphism
θ : S(g,K)g ∼−→ S(t,K)W. By the open mapping theorem we only need to show
that θ is bijective. If J := S(g)∩J then S(g) = S(t)⊕J and the corresponding
projection S(g)→ S(t) restricts to an isomorphism

(2.5) S(g)g ' S(t)W

of algebras (cf. [8], Théorème 7.3.7).

As in the proof of Proposition 2.1.2 one sees that if δ is an element of S(g,K)g

(resp. J) then both δ≤n and δ>n are elements of S(g,K)g (resp. J). Since
(S(g)g ⊗L K) ∩ (J ⊗L K) = 0 it follows that S(g,K)g ∩ J = 0.

Let τ ∈ S(t,K)W. It follows from (1.3) that for x1, x2 ∈ S(t)⊗L K and w ∈W

w · (x1 · x2) = (w · x1) · (w · x2).

Thus, the homogeneous components τk of τ of degree k with respect to the
variables t are W-invariant for all k ≥ 0. Write τk =

∑
α dα(k)sα and let

ξ1, . . . , ξn ∈ S(g)g be preimages of s1, . . . , sn under the map (2.5). Then γk :=∑
α dα(k)ξα ∈ S(g)g ⊗L K maps to τk and we need to show that the series∑
k γk converges in S(g,K). Note that the Fréchet topology on S(g,K) can be

defined by a family of multiplicative norms (νi)i∈N extending the norms νi on
S(t,K) because X extends the L-basis t of t (cf. Proposition 1.2.8). Since ϕ−1

is continuous we have limk→∞ |ϕ−1(τk)|i = 0 for all i ∈ N. Given i ∈ N, choose
i0 ∈ N such that maxj{νi(ξj)} ≤ |ci0 |. Then

νi(γk) ≤ sup
α
|dα(k)|νi(ξα) ≤ sup

α
|dα(k)||ci0 ||α|

= |
∑
α

dα(k)sα|i0 = |ϕ−1(τk)|i0 → 0

as k →∞. Composing θ with the inverse of Duflo’s isomorphism we obtain the
isomorphism ξ := θ ◦ η−1 : U(g,K)g → S(t,K)W of K-Fréchet algebras. �

2.2 Centrally supported invariant distributions

The conjugation action of G on D(G,K) restricts to U(g,K), D(Z,K) and
D(G,K)Z , inducing an action on D(Z,K)⊗̂U(z,K),ιU(g,K).

Theorem 2.2.1. If K is discretely valued and G is an open subgroup of the
group of L-rational points of a connected, algebraic group defined over L then
there are K-linear topological isomorphisms

D(Z,K)⊗̂U(z,K),ιU(g,K)G ' (D(Z,K)⊗̂U(z,K),ιU(g,K))G ' D(G,K)GZ

of separately continuous K-algebras induced by multiplication in D(G,K)GZ . In
particular, the subspace Dpt(G,K)GZ of centrally supported invariant point dis-
tributions is dense in D(G,K)GZ .
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Proof: We endow D(Z,K)⊗̂U(z,K),ιU(g,K)G and (D(Z,K)⊗̂U(z,K),ιU(g,K))G

with the D(Z,K) ⊗U(z,K) U(g,K)G-module actions of Remark 1.2.11. Since
D(Z,K) and U(g,K)G are contained in the center of D(G,K) it is clear that
the maps

D(Z,K)⊗̂U(z,K),ιU(g,K)G −→ D(G,K)GZ
(D(Z,K)⊗̂U(z,K),ιU(g,K))G −→ D(G,K)GZ

induced by multiplication are homomorphisms of D(Z,K) ⊗U(z,K) U(g,K)G-
modules. If we can show them to be topological isomorphisms then, by the
density of D(Z,K) ⊗U(z,K) U(g,K)G in the space D(Z,K)⊗̂U(z,K),ιU(g,K)G,
both D(Z,K)⊗̂U(z,K),ιU(g,K)G and (D(Z,K)⊗̂U(z,K),ιU(g,K))G carry unique
K-algebra structures extending the action of D(Z,K)⊗U(z,K)U(g,K)G and for
which the above maps are homomorphisms.

The D(Z,K)-U(g,K)op-bimodule isomorphism

µ : D(Z,K)⊗̂U(z,K),ιU(g,K) −→ D(G,K)Z

of Proposition 1.2.12 is G-equivariant by definition of the respective G-actions.
This gives the second isomorphism of the theorem.

If G0 is a compact open subgroup of G and Z0 := G0 ∩ Z then, using Lemma
1.2.13, it suffices to show that the map

D(Z0,K)⊗̂U(z,K)U(g,K)G −→ D(G0,K)GZ0

induced by multiplication is a topological isomorphism.

According to [4], III.7.2 Proposition 3, there are compact open subgroups Λg and
G0 of g and G, respectively, such that Λg lies in the domain of the exponential
map and exp : Λg → G0 is an isomorphism of locally L-analytic manifolds. In
fact, Λg may be chosen to be contained in any open neighborhood of zero in g.
If therefore Λz := Λg ∩ z and Z0 := G0 ∩ Z then we may assume exp to restrict
to an isomorphism Λz → Z0 (note that exp is also an exponential map for Z0).
The K-linear topological isomorphism exp∗ : D(Λg,K) → D(G0,K) therefore
restricts to isomorphisms

exp∗ : D(Λz,K) −→ D(Z0,K)
id : S(z,K) −→ U(z,K) and

exp∗ : S(g,K) −→ U(g,K).

Lemma 2.2.2. If λ ∈ D(Λz,K) and δ ∈ D(Λg,K) then exp∗(λ · δ) = exp∗(λ) ·
exp∗(δ).

Proof: Let y ∈ Λz and f ∈ Can(G0,K). Then

exp∗(δy · δ)(f) = (δy · δ)(exp∗f)
= δ(x 7→ f(exp(y + x)))
= δ(x 7→ f(exp(y) · exp(x)))
= (exp∗(δy) · exp∗(δ))(f),
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since y commutes with all x ∈ g. Since K[Λz] is dense in D(Λz,K), the assertion
follows from the linearity and continuity of exp∗. �

Together with Lemma 1.2.10 we obtain that exp∗ restricts to an isomorphism
D(Λg,K)Λz → D(G0,K)Z0 and that the diagram

D(Λz,K)⊗̂S(z,K)S(g,K)
µ //

exp∗⊗̂exp∗ o
��

D(Λg,K)Λz

exp∗o
��

D(Z0,K)⊗̂U(z,K)U(g,K)
µ // D(G0,K)Z0

is commutative. G acts trivially on D(Λz,K) and D(Z0,K). Moreover, G
acts on S(g,K) in such a way that exp∗ : S(g,K) → U(g,K) is G-equivariant.
Thus, there is an action of G on D(Λg,K)Λz such that exp∗ : D(Λg,K)Λz →
D(G0,K)Z0 is G-equivariant and we may equally well show the above state-
ments in the setting of Λg and Λz.

Passing to an open subgroup of Λg, we may assume that Λg and Λz satisfy the
compatibility conditions of Corollary 1.3.6. Hence for r ∈ pQ with 1/p < r < 1
the K-Banach algebra Dr(Λg,K)Λz admits a finite direct sum decomposition

Dr(Λg,K)Λz =
⊕
α∈A′

bαSr(g,K)

with bα ∈ K[Λz] for all α ∈ A′ (cf. Corollary 1.4.3).

Lemma 2.2.3. The action of g on D(Λg,K)Λz induced by that of G extends to
a g-action on Dr(Λg,K)Λz .

Proof: It suffices to show that the action of g on S(g,K) is continuous with
respect to the norm || · ||r. Note that by Corollary 1.4.5 there is a continuous K-
linear surjection τ ′ : S(gQp

,K)→ S(g,K) which is seen to be g-equivariant (use
Proposition 2.1.1). As a direct consequence of Frommer’s theorem S(gQp

,K)
is a K-Fréchet-Stein algebra. Therefore, S(g,K) and the kernel J of τ ′ are
coadmissible modules over S(gQp ,K). According to Theorem B (cf. [26], sec-
tion 3) the coherent sheaf corresponding to J is given by the kernels Jr of the
surjections Sr(gQp

,K)→ Sr(g,K) (cf. (1.14)). Since J is g-invariant and dense
in Jr (cf. Theorem A of [26], section 3), we may assume L = Qp and hence
|| · ||r = || · ||r to be multiplicative.

Recall from Frommer’s theorem that there is a Qp-basis X = (x1, . . . , xd) of g
such that

Sr(g,K) =

{∑
α

dαXα | dα ∈ K, lim
|α|→∞

|dα|||Xα||r = 0

}

with ||
∑
α dαXα||r = supα{|dα|

∏d
i=1 ||xi||αi

r }. For x ∈ g choose λ ∈ Q∗p such
that ||ad(λx)(xi)||r ≤ ||xi||r for all i. It follows that ||x ∗ δ||r ≤ |λ−1| · ||δ||r for
all δ ∈ S(g,K). �
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We obtain
Dr(Λg,K)g

Λz
=
⊕
α∈A′

bαSr(g,K)g.

Since, as remarked in the proof of Corollary 1.4.3, (bα)α∈A′ is also a basis for
the free Sr(z,K)-module Dr(Λz,K) we obtain a topological isomorphism

Dr(Λz,K)⊗Sr(z,K) Sr(g,K)g −→ Dr(Λg,K)g
Λz
.

Passing to the projective limit we obtain a topological isomorphism

D(Λg,K)⊗̂S(z,K)S(g,K)g −→ D(Λg,K)g
Λz

as in the proof of Proposition 1.2.12: To satisfy the Mittag-Leffler condition
we need to know that S(g,K)g is dense in Sr(g,K)g for all r. This is true
according to Remark 2.1.4 and Theorem 1.4.2 and is in fact the reason for our
working with Λg and Λz instead of with G0 and Z0. By our assumption on G
and Remark 2.1.3 D(Λg,K)g

Λz
= D(Λg,K)GΛz

.

Since by Lemma 1.1.1 and Proposition 2.1.2 K[Z0] and U(g)G⊗LK are dense in
D(Z0,K) and U(g,K)G, respectively, it follows from [22], Lemma 19.10 (i), that
the space K[Z0]⊗K (U(g)G⊗LK) is dense in D(Z0,K)⊗̂KU(g,K)G. Therefore,
so is its image in the quotient space D(Z0,K)⊗̂U(z,K)U(g,K)G. Since the image
of K[Z0]⊗K (U(g)G ⊗L K) under µ is precisely Dpt(G0,K)GZ0

, the proof of the
theorem is complete. �

Let G be a connected, reductive, linear algebraic group defined over L. G is
the almost direct product of its center and the finitely many minimal, closed,
connected, normal L-subgroups Gi of positive dimension of its derived subgroup
D. Let us call G sufficiently L-isotropic if all Gi are L-isotropic. This is the
case, for example, if G is L-split. For the following cf. [29], Theorem 2.4:

Theorem (Sit). Assume G to be the group of L-rational points of a connected,
reductive, sufficiently L-isotropic L-group G. If the conjugacy class of an ele-
ment g ∈ G is relatively compact in G (endowed with the topology induced from
L) then g is contained in the center of G.

Corollary 2.2.4. Assume G to be the group of L-rational points of a connected,
reductive, sufficiently L-isotropic L-group G. Then D(G,K)G = D(G,K)GZ . Let
D be the derived group of G, D the group of L-rational points of D and d the Lie
algebra of D. If K is discretely valued then there is a topological isomorphism

(2.6) D(G,K)G ' D(Z,K)⊗̂K,ιU(d,K)d

of separately continuous K-algebras.

Proof: According to (2.1), (1.4) and Remark 1.2.3 any invariant distribution
on G is supported on a union of relatively compact conjugacy classes. As a
consequence of Sit’s theorem we have D(G,K)G = D(G,K)GZ .

Since G = D · Z with finite intersection D ∩ Z it follows from Remark 1.2.14
that there is a topological isomorphism

D(G,K)Z −→ D(Z,K)⊗̂K,ιU(d,K)
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of D(Z,K)-U(d,K)op-bimodules. The image of Dpt(G,K)G under this isomor-
phism is Dpt(Z,K) ⊗K (U(d)d ⊗L K) (cf. Remark 2.1.3). Since Dpt(G,K)G,
Dpt(Z,K) and U(d)d ⊗LK are dense in D(G,K)G, D(Z,K) and U(d,K)d, re-
spectively, (cf. Theorem 2.2.1, Lemma 1.1.1 and Proposition 2.1.2) the above
isomorphism restricts to an isomorphism D(G,K)G ' D(Z,K)⊗̂K,ιU(d,K)d.
The arguments given at the beginning of the proof of Theorem 2.2.1 show that
it may naturally be viewed as a homomorphism of K-algebras. �

2.3 The Fourier transform

Let k be a field which is complete with respect to a non-trivial and non-
archimedean absolute value. Recall that a rigid analytic k-variety X is called
quasi-Stein if there is a countable, admissible affinoid covering (Xi)i∈N of X
such that Xi ⊆ Xi+1 and the image of the map O(Xi+1) → O(Xi) is dense
for all i ∈ N (cf. [19], Definition 2.3). It is easy to see that if X and Y are
quasi-Stein then so is their fibred product X×k Y . Also, if X ′ is a rigid analytic
k-variety admitting a finite morphism to a quasi-Stein k-variety X then X ′ is
quasi-Stein itself. If k′ is a complete, valued field extension of k then any rigid
analytic, quasi-Stein k-variety X admits a base extension to k′ and the resulting
rigid analytic k′-variety Xk′ is quasi-Stein.

Remark 2.3.1. If X is quasi-Stein over k and k′ is a complete valued field
extension of k then the algebra of global sections of Xk′ is a k′-Fréchet-Stein
algebra: If (Xi)i∈N is a covering of X as a quasi-Stein space then

OXk′ (Xk′) = lim←−iOXk′ ((Xi)k′).

For each i ∈ N the algebra OXk′ ((Xi)k′) is a noetherian k′-Banach algebra for
which the map OXk′ ((Xi+1)k′) → OXk′ ((Xi)k′) is flat (cf. [2], 7.3.2 Corollary
6). Moreover, the natural map OXk′ (Xk′) → OXk′ ((Xi)k′) has dense image
because this is true for all transition maps.

Recall that if Z is a commutative locally L-analytic group and X is a rigid
analytic L-variety then the group Ẑ(X) of locally analytic characters of Z with
values in X consists of the homomorphisms Z → OX(X)∗ of groups such that
for any admissible open affinoid subset X0 = Sp(A) of X the induced homo-
morphism Z → A∗ is an element of Can(Z,A) (cf. [12], Definition 6.4.2). It
is shown in [loc.cit.], Corollary 6.4.4, that Ẑ is a functor on the category of all
rigid analytic L-varieties.

Theorem (Emerton-Schneider-Teitelbaum). If Z is a commutative, locally L-
analytic, topologically finitely generated group then the functor Ẑ is representable
by a strictly σ-affinoid rigid analytic space over L.

Recall that according to [loc.cit.], Definition 2.1.17, a rigid analytic L-variety X
is called strictly σ-affinoid if X has an admissible covering (Xi)i∈N by affinoid
subdomains Xi such that for every i ∈ N Xi is relatively compact in Xi+1 in
the sense of [2], 9.6.2. As a corollary to the construction of Ẑ we obtain:

Corollary 2.3.2. Ẑ is quasi-Stein.

Proof: By [12], Proposition 6.4.1, there is an isomorphism Z → Λ × Z0 of lo-
cally L-analytic groups where Λ is a free abelian group of finite rank, say r, and
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Z0 is a compact open subgroup of Z. Consequently, there is an isomorphism
Ẑ → Λ̂ × Ẑ0. Λ̂ is represented by the r-fold direct product of the rigid ana-
lytification Gan

m,L of the multiplicative group Gm,L over L which is quasi-Stein.
Further, Ẑ0 admits a finite morphism to a finite direct product of copies of ôL
which is quasi-Stein by [24], p. 456. �

The ring of global sections of the structure sheaf of ẐK is denoted by O(ẐK).
Since ẐK is quasi-Stein and strictly σ-affinoid it follows from Remark 2.3.1 and
[12], Proposition 2.1.16, that O(ẐK) is a nuclear K-Fréchet-Stein algebra.

Theorem (Emerton-Schneider-Teitelbaum). If Z is a commutative, locally L-
analytic, topologically finitely generated group then there is a natural continuous
injection D(Z,K)→ O(ẐK) of K-algebras with dense image.

We briefly recall the construction of this map: As above we choose an isomor-
phism Z → Λ × Z0. According to [28], Proposition A.3, there is a topological
isomorphism

D(Z,K) ' D(Λ,K)⊗̂K,ιD(Z0,K).

Λ being discrete, D(Λ,K) = K[Λ] is the topological direct sum of one dimen-
sional K-vector spaces. Hence D(Λ,K)⊗K,ι D(Z0,K) is complete (cf. Lemma
1.2.13 and [22], Lemma 7.8) so that

D(Z,K) ' K[Λ]⊗K,ι D(Z0,K).

On the other hand, the Fourier transform of [24], Theorem 2.3, extends to an
isomorphism D(Z0,K) ' O((Ẑ0)K) of K-Fréchet algebras. Further, D(Λ,K) =
K[Λ] can be interpreted as the algebra of regular functions on the algebraic
Cartier dual D(Λ) = Gr

m,K of Λ. It admits an embedding into O((Gr
m,K)an) =

O(Λ̂K) with dense image. Since

O(ẐK) ' O(Λ̂K)⊗̂KO((Ẑ0)K) ' O(Λ̂K)⊗̂K,ιO((Ẑ0)K)

the claim follows.

Corollary 2.3.3. Let G be a locally L-analytic group and assume that either

i) G is commutative and topologically finitely generated or

ii) G is the group of L-rational points of a connected, split reductive L-group
G.

If K is discretely valued then there is a quasi-Stein rigid analytic L-variety X
and an injective, continuous homomorphism D(G,K)G → O(XK) of K-algebras
with dense image.

Proof: Case (i) is just the previous theorem because D(G,K)G = D(G,K). In
case (ii) let Z be the center of G and n be the dimension of the derived group of
G. Since Z is topologically finitely generated we may define X := Ẑ×L (AnL)an.
Writing Z = Λ × Z0 we have O(XK) ' O(Λ̂K)⊗̂KO((Ẑ0)K)⊗̂KO((AnK)an).
Further, Corollary 2.2.4 yields

(2.7) D(G,K)G ' K[Λ]⊗K,ι D(Z0,K)⊗̂K,ιU(d,K)d,

32



where d denotes the Lie algebra of the derived group of G. It follows from
our assumptions on G that d is semisimple and L-split whence by Theorem
2.1.6 there is a topological isomorphism U(d,K)d ' O((AnK)an) of K-Fréchet
algebras. Tensoring the embedding K[Λ] ⊆ O(Λ̂K) with

D(Z0,K)⊗̂K,ιU(d,K)d ' O((Ẑ0)K)⊗̂K,ιO((AnK)an)

gives a continuous K-linear injection D(G,K)G → O(XK). Since K[Λ] is dense
in O(Λ̂K) it has dense image (cf. [22], Lemma 19.10) and, by construction, is a
homomorphism of K-algebras. �

Remark 2.3.4. The isomorphism (2.7) makes it possible to explicitly compute
the center of D(G,K) if G is L-split. The structure of U(d,K)d has been deter-
mined in Theorem 2.1.6: if n is the rank of d then U(d,K)d ' O((AnK)an) is the
K-algebra of all power series in n variables with infinite radius of convergence.
Moreover, if r is the dimension of Z then Z contains an open subgroup isomor-
phic to orL. Thus, Z ' A × orL as locally L-analytic groups with a discrete,
finitely generated abelian group A. Consequently,

D(Z,K) ' K[A]⊗K,ι D(oL,K)⊗̂K · · · ⊗̂KD(oL,K)︸ ︷︷ ︸
r-times

(cf. [28], Proposition A.3). The structure of D(oL,K) has been investigated in
[24]. It is the K-algebra of holomorphic functions on a twisted form of the open
unit disk.

Corollary 2.3.5. Under the assumptions of Corollary 2.3.3 any maximal ideal
of D(G,K)G which is closed with respect to the topology induced by O(XK) is
of finite codimension.

Proof: Let m be a maximal ideal of A := D(G,K)G which is closed with respect
to the metric topology induced by Â := O(XK) and let m̂ be the closure of
m in Â. Â/m̂ = Â/m gives rise to a non-zero, coherent module F on XK (cf.
[26], Lemma 3.6). There is a point x ∈ XK such that Fx 6= 0. By Nakayama’s
lemma also Fx/mx 6= 0, where mx is the maximal ideal of OXK ,x. However,
dimK Fx/mx <∞, and Fx/mx is also a module over A/m. �

2.4 An extension of Harish-Chandra’s isomorphism

Let G be a connected, split reductive, linear algebraic group defined over L with
a maximal L-split torus T. Let D and Z be the center and the derived group of
G, respectively. Then D is L-split and T′ := (D∩T)◦ is a maximal L-split torus
of D. Let G,Z,D, T and T ′ be the group of L-rational points of G,Z,D,T and
T′, respectively, and g, z, d, t and t′ be the respective Lie algebras. Note that
d = [g, g] is a semisimple Lie algebra and that t′ is an L-split maximal toral
subalgebra of d. Let finally W = W (G,T ) := NG(T )/T be the Weyl group of G
with respect to T . W acts on T by conjugation and hence on D(T,K) such that
the subalgebra S(t,K) of D(T,K) is stable under W . W is also the Weyl group
of D with respect to T ′, hence acts on T ′ and D(T ′,K). The corresponding
action on S(t′,K) is induced by the adjoint action of W on t′ (cf. the proof
of Proposition 2.1.1). Recall that S(t′,K) is also acted on by the Weyl group
W = W(d, t′) of the pair (d, t′) (cf. subsection 2.1). This action, too, is induced
by viewing W as a subgroup of AutL(t′). The following fact is well known.
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Lemma 2.4.1. Ad : W → W is an isomorphism of groups. In particular,
S(t′,K)W = S(t′,K)W. �

Theorem 2.4.2. Let G be the group of L-rational points of a connected, split
reductive L-group G with T and W as above. If K is discretely valued then there
is a topological isomorphism

D(G,K)G ' D(T,K)WZ

of separately continuous K-algebras.

Proof: According to Corollary 2.2.4 there is a topological isomorphism

κ : D(G,K)G −→ D(Z,K)⊗̂K,ιU(d,K)d

of separately continuous K-algebras.

Since T = Z ·T ′ with finite intersection Z∩T ′ one proves in an analogous manner
that there is a topological isomorphism of separately continuous K-algebras

ψ : D(Z,K)⊗̂K,ιS(t′,K)W −→ D(T,K)WZ .

According to Theorem 2.1.6 and Lemma 2.4.1 there is a topological isomorphism
ξ : U(d,K)d → S(t′,K)W of K-Fréchet algebras so that

ψ ◦ (id⊗̂ξ) ◦ κ : D(G,K)G → D(T,K)WZ

is as required. �

Remark 2.4.3. If G is semisimple then Z is finite and κ and ψ are the obvious
isomorphisms

K[Z]⊗K U(g,K)G −→ D(G,K)GZ = D(G,K)G and
K[Z]⊗K S(t,K)W −→ D(T,K)WZ .

Since the isomorphism ξ : U(g,K)G → S(t,K)W was constructed without any
restriction on K it follows that we have an isomorphism D(G,K)G ' D(T,K)WZ
for any spherically complete coefficient field K.
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Sci. École Norm. Sup. 3, 1970, p. 23–74
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