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Abstract. We study the affine formal algebra R of the Lubin-Tate deformation
space as a module over two different rings. One is the completed group ring of
the automorphism group I' of the formal module of the deformation problem,
the other one is the spherical Hecke algebra of a general linear group. In the
most basic case of height two and ground field @@, our structure results include
a flatness assertion for R over the spherical Hecke algebra and allow us to com-
pute the continuous (co)homology of I with coefficients in R.
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0 Introduction

Let K be a non-archimedean local field with valuation ring o and residue class
field k of characteristic p and cardinality q. Let H denote a fixed one dimen-
sional formal o-module of height h > 1 over a separable closure k*°P of k, and
let 6 denote the valuation ring of the completion K of the maximal unramified
extension of K.

By a famous theorem of Lubin-Tate and Drinfeld, the problem of deforming H
to formal o-modules over complete noetherian local g-algebras with residue class
field k5P is represented by a formal scheme Spf(R) in which R ~ 6[[uq, ..., up—1]]
is a formal power series ring in h — 1 variables i, ..., u,_1 over 0.

The ring R carries a natural action of the automorphism group I' of H. The
latter can be identified with the group of units o7, of the valuation ring op of
the central K-division algebra D of invariant 1/h. The action of " on R is
continuous and extends to an action of the completed group ring

A= A(T) = o[[I7],

the so-called Twasawa algebra of T' over 6. This is explained at the beginning
of section 3. By adding level structures to the above deformation problem, one



can also show that R is a module over the spherical Hecke algebra
H = 8[GLy(0)\ GL,(K)/ GLy(0)] =~ 8[To, Ty *|[T1, - - s Th1]

of GLj,(K) over 6. The Hecke operators T; commute with the action of T" up to
twists by outer automorphisms. This is explained at the beginning of section 2.

The formal scheme Spf(R) and its coverings are of fundamental importance
in number theory and notably in understanding the arithmetic of the field K.
Moreover, the action of I on R is related to important problems in stable ho-
motopy theory (cf. [8], sections 5 and 6). Nonetheless, comparatively little work
has been done in understanding the actions of I' and H on R itself. We point out
that Rx := R®, K is topologically dual to a continuous representation of I" on
a K-Banach space. Continuous and locally analytic representations stemming
from equivariant vector bundles on moduli spaces of p-divisible groups have re-
cently found a lot of interest. Notably the case of GLj,(K) acting on Drinfeld’s
p-adic upper half space was studied in detail and found applications to the de
Rham cohomology of p-adically uniformized varieties (cf. [21]).

With these motivating problems in mind, the present article deals with the
equally prominent example of the moduli space of Lubin-Tate. The appearance
of the Hecke algebra H is a novel feature here which is not relevant in Drinfeld’s
setting (cf. Remark 3.5). Further, the analysis of the I'-action is significantly
complicated by the much more intricate geometry of the period morphism. In
the most basic case of height two and ground field Q,,, however, our structural re-
sults are rather precise. They allow us to compute the continuous (co)homology
of " with coefficients in R and prove a flatness assertion for R over the Hecke
algebra H.

In order to describe our results more precisely, let m be a uniformizer of o, let
R := R/7R, and denote by m := (uy,...,us_1)R the maximal ideal of the local
ring R ~ k*P[[u1,...,up—1]]. The leading term of the action of I' on R with
respect to the m-adic filtration was computed by Chai in [6]. We take a different
approach here and carry some of Chai’s computations further by making use of
the rigid analytic period morphism ® : Spf(R)"& — IP”;{l of Gross and Hopkins.
There is an explicitly known linear action of I' on the projective space ]P’;’{l for
which ® is equivariant. The main technical problem we have to overcome is
that ® is not defined over 6. In order to obtain information about the action
of ' on R, we need to carefully analyze the growth behavior of the coordinate
functions ¢; of ® (cf. Lemma 1.7). This analysis is based on a closed formula of
Yu (cf. Proposition 1.5). Our algorithm to m-adically approximate the action of
I' on R is recorded in Theorem 1.11. Although this is a new approach, the pos-
sibility of computing the action of I" to an arbitrary precision was known before.

Consider the open normal subgroup I'y := 1 + Ilop of I', where II denotes a
uniformizer of D satisfying II" = =. For a limited number of elements v € I';
we compute the image of the power series v(u;) in R/m?*? forany 1 <i < h—1
(cf. Theorem 1.14). If h = 2 we go even further and compute the image of v(u;)
in R/m?7™2 (cf. Theorem 1.16). We point out that in contrast to Chai we do
not treat elements which are arbitrarily close to 1. Thus, our computations only



partially generalize his work. If 0}, denotes the valuation ring of the unramified
extension of degree h of K, then we finally approximate the action of o} C I'
on R. This is in fact much easier to treat (cf. Theorem 1.19).

Fix 0 < i < h —1 and set uyp := w. The main technical result of sec-
tion 2 is a description of the action of the Hecke operator T; on the quotient
R/(ug, ... ,u;—1)R. This does not seem to have been considered before (cf. The-
orem 2.1). It requires an explicit knowledge of how GLj(K) acts on the torsion
points of the universal formal o-module H over R and relies on a subtle analysis
of the double cosets of GLy,(0) modulo its parahoric subgroups (cf. Lemma 2.3).

Our results completely determine the action of 77 on R. If h = 2 this al-
lows us to prove our first main theorem, saying that R/6 is a flat module over
H/(To — 1)H ~ 6[T;] without any restriction on the field K (cf. Theorem 2.6
and Remark 2.7). As in the work [12] of Grole-Klénne, this result is supposed
to have strong representation theoretic consequences.

If h is arbitrary, we also obtain that the action of T} on R/0 is topologically
nilpotent (cf. Proposition 2.8). Further, for any non-negative integer n, the en-
domorphism 77" of R is injective, continuous with closed A-stable image, and
has a torsion free cokernel over o (cf. Corollary 2.5 and Lemma 3.2). Endowing
the K-vector space R := R ®, K with a suitable locally convex topology, it
follows that unless h = 1 the Ax-module Ry is not topologically of finite length
(cf. Proposition 3.3). We compare this with the parallel situation of GL(K)
acting on Drinfeld’s p-adic symmetric space (cf. Remark 3.5).

The question of whether the A-module R (resp. the Ax-module Rk ) is finitely
generated, currently remains open. In the most basic case where h = 2 and K =
Q, we are able to show, however, that any of the A-modules T7(R)/T]""*(R)
is finitely generated (cf. Theorem 3.6 and Corollary 3.7). This is achieved by
computing the coinvariants of T7* () /77 (m) for the action of I'y, using the
approximations of section 1. One does obtain a module of finite type, however,
by viewing R/0 as a module over a twisted power series ring A[[T7; o4]], taking
into account both the action of A and that of H (cf. Remark 3.8).

Let Z1 := 1+ mo C I'y, and let My, z,) denote the maximal ideal of the
local ring A(T'1/Z1) := A(T1/Z1)/7wA(T1/Z1). If K = Q, with p > h + 1 then
fundamental results of Lazard allow us to determine the structure of the graded
ring
NG AV R —i —it1
gr(AT1/20) = DTy, y2,) /TN, 2,)
i>0

associated with the myr, /z,)-adic filtration on A(I';/Z;). It is isomorphic to
the universal enveloping algebra U(g/3) of an (h? — 1)-dimensional nilpotent Lie
algebra g/3 over kP (cf. Corollary 3.14 and Remark 3.15).

Let my, be the maximal ideal of the local ring A; := A(T'y). The action of
0* C T'" and hence that of Z; on R is trivial. Endowing m/T}(m) with the



mp, -adic filtration, the associated graded object

gr(m/Ty (W) == Plmi, - (@/T1(m))]/[m}"" - (/T2 (m))]

i>0

may therefore be viewed as a module over gr(A(T'y/Z1)) ~ U(g/3). If h = 2 and
K = Q, with p > 3 then we determine the structure of this module completely
(cf. Corollary 3.11 and Theorem 3.16). This in turn allows us to compute the
Lie algebra (co)homology of gr(m/T3(m)) over g/3 (cf. Corollary 3.17). By
means of a finitely convergent spectral sequence, the latter is related to the
continuous (co)homology of m/T;(m) over I'y /Z;. Analyzing the action of I on
H;(§/3, gr(m/T1 (m))) and H'(g/3, gr(m/T1(W))) we obtain that

H;(T, (R/8)/T1(R/8)) = H'(T, (R/8)/T1(R/8)) = 0

for all ¢ > 0, assuming h = 2, K = Q, and p > 3 (cf. Theorem 3.19). By
dévissage and passage to the limit we finally obtain our second main theorem,
saying that the I'-equivariant inclusion 8 — R induces isomorphisms

H;(T',8) ~ H;(T,R) and HY(T,s)~H T, R)

for all ¢ > 0 under the same hypotheses (cf. Theorem 3.20).

The preceding assertion is related to the behavior of the Adams spectral se-
quence in the theory of ring spectra and is predicted by Hopkins’ chromatic
splitting conjecture (cf. [15], Conjecture 4.2). In fact, there are important results
from algebraic topology exceeding those in Theorem 3.20. More precisely, let
Lie(H) denote the Lie algebra of the universal formal o-module H. This is a free
R-module of rank one carrying a continuous semilinear action of I'. Using meth-
ods from stable homotopy theory, the cohomology algebra H* (T, ®y,czLie(H)®")
was computed by Shimomura and Yabe (cf. [30]). Their work was later taken
up and complemented by Behrens in [1]. However, these results are not easily
accessible to the non-topologist, and we hope that our representation-theoretic
approach, although spelled out only for n = 0, is the more direct one. We
also note that the Tate-Farrell cohomology of ®,,czLie(H)®™ was computed by
Symonds if K =Q, and h =p—1 > 2 (cf. [33] and our Remark 3.21).

If h > 2 or if K # Qp then the computations leading to the above results be-
come significantly more complicated. On the other hand, we develop most of
the necessary machinery in complete generality. Therefore, we are convinced
that our methods will prove important in analyzing the structure of R over A
and H in other cases, as well.

Conventions and notation. Let K be a non-archimedean local field. The nor-
malized valuation of K, as well as its extension to an algebraic closure of K, will
be denoted by v. We denote by o the valuation ring of K and fix a uniformizer =
of 0. Let k := o/mo denote the residue class field of 0, and let ¢ and p denote the
cardinality and the characteristic of k, respectively. If K = Q,, we will always
choose ™ = p.

We denote by K the completion of the maximal unramified extension of K, and
by 6 its valuation ring. The residue class field 6/76 of 6 will be identified with a



fixed separable closure k*°P of the field k. We denote by o the Frobenius auto-
morphism (z — z7) of k%P, as well as its unique lift to a ring automorphism of 6.

We fix a positive integer h and denote by D = Dy, the central K-division algebra
of invariant 1/h. The valuation v of K uniquely extends to a valuation vp of
D. We denote by op the valuation ring of D and fix a uniformizer IT of op
satisfying II" = 7. Let K} denote the unramified extension of K of degree h,
let 05, denote the valuation ring of K}, and let kj := 05, /7o, denote the residue
class field of 05,. We fix an embedding K; — D of K-algebras. It restricts to
an embedding 0j, < op and induces an isomorphism kj, ~ op /Iop.

If S is a unital ring then we denote by S* its group of units. If ¢ is a positive

integer and if u = (uq,...,ur) is a family of indeterminates then we denote by
S[u]] := S[[u1, . . ., ue]] the ring of formal power series in the variables uy, ..., up
with coefficients in S. If n = (n1,...,ng) € N¢ we set u := uf*---u}* and

[n| :=n1+ ...+ n.

1 The action of the automorphism group

We fix a positive integer h and a one dimensional formal o-module H of height h
over kP which is defined over k. By a fundamental theorem of Lubin-Tate and
Drinfeld, H admits a deformation to a formal o-module H over the power series
ring R := 0[[uy,...,up—1]] which is universal in the sense that any deforma-
tion of H to a formal o-module over a complete noetherian local 8-algebra with
residue class field k5P arises uniquely as a specialization of H (cf. [9], Proposi-
tion 4.2, or [11], Proposition 12.10).

The formal parameters uq, ..., u,—1 can be chosen in such a way that H(X,Y) =

f7Hf(X) + f(Y)), where the logarithm f(X) € X - R[2][[X]] satisfies Hazewin-
kel’s functional equation

(1) f(X)=X+Z*¢'(f)(X)

(cf. [11], Proposition 5.7). Here we set up := 1, and ¢ denotes the 6&-linear
ring endomorphism of R[2][[X]] (and of its subrings R[%] and R) determined
by ¢(X) := X7 and p(u;) :=u forall 1 <i<h-—1.

It follows from (1) that f is of the form f(X) = Y>> a,X9 and that the

coefficients a,, € R[%] satisfy the recursion formula
min{h,n} min{h,n} )
(2) a=1 and mwa, = Z ;- @ (an—i) = Z ul
i=1 i=1

(cf. [14], 1.3.3, equations (3.3.6) and (3.3.9)).

We let I := Aut, (H) denote the group of automorphisms of the formal o-module
H. According to [9], Proposition 1.7, the group I' is isomorphic to the group of



units o}, of the valuation ring op of the central K-division algebra D of invari-
ant 1/h. It acts on R from the left by o-linear local ring automorphisms. More
precisely, given an o-linear automorphism + of H, there is a unique isomorphism
v : R — R of local 6-algebras and a unique isomorphism [y] : vH — H of
formal o-modules such that the reduction of [y] modulo the maximal ideal m of
R is 7y (cf. [11], Proposition 14.7). Fixing an isomorphism I' ~~ 0%, we shall from
now on identify the groups I' and o7,.

We let R := R/mR ~ k;sep[[ul, ..., up—1]] and denote by m := (uy,...,up— 1)R
the maximal ideal of R. In this sectlon we wish to study the action of I on R,
induced by that on R. Using the Cartier-Dieudonné module of H, the leading
term of this action with respect to the m-adic filtration of R was computed by
Chai in [6]. We choose a different method here and compute higher terms of
this action for a limited number of elements of T'.

We denote by Kj the unramified extension of K of degree h, and by oy its
valuation ring. We fix an embedding K;, < D and a uniformizer II of D,
satisfying II" = . Recall that any element v € D can be written uniquely as

h—1
v = ZHi~ai with  «aq,...,ap_1 € Kj.
i=0
We have v € I if and only if ag € 07 and o, ..., ap—1 € 0p. Further, Il = o”I1
for all & € oy,.

The subgroup oj, of I' contains the group of roots of unity p,n_ of order " —1.
We first reprove [6], Lemma 2, by using power series methods.

Lemma 1.1. If £ € pgn_y C T' then the corresponding 6-linear ring auto-
morphism of R satisfies £(u;) = €71 - wu; for 1 < i < h — 1. The unique
isomorphism [£] : &H — H which reduces to & modulo m is given by the power
series [§](X) =¢ - X.

Proof. Viewing £ as an element of kj, by reduction modulo mop,, the automor-
phism ¢ of H is given by the power series §- X € k*P[[X]]. This follows from [11],
Proposition 13.6, by reduction. Denoting by & the K-linear ring automorphism
of R[%] determined by &(u;) := &9 =1 -u;, 1 <4 < h—1, it suffices to prove that
&uf = E71f(EX).
We define the R[1]-linear automorphism (g — g) of R[%}[[X]] by §(X) :=
Elg(eX). A direct computation shows that if ¢ € R[ JI[X]] is of the form
9= p>0anX? " with a,, € R[%], then ¢ ( )
to

i > 0. Applying the transformation (g — §)
the functional equation

€91 . i(g) for any integer
), we obtain that f satisfies

(1

X+Z§q_1 ' ()(X).

Another direct computation shows that the endomorphisms ¢ and &, of R[1][[X]]
commute with each other. Applying &, to (1), we obtain that &, f satisfies the



same above functional equation. As in (2), this leads to identical recursive
definitions of the coefficients of &, f and f, whence &, f = f. O

In order to study the action of the higher congruence subgroups
I;:=1+1p, i>1,

of T' on R we shall make use of the period morphism ® : Spf(R)"& — ]P’};{l,
constructed in [11], section 23. Here ]P’}};l denotes the rigid analytic projective

space of dimension h — 1 over K, and Spf(R)"8 denotes the rigidification of
the formal o-scheme Spf(R) in the sense of Berthelot (cf. [7], §7). The latter is
isomorphic to the rigid analytic open unit polydisc of dimension A — 1 over K.

In homogeneous projective coordinates, the morphism ® is given by ®(x) =
[po(z) : ... @p_1(x)], where po,...,n_1 € O(Spf(R)"e) are certain global
rigid analytic functions on Spf(R)"& without any common zero. They can be
constructed from the coefficients a,, of the logarithm f(X) = Y . a,X7" of
the universal formal o-module H of height h over R by the formulae

(3) g = nh_)rréo m™a,, and
w; = lim 7" Mapu,,, f1<i<h-—1.

n— oo

The convergence holds in the natural K-Fréchet topology of O(Spf(R)") (cf.
[11], Proposition 21.2).

We denote by Dy the affinoid subdomain of Spf(R)"¢ defined by
Dy := {x € Spf(R)"® | v(u;(z)) > 1forall 1 <i<h—1}.
The subsequent results follow from [11], Lemma 23.14 and Proposition 23.15.

Theorem 1.2 (Gross-Hopkins). We have o € O(Dp)*, and O(Dy) is iso-
morphic to the free Tate algebra over K in the variables (ﬂ%())lgigh,l. The
morphism ® restricts to an isomorphism ® : Dy — ®(Dy). O

We set wy, := 1 and w; = ¢;/pg € O(Dyg) for 1 <4 < h — 1, so that O(Dy) =~
K{(r 'wy,..., 7 'wy_1) by Theorem 1.2. It is a general fact that the morphism

® is I'-equivariant for a certain action of I' on P}Iﬁ;l. This leads to the following
result of Devinatz-Hopkins.

Proposition 1.3 (Devinatz-Hopkins). Fiz an integer i with 1 < i < h—1. If
ag €0, if ar,...,ap—1 €0p, and if v = Z?:o o118 € T, then
; J h j
25:1 af_jw; + Zj:i+1 TR W

(4) ’Y(wl) = h—1 j
ag + Dy afl w;

In particular, the subdomain Dqy of Spf(R)™® is I'-stable.

Proof. The formula (4) is a straightforward generalization of [8], Remark 2.21,
Proposition 3.3 and Lemma 4.9, which treats the case K = Q,. The I'-stability
of Dy is then an immediate consequence of (4) and of the definition of Dy. O



Remark 1.4. Formula (4) can also be expressed by saying that the period

. . . . h—1 ;
morphism @ is I'-equivariant if any element v = > . a,II* of I' acts on the
homogeneous coordinates [@g : ... : @p_1] of ]P”}{_l through right multiplication
with the matrix
(675} yesl Ty - TR —1
g ag (o8 ag
Aho1 o, o Ah_2
g o g ag
Qpg  TQp_q Gy e Qp—3
C('y) = . .
h—1 h—1 h—1 h—1
ag mag e mafl, af

If h > 2 then this formula for C(y) does not coincide with formula (22.9) of
[11], page 72. In fact, the latter seems to lead to certain inconsistencies. For
example, the fundamental domain

D := {x€Spf(R)"® | v(ui(x)) > (h—i)h ' forall 1 <i<h-—1}
= {z € Spf(R)"® | v(w;(x)) > (h—i)h forall 1 <i < h—1}

of Gross-Hopkins is supposed to be stable under the action of I (cf. [10], Re-
marque 1.3.2). Viewing II as an element of an algebraic closure of K, we have

zo = [1:TIP=1 . T2 . ... . 1I] € ®(D) because v(Il) = h~!. Using formula
(22.9) of [11] for the element v :=1+41II € T, we obtain
zo-y=[1+0O I o2 TP T 410,

which is not contained in ®(D) unless h < 2. Using (4), we obtain
zo-y=[1+M:a+ "1 4107720 T2 +10) € ®(D).

By Proposition 1.3, the action of I' on O(Spf(R)"#) extends to a continuous
K-linear action on the K-Banach algebra O(Dy). Since both (L., ==t
and (%,...,%=2) are affinoid generators of O(Dy), there are power series
G1s---s9h—1 € O(Dy) such that u; = g;(wi,...,wp—1) for any index ¢ with
1 < i < h—1. Using the K-linearity and the continuity of the I-action, we
obtain the tautological relation

(5) Y(ui) = gi(y(wi), ..., v(wn-1)) € R € O(Dy)
for any element v € I'.

The power series expansions of the functions ¢; in the variables uq, ..., up_1 can
be expressed by a closed formula of Yu (cf. [36], Proposition 8). In the case h = 2
this formula already appears in the work of Gross-Hopkins (cf. [11], section 25).
Recall that if n is a non-negative integer, then an ordered partition of n is a
decomposition of the set {i € Z | 0 < i < n} into a union of pairwise disjoint
non-empty segments, i.e. sets of the form {i € Z | m <1i < m/} with m,m’ € Z
and 0 < m < m’ < n. Given such a decomposition and an integer j > 1, we
denote by S; the set of minimal elements of all segments of the decomposition
with cardinality j. By convention, S; = {), if no such segment exists. Thus, an
ordered partition of n gives rise to a collection of sets S = (5;);>1, which in turn
uniquely determines the ordered partition. If j > 1 we set ¢(5;) := Zmesj q”*

and denote by |S;| the cardinality of ;.



Proposition 1.5 (Yu). Fiz an indexi with0 < ¢ < h—1. If{ is a non-negative
integer, let P; ¢ be the set of ordered partitions S = (S;)j>1 of th+ i such that
(¢ —1)h+i &S and such that S; = O whenever j > h. We have

h 4059
pol) = > 3 [
(>0 S€Py,,  j=1
h q(S)
pilu) = Y Y ”11_[ 5T i 1<i<h-1L
>0 SEP; ¢ J=1 &

Proof. This follows from (3) and [36], Proposition 8, together with our conven-
tion up, = 1 and the observation that

h
Z - DIS) = z+hZ|S\ Z]IS\ =D I8¢
: =

>

A/—/
=i+ht

for any S € P; . O

Remark 1.6. As is implicit in the proof of [36], Prop051t10n 8,if S = (9;);>1
and T = (T )]>1 are two distinct elements of U Ue>0 5.0, then the two

monomials HJ LU %) and Hj:1 uj 975 are distinct. Indeed, if szl ug(s ) =

H? 1 ](T) then ¢(S;) = ¢(Tj) for all 1 < j < h — 1. Fix an index j with
1 <j < h—-1 We will show that S; = T; and may assume that both S;
and T} are non-empty. Let z; := min(S;) and y; = min(7}). Denoting by v,
the p-adic valuation on Z, the equation ¢(S;) = ¢(T;) implies that z;v,(q) =
vp(q(S;)) = vp(¢(T})) = yjvp(q), whence z; = y; and ¢(S; ~ {z;}) = ¢(Tj ~
{y;}). Inductively, we obtain S; = Tj, as desired. Now set zg := max(U?zl S;)

and yr = max(U?:1 T;). Since S € Py and T € Py y for certain indices
1,1, £,¢', we have zg € S, and yr € Ty,. By what we proved above, we obtain
rg = x7, so that S and T are ordered partitions of the same integer xg + jo + 1
(where jo is chosen so that g = yr € S;, = T},). But then the fact that
S; =1} for all j # h also implies S), = T}, and we are done. As a consequence,
the formulae in Proposition 1.5 give the power series expansions of the functions
; in the variables uy, ..., up_1.

Lemma 1.7. Let F' be any of the functions p; with 0 < i < h —1. Writing
F(u) =3, cnn1 bpu™ with b, € K, we have

(6) In| > —q-v(bn)
for any n € N'=1 unless F = g and n = 0, where equality holds.
4

Proof. First assume i # 0 and note that the required inequality is trivial if
b, = 0. If £ > 0, and if S € P, is an ordered partition as in Proposition
1.5, then [Sy| < £. If 0 € S; then ¢(S;) > ¢|S;| — g + 1 because x > 1 for all



x € S;~{0}. If 0 ¢ S, then ¢(S5;) > ¢|S;| by the same argument. Hence,

h—1

h—1 h—1
9(S;) = 1—q+q) IS;1>—q+q) ISl
j=1 j=1

h h

1

.
Il

I
2
&

|
@
Rl

|
=
vV
=
&

|
~

|
=

j=1 j=1

By Proposition 1.5 and Remark 1.6 this proves the claim for F' = ¢; with i # 0.

If F = ¢( then by = 1 by Remark 1.6 and because the unique element of F g is
the ordered partition S for which §; = Qforallj >1. If¢>1,and if S € Py,
then the condition h(£—1) & S}, ensures that |S,| < £—1. As above, one obtains

h

1 h
() > a((3_ 15,0 - ).

<
Il

proving the claim by Proposition 1.5. O

Corollary 1.8. Let 1 <i<h—1, lety €, and let F' be any of the functions
w;, gi or y(w;) in O(Do). Writing F(u) = Y, cyn—1 bpu™ with b, € K, the
inequality (6) holds for any n € Nh—1,

Proof. 1t is clear that if F} and F5 are two power series satisfying the required
condition, then so are F| + Fy, I - F5 and « - F for any « € 6. Therefore, the
claim for .
F=w = &:‘Pi‘FZ(Pi(l_S@O)Z
wo >1

follows from Lemma 1.7. Writing C(v) = (¢ij)o<ij<h—1 € GLn(04) as in Re-
mark 1.4, Proposition 1.3 implies

Since cg; € 7o, any of the summands in the numerator satisfies (6) (cf. Lemma
1.7). Hence, so does the numerator itself. Writing

h—1

h—1
Z cjop; = coo + (coopo — coo) + Z Cj0¥;
=0 j=1

with ¢go € 0f, C 6%, we can argue as above and obtain the required property for
F = ~(w;).

As for the power series g;, we need to recall the recursive construction of the
coefficients of g; (cf. the formal inverse function theorem in [14], A.4.6). Let
(u) be the ideal of O(Dy) (as well as that of K[[u]]) generated by the ele-
ments w1, ...,u,_1. Since w;(u) = u; mod (u)? (cf. Proposition 1.5 or Propo-
sition 1.13 below), we have g;(u) = u; mod (u)?, as well. Put gfl)(u) =

(m)

u;. Suppose m > 1 and that we have found a power series g, satisfying

10



gi(m) (w1 (), ..., wp—1(u)) —u; € (w)™*. There is then a homogeneous polyno-
mial h( ™ iny of degree m+1 such that g( )(wl(u), e ,wh,l(u))—ui—hv(;m) (u) €
(u)™*+2. Setting g(mH) (m) hz(» ), the sequence (gi(m))mzl converges to g;
both (u)-adically and in the topology of O(Dg). By induction on m we claim

that gl(m) satisfies the required property on the valuation of its coefficients.
This will prove the claim for g; and follows by applying the subsequent lemma

to g( Ywi(w),..., wh1(w)). 0

Lemma 1.9. If the power series F(u), Fi(u),..., Fho_1(u) € (u) € O(Dy) sat-
isfy (6), then so does F(Fy(u),...,Fh_1(u)).

Proof. Write F'(u) =, byu™ and Fj(u) =5, eum, so that

F(Fi(u), ..., Fr( Zb Fy(w)™ - Fjy_q (u)™ =1 —Zcmu

where ¢,,, € K is a finite sum of terms of the form ¢ = b, H H] 1 1(:()1 ;) with

n,n(i,j) € Nv=1 {0} and Z Z 1 In(4,7)| = |m|. By assumption,

1
v(em) > Hlll’l{’U +Z n(” +Z z]|+

o
ol bl bl __
q q q

as required. O

)

Let'yzl—l—l_[jaéf‘withaeohandlﬁjgh—l,sothat

w; + e wy_ g, 1<i<j—1
(1) (A +oawp—j) v(w) = § wj+7a”, ifi=j
w; +a% w_j, ifj+1<i<h-—1,

by Proposition 1.3 and since v = 1 + o II4.

Lemma 1.10. Leta €0y, 1 <j< h—1, and set y:=1+Ia €T. Fiz an
index i with 1 <4 < h —1 and write g;(u) = Y, cyn—1 bpu™ with b, € K. If
n,m € N*=1 and if ¢,,, € K denotes the coefficient of u™ in the power series
expansion of byy(wy)™ - ... - y(wp_1)"—1, then

v(em) > (v(e) +1— é)ln\ — (v(@) +1)[ml.

Proof. Writing ~(ws) = >, c(s)u’", 1 < s < h —1, the coefficient ¢, is a
sum of terms of the form ¢ = b, [['Z} [T}2, ci‘a_’s) with n,r(f,s) € N*~1 and
>selr(€,8)| = |m|. Note that for s # h — j, y(ws) satisfies (6) (cf. Lemma
1.7) and has trivial constant coefficient. Further, y(wj,—;) = 7a” 4 g where
g satisfies (6) and g(0) = 0, as well. By omitting all factors Ca("s&,s) from ¢ for
which s = h — j and (¢, h — j) = 0, we obtain

]+ {17tk —j) =0}

v(e) = (v(@) + YL | r(l,h —j) = 0} > — .

11



as in the proof of Lemma 1.9. Since

h—1 ng

ml =" > r(t.s)] = n| = [{€ | r(£,h — j) = 0},

s=1/¢=1

this yields

m|

. 1
v(em) 2 min{u(e)} > ===+ (v(e) + 1= 2)(In] = m])

(v(a) +1— énn\ — ((a) + 1)|ml.

O

Theorem 1.11. Let o € oy, fiz an integer j with 1 < j < h — 1, and set
v =1+ 1IVa € I. For any integer { with 1 < £ < h — 1 and any fized
integer @ with 1 < i < h —1, let y(we)(u) = >, Pun and gi(u) =3, bpu™
be the power series expansions of the functions v(wg) and g; in the variables
u=(ui,...,un_1). Fir a multi-index m € N"~1 and set

gi(u) = > b and y(we)(w) = Y Dum,
Inl< s Fi o7 Iml

[n|<|m|

If m' € N'=1 with |m/| < |m| then the coefficient of u™ in the power series
expansion of gi(y(w1),...,v(wn_1)") € K|[[u]] is contained in & and has the
same reduction modulo w6 as the corresponding coefficient of vy(u;). Equiva-
lently, g;(v(w)’) is congruent to vy(u;) in O(Dy) modulo the additive subgroup
TR+ (u17 . ,uh,1>m+1.

Proof. Obviously, the m’-th coefficient of g.(y(w1)’, ..., y(wp—1)") coincides with

that of g (y(w1), ..., y(wp—1)). Therefore, the claim follows directly from Lemma

1.10 and the fact that by (5) we have g;(y(w1),...,v(wr-1)) = y(u;) € R =
O

0[[u]]-

In other words, if ¥ = 1 + Ve € T' with a € op and 1 < j < h — 1, then
in order to compute the image 7(u;) of v(u;) in R up to degree d, it suffices
to compute y(wy), ...,y (wr—1) up to degree d and to compute g; up to degree

strictly smaller than d - %.

Example 1.12. Let 1 < j < h—1,let £ € pgn_q C 0}, and let v := 14+II¢ € T

In order to compute y(u;) up to degree ¢ + 1, we need to compute the power
series wy, ..., wp—1 up to degree ¢+ 1, use (7), and compute the power series g;

up to degree strictly smaller than _45(¢+1) = ¢+ 2+ qf—l <qg+4.

Proposition 1.13. Let (u) denote the ideal of O(Dy) generated by uy, ..., up—1,
and set ug := 0. We have

q
usu
wy(u) = 1 (u) =y — 11 +ugul |, mod (u)?™* and
po(u)
; uqud ugu;ul U2u‘-12
’LU,L(’U/) _ (pl(u) = 1% _1 _ 1ty _q + i—2 mod (u)q+4’
o (u) T T

12



for all2 <i < h—1. Further,

2,.q
Uy q

g1(u) uy + — uzu?il mod (u)?™ and

2
q q q
Ui, 1 n UL U Uy, 4 U2U; o

mod (u)?",

gi (U) Uj

™ m

for all2 < i < h—1. Unless ¢ = 2, all monomials of degree ¢> + 1 wvanish
modulo (u)4T2.

Proof. We first use Proposition 1.5 and Remark 1.6 to compute the first terms
of the power series expansions of the functions ;, starting with ¢ = 0. For
later applications we will give better approximations as would be necessary for
Example 1.12. We may of course assume h > 2.

We have Py = {{0};>1}, giving the term 1.

Because of the condition 0 ¢ S, any ordered partition S = {S;};>1 € Py
satisfies |S| := Z?:l |S;| > 2. The partitions S € Py 1 with |S| = 2 give rise to

the terms W_luiu'{_i, 1<i< h—1. If h > 3 then there is a unique element

S € Py with |S| = 3 and ¢(9) := Z?;ll q(S;) = 1+ g+ q¢> Tt is given by
S1={0,1}, Sp—2 = {2} (resp. the union of these if h = 3) and S; = 0, else. It
gives rise to the term 7r_2u1+qu%272. All other elements T' € Py 1 with |T'| > 3
satisfy ¢(T) > 1+ q+ ¢>.

There is a unique element S € | J,~, Po¢ which minimizes ¢(S5). It is given by
S1 = {0}, Sh—1 = {h + 1} (resp. the union of these if h = 2), S, = {1} and
S; = 0, else. In particular, S € Pyo. The partition S gives rise to the term

h+1

7 ugul | . All other partitions T € Uesg Poe satisfy ¢(T) > 1+ g + gttt >
14 g+ ¢3. Altogether, we obtain

q 'S q°
Uiy UUp_o  UU, g
(8) polu) = 1+ = 4+ +
s T T
1+q, ¢° gt
uy ULu
1 _ 1 _ 3
h—2 + h—1 mod (u)1+q+q ,
2 T

with the convention that u; = 0 for ¢ > h or 7 < 1.

Next assume ¢ = 1. The unique element of P;( gives rise to the term wu;.

The elements S of Py with [S| = 2 and ¢(S) < 1+ ¢q + ¢3 give rise to the
2 3

terms wou} | and uguf ,. The unique element S € P;; with |S| > 3 and

q(S) < 14+q+¢3 is given by S; = {0,1}, S,_1 = {2} (resp. the union of these if

h =2)and S; = 0, else. It gives rise to the term w’luﬁquf_l. IfSeUpyPry

then (£ —1)h + 1 ¢ S, implies q(S) > gl=Vh+2 > ght2 > q'T9+7’ | 5o that

1+q,q°

q
u 3
9)  er(w) = ur+usul |+ uzul_y + ———"1 mod (u)' et
™

13



Assuming h > 2, a similar reasoning for i > 2 yields

wul ) usuly, ugul
(10) pi(u) = uit +
1+q, q
u u; i
2 ] mod ()
T
As a consequence,
q
uiu
w (u) = 1 (u) = yy — 1=l +ugul | mod (u)?™* and
po(u)
; uyul uLuug upul
w;(u) = %((u)) = bt TRl P22 (u)1T4,
Polu ™ s

if 2 <i < h—1. We note that the monomials of degree q2 + 1 vanish modulo
(u)?** if ¢ # 2. Even for ¢ = 2 they vanish modulo (u)?"3. We thus obtain the
uniform approximation

uyuf U UL
w;i(u) = u; + ot 2Rl mod (u)?t3
™ T

foralll1<i<h-—1.

If the polynomials ¢}(u) € K[u] are defined by

2,4
UyUy 4 > d
— U2Uy_, an

g1(u) = uy+
2

q q q

Uu,; _q U UiUp, _q UsU; _o X

— Ut ST — =2 for 2<i<h-—1,
™

gi(u) = w - -
then a direct calculation using the above approximations of w; and w; shows
that g/(wi,...,wp—1) = u; mod (u)9™ for all 1 < i < h — 1. This proves
g, =g; mod (u)r™. O

We will now approximate the action of I'; on R in the m-adic topology, restrict-
ing ourselves to representatives of 'y /T'y,. If v € T, and if 1 <4 < h — 1, then
we denote by v(u;) the image of v(u;) in R. For simplicity, we will also assume
q # 2, allowing p = 2, however.

Theorem 1.14. Assume q # 2. Let £ € pgn_y C 0y, fiv an integer j with
1<j<h-—1,andlety;:=1+1P¢eT. If j =1 we have

yi(ut) - (1 +E&up_1) = wug+ §1+qu1u,ql_2 + 2% uf_;  mod mit?  gnd
(4 ) =
wi + € wim — Eud_y + €Tl y) + 0w + T wi) (uf_y + Eud )

g—1 1
q _ i1 -
—E =7 )ugud=let ™ ut , mod mIT2,
— 14

14



for2<i<h-1. Ifl<j<i<h-—1 we have

() - (L4 Euny) = i+ E uimy — Eupjr (ul_ + 0wl ;)
q—1 1 )
— Z = <q> wulT{€ uf__; mod m7t2.
= 12

Ifl1<i<j<h—-1lorl<i=j<h-—1 wehave

i (i) - (L4 €un—j) = w; — Eupjpaud o + € wyuf ., mod W2,
Proof. According to Theorem 1.11 and Example 1.12, the assertions follow from
the following computations. As before, we denote by (u) the ideal of O(Dy)
generated by uq,...,up—1. If 1 < 4,7 < h —1 then

q ; q
uiul_ g i wiud oy . .
ui + ——= g (un—jpi + —), 0 <,

™

uluz_j_1 4 uiud
(I+€up—j+——)7j(wi) = ¢ 7?4+ y; + 252 Ji=7,
7'[' s
Ui +

uiud

] q
I i urug_ . .
— T (umy + —) 7 <4,

modulo (u)972 by (7) and Proposition 1.13. Further,

2,9
Uy, 4

g1(u) =ug + mod (u)?™*

by Proposition 1.13 and since g # 2. Let us first assume h > 2. Then

_ urug o .
y(w1)) = (1+8up—1+¢ - ) (m€%+uq) and
nwp—1) =
utuf_o g WUy e ULU g
(14 &up—1+¢& )T (uh—1 + &Y up—2 + +&7 —2=2)

s s s

modulo (u)?72. We plug these approximations into the above approximation of
g1(u). Modulo the additive subgroup R+ (u)4%2 of O(Dy), the resulting power
series then coincides with 7 (u1) (cf. Theorem 1.11). Write vy (u1) = >, <o ¢n
where ¢, € k*P[[u]] is homogeneous of degree n. -

Note that 71 (wp—1) € (u), so that 1 (u1) = 71(w1) mod 7R + (u)?. Using the
above approximation of v, (wj ), one computes

() =Y (=€) tugust mod m.

The g-th homogeneous component of vy (wy) is 7E(—Eup_1)9 +uy (—Eup_1)77L,
whereas that of 7=y (wy)2y1 (wp_1)? is 7= 1(7€N) 2 (up_1 + €7 up_s)e. Tt fol-
lows that ¢ = uy (—&up—1)97 "

The (g 4 1)-th homogeneous component of v; (wy) is

q
U11Lh_2

m&(—¢ + (=&up—1)T) + uy (—€up_1)7,
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whereas that of 71y (wy)?y; (wp,_1)? is

1 h—1
—(up-1 +¢° up—2)?((m€%)%(—q — 2)Eun_1 + 2mE%uy).
Thus,
Corr = =€y — Sy + 287 (uf_y + 8uj_y)

§q+1u1u2_2 + fquluZ_l.

This proves the theorem for j = ¢ = 1 in the case h > 2. The case h = 2 is
similar and will be treated more generally below (cf. Theorem 1.16).

For the rest of the proof assume h > 2. If i = 2 then

1+q q
U UrU2Up,
L4 "=l mod (u)it.

() = ga() = u; - 4

Using the above approximations for v (w1) and 1 (wp—1), as well as

1+q

q
Uyq Uity _o

v1(we) = (uz + fqzul + Y1+ Eup—1 +¢ )™t mod (u)q+2,

T ™
we proceed as before. The first ¢ — 1 homogeneous components of 7~ 17y (wy )9+
are contained in mR. Further, v (w2) and 1 (wp—1) are contained in (u). There-
fore, the first ¢ — 1 homogeneous components of 71 (us) are the reductions of
those of v (ws), i.e.

=0 and en = (ug + §q2u1)(f§uh_1)"*1 for 1<n<gqg-1.

The homogeneous component of degree ¢ of v (ws) is (usg +§q2u1)(—§uh,1)q_1.
The g-th homogeneous component of 7~ 17 (w; )™ is contained in R, as well,
and is congruent to (g + 1)7¢%uf modulo 7R. Hence,

2
Cq = (ug + &7 ur)(—€up—1)? " — E%uf.
The homogeneous component of degree ¢ + 1 of v1(w2) is given by
(uz + €7 un) (~Eup—1)? + 7 uy

Up to additive terms in 7R, that of 7= 1y (wy) 79 is 7 uy 70— (g+1)€9 0wl _y,

whereas that of 7= 1 (w1 )y1 (w2 )y1 (wp—1)? is fq(ug—l—fqz up)(up—1 +§‘1h71uh_2)q.
Thus,

2 2
a1 = (ug + €7 up) (—up—1)? + €9 (uz + €7 up) (uf _; + &ufl_y) + €7 udup .

This proves the claim for j =1 and i = 2.

If finally j =1 and 2 <i < h—1 then

uyu? uruud
gi(u) = u; — ol el ed (u)?™* and
™ ™

q
UL, _o

i—1
yi(wic1) = (w1 + €% ui—o + — + ¢

. q q
i—1ULU; _3 UrUy o 1

YA+ Eup—1 +¢ )

s

)717

q
ud wiug

1 s utul
gt 2)(1+ Eun1 +¢
™ ™

i u
y1(wi) = (us + &% uimr + -
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modulo (u)?*2 because 1 < i — 1. Together with the above approximations
of v1(w1) and 1 (wp—1), we plug these approximations of v1 (w;—1) and 1 (w;)
into the given approximation of g;(u). Computing modulo the additive sub-
group mR + (u)972 and referring to Theorem 1.11, we find ¢ = 0, ¢, =
(ui + €7 ui—1)(—Eup—1)" L for 1 <n<qg—1,
i _ 1 i—1
¢g = (uit+ & ui)(=Eup1)? - —mE(ui + &7 i)

= (i + € w1 (—€un—1)T — E(ul_y + €7 ul_y),

and

iulug_Q

i uru_y
Corr = (i + &0 uima)(=Cup) + —— + &1 —

7%(%’—1 64 ) (€ (g 4 1) (—Eup1) + ua)
+%W§q(ui + gqiui—l)(uh—l + fqh_luh—Q)q

(i + €7 wi 1) (—Eun_1)? + €7 g (ul_| + €7 ul,)
1

+£q(u +€ u7, 1)(uh 1+§Uh 2 Zi( >’U,1’LLZ 15&11 ! f -

(=1

This proves the claim for j=1and 2 <i<h —1.

For j > 1, the proof proceeds by distinguishing a long list of cases. First, one
treats the case h = 3 and then assumes h > 3. If ¢ = 1, one has to distinguish
the two cases j =h—1and 1 < j < h—1. If i = 2 one has to distinguish the
three cases j € {2,h— 1} and 2 < j < h—1. If i = h — 1 one has to distinguish
the three cases j € {h—2,h—1}and 1 < j < h—2. If 2 <4 < h—1 one has to
distinguish the five cases j € {i—1,i,h—1}, 1 <j<i—landi<j<h—1. We
will only present the last two cases. The formulae that we obtain specialize to
the correct formulae in all other cases. We leave the verification of this assertion
to the reader.

Assume h > 3,2 <i < h—1landi < j < h—1. We have the same approximation
of g;(u) as before. Further,

vi(w1) = wp +7E%p—jr1 mod (u)?,
vi(wiz1) = -1+ Wfqiiluh—j-&-i—l mod (u)?,
Yj(wh-1) = up—1+ §qh_1uh71,j mod (u)?,
as well as
by %)—1

i (wi) = (ui + 7€ un—j i + e w1+ Guny +€
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modulo (u)?"2. Thus, v;(w1)v;(wi—1)? € (u)4T and v, (w1)v; (w;)v;(wp—1)? €
(u)?*2. As above, we obtain ¢y = 0, ¢, = ui(—fuh,j)"_l, for 1 <n <gq, and

q
Uity

cor1 = ui(=Eup—j)7 + + & urug

(u + mE%up— i) (uim1 + Wfqiiluh—jﬂq)q
™

i
= ui(—ﬁuh_j)q + fq U1'Uaz,j+i,1 - gquh—j-i-lu;tl'

If2<i<h—1and 1< j<i—1,the approximations for v;(w;—1) and 7, (w;)
i—1

have to be replaced by v;(wi—1) = ui—1 +§?¢ u;—1—; mod (u)? and

q q
UL, _ Lulu ULUp i1 _
P ) (1 Gy H )

vi(wi) = (ui + & uiej +

modulo (u)‘”?. Following the same procedure as above, we obtain ¢y = 0,
cn = (u4 +§qlui_j)(f§uh_j)"*1, for 1 <n < q, and

q q
i UL, _ 1U1u i
Cor1 = (i & ui ) (—€up_j)? + —L 7 —
(€T ) (i1 €7 Ui y)
™

(i + € wi— ) (—Eun—;i)* — Eup_ja (ul_y + &l )
q—1 1/q
—Llelq't 4

This completes the proof. O

Example 1.15. Let § € pgn_y C oy, and let v:=1+ nh=1¢ eI, If h =2, we
will improve the approximations of Theorem 1.14 by computing the action of
v on R modulo @272, By Theorem 1.11, this requires to compute the power
series wy (u;) modulo w272 O(Dy). Further the power series g;(u1) has to be
computed modulo (u;)4t! with d < H@2¢+1)=2¢+3+ %
Theorem 1.16. Assume h = 2. Let §E pgn_y Cop, and let y:=1+1IE €T
For —1 < n < q let a, := Z?Zlg(n—i—l—l) € 06, so that a_1 = ag = 0 and
a, € po C w0, if n < q. Writing the image of y(u1) in R ~ k*P[[u1]] as
n
1

ZZO:O cput with ¢, € k*°P for all n > 0, we have
Ch = 07
cn = (= f)n1f0r1<n<q,
e = —n(—&)" 4 P2 ("2 for g 41 < < 2 and
T
_ . Gg—1 _
g1 = ——(=)"

Proof. Set u :=uj, w:=wy and g := g;. According to (8) and (9) we have

plta g l+d®

+
™ 77

. yltatd ) 5

o1(u) = utu? + ——— mod (u)' T,
™

1+ mod (u)1+q+q3 and

wo(u)
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Let us first assume that ¢ > 3, so that we need to compute g(u) up to degree
2q + 3 (cf. Example 1.15). If ¢ > 3 we have ¢®> > 2¢ + 3 and obtain

ax u2at3

wlu) = u-— p- — mod (u)***  and
2+q u20+3
g(u) = u-+ + (q + 1)7 1'I10d (U)ZQ+4.

We need to compute (w(u)) modulo (u)29+2, plug the corresponding truncation
into the above approximation of g(u) and compute the image of the resulting
power series modulo the additive subgroup 7R + (u)29*2 of O(Dy). According
to Theorem 1.11 this image coincides with that of v(u).

By (7) we have y(w) = (€9 4+ w)(1 + &w) ™!, where

u?ta
ml+w = wi+u-— mod (u)??*? and
-1 o u2+q 1
(I+&w)™ = (Q+&u—-§—)
AR I ultnta 2¢+2
= > (=w)" = n(=9" mod (u)2+2.
n=0 n=0 i

Therefore, modulo 7R, the first 2¢+ 1 homogeneous components of y(w(u)) are
given by &0, (r€9(=&)" + (=€)" " Hu" for 1 <n < g+ 1, and

w - mg(= = (n—q - 1)
sl = (n—g -2 EL T gt L Cgmamay
= (- g )T

forg+2<n<2¢+1.

Next, we will compute 2+(w)?"? in O(Dy) modulo the additive subgroup R+
(u)?*2. Note first that

£u2+q 2+q

(L gu—>") "4 = (Lgu)” 9 (14 (24g)E -

— (L)) mod (u)*?

with (14 &u)~?+9 ¢ R, and that

. u2ta 21q ulta
(mE" +u— )1+ (24 g)¢

(1+&u)™)

(T +u)* "1 — (2 + q)(mE" + u)”q%

N

u?ta
g+ 26— (1+&u) 7 (7" +u)* mod 7R + (u)*""

2+q
—— + (24 @)% mod 7R + (u)?972,
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Since this power series has u-order g+1 and since the valuations of its coefficients
are all at least —1, it now suffices to compute (1+&u)~?+9 modulo 72 R+ (u)' 9.
Note that (14 &u)™? = >7 (n+ 1)(—&u)", so that we obtain

(L4Eu) =13 (q) giul) -3 (n+ 1)(—=gw)”  mod 7R + (u)' .

i=1 n=0

If 0 < n < ¢ then the n-th coefficient of this power series is

n - q i - n—i
g =Y (1)t -i+ 1(-9)
i=1
= (n+1+a,)(—=¢" mod 720,
because (‘71) = %(fl)i’1 mod 728 if 1 < i < ¢q. As a consequence, modulo 7R,
the first 2¢ + 1 homogeneous components of 7~y (w)?*4 are given by 0 - u" for
0<n<gq, 28" forn=1+4gq, and

(g

. —2(n—q+ anqul>(_§)n_1]un

[(n—q¢—1+an_g-2)
for24+q¢g<n<2¢+1.

As for the term (g + 1)7 2y (w)??*3, note that

2+q
e
s

uta

(1+ §u)_(2q+3)(1 +(2¢+3) (1+&u)™) mod (u)??+?

1—(2¢+3)¢u mod (u)?.

The first congruence shows that in order to determine (gq + 1)m 2y(w)29+3
mod 7R+ (u)?7*2, it suffices to determine L5 (7€ +u — @)2“3 mod 72 R+
(u)?9+2. We have
q+1
2

1+gq
2

24q
u
(et 4u— " e

(¢+1)(2¢+3)
3

= (¢+1) <2q; 3> g2aq 20t 4 7r§3q(q +1) <2q;- 3) u?? mod R + (u)zq“.

As a consequence,

a3 2¢+3
(q+ 1)77(1”)2 (q+ 1)€2q( “ >u2q+1
s 2
= 3¢%y* mod 7R + (u)?1t2.
Combining our results, we obtain ¢g = 0, ¢, = (—§)" ! for 1 < n < q, ¢g41 =
(—€)7 +2€7 = €1, and
= (n=g)(=O" "~ (n—q—1)

_¢&\n—q—2
E -+ o))"

An—q— e
7”(75)’”71 + Tq2(7£) 1 27 for q + 2 S n § QQ7

(me? + u)2q+3 — (& + u)2q+2§u2+q mod (u)2q+2

(=2

+n—g—1+a,_gq-2)
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because a,, € 7o for n < ¢. Finally,

\g—1
cagr1 = (g+1)(=)%* - q%
-1
+(q+ aq—l)gT)q —2(q+ 1+ ag)(—£)* + 3™
_ Qg1 _
= q?(ig)q 17

because a; =1 mod mo6. Note that the above formula for ¢,, ¢ +2 < n < 2g,
specializes to £7 if n is formally put equal to g+1. This finishes the proof if ¢ > 3.

For ¢ = 3 we need to approximate g(u) up to degree 10 (cf. Example 1.15).
Using the approximation of w given at the beginning of the proof, we find

u’ Lo 13
w(u) = u-— - +(1+ ;)u mod (u)™” and

u’ 4. 9 11
glu) = u+ P (1- ;)u mod (u)"",

if ¢ = 3. If ¢ = 2 we need to approximate g(u) up to degree 9 and find

1 1 1

wlu) = u+(1—=)u* + (= + —)u” mod (u)'® and
™ ™ T

! T 3.7 10

gu) = u—-(_1 7T)u + (4 - + = Ju’ mod (u)™".

A straightforward computation shows that the asserted formulae for the first

2q + 1 coefficients of v(u) are also valid in these exceptional cases. O

Remark 1.17. If char(K) = p > 0 then ¢ =0 in 6 and a,, = 0 for all n < ¢. If
char(K) = 0, and if K|Q, is ramified, then p € 726 and we have @ ¢ 76 for all
n < q. For K = Q, and m = p we have ¢ = p and hence a; = p. Further, the
coefficient a,_; can be computed to

p—1

p . o
apr = S(p—i)=—plp—1)=p modp’.
=1

This implies cog41 =1 if K = Q.
Remark 1.18. If h = 2 and K = Q5 then the computations leading to the result
in Theorem 1.16 are simple enough to be carried even further. If v =1+ II¢ is
as before and v := uy, we find

y(u) = u+ Eu® + 23 + v’ +u” + 2u°  mod m'Y.

To give another concrete example, if K = Q5 then the approximation of ~(u)
in Theorem 1.16 reads

'Y('Uz) = u-— £u2 4 £2U3 o £3u4 + £4U5 4 55,&6
7256,“7 4 (367 _ £)u8 o 4£8U9 o 53,“10 + §4U11 mod ﬁ12.

We end this section by considering the action of the subgroup o; C I' on R,
which can be approximated in the (u)-adic topology. Here (u) denotes the ideal
of R generated by uy,...,up_1.
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Theorem 1.19. Assume q¢ # 2, let o € 0; C I', and consider o also as an
element off(. For0<j<h-—1seta;:= %’ 1, If1<i<h-—1 we have

a’ a;i(anal -1
alu;) = qu; + ————wul 4 + Muluiuz_l mod (u)?3.
T

In particular, if « =1+ & for some element § € pgn_y C 0}, then

alu) = u; + (£qi —&Nuwul_ | + (€7 — urwuy | mod mat3,

If h =2 and q > 3 we have

2
— O/lﬁ_ A1 g+2
aluy) = oqgug + ——uf

Lo (gt 2)af*? + (g + 1)ai™?

5 u§q+3 mod (u)%4+4,

™

In particular, if o = 1+ £m for some element § € pg2_1 C 05, then

afu) = ur + (€7 - uf*? + (L€~ ) + (€7~ 9*)ul™ mod .

Proof. The reason that the action is so much simpler to compute in this situation
is that o(w;) = ajw; has trivial constant coefficient for all j (cf. Proposition
1.3 and Proposition 1.13). By (5) and Proposition 1.13 this implies

a(u;)) = gila(wr),...,alwp-1))

q q
a1 alaiah_l
—ww)_, + ———wjw;wi_; mod (u)?t3
T

;W —

q
a1 g q
) — UL
s s

q q
UrU; _q UU;Up, 4

ai(ui +
a

a0y, 4

———uguud_, mod (u)??,

proving the first claim.

If h = 2 then we use the better approximation of g(u) appearing in the proof of
Theorem 1.16 and proceed as above.

If h is arbitrary, and if @« = 1 + &mr, then

1+¢7 j i g
a; = %&f =14 (67 - O+ (2 -7 ™72 mod 776,
This leads to the required formulae for a(u). O

2 The action of the spherical Hecke algebra

Recall that we fixed a one dimensional formal o-module H over k%P which is de-
fined over k. The deformation problem of section 1 can be generalized as follows
(cf. [9], §4, and [31]). If (S, mg) is a complete noetherian commutative unital o-
algebra with residue class field S/mg ~ k*P, and if m is a non-negative integer,
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then one considers isomorphism classes [(H, ¢, )] of triples (H, ¢, ) where H is
a one dimensional formal o-module of height h over S, ¢ : H mod mg — H is
a quasi-isogeny of arbitrary height and ¢ is a so-called level-m structure. The
latter means that ¢ : 77™0" /0" — (mg,+p) is a homomorphism of abstract
o-modules such that the power series [, ¢ —mqn jon (X —¢(a)) divides the power
series [7™] g in S[[X]]. Here (a — [&]m) denotes the map 0 — End(H) defining
the o-linear structure of H.

The generalized deformation problem just described is represented by a formal
scheme X, which decomposes as a disjoint union

=] %mn

ne”Z

of open affine formal subschemes X,,, ,, = Spf(Ry,,n) (cf. [9], Proposition 4.3 and
[26], Proposition 3.79). There are non-canonical isomorphisms R, ,, ~ Ry, p
for any two integers n,n’, and X0 ~ Spf(R) with R as in section 1. If m and m’
are two non-negative integers with m’ > m then there is a finite flat morphism
X — X, which is compatible with the above decompositions. The collection
of these morphisms gives the family (X,,).,>0 the structure of a projective sys-
tem of formal o-schemes.

The local ring Ry, := R, is regular, and if (eq,...,ep) is an o/7™o-basis of
7~ ™o" /0" then its image (¢m(e1),...,em(en)) under the universal level-m-
structure ¢, : 7~™0" /0" — (mg, ,+n) is a system of regular coordinates of
R, (cf. [9], Proposition 4.3).

The group of quasi-isogenies of H is isomorphic to D* and functorially acts
on each of the spaces X, over Spf(0). In fact, if 6 € D*, then the morphism
0 : Xy — Xy restricts to an isomorphism X, — Xy, n—pop(s) for any n € Z.
Note that we assume vp to extend v so that vp(II) = 1/h. The induced action
of 0, on R~ O(Xy,) coincides with the one considered in section 1. The mor-
phisms X, — X,,, are D*-equivariant. Further, there is a functorial action of
G := GLy(K) on the projective system (X,,)m>0 which induces an o-linear ac-
tion on lim O(X%,,) (cf. [31], section 2.2.2). For any integer n, the ring Ro p, 1=
lim Ry n is stable under the subgroup GY == {g € GL,(K) | det(g) € 0*}, and
if G := ker(GLx(0) — GLp(0/7™0)) then RS, = Ry, for any m > 0. In
fact, the ring extension Rug ,[1]|Ro,[1] is étale and Galois with Galois group
Go = GLp(0) (cf. [31], Theorem 2.1.2). The actions of G and D* on lim O(Xn)
commute with each other.

We let c—Indgo(ﬁ) be the o-module of all functions f : G — 6 with compact
support, satisfying f(ggo) = f(g) for all ¢ € G and go € Gp. It is an o-
linear representation of G' via g(f)(¢') = f(g7'g’) for f € C-Indgo(ﬁ) and
9,9 € G. We let H := Endg(c-Indgo(ﬁ)) be the ring of G-equivariant and
o-linear endomorphisms of c—Inng(E). The 6-algebra # is called the spherical
Hecke algebra of G over 6 and is 6-linearly isomorphic to the module of all
compactly supported Gp-biinvariant functions from G to a. Its structure can
be made explicit as follows. For any integer i with 0 < ¢ < h —1 let ¢; :=
diag(1,...,1,m,...,m) € G be the diagonal matrix whose first ¢ diagonal entries
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(counted from top to bottom) are equal to 1 and the remaining ones equal to
7. Because of the Cartan decomposition

G = 11 GotpotT - "' G,

no€Z, ’nl,...nh71€ZZg

H is a free 0-module, a basis of which is given by the characteristic functions of
the double cosets Goty°t7* - - ~th’11G0 with ng,...,nu,_1 as above. In fact, if T}
denotes the characteristic function of Ggt;Gg, 0 < i < h — 1, then

(1]‘) Hga[TOaTOilaTlv"'aThfl}v

i.e. H is commutative and, as an 6-algebra, is generated by Ty, T(;l7 Ty, ... Th—q
subject to the only relation TOTO_1 = 1. This is an integral version of the classical
Satake isomorphism which is due to Herzig, Henniart, Schneider, Teitelbaum
and Vignéras (cf. [12], Proposition 2.1). Note that by Frobenius reciprocity

O(%0) = (lim O(X,,))% =~ Homg(c-Indg, (8), lim O (%))

is naturally a module over H. Explicitly, if f € O(Xp) then

(12) T(f)= >, 9= > (gt:)(f).

9€GotiGo/Go gE€G/(GoNt;Got; 1)

Since the actions of H and D* on O(X;) commute with each other, we obtain
an induced structure of #-module on O(X()T ~ O(%X0,0) ~ R. We note that
this action of H on R depends on the choice of a uniformizer II of D. Therefore,
it is non-canonical and does not quite commute with that of I'. In fact, the
above isomorphisms are given by mapping f € R to the family (II"(f))nez. If
0 <4 < h—1 then the endomorphism 7; of the direct product O(X) is of degree
i — h, as follows from (12) and the definition of the GLj,(K)-action. Therefore,
the family 7;(f) has entry T;(II"~¢(f)) in degree zero. If we denote by o; the
outer automorphism of I' defined by conjugation with the element II"~¢ of D*,
then this implies

(13) T(/(f) = i ()(T(f) forall yeT, feR.

The reduction of the action of H on R modulo certain prime ideals of R can be
described as follows.

Theorem 2.1. If i is an integer with 0 < i« < h—1, and if f € R =
6““’13"'7uh—1H7 then

Ti(f)(u) = fuf,...,u}_,) mod (ug,us,...,u—1)R,
where we change our previous convention and set ug := .

In order to prove this theorem, we need some preparation. Let m; be the ideal

of R generated by wo, ..., u;—1. For any positive integer m let m; ,,, be the ideal
of R,, generated by o, (el ), ... om(el), where o, : 70" /0" — (mp_,+u)
denotes the universal level-m structure and (el ,...,e” ) denotes the standard

basis of the free (o/7™0)-module 7~™0"/o". According to [19], Proposition

24



1.2 — which builds on a result of Strauch — we have m;,,» N R,, = m;,, for
any two integers m’ > m > 0. Further, m; o, := h_rr)lm m; , is a prime ideal of
Ry = h_r)nm R, lying above m;.

Let B; :==Gpn tiGOti_l, which is the parahoric subgroup of GL(K) consisting
of all matrices g € Gy = GL,(0) of the form

- A B
9= < 7C D )
with A € GL;(0), D € GLj,_;(0), B € 0"*("=9 and C € o"=9*?, Further, let W
be the subgroup of permutation matrices in Gy, identified with the Weyl group
of GL,,(K) with respect to the diagonal torus. Let ¢ denote the length function
on W corresponding to the generating set of simple transpositions (j j + 1),

1<j<h-—1. Let W; C W be the Weyl group of the Levi subgroup of GLj,(K)
consisting of all matrices of the form

(A0
9=\ o »
with A € GL;(K), D € GL_;(K). Finally, let Ny C G be the subgroup of all
upper triangular unipotent matrices in Gy, and let B := ﬁf;llBi.

Lemma 2.2. The group Gy is the disjoint union of the double cosets BwB; with
w € W/W;. If we W/W; then BwB; = NowB; = NowDB;, where @ denotes
the unique element of minimal length in wW;. We have |BwB;/B;| = gt

Proof. The group B (resp. B;) is the inverse image under the reduction map
Go = GLp(0) — GLp(k), of the group of upper triangular matrices (resp. of
upper triangular i X (h —i)-block matrices) with coefficients in k. Therefore, the
first two assertions follow from the generalized Bruhat decomposition of GLj, (k)
(cf. [2], 21.16). The remaining assertions follow from [2], 21.21 and Proposition
21.29. O

We need to give a more precise version of the standard result in Lemma 2.2. If
1<r<s<hwelet N.;, C Ny denote the root subgroup of Gy consisting of
all unipotent matrices possessing nonzero off-diagonal entries at most in place
(r,s). The set ® := {(r,s)|1 < r,s < h,r # s} can be identified with the
root system of GL,,, and &1 := {(r,s) € ®|r < s} corresponds to the set of
positive roots for the basis determined by the Borel subgroup of upper triangular
matrices. We let ®~ := ® \ &', and note that the symmetric group W acts on
® in such a way that wN,,w™! = w(ryw(s) for all (r,s) € ® and all w € W.
Letting w € W and ¥,, := {a € &+ |w™(a) € &}, the references given
in the above proof show that the map [[,cqy. No — BwB;/B;, defined by
(na)acw,; = ([laew, 7a)wBi, is surjective for any fixed but arbitrary ordering
of the factors. It induces a bijection

(14) II Na(k) — BwB;/B;.
acV¥y

Here we abuse notation and also write N, for the group scheme over o whose
group of o-rational points is N,,.
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Lemma 2.3. Ifw € W\ W;, and if @ denotes the unique element of minimal
length in wW;, then Uy contains a root (r,s) with r <.

Proof. The assertion is trivial if 4 = 0 so that we may assume 1 <i < h — 1.

Our proof relies on the fact that the minimal coset representatives of W/W; are
explicitly known. Given integers j and ¢; with 0 < ¢; < j < h, we let w;(¢;) be
the (¢;+1)-cycle (j+1—4;,...,j+1) in W, sending j+1 to j+1—¢;. According
to [32], Theorem 2, there is a unique sequence of integers ({;,¢;11,...,n_1),
satisfying 0 < 1 < ... <¥; <4, such that @ = wp—1(lp—1) - - w;(£;).

Since w ¢ W;, we have ¢; # 0 and consider the root (1 + 1,4+ 1—¢;) € &~. If
j>ithenj+1—4; >i+1—4; >i+1—4;, so that the cycle w;(¢;) fixes
i+1—4¢;. Since w;(¢;)(i+1) =i+1—¢;, we obtain w(i+1) =i+1—¢;. Letting
ip == max{j|j > i, {; = {;}, a similar reasoning shows that w(i + 1 — ¢;) =
ig+2—4; >i+1—1¥¢;. Thus,

(i+1—£i,i0+2—€i)Zlf)(i+1,i+1—€i)E(I)Jr.

When writing (i + 1,7 + 1 — ¢;) as an integral linear combination of the basis
A= {(r,r+1)|1 < r < h} of &, it has a negative contribution from the
positive simple root (,7+ 1). In the terminology of [2], 21.23, it is contained in

U(A~{(¢,44+1)})~. Thus,
(’i +1—4l;i9+2— &) cedt™n ’IJ}(\I/(A N {(’L,Z—l— 1)})_) = Uy,
the last equality being [2], 21.23 (4), where U is denoted by ;. O

Proof of Theorem 2.1. We first recall some of the constructions which are used
in the proofs of [19], Proposition 1.2 and Theorem 1.4. Fix an element g € G
and an integer 7 > 0 such that the matrix 7"¢g~! has coefficients in o. Fixing
an integer m > 1 with 7= "go" C 7~™%1o" we may view W_Tgoh/oh as an
o-submodule of 7~™0" /o". Consider the power series

pry(X) == H H(X, o () € Rn[[X]]-

aen—"goh /ol
Letting 1 < j < h, and choosing an element 8; € 7 ™o /o whose image

in 7~™o" /77 "go" is the image of ¢ under the injection 7= "g : 7 10" /0" —
7~mo" /1" go", we have

(15) g(ere)) =prglemBi) = I Hlem(B)), om(@).

aEm—"goh /ol

If g = to then we may take r = 1, m = 2 and obtain 77"g = 1, as well as
pr;, (X) = H(X,0) = X. Since the diagram

720l Joh 225 (mg,, +m)

T

7 1ok Joh e (Mg, +u)
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is commutative, we obtain to(¢1(el)) = @1 (e]) for all j. Since (cpl(e{))lgjgh is
a family of regular parameters for Ry, this implies that t( stabilizes R; and acts
as the identity. By (12) this implies Ty(f) = to(f) = f for all f € R, proving
the theorem for ¢ = 0.

Now assume 1 < i < h — 1. For g = t; we may again take r = 1, m = 2, and
obtain ,
pr. (X) = H H(X, pa(aimed + ...+ a;med)).

Now

pa(oamey + ...+ cime) = [oa]m([rlu(p2(e2))) +u - +u [l ([m]u(w2(eh)))

is contained in m; 5, because [o;]u(X), [7|m(X) € XR[[X]] and since H(X,Y)
has trivial constant coefficient. Thus,

pr,, (X) = X4 mod m; 2 Ry[[X]],
which, as above, implies ti(wl(e{)) = gol(e{)qi mod m; 5 forall 1 <j <h.

Before we consider the action of more general elements of the form gt; with

g € Gy, let us show that &;(f)(u) = f(u?,... ,u;’:_l) mod m; for all f € R. As
in the proof of [19], Proposition 1.2, one can use the above form of pr;, to see that
t; stabilizes m; .. In particular, it defines a ring automorphism of Ry /m; .
However, R;/m; is a regular local k*P-algebra with residue class field k*°P.
Therefore, Ry /m; 1 =~ k*P[[p1(ei™), ..., p1(eM)]] (cf. [4], VIIL5.2 Corollaire 3).
It follows from the above that the subring Ry/m; 1 of Reo/m; o is stabilized by
t;, and that ¢; acts by raising the variables @1(6{) to the power of ¢*. Thus, it
suffices to see that the elements u; are contained in k[[¢1(el), ..., 1(et)]]. This
can be deduced from the explicit construction of R; from Ry, as presented in the
proof of [9], Proposition 4.3. Namely, extend the automorphism o of ¢ to a ring
automorphism of R by letting it fix the variables u. Since the logarithm f of H
has coefficients in o[[u]][1], the power series [7]g(X) = f~* (7 f(X)) has coeffi-
cients in o[[u]] = R°=!. Hence, so does fo(X) := [r]u(X)/X. As a consequence,
o can be extended to a ring automorphism of Ly := R[[X]]/(fo(X)) such that
the image Y1 of X in L, is invariant under o. Since [o]g(X) € of[u]][[X]], any
element of the form [a]g(¥1) with o € o/7o is o-invariant, as well. Considering
f1(X) = [7u(X)/ Tlaco/no (X — [e]u(91)), we see similarly that o extends to
Lo := L1[[X]]/(f1(X)) in such a way that the image ¥5 of X in Ls is o-invariant.
Proceeding inductively, o extends to a ring automorphism of Ry = L in such
a way that the zeros p1(el), ..., p1(el) of [r]m(X) are all o-invariant. Its re-
duction modulo m; ; acts as the g-power map on the coefficients of any power
series in Ry/m; 1 ~ k%P[[p1(e}™),...,p1(el)]]. Since the variables u; are all
o-invariant, the claim is proved.

As above, let B; := Gg N tiGoti_l, fix w € W~ W;, and let @ be the unique
element of minimal length in the coset wW,;. Let n € Ny and consider the
element g := nwt; € GL(K). For the computation of pr (X) we may again
take r =1 and m = 2. Let x; : 7 ™o" /0" — @?:Hl(o/wmo)eﬁn be the natural
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projection. If a € 7= 1go” /0" C m~™0" /0" then a = y;(a) + (a — x;()) with
o — xi(a) € ®:_;(o/7™0)e],. As in the computation of pr, (X) we see that
pa(a — xi(a)) € m;o and that pa(a) = p2(xi(a)) mod m;o. This in turn
implies that H(X, p2(a)) = H(X, p2(xi(®))) mod m; 2 Ro[[X]]. Thus,

pr,(X)= ] HX, a(xi(a)) mod m, Ry[[X]].

acn—lgoh /o

Now if n’ is contained in a root subgroup N, € Ny with r < 4, and if a €
7 1go" /o™, then x;(n'a) = x;(a). Therefore,

prye(X) = II H(X, po(xi(@) = [ HX p2(xi(na)))

acnm—1In/goh /ol acn—lgoh /ol

= H H(X, p2(xi(a))) = pry(X) mod m; 2 Ro[[X]].

acnr—1lgoh /ol

As a consequence of (15), glg1(e])) = (W'g)(p1(e]) mod min for all 1 <
§ < h. Since the elements @1 (e™h), ..., ¢1(e?) topologically generated R;/m;
over kP, we obtain g(f) = (n’g)(f) mod m; o for all f € Ry. If f € R then
(n'g)(f) depends only on the image of n’ in N4 (k) (cf. (14)). Since w € W~\W;,
we may choose (1, s) as in Lemma 2.3 and obtain

S o = Y mat)()

geBwB; /B; nGHae\pw Na(k)

- Y > (') (1))

n'€Nrs (k) "Enae@,&)\{(r,b‘)} Na (k)
SO () modmea
n'€Nrs(k) n€llacw < (rs)} Na(k)

= 0 mod m;,

because |N,s(k)| = ¢ and since R /m; o is of characteristic p. According to
Lemma 2.2 and (12) we obtain

Tz(f)ztz(f)zf(utll a--~7UZ_1) mod m;,
where the second congruence was proved above. O

As a direct consequence of Theorem 2.1 we obtain the following result.

Corollary 2.4. If1 <i < h then the prime ideal m; :== (7, u1,...,u;—1)R of R
is stable under the action of the 6-subalgebra of H generated by Ty, ..., T;. O

In the following, we shall always view R as a topological ring with respect to
its m-adic topology. Note that the m-adic topology gives R the structure of a
pseudo-compact 6-module in the sense that R is a complete Hausdorff topological
o-module which is the projective limit of discrete -modules of finite length.

Corollary 2.5. For any integer i with 0 < i < h—1, and for any non-negative
integer n, the 6-linear endomorphism T!" of R is continuous with closed image.
The o-linear endomorphism T7' of R is injective. If m > n then the 6-module
T(R)/T{™(R) is torsion free. It is non-zero unless h = 1.
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Proof. The ring homomorphism t; : R — RioGot <y RS0l s Tocal,

hence is continuous for the topologles defined by the maxunal ideals. Moreover,

GoNt; Gt * . . . .
0 %% R is R-linear, hence is continuous for the m—adlc

GoNt; Got

the trace map Roo

topologies. By Krull’s intersection theorem, the m-adic topology on R

coincides with the topology defined by the maximal ideal of RS>""*“** . There-

fore, it follows from (12) that 7} is continuous. It is a general fact that continuous
0-linear maps between pseudo-compact o-modules have closed image (cf. [27],
Theorem 22.3).

If T7'(f) = 0 then the injectivity of T7* modulo 7R (cf. Theorem 2.1) implies
that f € 7R, i.e. f = wf’ for some element f’ € R. Since T} is 6-linear and
since R is torsion free over o, we obtain T7'(f’) = 0, as well. Proceeding induc-
tively, we find f € Ny>on™R = {0}.

Finally, let g, f € R be such that 7T7*(g) = T7"(f). According to Theorem 2.1
we have

f(uLfm,...,uf:l) =T (f) =717 (g) =0 mod 7R.

Obviously, this implies f € 7R. Writing f = «f’ for some element [’ € R,
we obtain 717 (g9) = 717" (f’), whence T7*(g) = T7"(f’') because R is torsion
free over 0. This proves that T7*(R)/Ty"*(R) is torsion free over 8. That it is
non-zero, provided h # 1, follows from Theorem 2.1. O

Note that the image of 0 in lim O(%,,) is pointwise fixed by GLp,(K), so that
0 is naturally an H-submodule of R with T; acting by multiplication with the
index (Gg : Go N tiGotfl). In the case of height two, we can now prove the
following result.

Theorem 2.6. If h =2 then R/6 is a flat module over H/(Ty — 1)H ~ o[T1].

Proof. Tt follows from Theorem 2.1 that the action of H on R (and hence
that on R/d) factors through H/(Tp — 1)H. The identification of this quo-
tient with o[T3] follows from the integral Satake isomorphism (11). Letting
Ry == R®, K ~ R®j; K, it suffices to see that RK/K and R/k*°P are flat over
K[T1] and k5P[T}], respectively (cf. [3], 2.6 Lemma 1).

Since k5°P[T}] is a principal ideal domain, it suffices to see that R/k*°P is torsion
free over k*°P[Ty]. Note that the k*°P-subspace m of R is in fact a k*°P[T}]-
submodule which is isomorphic to R/k*°P. If F € k*°P[Ty] and f € m =
ulksep[[ul]] then

ordy, (F'(f)) = ordy, (f) - g in (),

by Theorem 2.1, whence m is torsion free over k*P[T}].

To complete the proof, we will show that Rx /IE' is torsion free over K (T1]).
Let f € Rk and F € K[T1] ~ {0} be such that F(f) € K. We need to see
that f € K. If f — f(0) # 0 choose integers r and s such that 7" F € [T}]
and *(f — f(0)) € R with non-trivial images in k*P[T}] and R, respectively.
Since " F(7%(f — f(0))) € RN K = 6, the case we treated above shows that
m(f — f(0)) € mR. This contradicts the choice of s and shows that indeed

f=f0)eK. O
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Remark 2.7. Without any restriction on h, the above proof can be adjusted
to show that R/6 is flat over the subalgebra o[T}] of H/(Ty — 1)H.

Let h be arbitrary again. The proof of Theorem 2.6 could have been slightly
simplified by referring to the following result.

Proposition 2.8. The endomorphism Ty of R/6 is topologically nilpotent in
the sense that Np>oT7 (R/6) = {0}. Equivalently, Ny,>oT7'(R) = 6. The action
of the ring 6[T1] on R/6 extends to an action of o[[T1]].

Proof. Note first that the action of 77 on ¢ is bijective after reduction modulo
7 (cf. Theorem 2.1), hence is bijective itself. This shows that o is contained in
any submodule T7(R), i.e. 6 C Ny>oTT(R).

Conversely, assume f € N,>oT7'(R). The image of f in R is contained in
Nn>oTT(R) = k5P, the last equality following from Theorem 2.1. Therefore, we
can write f = a+nf’ with o € ¢ and f' € R. By what we already know, we must
have nf' = f—a € Np>oTT(R), as well. As a consequence of Corollary 2.5, this
implies f € Nyp>0T7"(R). Inductively, this yields f € N,>0(6 + 7™ R) = 6, the
last equality coming from the fact that 6 is closed in R (cf. [27], Lemma 22.2).
This proves the first assertion of the proposition. Together with Corollary 2.5
and [27], Lemma 22.1, it implies that the natural 6[7}]-linear homomorphism of
pseudo-compact 6-modules

R/6 — Ui

n

B

(R/0)/T7'(R/0)

I(\D/T

is bijective. Obviously, the action of 6[T7] on the right hand side extends to
lm _ 8[13]/T70[T3] =~ 8[[T3]). O

3 Iwasawa theoretic structure theorems

The group I is a profinite topological group with a basis of open neighborhoods
of the identity given by the subgroups I'; = 1 + IT'op for i > 1. The following
assertion is a direct consequence of a result of Gross and Hopkins (cf. [11],
Lemma 19.3).

Proposition 3.1. Endowing the ring R with its m-adic topology and the direct
product I' X R with the product topology, the action of I' on R is continuous in
the sense that the map ((v, f) — v(f)) : I' x R — R is a continuous map of
topological spaces.

Proof. The group I' acts on R by local ring automorphisms which are contin-
uous for the m-adic topology. For the same reason we have I'(m™) = m™ for
any integer n > 0, so that the map I' x R — R is continuous at (1,0). There-
fore, it suffices to show that if f € R is an arbitrary element, then the map
(v = ~(f)): T' = R is continuous.

Fix an integer n > 1. It suffices to prove that y(f) — f € m™ for any element
v € Ih(n—1)- Since m" is an ideal of R, one can further reduce to the case
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f = u; for some index ¢ with 1 < i < h — 1. Consider the affinoid subdomain
Dy C Spf(R)™8 of section 1. The spectral norm of O(Dy) is given by

91, = sup |g(z)| = sup |dalg”,
z€Dg a€eNh—1

if g =3 enn-1dau® € O(Dy). In particular, an element g € R € O(Dy) is

contained in m” if and only if |g|p, < ¢~ ™. Applying [11], Lemma 19.3 with

e =1, we have

[v(ui) — wilpy = sup |ui(z-v) —ui(z)| <g"
x€Dg
for any v € I'y(,—1). By our previous remark this implies y(u;) —u; € m", as
required. O

For any profinite group H we define the completed group ring A(H) = o[[H]] of
H over 6 by
A(H) =o[[H]] := lim o[H/N],
N<.H

where the projective limit runs over all open normal subgroups N of H. If N
and N’ are two open normal subgroups of H with N’ C N, then the transition
map 6[H/N'] — o[H/N] of this projective limit is the natural homomorphism
of group rings induced by the surjective homomorphism H/N' — H/N. We
note that if N is an open normal subgroup of H, then the group ring 6[H/N] is
the projective limit of the Artinian rings (6/7")[H/N] with m > 0. Therefore,
A(H) is a pseudo-compact topological ring in the sense of [5], page 442.

We shall abbreviate A := A(T") and Ay := A(T';). It follows from Proposition 3.1
that if n is any positive integer then there is an open normal subgroup N of T’
such that N acts trivially on R/m™. In fact, the proof of Proposition 3.1 shows
that we may take N := I'y(,—1). This allows us to view R/m" as a module
over A via the natural ring homomorphism A — 6[I'/N]. The natural maps
R/m™*1 — R/m™ are A-equivariant and provide R ~ lim R/m™ itself with the
structure of a A-module. In fact, this construction makes R a pseudo-compact
module over A, i.e. R is a complete Hausdorff topological A-module possessing a
basis of open neighborhoods of zero (the ideals m™) consisting of A-submodules
such that the corresponding quotient modules are of finite length.

Lemma 3.2. If n is a non-negative integer and if 0 < i < h — 1 then the
o-submodule T*(R) of R is A-stable.

Proof. According to Corollary 2.5 the g-submodule T7*(R) of R is closed, hence
is complete for the induced topology. As a consequence, the natural map

T*(R) — lim T (R)/(T;"(R) N m™)
m>0

is bijective (cf. [27], Theorem 22.3 and Lemma 22.1). By the construction of
the A-module structure on R it therefore suffices to see that 77*(R) is I'-stable.
This follows from (13). O
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Following [29], section 1, we endow the K-vector space Ry := R®, K ~ R®s K
with the finest locally convex topology over K for which the inclusion R C Rg
is continuous when R is endowed with its m-adic topology. An o¢-lattice L of
Ry is open for this topology if and only if RN alL is open in R for any element
a €6~ {0}.

For any element F' € H we also denote by F its natural image in H®, K, viewed
as a K-linear endomorphism of Rx. We also set Agx .= AR, K ¥~ A®; K.

Proposition 3.3. The locally convex K -vector space Ry is Hausdorff, complete
and induces the m-adic topology on R. For any integer n > 0 the K -linear
endomorphism T1' of Rk is continuous and injective. Its image is a closed,
Ax-stable K -subspace of Ri. If h # 1 we have T'" " (Rg) S T (Rk). In this
case, the A -module Ry is not topologically of finite length.

Proof. Let (u) be the ideal of Rk generated by uq,...,up—1. For any integer
m > 0 consider the 6-lattice Ly, := 7™ R + (u)™ of Rg. If a € 6 ~ {0} then
aLp, N R D m?m+v(@) o that L,, is open in Rg. Further, Nm>0Lm = {0}, so
that Ry is Hausdorff. Since the m-adic topology of R is obviously finer than
the one induced by Rg, it suffices to see that any power m™ of the maximal
ideal m of R contains a subset of the form R N L for some open lattice L of R.
This is clear from RN L,, C m™.

Since R is complete and since multiplication with 7 is a homeomorphism from
Ry to itself, it follows that any subset of Rgx of the form 7™R, m € Z, is
complete, as well. As in the proof of [29], Lemma 1.4, one can deduce that the
locally convex K-vector space Ry is complete. In fact, any Cauchy net admits
a subnet contained in a set of the form 7~ R for some integer m.

The injectivity of 77" follows from Corollary 2.5 and the flatness of R over o.
By definition of the topology of Ry, the K-linear endomorphism T of Rk
is continuous if and only if its restriction 77" : R — Ry to R is. The latter,
however, is the composition of the maps 77" : R — R and R — R, so that the
claim follows from Corollary 2.5.

We now show that the K-subspace T7"(Rg) of Rx is closed. Denote by N the
o-submodule of R consisting of all power series f(u) = > yn-1 dou® for which
do, = 0 whenever all of aq,...,ap,—1 are divisible by ¢ in N. We claim that N
is a closed o-module complement of T7'(R) in R. It is clear that N is a closed
o-submodule of R. Both N and R/T7'(R) are m-adically separated, complete
and torsion-free 6-modules (cf. Corollary 2.5). To prove the claim, it therefore
suffices to see that the natural map N — R/T}'(R) is bijective after reduction
modulo 7o. This follows immediately from Theorem 2.1.

It follows from [27], Theorem 22.3, that the continuous bijection NOT]*(R) — R
of pseudo-compact 6-modules is a homeomorphism. In particular, the projec-
tion pry : R — R onto N is continuous. This can also be proven directly by
showing that m™ = (m™ N N) @& (m™ N T (R)) for any non-negative integer
m. Now the K-linear extension (pry)x of pry has kernel T/"(Rg). In order
to see that T7"(Rx) is closed in R it therefore suffices to see that (pry)x is a
continuous endomorphism of Rx. As above, this follows from the fact that its

32



restriction to R is the composition of the continuous maps pry : R — R and
R — Rg.

The two final assertions of the proposition follow directly from Corollary 2.5. [

Remark 3.4. One can show that the actions of I' and H on R are in fact the
o-linear extensions of op-linear actions on op[[u1,. .., ur—1]]. Our rather ad hoc
proof of parts of Proposition 3.3 can then be simplified, using the methods of
[29] for the locally compact field K. In particular, one can deduce that Rk
is the continuous K-linear dual of a continuous unitary representation of I' on
a K-Banach space V. Further, V admits an ascending sequence of closed T'-
stable K -subspaces V,,, n > 0, whose continuous K-linear duals are isomorphic
to RK/TF(RK)

Remark 3.5. Assume the characteristic of K to be zero. If §) denotes the set of
all K-rational hyperplanes in the (h—1)-dimensional projective space P}]L{l over
K, then Q% = P?{l N Upeg H is a rigid analytic K-variety known as Drin-
feld’s symmetric space of dimension h — 1 over K. Its ring of global sections
O(Q%) is a K-Fréchet space with a natural action of the group GLj,(K) which
is dual to a locally analytic representation in the sense of [28], section 3. By
work of Orlik and Strauch, the GLy (K )-representation O(Q%) is topologically
of finite length (cf. [24], Corollary 7.6). The exact analog of this representation
is the I-representation O(Spf(R)"&) which is dual to a locally analytic repre-
sentation, as well, provided K = Q, (cf. [20], Theorem 3.3). Although the
precise relation to its continuous I'-subrepresentation Ry is currently unclear,
the latter is not topologically of finite length unless h = 1 (cf. Proposition 3.3).
This is due to the appearance of the Hecke algebra H which is not relevant in
Drinfeld’s setting. In fact, in the latter situation the spherical Hecke algebra is
K[D*/o%)] ~ K[Ty, Ty '] with Ty acting trivially.

In the most basic case where K = Q, and h = 2 the results of section 1 allow
us to prove at least that the A-modules TJ*(R)/T[""*(R) are finitely generated
for any integer n > 0.

Theorem 3.6. If h =2 and if K = Q, then the A-module T{*(R)/T7 " (R) is
finitely generated for any integer n > 0.

Proof. Tt suffices to see that T7*(R)/T{""*(R) is finitely generated over A; :=
6[[T1]]. Note that T7(R)/Ty(R) is a pseudo-compact A-module (cf. Corol-
lary 2.5, Lemma 3.2 and [27], Theorem 22.3). Further, as we shall recall below,
'y = 1+T1lop is a pro-p group. Therefore, the ring A; is a local g-algebra whose
maximal ideal is generated by p and finitely many elements of the form v — 1,
v € Ty (cf. [27], Propositions 19.5 and 19.7). According to [5], Corollary 1.5, it
suffices to see that the k5P-vector space (T7*(R)/T{""*(R))r, of I'1-coinvariants
of TP*(R)/T{""*(R) is finite dimensional.

Note that T} induces a k*P-linear bijection R/Ty(R) — T7(R)/T}" *(R) which
is I'y-equivariant if the action on the right is changed by an automorphism of I'y
(cf. (13)). We may therefore restrict to the case n = 0. Considering the short
exact sequence

0— kP —R-—m-—0
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of I'-equivariant homomorphisms of pseudo-compact A-modules, we may further
replace R by m. Note that T;(m) C m and even T} (m) C m? by Theorem 2.1.

We will prove that (m/T3(m))r, is one dimensional over k%P and is generated by
the class of u := u;. For this it suffices to show that the map m/T} (m) — m/m>
induces an isomorphism in I'j-coinvariants. Namely, the action of I'y on ﬁ/ﬁz
is trivial, as follows from Theorem 1.16 and the proof of Proposition 3.1.

We claim that it suffices to prove that for any integer n > 2 the natural map

(16)  [(@" + Ta(m))/ (@ + T (@))]r, — [W/@" + Ty(m@))]r,

is the zero map. Indeed, by the right exactness of the functor (-)r, this would
imply that for any integer n > 2 the natural map

/(@ + 11 (W) - m/(W" + 11 ()
induces an isomorphism of I'y-coinvariants. This in turn would imply

(m/Ti(m))r, =~ [Imm/(@"+Ti(m))r,

n>2

lim [/ (W" + 71 (W))]r, =~ [[@/(®@ + Ty(@))]r,
n>2

1

~ (m/m?)p, ~m/m>.

Here the second isomorphism follows from [5], Lemma 4.2 (ii) and Corollary 4.3
(ii), and the fourth isomorphism comes from the fact that Ty () C m>.

We will now show that the map (16) is indeed the zero map for any integer
n > 2. Note that (m™ + Ty (m))/(m" "' +T1(m)) is of k5P-dimension 1 if n is not
divisible by p (and then is generated by the class of «™) and is of dimension 0
if n =0 mod p. We therefore need to show that «" € m(I'y) + Ty (m) +m" " if
n % 0 mod p. Here m(I';) denotes the kernel of the natural surjection m — mr,.
For the rest of the proof assume that n > 2 is not divisible by p.

If n# 1 mod p then we let v := 1+1I € I';. To simplify the notation we write
~(u) instead of (u), as we did in section 1. According to Theorem 1.16 we
have (v — 1)(u""1) = —(n — 1)u™ mod m""!. Since n — 1 # 0 in k°P, we have
u” em" HIy) +m" ! as desired.

If n =1 modp write n = jp+ 1 with j > 1. Let us first assume j = 1.
Let £ be an arbitrary element of pp2_;. Set v := 1+ 1I§ € I'y. Note that
according to Theorem 1.16 we have (y — 1)(u) = P2 (—€)uit! + epurt!
mod mP*2. Choosing p pairwise distinct elements &1, . . . ,Ep € Wp2_1, viewed also
as elements of ks by reduction modulo p, the vectors v; := (&, (&)%,...,(&)P),
1 <i < p, are a basis of the ko-vector space kb, as follows from the well-known
formula of the Vandermonde determinant. In particular, there are coefficients
Aly..o3 Ap € kg C k%P such that Zle Aiv; is the p-th standard unit vector of
kY. Setting ; := 1 +II§; € 'y, our above calculation shows that

P
Z Xi(yi — D(u) = uPtt mod mPH2.

i=1
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This implies u?™! € m(T'y) + P2, as desired.

Now assume n = jp + 1 with j > 2. Let us first treat the case p # 2. There
is an integer 7 > O such that n —p—2=rp+p—1. f y=141I¢ € I'; is as
before, it follows from Theorem 1.16 that

() (1 + u) = u 4 26PuPT — PP+ 4 (ePF2 _ 6)PT3 mod mPT

(cf. Remark 1.17 to see that we use the assumption X = Q, here). As a
consequence, a direct computation shows that

Y(uP™h) = y(u)P = uPT o fuP — 3EPuPPTE — 2¢P TP 4 gy 2Pt mod mPP TR,
Using p > 2, we obtain

P = (@) ()= (WP = €I )
(17) = TP g (rHDP (g 3)gPy (rH2p—L

—(r+ 2)€p+1u(r+2)p + gu(r+2)p+1 mod m(r+2)p+2
A Vandermonde argument similar to the one above shows that

TPy em TP 3(T) +mt T

Since n —p — 1 = (r + 1)p is divisible by p, Theorem 2.1 implies that u" P~! €
Ty (m), completing the proof if p # 2.

If p = 2, let us first assume n = 2j + 1 with j odd. It follows from Theorem
1.16 that

") = AWV ) = (6 Y k6 4 )
= 20D+ 4 cu + j2u¥* mod mn T

Since the image of j in k%P is non-zero, we obtain u” € m" 2(T';) + T} (W), as
before.
If p=2andn > 2 with n =1 mod 4, we write n = i 4+ j8 with j > 0 and
i € {5,9}. For ¢ =5 we compute

()8 = By (u) mod m" T = wS(u + Eu® 4 2P + £u®) mod T
using that (j + ¢)8 > n for any integer £ > 1. As in the case p > 2 this implies
u" = u’t® e m"TP(I)) + T1(m) + m" ™ because u?17® € Ty ().
If i =9 we have n — 6 = 3 + j8 and compute

7(u)3+j8 = 'y(u)?’(ujg + j§2u(j+1)8) mod M = ujSV(u)?’ mod m" !,

because v(u)? € m® and 34 (j +1)8 = n + 2. A direct computation, using the
enhanced approximation of v(u) in Remark 1.18, shows that

Y(w)? = )y ()2 = (u+ €u® + €2 + €u® + uT)(u? + €2l + ) mod T
=u® + cut +ub + " + 2u® +u® mod m'O.

As above, this implies u” = u?+7% € m"~3(I'}) + T} (M) +m" ! because uf+7® ¢
Ty (m). O
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Corollary 3.7. Assume h =2 and K = Q,. If n is a non-negative integer then
the A-module T]*(R/8)/T" " (R/d) is generated by the class of u’l’n.

Proof. Note that the reduction of R/6 modulo 76 is A- and H-equivariantly
isomorphic to m. According to [5], Corollary 1.5, it suffices to show that the
kseP-vector space (T]*(m) /T (m))r, is generated by the class of u’fn. This was
shown in the proof of Theorem 3.6. O

Remark 3.8. As seen in (13), there is an outer automorphism oy of T', ex-
tending to an 6-linear ring automorphism o of A, such that 73 - A =o1(\) - Ty
as endomorphisms of R for all A € A. By Proposition 2.8, R/6 therefore is a
module over the twisted power series ring A[[T1;01]]. The latter consists of all
formal power series Y - A, T7" with A, € A and multiplication defined by

QNI - (D AnTi™) =D (Y Anot ()T
n=0 m=0 =0 n+m=1

It follows from Corollary 3.7 and a topological version of the Nakayama lemma
applied to the local pseudo-compact subring A;[[T7;01]] of A[[T1;01]] (cf. [5],
Corollary 1.5), that R/ is finitely generated over A[[T%;01]] and A[[T1;01]],
provided h =2 and K = Q,,. A generator is given by the class of u;.

The computations of Theorem 3.6 can be generalized so as to compute the
graded pieces of the my,-adic filtration of m/T;(m). This is the content of the
subsequent proposition and of its corollary. For simplicity, we restrict to the
case p # 2.

Proposition 3.9. Assume h = 2 and K = Q, with p > 3. Let r be a non-
negative integer. If 1 < j < p—1 then

p—1
U Ty () = W 4 ST ke T (),
r=j+1

In particular,

r(p—1)+1

m)y! m+Ti(m) = mTPT2 4L T(m) and
mX“;Fl)(P*l) 'E+T1(ﬁ) _ 52(r+1)p71 +T1(ﬁ)

for any non-negative integer r.

Proof. Set u := uy. Assume the assertion to be true for r(p — 1) + j with
1<j<p-—1(whichitisifr =0 and j = 1, as follows from Corollary 3.7). We
will then prove it for r(p — 1) + j + 1.

Let us first assume j = p—1, so that r(p—1)+j+1 = (r+1)(p—1)+1. It follows
from [27], Proposition 26.5 and from Lemma 3.12 below, that I'y is topologically
generated by elements of the form v = 1+ 11§ and v = 1 + {p with § € pp2_;.
By [27], Proposition 19.5, the ideal my, is generated by p and the corresponding
elements v — 1. By our computation of (y — 1)(u”~!) in the proof of Theorem
3.6, as well as by Theorem 1.19, we have my, -T2 VP~ € m2(r+Dr+2 L7 ().
Further, as in Theorem 3.6, one can prove that equality holds, and hence that
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mX"1+1)(P71)+1 W4 Ty (W) = @2+ Ly (), as required.

Now assume j < p — 1. We have m2"+Dp—1 ¢ miP=DH 4 Ty(m). As
j | i
above, this yields m2("+r+2 C m;\(lp—l)ﬂ‘*‘l .M + Ty (m). Further, u?Pr+r—1 ¢

mx(lp_l)ﬂ -m+Ti(m). If y=1+1I € I'; for some element & € py2_1, then
fy(u2rp+p71) = u27’p+p71 + €U(2r+1)p 7 (27’ + 3)€pu2(7‘+1)p71

—(2r + 2)gPH 120 HDP g2t pHL o R HPE2

by (17). By the Vandermonde argument used before, we obtain that u2(rthp+1
and hence that m2(" P+ is contained in mz(lpfl)ﬂﬂ -+ Ty (m).

Further, u2"PTPr—2 ¢ mz(lp D4 mam (m), by assumption. Applying a suitable

element v — 1 € my,, we obtain y?PTPTr=1 ¢ m;\(lp_l)ﬂﬂ -m+ Ti(m). Going

down step by step, we obtain m?"PTPHITl C mj\(lp_l)ﬂﬂ -m+ Ty(m). It now
remains to see that

p—1 p—1
ma, Y KPP = ST gy 2l mod WAL 4Ty ().
l=35+1 l=j5+2

Let £ € pp2_y. If vy =14 Ep and n > 2pr + j + 1 then Theorem 1.19 implies
(y = 1)(u™) € m" P Cm?Pr Pt Iy =1 4TI and j +1 < £ < p — 1 then
write £ =p —i with 1 <i <p—j — 1. According to Theorem 1.16 we have

l_ 21)7"(14_5“’)z 4
y(u) =u 71+§Pupu

= (14 &u)u® " mod m2PrrHith

2pr

2pr+£) = u

v (u

This shows my, 'Z?;;+1 fesep g 2rp+4 C 25;]'1+2 fsep g 2rp+L _|_52rp+p+j+1+T1 (ﬁ)
Since (y—1)(u?Ptt) = —u®> P41 mod m?P 2 with £ £ 0 mod p, a down-
ward induction as above shows that conversely

p—1 p—1
Z ksepu2rp+f C my, - Z ksepu2'r'p+l +ﬁ2rp+p+j+l + T (ﬁ)
r=j12 f=j+1
This completes the proof. O

Remark 3.10. Assume K = Qp, h = 2, and let n be a positive integer.
Modulo pAy, the ideal m’;\; is generated by the maximal ideal of the local ring
A(Topi1) = A(l"’l’n). Proposition 3.9 shows that if v € T'y,, 41, then the power
series (y—1)(u1) must generically have uj-order Y. 2p’. This is in accordance
with the result [6], Theorem 2, of Chai.

As an immediate consequence of Proposition 3.9 we obtain the following result.

Corollary 3.11. Assume h =2 and K = Q, with p > 3. For any integer i > 0
let

gr' (W/Ty () = [m)y, - (@/Ta(m))]/[my" - (7)1 ())).
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(i) If i = 0 then the k*°P-vector space gr'(m/Ti(m)) is one dimensional. A
k5P -basis is given by the class of uy.

(ii) Ifi > 0 then the k*®P-vector space gr'(m/Ty(W)) is two dimensional. Write
i=r(p—1)+jwithr>0and1 <j<p-—1. 1Ifj#p—1 then a k*P-

basis of gr'(W/Ty(W)) is given by the classes of ui ™™ and 2P0+,
2(r+1)p—1

If j = p— 1 then a k°P-basis is given by the classes of uj and
2(r+1)p+1
u . (]
Let h and K be arbitrary again and define
gr(m/Ty (W) == @Pm}, - (W/T1(m))]/[mi"" - (W/T3(m))]
i=0
as above. The action of the center Z := o* of I' is trivial on R (cf. [11],

Proposition 14.13). Therefore, gr(m/7;(m)) naturally is a module over the
graded k*°P-algebra

er(MT1/21)) = W (r, y20) /TR, 2)
1=0

Here Zl = Fl N Z, A(Fl/Zl) = A(Fl/Zl)/ﬂ'A(Fl/Zl) and EA(I‘l/Zl) denotes
the maximal ideal of the local ring A(T'y/Z7).

In a special case, fundamental results of Lazard allow us to explicitly describe
the structure of the ring gr(A(T'1/Z1)). A recent exposition of the necessary
techniques was given in [27], Part B.

For the rest of this article assume K = Q, with p > h 4 1. Recall that vp de-
notes the valuation on the Q,-division algebra D, extending the p-adic valuation
v on Q. In particular, vp(8) > vp(Il) = + > ;;%1 for any element § € Ilop.
Consider the map w : I'y ~ {1} — (p—il, 00) C R, defined by w(y) := vp(y —1).
As in [27], Example 23.2, one shows that w is a p-valuation on 'y in the sense
of [27], page 169.

If i > 1, and if T; := 1 + IT'op is as before, then I'; = {y € T'y | w(y) > £}
and T4 = {y € T'1 |w(y) > £}. In the notation of [27], page 170, this means
I, = (Fl)% and ', = (Fl)%+. It is a general property of p-valued groups
which can be checked directly here, that [I';,I';] CT';y; and T? CTqp, C Tiyq.
Therefore, gri(I'y) :=I';/T';;1 is an abelian group of exponent p, i.e. a k-vector
space (note that k = F,, since K = Q,). In fact, in our situation the structure
of gr{(I';) can be made more explicit. Namely, the map (1 + II'§ + § + Iop) :
I'; — op/Top ~ kj, induces an isomorphism of k-vector spaces gr(I'y) ~ kj, for
all integers ¢ > 1 (cf. [25], 1.4.4 Proposition 1.8).

According to [27], Lemma 23.4, Lemma 23.5 and Proposition 25.3, the graded
k-vector space
g:=Per'T) =Pri/Tin
i=1 =1
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becomes a Lie algebra over the polynomial ring k[t] in the variable ¢ by setting

(Tit1,7' T == /7' (Y) 'Tigjur fory €Tiy' €Ty, and
t- ’}/Fi+1 = fy’THhH for v el;.

Lemma 3.12. The natural map k[t] @5, (@), gr’(I'1)) — g is an isomorphism
of k[t]-modules.

Proof. The assertion is equivalent to the claim that for any integer ¢ > 1 the
map (YD1 = YPTiana1) : gr'(Ty) — grit?(I'y) is bijective. That it is injective,
follows from one of the axioms of a p-valuation, viz. w(7?) = w(y) + 1.

If y = 1+ 1176 = 1+ 1I'pS € T4y, with & € 0%, then 7 := 1 +1I% € I; satisfies

p—1
P =14pIl's+ > (?) (IT'6)7 + (II'§)? in  D.
j=2

If 2 <j<p-—1then vD((J;)(Hié)j) =1+ % > 1+ £ = vp(Il'p). Further,
vp((I'6)P) = B8 = 2-Li+ L > 14 £ by our assumption on p. The above
explicit form of the isomorphism T;ip/Tiypt1 =~ op/Iop then implies that
AP =+ mod I'iypi1. 0

For any 1 < ¢ < h let (y;5)i1<j<n be a family of elements of I'; whose im-
ages in I';/T;11 form a k-basis. It follows from Lemma 3.12 and [27], Propo-
sition 26.5, that for any fixed ordering, the family (v;;)i<i j<n is an ordered
basis of the p-valued group (I';,w) in the sense of [27], page 182. Setting
bij = vij —1 € my, and b* := [], b7}/, it is explained in [27], section 28,
that any element A € A; = A(T';) admits a unique expansion of the form
A= ennxn Cab® with ¢, € 0.

For any non-negative real number v, we let J, denote the closure of the o-
submodule of A; generated by all elements of the form p‘(h; —1)-...- (hs —1)
with ¢, >0, hy,...,hs € 7 and £+ w(hy1)+. ..+ w(hs) > v. According to [27],
page 197, each J, is an open, two-sided ideal of A;. Note that if i is the unique
non-negative integer satisfying % <v < % then J, = J i As a consequence,
Jug =Upay Jor = Jisr. '

h

Recall that ma(r, /z,) denotes the maximal ideal of the local ring A(I'1/Z1) =
A(T1/Z4) /ATy /Z1).
Lemma 3.13. For any integer i > 0 the image j% of the ideal J% of Ay under

the natural ring homomorphism Ay — A(T'1/Z1) is equal to ﬁi\(rl/zl)-

Proof. Since Jy = Ay (cf. [27], page 197), the case ¢ = 0 is clear.

The maximal ideal ma, of A; is a closed 6-submodule containing the elements
pi(h1—1)-...-(hs—1) for all £,5 >0, hy,...,hs € I'y. This implies Ji Cmy,.
Conversely, my, is generated by p and b;;, 1 < i,5 < h (cf. [27], Proposition
19.5). Since w(y;;) = % > % for all 4, j, all of these are contained in J%. Thus,

J1 =my,. Since the image of my, under Ay — A(T'1/Zy) is precisely Mma(r, /z,),
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this proves the lemma in the case i = 1.

If i > 1 then mj = J% € Ji, whence ﬁl}\(rl/zl) C J:. It remains to prove the

7
I
reverse inclusion.

Consider the descending central series (C(™),,,>o of T'y defined by C(©) := T
and C"*D = [[y,C™)] for m > 0. We claim that v — 1 € mxlfl for any
v E C(™) . This is clear for m = 0. Assume the assertion to be correct for m > 0
and let v € "+ There are elements 74, ...,7, € I'1 and d1,...,8, € C("™
such that v = [y1,01] - ... [yn, 6,] is the product of the commutators [v;, ;] :=
’yjéjvjfléjfl. Since

¥ =1=[v1,01]([v2,02] - - .- - [0, 0n] = 1+ 1 = [01,71)),

an inductive argument allows us to assume n = 1. In this case the assertion
follows from

8] =1 =ma((n ! =D =1 =6 =D = 1)

and the induction hypothesis.

Note that C(™) C T,,,;. According to [25], 1.4.4 Proposition 1.8 and the re-
mark following [25], Theorem 1.9, the composition of the maps C(™) < T, ;1 —
Tig1/Timte =~ kp is surjective for 0 < m < h— 1. For m = h — 1 its im-
age is ker(try,|,), where try, |, : kn — k denotes the trace map. Note that
kn = k®ker(try, ;) because try, |, is surjective and because try, () = h-a # 0
for all a € k* by our assumption h < p—1. Note also that k£ C kj, coincides with
the image of Z; = 14+po C Ty, under I'y, — ', /Th11 =~ kp,. It follows that the p-
valued group (I'1,w) admits an ordered basis (y,s)1<r,s<n such that v,s € c(r=1
for all 1 <r;s < h with (r,s) # (h,h) and such that y,, =1+ p € Z;.

As before, we set b5 := 7,5 — 1 for all ,s. It follows from [27], Theorem 28.3
(ii), that any element X € J.i has the property that its expansion A = Y o Cab®
satisfies v(cqy) + Er,s arsw(Yrs) > % for any o € N"**_ If ¢, € po or if app, > 0
then ¢,b* maps to zero in A(T'1/Z7). Otlr'lervvise7 Z(T}S)#hﬁ) Qrsg > %, ie.
Z(T’S)#h’h) rars > 4. In this case ¢ b € mj because b,s € m} , as was shown

above. As a consequence, A\ maps to ﬁj\(rl /21)> 88 required. O
It follows from the proof of Lemma 3.13 that
g:=g/(t-9)

is an h2-dimensional nilpotent Lie algebra over k with k-basis (7ijTi41)i,5- De-
note by 3 the one dimensional central Lie subalgebra of g generated by the
element 3 := yp,h41. By abuse of notation we shall also write g/3 for the Lie
algebra §/3 ®g k°P over k5P,

Corollary 3.14. Denoting by U(g/3) := Ugser(g/3) the universal enveloping
algebra of §/3, there is an isomorphism

U(@/3) ~ gr(A(I'1/21))
of graded k*¢P-algebras.
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Proof. According to [27], Theorem 28.3, the maps vT'; 11 — (y—1) +J% induce
an isomorphism

ksep[]®k[t] Uk H@J /Jz+1

>0

of graded k*°P-algebras, sending ¢t to p + J [EEp It gives rise to an isomorphism

—>@J /JL+1

by reduction modulo ¢. As a consequence of Lemma 3.13, there is a surjec-
tive homomorphism @, J%/J% — gr(A(T'1/Z;)), whose kernel contains the
image of 3 - U(g). We thus obtain a surjective homomorphism

U@/3) ~U(@)/3U(@) — er(A(l'1/Z1))

of graded k*°P-algebras that we claim to be bijective. By the Poincaré-Birkhoff-
Witt Theorem, it suffices to see that for any integer ¢ > 0 the elements b
with app, = 0 and 7() == >,  rays = i are k*P-linearly independent in

—i —i+1
mA(Fl/Z1)/mA(F1/Zl)'

—i+1

Assume \ = Zahh 0,7(a)= ,Cab® € W z) with coefficients ¢, € k°°P, not

all of which are zero. Viewing A € Aj, this is equivalent to the existence of an
element X' € ker(A; — A(I'1/Z1)) such that A+ X € jiJrTl (cf. Lemma 3.13).
Note that Z; is a p-valued group in its own right with ordered basis v45. In
particular, Ma(z,) = banA(Z1). Tt follows from [35], Proposition 7.1.2 (c), that

the kernel of the natural map A; — A(I'1/Z;) is the closed ideal by, A;. Writing
N =37 5dgb?, [27], Theorem 28.3 (ii), implies

i+ gl ()

| dﬁ 7é 0}}7

which is impossible. O

Remark 3.15. For uniform pro-p groups, results as in Corollary 3.14 are true
in much greater generality (cf. [35], Theorem 8.7.10). We point out, however,
that the p-valued group I'y is not uniform for any h > 2, and that the filtrations
(J )i>0 and (W) )i>o of Ay do not coincide.

According to Corollary 3.14, we may view gr(m/T}(m)) as a module over U(g/3).
If h = 2, the precise structure of this module is given by Theorem 3.16 below.
Let us first introduce some notation.

Assume h = 2, choose & € pp2_1 \ pp—1 and set 11 1= 1 + 11, y19 := 1 4 1I¢,
Yo1 1= 71171271_1171_21 and 799 := 1 + p. We claim that these elements form an
ordered basis of (I'1,w). Computing

(14 I)(1 +TI€)(1 — I+ p) (1 — IIE + £ Pp)
I+T14++Ep)1 -1+ + (1 +E+E7P)p)
= 14+ —-£&)p modTs,

V1712711 Vi
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we have w(y11) = w(y2) = 3 and w(721) = w(y22) = 1. Since the images
of 1 and £ in ko form a basis over k, as do the images of 1 and £ — &P, the
claim follows from Lemma 3.12 and [27], Proposition 26.5. We denote by r, v,
[’) and 3 the images of Y11, Y12, V21 and Y22 n grl(Fl), grl(Fl), grQ(Fl) and
gr?(T'y), respectively. It follows from Lemma 3.12 that these four elements form
a k®P-basis of g ®; k°P. They satisfy

k0] =b and [v,b] = [r,3] = [v,b] = [9,3) = [b,3] = [0, b] = [3,5] = 0.

Theorem 3.16. Assume h = 2 and K = Q, with p > 3. The left ideal I of
U(g/3) generated by b and £ — v is a two-sided ideal. There is a non-split exact
sequence of U(g/3)-modules

0 — U(§/3)/1 — gr(m/T1(m)) — U(g/3)/1 — 0.

Proof. Since b is contained in the center of g, the left ideal of U(g/3), generated
by b, is a two-sided ideal. Further, the ring U(g/3)/(h) = U(g/(k*Ph + kP3))
is commutative because the Lie algebra g/(k°Ph + k5°P3) is. This implies the
first assertion.

We continue by explicitly computing the action of h on gr(m/T;(m)). Note
that b corresponds to (1+ (£ —&P)p) — 1 € ﬁ?\(rl/zl)/ﬁ?\(rl/zly Choosing
¢ € pp2_1 C 05 C 0o whose reduction modulo pos is equal to § — &P, b is equal
to the class of v — 1, where v := 1+ (p. Note that { & p1,—1, so that the image
of n:= (P — ( in k°°P is non-zero.

The element b defines a graded endomorphism of degree 2 of gr(m/T;(m)).
Setting gr® := gri(m/Ty(m)), we need to compute b : gr’ — grit? for any non-
negative integer 7. First assume ¢ > 0 and write ¢ = r(p — 1) + j with integers
r>0and 1< j<p—1. According to the form of gr’, as given in Corollary
3.11, we have to distinguish several cases. Set u := w; and note first that we
have

1
(y = D)(u") = npu P 4 (nn + 7n(n2+ )nQ)u"+2p+2 mod m"H2P+3

for any integer n > 1 (cf. Theorem 1.19).
If1<j<p—-3theni+2=r(p—1)4+j+2 with j +2 < p—1. Thus,
gri —  kSepy2rpti+l + LSePq, 2rpt+pty and
gri+2 — ksepu2rp+j+3 4 ksepu2rp+p+j+2
by Corollary 3.11. Using the above approximation of (y — 1)(u™), we find
h- w2rptitl — (5 + 1)77u2rp+p+j+2 and - w2PTPH — 0 in gri+2 )
Ifj=p—3theni+2=r(p—1)+p—1,so that

gri — ksepu2rp+p—2 + ksepu2(r+1)p—3 and

gri+2 — ksepu2(r+1)p—1 + ksepu2(r+1)p+1
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by Corollary 3.11. In this case we obtain

[J X u2rp+p—2 — _2,’7u2(r+1)p—1 and h . u2(r+1)p—3 =0in gri-‘rl )

Ifj=p—2theni+2=(r+1)(p—1)+1,so that
grt =  SePy2rpp—l | fsep 2(r+1)p—2 and
gri+2 — ksepu2(r+1)p+2 +ksepu2(r+1)p+P+1.
By the above approximation of (y — 1)(u™) we have
b u 21— _nu2('r'+1)p . nuz(r+1)p+p+1 _ _nu2(7"+1)p+p+1 and
b . u2(r+1)p72 _ _2,,7“2(7“4’1)17“’17*1 — 0 in gri+2 .
Ifj=p—1theni+2=(r+1)(p—1)+2, so that
gri = ESeP2(r+l)p=1  psep, 2(r+1)p+1 and
grit2 = Py 2(rtlpd3 | psep 2(r+ptpt2,
In this case, we find
hou20TP-1 _nu2(T+1)p+p =0 and

2

b . u2(r+1)p+1 2(r+1)p+p+2 in griJr )

nu
Finally, we consider the case ¢ = 0, in which

gr’ = k%Py and  gr? = k5°Pud + ESPuP T
We have b - u = nuP*t? in gr?.
Altogether, we obtain ker(h) = EBiZl(gri Nker(h)) where gri Nker(h) is the one-
dimensional k*P-vector space generated by u?"PTP+J if i = r(p—1)+7 is written

as before. In particular, uP*! € ker(h). Further, ker(h) is a U(g/3)-submodule
of gr(m/Ty(m)) because b is central in g/3. We claim that the map

Y= (6 6-uPT) : U(g/3) — ker(b)

is surjective with kernel I. By construction, ) € ker(¢) so that ¢ factors through
U(g/3)/(b) ~ k*P[x, v].

Let 6 be an arbitrary (p? —1)-th root of unity, set v := 14110 € I'y, fix a positive
integer 7, and consider the k*°P-linear map (y—1) : gr’ Nker(h) — gr'*! Nker(h).
Write i = r(p — 1) 4+ j as above. If j < p — 1 then

gr' Nker(h) = E*°Pu?" PP and  gr't! nker(h) = k5Pu? P TL,

Note that (y — 1)(u?P+P+i) = —j0yu2 P+P+i+l by Theorem 1.16. If j = p — 1
then

gri Nker(h) = ESepy, 2(r+p—1 514 gri-‘rl Nker(h) = sep, 2(r+1)ptp+1
By (17) we have

’7(U2(T+1)p_1) = u2(r+1)p—1 + 9u2(r+1)p _ (27‘ + 4)epu2(r+l)p+p—l
_(27« =+ 3)9P+1u2(7'+1)p+p + P 2(r+p+p+1
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modulo 2T FVPFPF2 - This implies (v — 1)(u2tDP=1) = gu2r+Dptptl iy
gritt Nker(h), and thus & — v € ker(y)). In particular, the restriction of ¢
to k*°P[r] is still surjective. Since v : k%P[r] — ker(h) is a graded homomor-
phism and since the graded pieces are all of dimension one on both sides, the
restriction of ¢ to kP[r] is bijective. Since the inclusion k%¢P[r] — k5P[r, n]
induces a bijection k%P[r] ~ k%P [z, y]/(£x — v), this proves the claim.

Now consider the quotient gr := gr(m/T1(m))/ ker(h). By our above compu-
tations, gT = @, gr', where g’ := gr’ /(gr' Nker(h)) is the one dimensional
kSeP-vector space generated by the class of u, if i = 0, by the class of u2"P+i+1,
ifi =r(p—1)+j with 1 < j < p—1, and by the class of w?"tDr+1 if
t=(r+1)(p — 1). Our computations also show that b acts trivially on gr.

Let v := 1+116 € I'; be as above. We will explicitly compute that action of the
k*eP-linear endomorphism (y—1) : g&' — gr' ! for any 4 > 0. For i = 0 we have
(v —1)(u) = —0u? by Theorem 1.16. If i = r(p— 1) +j with 1 < j < p—2 then
(v — 1) (u?PHF) = —(§ + 1)0u?"PTi+2 by the same reference. If j = p — 2 then

?i — ksepu2rp+p—1 and ?i—l-l — ksequ(r-&-l)p-&-l.
As in the proof of Proposition 3.9, we obtain (y — 1)(u?"P+P~1) = gy2(r+1p+1,
Finally, if j = p — 1, then

?i — ksepu2(r+1)p+l and gi+1 — ksepu2(r+1)p+2.
As in the case j < p — 2 we conclude that (y — 1) (w2 TP+ = e 2(r+1p+2,

As above, this shows that the U(g/3)-linear map (§ — § - u) : U(g/3) — or
induces an isomorphism U(g/3)/I ~ gr. Thus, we obtain an exact sequence

0 — U(§/3)/1 — gr(m/T1(m)) — U(g/3)/1 — 0,

as required. That it is non-split follows from the fact that h does not act trivially
on gr(m/Ty(m)). In fact, the kernel of § is the left copy of U(g/3)/I in the above
presentation. O

If M is a k®P-linear representation of the Lie algebra g/3 then we denote by
H,(g/3, M) := Tor{ @3 (kP M) and H*(§/3, M) := Ext}; /5 (k*P, M) the Lie
algebra homology and cohomology groups of M, respectively. The former can
be computed using the standard complex (A°*(g/3) ®ser M, ds), whereas the
latter can be computed using the standard complex (Homysep (A\°(§/3), M), 5*).
In particular, H,;(g/3, M) = H'(g/3, M) = 0 for all i > dim(g/3).

Corollary 3.17. Assume h =2 and K = Q, with p > 3.

(i) The k*°P-vector space Ho(§/3, gr(m/T1(W))) is one dimensional, generated
by the class of uy.

(i) The k*°P-vector space Hy(g/3, gr(m/T1(m))) is two dimensional, generated
by the classes of h @ uy and (§xr —n) @ u’l""l

(#ii) The k*°P-vector space Ha(g/3, gr(m/T1(m))) is one dimensional, generated
by the class of (€x —9) Ah @ ub ™!
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(iv) If i > 3 then H;(g/3, gr(m/T1(m))) = 0.
Proof. We first compute the homology of the g/3-representation M := U(g/3)/I
appearing in Theorem 3.16. Using the relations h- M =0 and (§x—n) - M = 0,
one finds that 95 : A*(§/3) @usep M — A*(§/3) @psep M is given by
BEAYAHRM) = PAHR M —rAHRYm+rAy® hm
= (W—&)Ahrm.
Using [, 9] = b in §/3, one finds that 0z : A*(@/3) @xser M — \'(3/3) Quser M
is given by
82(x/\t)®m1 +;/\b®m2+t)/\b®m3)
= —hb@mi —r®@ym1+9@rmi —r® bhma +h @rme —y @ hms + b @ ymg
= (h—&)@rm1 —h® (m1 —rma — &ms).

Finally, 0 : /\l(ﬁ/j) ® M — M is given by 91 (0 ® m) = rom for all o € g/3,
me M.

Note that the natural map k%P[r] — M = U(g/3)/! is bijective. In particular, ¢
defines an injective endomorphism of M. It follows that H3(g/3, M) = ker(d3) =
0. Similarly, one sees that

IAY®@my +rAh@m2+nAH®mg € ker(02)
if and only if m; = 0 and mo + &ms = 0. By our above computation,
im(93) ={rAh@ma+9AhQms | mag,m3 € tM and mg + Emz = 0}.

Since M /xM is one dimensional, generated by the image mg of 1 € U(g/3), we
obtain Ha(g/3, M) = k*P((y — &) A h ® myg). Further, we have

ker(01) = (IN(§/3)) @ M = kE*P(y — &) @ M + E°Ph @ M.
From our above computation of J; we obtain that
Hi(g/3, M) = k*P((n — &x) @ mo) + k> (b @ my)

is two dimensional. Finally, Ho(g/3, M) = M /tM = k5°Pmy.

Consider the long exact homology sequence associated with the short exact se-
quence of g/3-representations in Theorem 3.16. We denote by 8% : H;(g/3, M) —
H;_1(g/3, M) the associated connecting homomorphisms. They are defined by
choosing k*P-linear sections t, : A*(g/3) @ gr(m/T1(m)) — A°(3/3) @ M (resp.

se : N°(8/3) ® M — A°*(§/3) ® gr(m/Ti(m))) of the homomorphism of com-
plexes A\*(@/3) @ M — A\*(§/3) @ gr(m/T1(m)) (resp. \*(3/3) @ gr(m/T1(m)) —
A°(8/3) ® M), and by letting 6° be the map induced by t;_1 0 9; o s;.

Under the natural map Ho(g/3, M) — Ho(g/3, gr(m/T1(m))), the class of mg

maps to the class of uf“, which is trivial (cf. Corollary 3.11). Thus, there is
an exact sequence

H, (g/3, er(W/T1 (M))) —> Hy(3/3, M) - Ho(g/3, M) —> 0.
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Here §'(h®my) is the class of hu; in Hy(g/3, M), which is trivial because b cor-
responds to 21 —1 € My (p, /z,), where 721 = 14(p satisfies (721 —1)(u1) € mPT2
by Theorem 1.19. Further, §'((y — &x) ® myg) is the class of (y — &x)uy =
(&P — &)ub™, which is non-zero in Hy(g/3, M) = k*Pmg = k5Pul™' . Thus,
ker(61) = kP (h ® my).

Similarly, §2((y — &x) A b ® my) is the class of

b (= &njur — (= &) @ huy = (€ = h @ ul™ = (& — E)h @my

in Hy(g/3, M), which is non-zero. A straightforward analysis of the long exact
homology sequence completes the proof. O

Let H be a compact p-adic analytic group (i.e. a compact Lie group over
Qp). The theory of continuous (co)homology of H with coefficients in com-
pact continuous H-modules was developed in [34], relying in large parts on the
foundational work [22] of Lazard. We need to consider the parallel situation
of pseudo-compact A(H)-modules, i.e. that of complete Hausdorff topological
A(H)-modules M which possess a basis of open neighborhoods of zero con-
sisting of A(H)-submodules (M;); such that the quotients M/M; are of finite
length over A(H). Instead of developing the general formalism of continuous
(co)homology of such modules, we will give an ad hoc definition and rely on
the fundamental finiteness properties of the ring A(H) to prove the necessary
properties of our (co)homology functors.

Thus, for any pseudo-compact A(H )-module M we simply set
Ho(H, M) := Tor}™) (5, M) and H®(H, M) := Ext} (8, M),

the torsion and extension groups being computed in the category of all (abstract)
A(H)-modules. Here 6 denotes the pseudo-compact A(H )-module carrying the
trivial action of H.

The ring A(H) being noetherian (cf. [27], Theorem 27.1 and Theorem 33.4), ¢
admits a resolution by finitely generated free A(H)-modules. By [5], Lemma 2.1
(ii), it follows that the above torsion groups coincide with those in [5], section
4, computed with respect to the complete tensor product ®A( m)- Thus, [5],
Corollary 4.3 (ii), implies that the functors He(H,-) commute with projective
limits of pseudo-compact A(H)-modules.

As in [34], Theorem 3.7.2, one can prove an analogous statement for the coho-
mology functors H*(H, -). Since this will be of importance later, we will sketch
a proof. As a consequence of our arguments, the above cohomology groups
coincide with those computed by means of continuous cochains (cf. also [22],
Chapitre V, Théoreme 3.2.7, and [23], Proposition 5.2.14). For the homology
groups, the analogous statement is proved in [5], Lemma 4.2 (ii).

Lemma 3.18. Let H be a compact p-adic analytic group. If the pseudo-compact
A(H)-module M is the projective limit of a projective system (M;) e of pseudo-
compact A(H)-modules M;, then the natural map
H'(H, M) — @;H%H, M;)
JE€
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is bijective for all i > 0.

Proof. According to [27], Proposition 22.5, the Jacobson radical of A(H) is open.
By construction of the pseudo-compact topology of A(H), any A(H)-module of
finite length is therefore of finite length over 8. As a consequence, any pseudo-
compact A(H)-module is a pseudo-compact 6-module via restriction of scalars.

Let N be an arbitrary pseudo-compact A(H)-module. If m is a positive inte-
ger then Homy g)(A(H)™, N) is 6-equivariantly isomorphic to N, hence is a
pseudocompact 6-module. This construction is functorial in the sense that if
f: N — N’is a continuous homomorphism of pseudo-compact A(H )-modules,
then the induced o-linear map Homy gy (A(H)™, N) — Homy gy (A(H)™, N')
is continuous. In fact, the induced map N™ — (N’)™ is just the m-fold direct
sum of f. Further, if m’ is another positive integer, and if g : A(H)™ — A(H)m/
is a A(H)-linear map, then the induced o-linear map HomA(H)(A(H)m/, N) —
Homygy(A(H)™, N) is continuous. In fact, the induced map N™ — N™ is
just given by left multiplication with an (m x m’)-matrix with coefficients in
A(H), so that the assertion follows from the fact that IV is a topological module
over A(H).

Now choose a resolution P* — 6 — 0 of ¢ by finitely generated free A(H)-
modules. By [27], Theorem 22.3, the continuous o-linear maps in the complex
Homy gy (P*®, N) of pseudo-compact 6-modules have closed images. Thus, the
cohomology groups H*(H, N) are pseudo-compact over 6, as well.

Coming back to our original situation, it follows from the universal property of
the projective limit and the constructions above that the natural 6-linear map

Hom () (P, M) — lim Homy gy (P", M;)
jeJ
is a topological isomorphism for any i > 0.
For varying j € J, the complexes Homyg)(P*®, M;) form a projective system
of complexes of continuous ¢-linear maps between pseudo-compact 8-modules.

Since the category of pseudo-compact o-modules has exact projective limits (cf.
[27], Theorem 22.3 (iv)), we have

H'(H, M) =~ H(Homp g (P*,lim M;)) =~ H' (lim Homy gy (P®, M;))

Jje€J J€J
~ lim(H'Hom(P*, M;)) ~ lim H'(H, M;)
jeJ JeJ
for any 7 > 0. O

The following result constitutes the main step in the proof of Theorem 3.20
below.

Theorem 3.19. Assume h =2 and K = Q,, with p > 3. For any integer i > 0
we have H;(T', (R/0)/T1(R/6)) = H'(T, (R/6)/T1(R/d)) = 0.
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Proof. Set M := (R/6)/T1(R/8) and M := M/pM ~ W@/T:(i). We claim that
it suffices to prove H;(I', M) = H"(T', M) = 0 for all ¢ > 0. To see this, consider
the long exact (co)homology sequence associated with the short exact sequence

0—M-25M-—M-—0

(cf. Corollary 2.5, noting that T7(0) = 6). Under the above vanishing assump-
tion, we have pH;(T', M) = H;(I', M) and pH(I', M) = HY(T', M) for all i > 0.
As seen above, the g-modules H;(I', M) and H'(T', M) are pseudo-compact.
Therefore, [5], Lemma 1.4, implies that H;(T', M) = H*(I', M) = 0, as required.

Note that there are natural isomorphisms
Ho (T, M) =~ Tor} (&, M) and H*(T, M) ~ Ext%(k*, M),

stemming from the fact that 0 admits a free resolution P* — o — 0 over A
which is ¢-linearly split, hence remains exact after reduction modulo po (cf.
[22], Chapitre V, (2.2) for the case of a p-valued group, as well as [22], Chapitre
V, (3.2.6) and the splitting assertion (3.1.6) in the general case).

If Z := 0* denotes the center of I', then there are Hochschild-Serre spectral
sequences

H.(T/Z,H(Z
H'(I/Z,H*(Z

,M)) = H,, (,M) and

,M)) = H"™(T,M).

Using that our (co)homology groups commute with projective limits, the exis-
tence of these spectral sequences can be established by using the Hochschild-
Serre spectral sequences for discrete modules over finite groups, as well as [5],
Corollary 4.3. Alternatively, one can use the fact that A is topologically pro-
jective over A(Z) (cf. [5], Lemma 4.5) and imitate the proof of [18], Theorem 6.8.

Since the action of Z on M is trivial, we have He(Z, M) ~ Hq(Z, k*°P) @psep M
and H*(Z, M) ~ H*(Z, k*°P) @sep M. For the homology groups, this is immedi-
ate. For the cohomology groups, the assertion follows from Lemma 3.18 together
with the facts that M is the projective limit of finite dimensional k*P-vector
spaces and that H®(Z, k°P) is finite dimensional, as well. As a consequence,
Ho(Z, M) and H*(Z, M) are A(T'/Z)-isomorphic to finite direct sums of copies
of M. Therefore, it suffices to prove H;(I'/Z, M) = HY(I'/Z, M) = 0 for all i > 0.

Set Z, :=T'1NZ. Since the finite group (I'/Z)/(I'1/Z1) ~ pp2_1/pp—1 has order
p + 1, which is prime to p, another application of the Hochschild-Serre spectral
sequences shows that

H.(F/Z7M) ~ H'(Fl/Zl7M)(F/Z)/(F1/Zl) and
H*(T'/Z, M) ~ H*/Zy,M)T/2/T1/2)

2

Let us now treat the homology groups first. Note that with respect to its
maximal adic filtration, the ring S := A(T'1/Z;) is complete with noetherian
graded ring (cf. Corollary 3.14). As in the proof of [16], 1.7.2 Corollary 2, the
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finitely generated, maximal adically filtered S-module M admits a strict res-
olution L* — M — 0 by finitely generated filtered free S-modules L, i >0,

such that the associated complex gr(L*®) — gr(M) — 0 is an exact resolution of
gr(M) by finitely generated free gr(S)-modules gr(L?).

We endow the complex k°P ®g L® with the tensor product filtration. Its mor-
phisms are of degree zero. According to [16], Chapter III, §1, this filtered
complex gives rise to a spectral sequence with E}, ;-term Torfr(s)(ksep7 gr(M))
(cf. [16], IIT.1.1 Observation 1 and Lemma 1.6.14). Note that this k*P-vector

space is isomorphic to H;(g/3, gr(M)) by Corollary 3.14.

According to [16], IIT.1.1 Remark 3, the Ef,-term of this spectral sequence is
the graded k°°P-vector space associated with a certain filtration on

H; (k%P @g L*) ~ Tor? (k*P, M) ~ H;(T'y/Zy, M).

In fact, together with the filtration of k£°°P, also that of k*P ®¢ L*® and hence
that of H;(I'1/Z1, M) is discrete in the sense of [16], Definition 1.2.4, with ex-
actly one jump. It follows from its very definition that the spectral sequence
degenerates in E'. As a consequence, H;(T'y/Z;, M) ~ H;(g/3,gr(M)) over k5P
for all ¢ > 0. This is also proved in [13], Theorem 3.3".

The group I'/Z acts on the complex k%P ®g L® through its conjugation ac-
tion on the free modules L’ and the trivial action on k*°P. Note that this
changes the chain maps but stabilizes the homology groups. The induced
action on H;(g/3,gr(M)) is the one coming from the adjoint action of I' on

g =€D;>, I'i/Ti+1 and the natural action on gr(M). If ¢ € pye—y C I then

Ad(Q)(x) = C(I+ID¢ Ty = (1+II¢P Iy = ¢ 'y,
Ad(O)(y) = CA+TEC Ty = (1 +T¢P T, =¢P 'y and
Ad(Q)(h) = O+ (E=€)p) Ty =1+ (£—E)pTs=h.

Since we are free in our choice of £ € pu,2_1 N j1,,—1, we may assume {P = —¢£ in ko
by lifting 07 — 0 to p,2_; with 6 € ky \ k. Under the identification gr!(Ty) =~ ko
we then have

et Lt ey LT CPTY
= = ST AT 4+ g : ¢
S Gt N § Sk St
B Tl T

with £(¢P=1 4 ¢pP=1) (=1 — (PP=D)¢~1 € k. Similarly,

1y = g = Liep1 _ epo-1ygp 4 L1 o epo-)
("= (P = S (¢ = P )+ S (¢P TGP )

with 3(¢P~H = ¢PPD)E, 5 (P 4 (PP Y) € k. Using that (P01 = ¢(*P a
direct computation shows that Ad(¢)(¢éx —y) = 1P - (& —1p) in A'(§/3). Note
that (P~'r € ko ~ gr!(I';) is different from (P~! -1 € § ®j kP, the tensor
product being taken over k.
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By Lemma 1.1 we have ((u) = (P tu and ((uPt!) = uP*!. Together with the
above computations, our results in Corollary 3.17 show that all (I'/Z)/(T1/Z;)-
representations H;(g/3,gr(M)) are finite direct sums of non-trivial characters.
Thus, HZ(F/Z, M) >~ Hz(ﬁ/g, gr(M))(F/Z)/(F1/Z1) =0 for all ¢ > 0.

The reasoning for the cohomology groups is similar. We choose a strict reso-
lution P®* — k%P — 0 by finitely generated, filtered free S-modules P?. The
induced complex gr(P*®) — k%P — 0 is a resolution of k%P by finitely generated
free gr(S)-modules gr(P?). By [16], 1.2.5 and Proposition 1.6.6, the k*P-vector
spaces Homg(P?, M) are filtered by degree. As above, we obtain a spectral
sequence with initial terms

By =~ Extys) (KP, gr(M)) ~ H'(§/3, gr(M))

(cf. [16], III.1.1 Observation 1 and Lemma 1.6.9, as well as our Corollary 3.14).
By [16], Proposition 1.6.7, the filtration of our complex is separated, so that the
EP? -term of the spectral sequence is the graded k*°P-vector space associated
with a certain filtration on Ext (k%P M) ~ H (T, /Z1, M) (cf. [16], TIL.1.1 Re-
mark 3).

Since gr(M) is a finitely generated U(g/3)-module (cf. Theorem 3.16), it follows
from Poincaré duality below that the initial terms of the spectral sequence are
finite dimensional kP-vector spaces almost all of which are zero. Therefore, the
spectral sequence is finitely convergent, i.e. Ef° = EI for some n > 1 and all
i. This implies that H (I'; /Z;, M) admits a filtration whose associated graded
pieces are subquotients of H'(g/3, gr(M)). By the naturality of this construction
under the action of I'/Z, it suffices to show that H*(g/3, gr(M))(/%)/ (/%) =
for all 7 > 0.

Fix an integer ¢ > 0. We recall from [17], Chapter VI, Theorem 6.10, the
construction of the Poincaré duality isomorphism

3
(18) Hy—i(5/3, gr(M) @psen (\(8/3))7) ~ H'(8/3, &x(M)).
It is induced by the k*°P-linear isomorphisms

3—e 3 .

/\ (8/3) ®xser gr(M) @sep (\(@/3))" — Homysep (/\ (3/3), gr(M)),

given by sending § ® m ® € to the linear map (6’ — (6 A ¢’) - m). This explicit
formula shows that the duality isomorphism (18) is I'/Z-equivariant.

Note that the adjoint action of §/3 on (A*(@/3))* is trivial. This can be checked
directly and also follows from the fact that any nilpotent Lie algebra is uni-
modular. On the other hand, our above computations show that { € p,2_4
acts on (A*(/3))* = (k°°P(x Ay Ah))* through the trivial character. Therefore,
Corollary 3.17 implies that H*(g/3,gr(M)) is a finite direct sum of non-trivial
characters of (I'/Z)/(T'1/Z1). This completes the proof. O

We note that the above spectral sequences, relating Lie algebra and group
(co)homology, are also considered in [34], Theorem 5.1.12.
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As pointed out in the introduction, the following result is predicted by Hopkins’
chromatic splitting conjecture. In greater generality, it was first proved by
Shimomura, Yabe and Behrens, using methods from algebraic topology (cf. [1],
Theorem 7.7).

Theorem 3.20. Assume h =2 and K = Q) with p > 3. For any integer i > 0
we have H;y(I', R/6) = H'(T', R/6) = 0. Equivalently, the I'-equivariant inclusion
0 — R induces isomorphisms H;(T',6) ~ H;(T", R) and H'(T,0) ~ H'(T', R) for
alli > 0.

Proof. Tt follows from Corollary 2.5, Proposition 2.8 and [27], Lemma 22.1, that
the homomorphism

R/s — im(R/3) /7 (/o)
n>1

of pseudo-compact A-modules is a topological isomorphism. Since our (co)ho-
mology groups commute with projective limits of pseudo-compact A-modules
(cf. Lemma 3.18 and the remarks preceding it), it suffices to prove the anal-
ogous statement for (R/0)/T7"(R/6), where n is an arbitrary positive inte-
ger. By dévissage, we are further reduced to the analogous statement for
TrY(R/0)/T7(R/6). By Theorem 2.6, T/ ' induces an 6-linear topological
isomorphism
(R/0)/Ti(R/6) — T7' "' (R/8)/T{' (R/0).

By (13) this isomorphism becomes I'-equivariant, if the action on the left is
pulled back via an outer automorphism of T'. Since the (co)homology groups of
T for this twisted action on (R/6)/T1(R/d) are canonically isomorphic to the
original ones, the theorem follows from Theorem 3.19. O

Remark 3.21. If K = Q, with p > 2 and if h = p — 1 then the so-called
Tate-Farrell cohomology of T' with coefficients in R was considered in [33]. In
addition to the fact that the Tate-Farrell cohomology and the continuous group
cohomology agree only in large degrees, our methods are completely different
from those of [33]. In fact, Theorem 3.20 follows from a profound analysis of
the structure of R as a A-module which is not discussed in [loc.cit.].
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