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Abstract. Let G be the group of rational points of a split connected reductive
group over a p-adic local field, and let Γ be a discrete and cocompact subgroup
of G. Motivated by questions on the cohomology of p-adic symmetric spaces, we
investigate the homology of Γ with coefficients in locally analytic principal series
and related representations of G. The vanishing and finiteness results that we
find partially rely on the compactness of certain Banach-Hecke operators. We
also give a new construction of P. Schneider’s reduced Hodge-de Rham spectral
sequence and show that the induced filtration is the Hodge-de Rham filtration.
In a previously unknown case, our vanishing theorems then also imply two other
of P. Schneider’s conjectures.
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0 Introduction

Let p denote a prime number, let L denote a finite extension of the field Qp of
p-adic numbers, and let G denote the group of L-rational points of an L-split
connected reductive group G over L.

If Γ is a discrete subgroup of G such that the quotient space Γ\G is compact,
then the cohomology of representations of Γ has been an area of interest for
many years. One of the most striking results in this direction is a vanishing
theorem of Garland, Casselman, Prasad, Borel and Wallach whose proof relies
on many deep results from the theory of smooth complex representations of G
(cf. [5], Chapter XIII, Proposition 3.7). These methods also play a vital role in
the computation of the de Rham cohomology of p-adic symmetric spaces by P.
Schneider and U. Stuhler (cf. [28], §5).

Starting from the sheaf of differentials, the above computations were later ex-
tended to more general local systems on discrete cocompact quotients of Drin-
feld’s p-adic upper half space by P. Schneider (cf. [26]). One of the main open
problems of [26] is the conjectured degeneration of the so-called reduced Hodge-

1



de Rham spectral sequence which converges to the de Rham cohomology of the
local system. Its initial terms are given by the Γ-cohomology of so-called p-adic
holomorphic discrete series representations of the group G = SLd+1(L). By
dualizing, the determination of these cohomology groups leads to the problem
of computing the Γ-homology of the topologically dual representations. These
are p-adic locally analytic representations of G in the sense of [30], section 3,
whose structure was made explicit by Y. Morita, P. Schneider, J. Teitelbaum
and S. Orlik (cf. [24] and the references therein).

The aim of our article is to study the Γ-homology of locally analytic G-represen-
tations in several important first cases and to apply our results to the above
problems.

To start with, let T and P denote the groups of L-rational points of a maximal
L-split torus T of G and of a Borel subgroup P of G containing T. If K is
a spherically complete non-archimedean valued field containing L then we let
χ : T → K× denote a K-valued locally analytic character of T and denote by
IndGP (χ) the associated locally analytic principal series representation of G over
K (cf. section 2). We first study the homology Hq(Γ, IndGP (χ)) of the abstract
group Γ with coefficients in IndGP (χ).

Denoting by B a suitable Iwahori subgroup of G we consider a certain B-stable
K-Banach subspace A of IndGP (χ) (cf. Lemma 2.1), a variant of which figures
prominently in the theory of p-adic automorphic forms (cf. [13], section 4). The
ring of G-endomorphisms of the compactly induced representation c-IndGB(A)
contains a commuting family of Hecke operators Ut, parametrized by a cer-
tain subset T− of T . As in the theory of smooth representations, we interprete
IndGP (χ) as the specialization of c-IndGB(A) at a suitable Hecke character, assum-
ing G to be semisimple and adjoint (cf. Proposition 2.4). We go much further,
however. Namely, in this case the Hecke algebra in question is freely generated
by a finite set (Utα)α∈∆ of Hecke operators parametrized by the positive simple
roots ∆ of T on the Lie algebra of G with respect to P. We show the Koszul
complex of c-IndGB(A) associated with the family (Utα − χ(tα))α∈∆ to be exact
(cf. Theorem 2.5), thus obtaining an explicit resolution of IndGP (χ) by Γ-acyclic
G-representations.

The Γ-homology of IndGP (χ) is the homology of the complex obtained by passing
to the Γ-coinvariants of the above Koszul complex. It is the Koszul complex
of c-IndGB(A)Γ associated with the operators induced by the endomorphisms
Utα − χ(tα), α ∈ ∆. Our main observation is that c-IndGB(A)Γ naturally is a
K-Banach space and that the operators Utα are K-linear and norm decreasing.
It follows that the endomorphism Utα − χ(tα) is invertible if χ(tα) ∈ K has
negative valuation, leading to our first vanishing theorem (cf. Theorem 3.2).
We note that the arguments leading to its proof are similar to those leading to
[28], §5 Theorem 6.

Now assume χ to be the restriction of a locally analytic K-valued character of
the group M∆\{α} of L-rational points of a maximal proper Levi subgroup of
G containing T. In this case, the bijectivity of the operator Utα − χ(tα) on
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c-IndGB(A)Γ, which implies the vanishing of H•(Γ, IndGP (χ)), can be controlled
much more precisely. Namely, Utα restricts to a compact K-linear endomor-
phism of a certain K-Banach subspace c-IndGB(Aα)Γ of c-IndGB(A)Γ, and the
endomorphism Utα − χ(tα) is bijective on the latter once it is so on the former
(cf. Proposition 3.4 and Lemma 3.6). Since the elements of the spectrum of Utα
on c-IndGB(Aα)Γ form the set of zeros of an entire power series ζΓ,tα,χ(T ) over
K, we obtain that H•(Γ, IndGP (χ)) vanishes in all degrees as along as χ(t−1

α )
avoids a discrete subset of K (cf. Theorem 3.7).

Going back to an arbitrary character χ, a different compactness argument leads
to the very general fact that the Γ-homology of IndGP (χ) is always finite dimen-
sional over K. As a consequence, it is naturally dual to the Γ-cohomology of
the topological dual of IndGP (χ). Further, the Γ-Euler-Poincaré characteristic of
IndGP (χ) is always trivial (cf. Theorem 3.9). We also obtain that the Γ-homology
of IndGP (χ) vanishes in all degrees, once it does in degree 0 or d, where d is the
semisimple rank of G (cf. Theorem 3.10).

For technical reasons, Theorem 3.2, Theorem 3.7, Theorem 3.9 and Theorem
3.10 are formulated for semisimple and adjoint groups, but one can deduce van-
ishing and finiteness criteria for general L-split connected reductive groups by
using Proposition 3.11. We explicitly formulate one such vanishing result in the
case that χ is an integral linear combination of the elements of ∆ with a positive
contribution from at least one positive simple root. In this situation we have
Hq(Γ, IndGP (χ)) = 0 for all q ≥ 0 (cf. Theorem 3.13).

We also show in which way such a vanishing result may fail once the alge-
braic character χ does not satisfy the above positivity condition. If χ = 1

is the trivial character of T , for example, then we show that the inclusion
IndGP (1)∞ ⊂ IndGP (1) of the smooth principal series representation induces an
isomorphism between the respective Γ-homologies (cf. Theorem 3.14). The proof
of this result uses one of our previous vanishing theorems, as well as a resolu-
tion of IndGP (1)∞ by locally analytic principal series representations which was
constructed by M. Strauch and S. Orlik (cf. [25], section 4.9).

Making heavy use of arguments from [28], §5, Theorem 3.14 also shows that the
dimension of the K-vector space Hq(Γ, IndGP (1)) can be expressed in terms of
a constant µ(Γ) which also rules the dimension of the de Rham cohomology of
the quotient of Drinfeld’s upper half space by Γ if G = PGLd+1(L) (cf. [28], §5,
Theorem 5).

We finally broaden our point of view and study the Γ-homology of some of the
locally analytic G-representations appearing in the images of the bifunctors FGPI
of S. Orlik and M. Strauch (cf. [25], section 4). Among these are the Jordan-
Hölder constituents of G-representations which are topologically dual to the
p-adic holomorphic discrete series representations of SLd+1(L). The vanishing
results that we find are recorded in Theorem 3.16 and Corollary 3.17.

In the last section of our article we take up some of P. Schneider’s problems
from [26]. We give an alternative construction of the reduced Hodge-de Rham
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complex which is based on the study of infinitesimal characters (cf. Proposition
4.5, Lemma 4.7 and Proposition 4.8). This approach has the advantage of show-
ing directly that the Hodge-de Rham filtration and the reduced Hodge-de Rham
filtration on the de Rham cohomology of the local system coincide (cf. Theorem
4.9). This was conjectured by P. Schneider in [26], page 648. We also use our
vanishing theorems and results of the second named author on the structure
of the p-adic holomorphic discrete series for SL3(L) to prove the entirety of P.
Schneider’s conjectures in a previously unknown case (cf. Theorem 4.10).

Acknowledgments. The authors would like to thank E. Große-Klönne for draw-
ing their attention to the subject of this article.

Conventions and notation. Let p be a prime number, and let L be a finite
extension of the field Qp of p-adic numbers. We let K|L be an extension of
valued fields such that K is spherically complete. Let val denote the valuations
of L and K, and let oL and oK denote the respective valuation rings. Choosing
a uniformizer π of L, we shall assume val(π) = 1.
If X is an affinoid variety over L then we denote by O(X) the K-affinoid algebra
of rigid functions on the base extension of X from L to K.
If V is a locally convex K-vector space then we denote by V ′ the K-vector space
of continuous K-linear forms on V , endowed with the strong topology.
If H is an algebraic group defined over L then we denote by X∗(H) and X∗(H)
the group of L-rational characters and cocharacters of H, respectively. We
denote by H := H(L) the group of L-rational points of H, endowed with its
natural structure of a locally L-analytic group. We denote by h the Lie algebra
of H and by U(h) the universal enveloping algebra of h⊗L K.
If Γ is an abstract group, if M is an abelian group carrying an action of Γ, and
if q is a non-negative integer, then we denote by Hq(Γ,M) the q-th homology
group of Γ with coefficients in M .

1 The structure of p-adic reductive groups

Let G be an L-split connected reductive group defined over L, and let T be a
maximal L-split torus of G. The natural pairing

〈·, ·〉 : X∗(T)×X∗(T)→ Z

is a perfect duality between finitely generated free abelian groups of the same
rank. We fix a Borel subgroup P of G defined over L which contains T. Let
N denote the unipotent radical of P, let Φ := Φ(G,T) denote the root system
determined by the adjoint action of T on the Lie algebra of G, and let Φ+

(resp. ∆) denote the set of positive (resp. positive simple) roots in Φ with re-
spect to P. We let W := NG(T )/T denote the Weyl group of Φ (cf. [3], §§13–14).

The group T determines an apartment A in the Bruhat-Tits building of G. We
choose a chamber C ⊂ A and a special vertex x0 ∈ C as in [10], section 3.5. The
stabilizer G0 of x0 (resp. the stabilizer B of C) in G is a maximal compact open
subgroup (resp. an Iwahori subgroup) ofG. The subgroup T0 := T∩G0 of T is its
maximal compact open subgroup, and there is an isomorphism T/T0 ' X∗(T)
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which is characterized by the condition that

〈χ, t〉 = val(χ(t)) for all χ ∈ X∗(T) and all t ∈ T/T0.

For any root α ∈ Φ we denote by α̌ ∈ X∗(T) the corresponding coroot. We let

T− := {t ∈ T | val(α(t)) ≤ 0 for all α ∈ Φ+}

be the inverse image under T → T/T0 ' X∗(T) of the monoid X∗(T)− of
antidominant cocharacters of T. If the group G is semisimple and adjoint, i.e.
if X∗(T) is generated by Φ, then the fundamental antidominant weights of the
root system Φ̌ are in fact cocharacters of T. Thus, if G is semisimple and adjoint
there are elements tα, α ∈ ∆, such that

val(β(tα)) = −δαβ for all α, β ∈ ∆.

We may and will even assume that tα ∈
⋂
β∈∆\{α} ker(β). Namely, since G is

adjoint, the positive simple roots form a basis of the Z-module X∗(T). There-
fore, the map T →

∏
β∈∆ L×, t 7→ (β(t))β∈∆, is an isomorphism (cf. the proof

of [3], Proposition 8.5). If π ∈ L is a uniformizer, then we may choose for tα the
inverse image of the family which has π−1 in component α and 1 everywhere
else. We also note that in this case X∗(T)− is the free abelian monoid gener-
ated by the fundamental antidominant cocharacters. In particular, any element
t ∈ T− can be written uniquely as t = t0

∏
α∈∆ tnαα with t0 ∈ T0 and suitable

integers nα ≥ 0.

If χ and χ̃ are abstract weights of the root system Φ then we shall write χ ≥ χ̃
if and only if the weight χ − χ̃ is a non-negative (rational) linear combination
of the elements of ∆.

For any root α ∈ Φ we denote by Nα ⊂ G the corresponding root subgroup and
choose isomorphisms φα : Ga → Nα over L such that

(1) tφα(x)t−1 = φα(α(t)x) for all t ∈ T and x ∈ Ga,

where Ga denotes the one dimensional additive group over L (cf. [19], Theorem
26.3).

Let I be a subset of ∆. We denote by PI the corresponding standard parabolic
subgroup of G and by NI its unipotent radical (cf. [3], Proposition 14.18). In
particular, we have P∅ = P and N∅ = N. Denote by w0 ∈W the longest element
of the Weyl group with respect to the length function determined by ∆, and let
PI be the parabolic subgroup of G containing T which is opposite to PI . Let NI
denote the unipotent radical of PI . Let Φ(I)+ (resp. Φ(I)−) denote the set of
positive (resp. of negative) roots in Φ whose expressions as linear combinations
of the elements in ∆ have a non-zero contribution from at least one element in
∆ \ I. Any ordering of Φ(I)± induces isomorphisms

(2)
∏

α∈Φ(I)+

Nα
'−→ NI and

∏
α∈Φ(I)−

Nα
'−→ NI
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of algebraic varieties over L. There are induced isomorphisms of locally L-
analytic manifolds

(3)
∏

α∈Φ(I)+

(B ∩Nα) '−→ (B ∩NI) and
∏

α∈Φ(I)−

(B ∩Nα) '−→ (B ∩N I).

Further, for any α ∈ Φ there is an integer nα such that

(4) φ−1
α (B ∩Nα) = {x ∈ L | val(x) ≥ nα}.

If MI denotes the Levi subgroup of PI containing T then the Iwahori decompo-
sition of B is the assertion that the multiplication map

(5) (B ∩N I)× (B ∩MI)× (B ∩NI)
'−→ B

is bijective and hence is an isomorphism of locally L-analytic manifolds. Further,

(6) t(B ∩N)t−1 ⊆ B ∩N and t−1(B ∩ P )t ⊆ B ∩ P

for all t ∈ T−. We shall also need the fact that

B ∩ P = G0 ∩ P

(cf. [10], section 3.5, for the fact that B ∩ T = G0 ∩ T = T0; using that
G0 ∩ P = (G0 ∩ T ) · (G0 ∩ N), the missing equality G0 ∩ N = B ∩ N can
be deduced by constructing G0 as the group of oL-rational points of a reductive
group scheme Gx0 over oL and B as the inverse image in G0 of a suitable Borel
subgroup of the special fibre of Gx0 ; cf. [34], sections 3.4 and 3.7).

According to [12], Proposition 1.4.4, or [14], Proposition 4.1.6, the group B = B0

admits a family (Bn)n≥0 of open normal subgroups which form a fundamental
system of neighborhoods of the identity and which satisfy analogs of (3), (4), (5)
and (6). This can be seen by constructing Bn as in the proof of [12], Proposition
1.4.4, i.e. as the kernel of the homomorphism G0 → Gx0(oL/πnoL) for n ≥ 1.
We note that if H denotes any of the groups G, N I , MI or NI then Bn∩H may
also be viewed as the group of L-rational points of an affinoid group scheme
over L. Therefore, it makes sense to talk about the affinoid algebra of rigid K-
analytic functions on the corresponding base change from L to K. The inclusion
Bn ∩H ⊆ Bn (resp. Bn ∩H ⊆ B ∩H) is induced from a closed (resp. an open)
immersion of rigid analytic spaces.

Example 1.1. Let G := PGLd+1 for some integer d ≥ 1. It is the quotient
of G̃ := GLd+1 by its connected center, hence is semisimple. Let P and T be
the images in G of the subgroups of G̃ consisting of all upper triangular and all
diagonal matrices, respectively. Then N is the image in G of the subgroup of all
upper triangular unipotent matrices in G̃. The root system Φ = Φ(G,T) is iso-
morphic to the root system Ad, and the positive simple roots ∆ = {α1, . . . , αd}
of T with respect to P are given by

αi(diag(t1, . . . , td+1)) =
ti
ti+1

.

It is easy to see that ∆ spans the character group X∗(T) and hence that G is
adjoint. For each index 1 ≤ i ≤ d we might choose for tαi ∈ T− the image in G
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of the element diag(1, . . . , 1, π, . . . , π) ∈ G̃ with the leftmost π in the (i+ 1)-th
place. For G0 we may choose the image in G of GLd+1(oL). For B we may
choose the image in G of the subgroup of GLd+1(oL) consisting of all matrices
which are upper triangular modulo πoL. If n ≥ 1 is an integer then we may
choose for Bn the image in G of the subgroup of GLd+1(oL) consisting of all
matrices reducing to the identity modulo πnoL.

In the remainder of this section we are going to list analogs of several technical
results of [28], §4. Using the structure theory above, the proofs for G = GLd+1,
given in [28], §4, all carry over to our more general situation by replacing
GLn(oL) by the subgroup G0 of G. We would like to point out that similar
generalizations have already been considered by Y. Aı̈t-Amrane (cf. [2], section
3).

Proposition 1.2. If b, b̃ ∈ G0 and t ∈ T− are elements with btBP ∩ b̃tBP 6= ∅
then btBP = b̃tBP , btB = b̃tB and bB = b̃B.

Proof: Assuming b̃ = 1 one deduces as in [28], §4 Proposition 7, that there is
an element b′ ∈ t(B ∩N)t−1 such that b−1b′ ∈ B ∩ P and btBP = b′tBP . This
implies

btBP = b′t(B ∩N)t−1P = t(B ∩N)t−1P = tBP.

Further, t−1(b′)−1bt ∈ B ∩ P and t−1b′t ∈ B ∩N , so that

btB = t(t−1b′t)(t−1(b′)−1bt)B = tB.

That b ∈ B (and hence that bB = B) is shown in [loc.cit.]. �

Lemma 1.3. If t, t̃ ∈ T− then BtB · Bt̃B = Btt̃B. More precisely, if x (resp.
x̃) runs through a system of coset representatives of (B∩N)/t(B∩N)t−1 (resp.
of (B ∩N)/t̃(B ∩N)t̃−1) then Btt̃B is the disjoint union of the sets xtx̃t̃B.

Proof: This can be shown as in [28], §4 Lemma 10. �

Lemma 1.4. The group G is the disjoint union of the double cosets G0tB with
t ∈ T/T0. For any g ∈ G there is an element t ∈ T− such that gBtB ⊆ G0T

−B.

Proof: The first assertion is a direct consequence of the Bruhat-Tits decompo-
sition of G (cf. [10], section 3.5). Concerning the second assertion, the proof of
[28], §4 Lemma 12, was generalized in [18], Lemma 2.20. �

2 The Koszul complex

The theory of locally analytic representations of p-adic Lie groups on locally
convex K-vector spaces was systematically developed by P. Schneider and J.
Teitelbaum (cf. [30] and [31], for example).

Let χ : T → K× be a locally analytic K-valued character of T , viewed as a
character of P via P → P/N ' T , and let

IndGP (χ) := {f ∈ Can(G,K) | ∀g ∈ G ∀p ∈ P : f(gp) = χ(p)−1f(g)}

be the locally analytic principal series representation of G associated with χ.
Here Can(G,K) denotes the locally convex K-vector space of all locally analytic
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K-valued functions of G. The group G acts on IndGP (χ) by left translation, i.e.
we have (gf)(g′) = f(g−1g′) for all g, g′ ∈ G and all f ∈ IndGP (χ).

If C is an open P -right invariant subset of G, we let IndGP (χ)(C) denote the
subspace of IndGP (χ) consisting of all functions whose support is contained in
C. Since the product map (B ∩N)× P → BP is an isomorphism of locally L-
analytic manifolds onto an open and closed subset of G, restriction of functions
to B and further to B ∩N induces K-linear isomorphisms

(7) IndGP (χ)(BP ) '−→ IndBB∩P (χ) '−→ Can(B ∩N,K),

the first of which is B-equivariant. We choose a sufficiently large non-negative
integer n such that the restriction of χ to any of the cosets in (B ∩P )/(Bn ∩P )
is rigid analytic. We denote by A ⊆ IndGP (χ) the inverse image under (7) of the
subspace of Can(B ∩ N,K) consisting of all functions which are rigid analytic
on any coset in (B ∩N)/(Bn ∩N).

Lemma 2.1. The space A coincides with the subspace of IndBB∩P (χ) consisting
of all functions which are rigid analytic on any coset in B/Bn. In particular,
A is a B-stable subspace of IndGP (χ).

Proof: It is clear that any function in IndBB∩P (χ) which is rigid analytic on any
coset in B/Bn is contained in A, i.e. that its restriction to B∩N is rigid analytic
on any coset in (B ∩N)/(Bn ∩N).

Conversely, given F ∈ A and b ∈ B we need to see that the function F is rigid
analytic on bBn. Writing b = np with n ∈ B ∩ N and p ∈ B ∩ P , we have
bBn = n(Bn ∩N)(Bn ∩ P )p by the Iwahori decomposition of Bn and since Bn
is normal in B. Now conjugation by p is a rigid analytic automorphism of Bn,
and the projections Bn → Bn ∩N and Bn → Bn ∩P are rigid analytic, as well.
Since F (nñp̃p) = χ(p−1p̃−1)F (nñ) for all ñ ∈ Bn ∩N and all p̃ ∈ Bn ∩ P , the
claim follows from the properties of F and χ.

The final assertion follows from the fact that, given b ∈ B, left multiplication by
b−1 is a rigid analytic automorphism of the variety B and permutes the cosets
in B/Bn. �

We denote by c-IndGB(A) the K-vector space of all compactly supported func-
tions f : G → A satisfying f(gb) = b−1f(g) for all g ∈ G and b ∈ B. Given
g ∈ G and F ∈ A, we denote by [g, F ] the element of c-IndGB(A) which is
uniquely determined by the conditions

supp([g, F ]) = gB and [g, F ](g) = F.

Note that G acts on c-IndGB(A) through left translation, and that the map
A → c-IndGB(A), F 7→ [1, F ], is aB-equivariantK-linear injection. By Frobenius
reciprocity it induces a K-linear isomorphism

HomG(c-IndGB(A),W ) ' HomB(A,W )

for any K-linear G-representation W (the proof of [9], Proposition 2.5, carries
over without any changes). Specializing to the case W = c-IndGB(A), the ring
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of K-linear G-endomorphisms of c-IndGB(A) can be identified with the K-vector
space of all B-biequivariant functions Ψ : G → EndK(A) such that for any
element F ∈ A the function (g 7→ Ψ(g)(F )) : G → A is compactly supported.
The condition of B-biequivariance means that

Ψ(b1gb2) = b1 ◦Ψ(g) ◦ b2 in EndK(A)

for all g ∈ G and all b1, b2 ∈ B. To such a function Ψ one associates the element
(F 7→

∑
g∈G/B [g,Ψ(g−1)(F )]) of HomB(A, c-IndGB(A)). An inverse of this con-

struction is given by associating with Φ ∈ HomB(A, c-IndGB(A)) the function Ψ
satisfying Ψ(g)(F ) := Φ(F )(g−1).

Given t ∈ T−, consider the K-linear endomorphism ψt of IndBB∩P (χ) determined
by

ψt(F )(b) = F (tbt−1) for b ∈ B ∩N

(cf. (7)). According to (1), (3) and (4), the subset t(Bn ∩N)t−1 of Bn ∩N can
be viewed as the set of L-rational points of an affinoid subdomain. If F is rigid
analytic on any coset modulo (Bn ∩ N) and if b ∈ B ∩ N then F is also rigid
analytic on the affinoid subdomain

tb(Bn ∩N)t−1 = tbt−1 · t(Bn ∩N)t−1 ⊆ tbt−1(Bn ∩N).

One deduces that ψt restricts to an element of EndK(A), denoted by ψt again.

Lemma 2.2. There is a unique B-biequivariant function Ψt : G → EndK(A)
with supp(Ψt) = Bt−1B and Ψt(t−1) = ψt.

Proof: The uniqueness assertion is clear. As for the existence of Ψt, we have
to show that if b ∈ B ∩ t−1Bt then b ◦ ψt = ψt ◦ tbt−1 in EndK(A). We are
going to show the analogous assertion in EndK(IndBB∩P (χ)). Note that under
the first B-equivariant isomorphism in (7), ψt is given by ψt(F )(g) = F (tgt−1)
for all F ∈ IndGP (χ)(BP ) and all g ∈ BP because χ(tpt−1) = χ(p) for all p ∈ P .
Thus, we can compute

(b ◦ ψt)(F )(g) = ψt(F )(b−1g) = F (tb−1gt−1) and
(ψt ◦ tbt−1)(F )(g) = (tbt−1F )(tgt−1) = F (tb−1t−1tgt−1) = F (tb−1gt−1)

for all g ∈ BP . �

Given t ∈ T− we denote by Ut the unique K-linear and G-equivariant endomor-
phism of c-IndGB(A) corresponding to the function Ψt of Lemma 2.2. It follows
from (5) and (6) that the natural maps

(B ∩N)/t(B ∩N)t−1 −→ B/(B ∩ tBt−1) −→ BtB/B

are bijective. Therefore, if F ∈ A and g ∈ G, then Ut is given by

Ut([g, F ]) =
∑

x∈(B∩N)/t(B∩N)t−1

[gxt, ψt(x−1F )](8)

=
∑

BtB=
‘
x xtB

[gxt, ψt(x−1F )].

9



Lemma 2.3. If t, t̃ ∈ T− then UtUt̃ = Ut̃t. In particular, the G-endomorphisms
Ut and Ut̃ of c-IndGB(A) commute with each other.

Proof: Letting x and x̃ run through systems of representatives of the coset
spaces (B ∩N)/t(B ∩N)t−1 and (B ∩N)/t̃(B ∩N)t̃−1, respectively, we have

(UtUt̃)([g, F ]) =
∑
x,x̃

[gx̃t̃xt, ψt(x−1ψt̃(x̃
−1F ))] and

Ut̃t([g, F ]) =
∑
x,x̃

[gx̃(t̃xt̃−1)t̃t, ψt̃t(t̃x
−1t̃−1x̃−1F )]

for all g ∈ G and F ∈ A (cf. Lemma 1.3 and (8)). Therefore, it suffices to check
that ψt(x−1ψt̃(x̃

−1F )) = ψt̃t(t̃x
−1t̃−1x̃−1F ) for all x, x̃. Given b ∈ B ∩ N we

have

ψt(x−1ψt̃(x̃
−1F ))(b) = (x−1ψt̃(x̃

−1F ))(tbt−1) = ψt̃(x̃
−1F )(xtbt−1)

= (x̃−1F )(t̃xtbt−1t̃−1) = F (x̃t̃xtbt−1t̃−1) and
ψt̃t(t̃x

−1t̃−1x̃−1F )(b) = (t̃x−1t̃−1x̃−1F )(t̃tbt−1t̃−1) = F (x̃t̃xt̃−1t̃tbt−1t̃−1)
= F (x̃t̃xtbt−1t̃−1). �

In smooth representation theory the interpretation of a parabolically induced
representation as the specialization at a Hecke character of a representation
which is induced from an Iwahori subgroup, is a well-established technique (cf.
[28], §4, or [18], section 3). As we shall show, it admits an analog in the
locally analytic setting. Note that by Frobenius reciprocity there is a unique
G-equivariant K-linear map

(9) ϕ : c-IndGB(A) −→ IndGP (χ)

such that ϕ([g, F ]) = gF for all g ∈ G and F ∈ A. Assuming the group G to
be semisimple and adjoint, we fix once and for all representatives tα ∈ T− of
the fundamental antidominant cocharacters in X∗(T) satisfying β(tα) = 1 for
all α ∈ ∆ and all β ∈ ∆ \ {α} (cf. section 1). For α ∈ ∆ we set

(10) yα := Utα − χ(tα) ∈ EndG(c-IndGB(A)).

Proposition 2.4. Assume G to be semisimple and adjoint. The G-equivariant
homomorphism ϕ of (9) is surjective with kernel

∑
α∈∆ im(yα).

Proof: We are going to closely follow the arguments of the proof of [28], §4
Proposition 11. For the surjectivity of ϕ it suffices to see that the image of ϕ
contains IndGP (χ)(BP ) because G =

∐
w∈W BwBP and thus

IndGP (χ) =
∑
w∈W

Bw · IndGP (χ)(BP ).

Setting t :=
∏
α∈∆ tα the sets tm(Bn ∩ N)P , m ≥ 0, form a fundamental sys-

tem of open neighborhoods of P in G/P (cf. (1) and (4), and use the fact that
val(β(t)) > 0 for all negative roots β). Given f ∈ IndGP (χ)(BP ) ' Can(B∩N,K)
there is an integer m ≥ 0 such that the restriction of f to any of the finitely many
sets btm(Bn ∩N)t−m with b ∈ (B ∩N)/tm(Bn ∩N)t−m is rigid analytic. Thus,
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it suffices to see that the image of ϕ contains the subspace O(tm(Bn∩N)t−m) of
Can(B ∩N,K) for any m ≥ 0. However, given G ∈ O(tm(Bn ∩N)t−m) we have
F := χ(t)mt−mG ∈ O(Bn ∩N) ⊆ A ⊂ im(ϕ) and therefore G = χ(t)−mtmF ∈
im(ϕ).

To see that
∑
α∈∆ im(yα) ⊆ ker(ϕ) fix α ∈ ∆ and let x run through a system of

coset representatives of B/(B ∩ tαBt−1
α ). According to (5), (6) and Proposition

1.2 we have
BP = BtαBP =

∐
x

xtαBP.

Given f ∈ A we have ϕ(Utα([1, F ])) =
∑
x xtαψtα(x−1F ), where xtαψtα(x−1F )

has support in xtαBP . Since further

(xtαψtα(x−1F ))(xtαb) = F (xtαbt−1
α ) = χ(tα)F (xtαb)

for all b ∈ B ∩ N , we obtain ϕ(Utα([1, F ])) = χ(tα)F . This proves the claim
because the functions [1, F ] with F ∈ A generate c-IndGB(A) as a G-module.

Now set V :=
∑
α∈∆ im(yα) and let g ∈ G and F ∈ A. If t̃ ∈ T−, α ∈ ∆ and

b ∈ B, then

[bt̃, F ] = (χ(tα)− Utα)([bt̃, χ(tα)−1F ]) + Utα([bt̃, χ(tα)−1F ])

is contained in c-IndGB(A)(Bt̃tαB) +V (cf. Lemma 1.3 and (8)). Using that any
element of T− can be written as t0

∏
α∈∆ tnαα with t0 ∈ T0 and suitable integers

nα ≥ 0, we inductively obtain [1, F ] ∈ c-IndGB(A)(Bt̃B) + V for all t̃ ∈ T−.
Lemma 1.4 then implies that

[g, F ] ∈ c-IndGB(A)(G0T
−B) + V

for all g ∈ G and F ∈ A. Given t1 ∈ T− there is an element t2 ∈ T− such that
t1t2 = tn for some integer n ≥ 0. One shows as above that if [g, F ] is supported
on G0t1B then

(11) [g, F ] ∈ c-IndGB(A)(G0t1t2B) + V = c-IndGB(A)(G0t
nB) + V.

Now let f ∈ ker(ϕ). If f =
∑
i[gi, Fi], the above arguments show that there is

an integer n ≥ 0 such that [gi, Fi] ∈ c-IndGB(A)(G0t
nB) + V for each i. As a

consequence, there is an element f̃ ∈ c-IndGB(A)(G0t
nB) such that f − f̃ ∈ V .

Since V ⊆ ker(ϕ), we have f̃ ∈ ker(ϕ), and it suffices to see that f̃ = 0. Writing
supp(f̃) =

∐
i git

nB with gi ∈ G0, there are elements Fi ∈ A such that f̃ =∑
i[git

n, Fi]. Now 0 = ϕ(f̃) =
∑
i git

nFi. Since supp(ϕ([gitn, Fi])) ⊆ git
nBP

and since the subsets (gitnBP )i of G are pairwise disjoint (cf. Proposition 1.2)
we must have Fi = 0 for all i. Thus, f̃ = 0. �

We continue to assume G to be semisimple and adjoint. The G-representation
c-IndGB(A) is a module over the polynomial ring

R := K[Xα | α ∈ ∆]

by letting Xα act via the endomorphism Utα (cf. Lemma 2.3). Choose a basis
(eα)α∈∆ of the K-vector space K∆ and denote by

∧•
K∆ the exterior algebra
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of K∆. Recall [7], X.9.4, that the Koszul complex of c-IndGB(A) defined by the
endomorphisms (yα)α∈∆ of (10) is the complex ((

∧•
K∆) ⊗K c-IndGB(A), d•)

with

(12) dq(eα1 ∧ . . . ∧ eαq ⊗ f) =
q∑
i=1

(−1)i+1eα1 ∧ . . . ∧ êαi ∧ . . . ∧ eαq ⊗ yαi(f).

It is concentrated in degrees 0 ≤ q ≤ |∆|, and the boundary maps dq are all
K-linear and G-equivariant if we let G act diagonally on (

∧•
K∆)⊗K c-IndGB(A)

with its given action on c-IndGB(A) and the trivial action on
∧•

K∆.

Note that the 0-th homology of this complex is c-IndGB(A)/
∑
α∈∆ im(yα) which,

by Proposition 2.4, is G-equivariantly isomorphic to IndGP (χ).

Theorem 2.5. Assume G to be semisimple and adjoint. The augmented G-
equivariant complex

(
•∧
K∆)⊗K c-IndGB(A) −→ IndGP (χ) −→ 0,

with augmentation (9) and boundary maps (12), is exact.

Proof: The assignment Xα 7→ Xα − χ(tα), α ∈ ∆, defines an automorphism
of the ring R so that the sequence (Xα − χ(tα))α∈∆ is a regular sequence of R
in any ordering of its elements. By the remark following [7], X.9.1, Corollaire
2, the homology of the above Koszul complex is TorR• (R/m, c-IndGB(A)), where
m denotes the ideal of R generated by the elements Xα − χ(tα), α ∈ ∆. By
Proposition 2.4 we need to see that these torsion groups vanish in all positive
degrees.

Since χ(tα) ∈ K× for all α ∈ ∆, the reduction map R → R/m extends to a
homomorphism S := K[X±1

α | α ∈ ∆] → R/m of R-algebras, and there are
natural isomorphisms

(13) TorRq (R/m, c-IndGB(A)) ' TorSq (R/m, S ⊗R c-IndGB(A))

for all q ≥ 0 because S is flat over R (cf. [7], X.6.6, Proposition 8). Set

G− :=
⋃
t∈T−

G0tB and M := c-IndGB(A)(G−).

Note that by Lemma 1.3 and (8) the K-subspace M of c-IndGB(A) is in fact an
R-submodule. Consider the induced injection

S ⊗RM −→ S ⊗R c-IndGB(A).

According to Lemma 1.3 and Lemma 1.4, given F ∈ A and g ∈ G, we can find
a monomial X :=

∏
α∈∆Xnα

α ∈ R such that X · [g, F ] = (
∏
α∈∆ Unαtα )([g, F ])

lies in M . It follows that the above inclusion is an isomorphism. By (13) and
the corresponding isomorphism for M , the inclusion M ⊂ c-IndGB(A) induces
isomorphisms

TorRq (R/m,M) ' TorRq (R/m, c-IndGB(A))
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for all q ≥ 0. As above, the left hand side is the homology of the Koszul com-
plex (

∧•
K∆)⊗KM defined by the endomorphisms yα of M , α ∈ ∆. Therefore,

the assertion of the theorem is a consequence of [7], X.9.6, Proposition 5, and
Theorem 2.6 below. �

We set d := |∆| and fix an arbitrary ordering ∆ = {α1, . . . , αd} of ∆. We con-
tinue to assume G to be semisimple and adjoint and note that in this situation

G− =
∐
k∈N

G−k where G−k :=
∐
m∈Nd
|m|=k

G0t
m1
α1
· . . . · tmdαd B.

This leads to a non-negative grading M = c-IndGB(A)(G−) =
⊕

k∈N Mk of M
where Mk := c-IndGB(A)(G−k ) is the subspace of M consisting of all functions
whose support is contained in the closed and open subset Gk of G−. We also
endow R = K[Xα1 , . . . , Xαd ] with its natural grading in which each Xαj is of
degree 1. We note that by Lemma 1.3 and (8) these definitions make M a
graded R-module. Given an element f ∈M we write

f =
∑
k≥0

fk with fk ∈Mk for any integer k ≥ 0

for its decomposition into homogeneous components, almost all of which are
zero. In order to ease our notation let us set Uj := Utαj for all 1 ≤ j ≤ d.

Theorem 2.6. Setting yj := Uj − χ(tαj ), the sequence (y1, . . . , yd) is regu-
lar for M := c-IndGB(A)(G−), i.e. if 1 ≤ j ≤ d then the endomorphism of
M/

∑j−1
i=1 im(yi), induced by yj, is injective.

Proof: Assume f ∈ M to satisfy yj(f) = 0 for some index j and write f =∑
k≥0 fk as the sum of its homogeneous components. As the endomorphisms

Uj and χ(tαj ) ∈ K× of M are graded of degree 1 and 0, respectively, we obtain
f0 = 0 and then f = 0 by induction. Therefore, yj is injective.

Now assume f, f1, . . . , f j−1 to be elements of M such that yj(f) =
∑j−1
i=1 yi(f

i).
We need to show that f ∈

∑j−1
i=1 im(yi). Consider the K-vector space

M̂ := IndGB(A)(G−) := {f : G− → A | ∀g ∈ G− ∀b ∈ B : f(gb) = b−1f(g)}.

We have M = ⊕k≥0Mk ⊆ M̂ =
∏
k≥0Mk, and the K[Xα | α ∈ ∆]-module

structure on M naturally extends to a K[[Xα | α ∈ ∆]]-module structure on
M̂ . Namely, given a power series φ =

∑
n∈Nd λnX

n1
α1
· · ·Xnd

αd
and an element

f =
∑∞
k=0 fk ∈ M̂ with fk ∈Mk for all k ≥ 0, we set φ · f :=

∑∞
k=0 gk with

gk :=
k∑
i=0

∑
n∈Nd

n1+...+nd=k−i

λn(Un1
1 ◦ . . . ◦ U

nd
d )(fi),

using that the endomorphisms Ui of M are all of degree 1.
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For any index 1 ≤ i ≤ j − 1 consider the element

gi := −
∞∑
k=0

χ(tαj )
−(k+1)Ukj (f i) ∈ M̂.

A formal computation shows that f =
∑j−1
i=1 yi(g

i) in M̂ . For any integer r ≥ 0
let Vr be the closed and open subset of G− defined by

Vr :=
∐
m∈Nd
mj=r

G0t
m1
α1
· . . . · tmdαd B,

so that G− =
∐
r≥0 Vr. Any element g ∈ M̂ can be uniquely written as

g =
∑∞
r=0 g

(r) with g(r) ∈ M̂ and supp(g(r)) ⊆ Vr. Note that if g ∈ M̂ is
supported in Vr (i.e. if g = g(r)) then so is yi(g) for any i 6= j (cf. Lemma 1.3
and (8)). Consequently, if i 6= j and if g ∈ M̂ is an arbitrary element, then
yi(g)(r) = yi(g(r)).

Since f is compactly supported there is an integer s ≥ 0 such that f (r) = 0 for
all r ≥ s. It follows that

0 =
∑
r≥s

f (r) =
∑
r≥s

(
j−1∑
i=1

yi(gi))(r) =
∑
r≥s

j−1∑
i=1

yi(gi)(r)

=
∑
r≥s

j−1∑
i=1

yi(gi,(r)) =
j−1∑
i=1

yi(
∑
r≥s

gi,(r)),

where we used the obvious relation (g1 +g2)(r) = g
(r)
1 +g(r)

2 for any two elements
g1, g2 ∈ M̂ . Thus, f =

∑j−1
i=1 yi(

∑
r<s g

i,(r)), and it suffices to show that the
elements

∑
r<s g

i,(r) are compactly supported and therefore lie in M . Now for
any integer r ≥ 0 we have

gi,(r) = (−
∞∑
k=0

χ(tαj )
−(k+1)Ukj (f i))(r)

= (−
∑
k≤r

χ(tαj )
−(k+1)Ukj (f i))(r) + (−

∑
k>r

χ(tαj )
−(k+1)Ukj (f i))(r),

where supp(−
∑
k>r χ(tαj )

−(k+1)Ukj (f i)) ⊆
∐
k>r Vk by Lemma 1.3 and (8).

Therefore, the right summand above is zero. On the other hand, the function
−
∑
k≤r χ(tαj )

−(k+1)Ukj (f i) is compactly supported, and so is its (r)-component.
Indeed, the latter is obtained by restricting to Vr and by extending by zero to
all of G−. �

Remark 2.7. The K-Banach space A is a B-subrepresentation of the locally
analytic B-representation IndBB∩P (χ), and the K-linear endomorphism ψt of A
is constructed as the restriction of a K-linear endomorphism of IndBB∩P (χ). The
proof of Lemma 2.2 shows that likewise the G-endomorphism Ut of c-IndGB(A)
is in fact the restriction of a G-endomorphism of c-IndGB(IndBB∩P (χ)). As above,
one can therefore construct a G-equivariant complex

(14) (
•∧
K∆)⊗K c-IndGB(IndBB∩P (χ)) −→ IndGP (χ) −→ 0,

14



which is independent of the choice of n and hence ofA. The proofs of Proposition
2.4, Theorem 2.5 and Theorem 2.6 can all be copied word by word to show that
the augmented complex (14) is exact, as well. As we shall see, both (12) and (14)
provide resolutions of the G-representation IndGP (χ) which are acyclic for any
discrete cocompact subgroup Γ of G. Working with the K-Banach space A has
the great advantage, however, of leading to rather simple criteria concerning
the Γ-acyclicity of IndGP (χ). This is why we have chosen to present the less
canonical construction involving A.

Although we shall not need it in the sequel, we would like to record the following
result.

Lemma 2.8. Assume G to be semisimple and adjoint.

(i) The family (Utα)α∈∆ of G-endomorphisms of c-IndGB(A) is algebraically
independent over K, i.e. the ring homomorphism K[Xα | α ∈ ∆] →
EndG(c-IndGB(A)), sending the formal variable Xα to Utα , is injective. Its
image is the K-subalgebra generated by the family Ut, t ∈ T−.

(ii) Assume the restriction of χ to B ∩ P to be rigid analytic, and let α ∈ ∆.
Choosing n = 0 in the definition of A, the endomorphism Utα of M :=
c-IndGB(A)(G−) is injective.

Proof: Choose a non-zero element F ∈ K ⊆ O(B∩N) ⊆ A. It has the property
that ψt(x−1F ) 6= 0 for all t ∈ T− and all x ∈ B ∩ N . Given m,n ∈ Nd with
m 6= n, we have Btm1

α1
· . . . ·tmdαd B∩Bt

n1
α1
· . . . ·tndαdB = ∅. Thus, if f is a polynomial

in the variables Xα such that f(Utα1
, . . . , Utαd ) = 0 then evaluation at [1, F ]

implies f = 0 by Lemma 2.3 and (8). This proves the first assertion of (i). The
second assertion follows from Lemma 2.3 and the fact that T− is generated by
the elements tα, α ∈ ∆, and t ∈ T0 (note that Ut = χ(t) if t ∈ T0).

As for (ii), let α ∈ ∆ and set U := Utα . If f is an element of M such that
U(f) = 0 then U(fk) = 0 for any k. Therefore, we may assume f to be
homogeneous. By Lemma 1.3 and the first assertion of Lemma 1.4 we may even
assume f to be supported on a single double coset G0tB for some t ∈ T−. Write
G0tB =

∐
y yBtB with y ∈ G0 and choose elements fy ∈ c-IndGB(A)(yBtB)

such that f =
∑
y f

y. We have supp(U(f)) ⊆ ∪yyBttαB, where the union is
disjoint by Proposition 1.2. Since supp(U(fy)) ⊆ yBttαB, we obtain U(fy) = 0
for all y and may, without loss of generality, assume supp(f) ⊆ BtB for some
t ∈ T−. Let x run through a set of coset representatives of (B∩N)/t(B∩N)t−1,
so that BtB =

∐
x xtB. Choosing elements Fx ∈ A with f =

∑
x[xt, Fx], we

have supp(U([xt, Fx])) ⊆ xtBtαB, where xtBtαB ∩ x̃tBtαB = ∅ for x 6= x̃
(cf. Lemma 1.3). This implies U([xt, Fx]) = 0 for all x, and we may assume
f = [1, F ] for some F ∈ A. However,

0 = U([1, F ]) =
∑

BtαB=
‘
x xtαB

[xtα, ψtα(x−1F )]

implies ψtα(x−1F ) = 0 and thus F = 0 by the injectivity of ψtα : O(B ∩N)→
O(B ∩N). Note that it is only for the injectivity of ψtα that we need n = 0.�
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3 Vanishing and finiteness theorems

Let G again be an arbitrary L-split connected reductive group defined over L.
We endow A with the topology of a K-Banach space via the isomorphism

A '
∏

b∈(B∩N)/(Bn∩N)

O(b(Bn ∩N)),

where the reduced K-affinoid algebras O(b(Bn ∩N)) carry their spectral norms
|| · ||. We endow c-IndGB(A) with the topology defined by the corresponding
maximum norm, denoted by || · || again, i.e. ||f || := supg∈G ||f(g)||. The action
of G on c-IndGB(A) is then by K-linear isometries.

Let Γ be a discrete and cocompact subgroup of G (i.e. Γ is discrete and the
quotient Γ\G is compact). We endow the K-vector space

H0(Γ, c-IndGB(A)) = c-IndGB(A)Γ

of Γ-coinvariants of c-IndGB(A) with the quotient topology of c-IndGB(A). It is de-
fined by the quotient seminorm coming from the maximum norm on c-IndGB(A).
Note that if t ∈ T− then the G-endomorphism Ut of c-IndGB(A), defined in sec-
tion 2, gives rise to a K-linear endomorphism of c-IndGB(A)Γ. We again denote
it by Ut.

Proposition 3.1. Let Γ be a discrete and cocompact subgroup of G. The quo-
tient topology makes c-IndGB(A)Γ a K-Banach space. If t ∈ T− then the K-
linear endomorphism Ut of c-IndGB(A) is continuous. The operator norm of Ut
on c-IndGB(A)Γ with respect to the quotient norm is bounded above by 1.

Proof: According to the arguments given in [5], page 237, Γ possesses a normal
and torsion free subgroup Γ′ of finite index. The group Γ′ acts freely on G/B,
and the set Γ′\G/B is finite. Choosing a set of double coset representatives
{g1, . . . , gr} of the latter, the complete subspace c-IndGB(A)(∪igiB) of c-IndGB(A)
admits the closed complement c-IndGB(A)(G \ ∪igiB) and maps isomorphically
onto c-IndGB(A)Γ′ . Therefore, the quotient topology makes c-IndGB(A)Γ′ a K-
Banach space on which the finite group Γ/Γ′ acts by continuous K-linear en-
domorphisms. The closed subspace of Γ/Γ′-invariants is the image of the con-
tinuous K-linear endomorphism

∑
γ∈Γ/Γ′ γ and maps isomorphically onto the

space c-IndGB(A)Γ. Therefore, the latter is a K-Banach space, as well.

Using (8) it is easy to see that the maximum norm on c-IndGB(A) makes Ut a
continuous endomorphism whose operator norm is bounded above by 1. Note
that the translation action of B on A is by isometries and that the endomor-
phism ψt of A is norm decreasing. The last statement of the theorem is then
clear. �

Theorem 3.2. Let G be semisimple and adjoint, let Γ be a discrete and cocom-
pact subgroup of G, and let χ be a locally analytic K-valued character of T . If
q > dim(T ) then Hq(Γ, IndGP (χ)) = 0. If there is an element β ∈ ∆ such that
val(χ(tβ)) < 0 then Hq(Γ, IndGP (χ)) = 0 for all q ≥ 0.
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Proof: Consider the augmented Koszul complex of Theorem 2.5 of length |∆| =
dim(T ) which is associated to the family of commuting endomorphisms Utα −
χ(tα), α ∈ ∆, of c-IndGB(A). By [loc.cit.] and our assumption on Γ, it is an ex-
act and Γ-equivariant resolution of IndGP (χ) by homologically acyclic Γ-modules.
Indeed, Γ possesses a normal and torsion free subgroup Γ′ of finite index (cf.
[5], page 237), and the Γ′-module c-IndGB(A) is even free over K[Γ′]. Since
we are working over a field of characteristic zero, we have Hq(Γ, c-IndGB(A)) '
Hq(Γ′, c-IndGB(A))Γ/Γ′ , and the claim follows.

In particular, Hq(Γ, IndGP (χ)) is the homology of the complex obtained by pass-
ing to the Γ-coinvariants of the Koszul complex in Theorem 2.5, thus prov-
ing the first statement. The latter complex in turn is the Koszul complex
of c-IndGB(A)Γ associated with the family of commuting endomorphisms in-
duced by the operators Utα − χ(tα). It follows from Proposition 3.1 and [6],
1.2.4 Proposition 4, that the endomorphism Utβ − χ(tβ) of c-IndGB(A)Γ is bi-
jective if val(χ(tβ)) < 0. For trivial reasons, the sequence of endomorphisms
(Utβ − χ(tβ), (Utα − χ(tα))α∈∆\{β}) is then regular for c-IndGB(A)Γ. Therefore,
the statement of the theorem follows from [7], X.9.6, Proposition 5, and the fact
that

IndGP (χ)Γ ' c-IndGB(A)Γ/
∑
α∈∆

im(Utα − χ(tα)) = 0

by the right exactness of H0(Γ, ·). �

Remark 3.3. Since o×K contains all bounded subgroups of K×, the continuity of
χ implies that χ(T0) ⊆ o×K . Therefore, the map (t 7→ val(χ(t))) : T → val(K×)
factors through T/T0. It corresponds to an element s(χ) of X∗(T)⊗Z R which
is called the slope of χ in [14], section 1.4. With this terminology, the condition
on χ in Theorem 3.2 can be rephrased by requiring the slope of χ to have a
positive contribution from at least one positive simple root when writing it as
a real linear combination of the elements of ∆.

In a particular case we shall now significantly generalize the result of Theorem
3.2 and clarify the phenomena that lie behind it.

Given α ∈ ∆, we denote by P∆\{α} the standard parabolic subgroup of G
corresponding to the subset ∆ \ {α} of ∆ and by M∆\{α} its Levi subgroup
containing T (cf. section 1). Let χ be a locally analytic K-valued character of
M∆\{α}, viewed also as a character of P∆\{α} and – via restriction – of P .

We consider the B-invariant subspace IndBB∩P∆\{α}
(χ) of IndBB∩P (χ). Choose

n ≥ 0 such that the restriction of χ to any coset in (B ∩P∆\{α})/(Bn ∩P∆\{α})
is rigid analytic. As in section 2, IndBB∩P∆\{α}

(χ) contains the B-invariant sub-
space

Aα '
∏

b∈(B∩N∆\{α})/(Bn∩N∆\{α})

O(b(B ∩N∆\{α}))

of all those functions whose restrictions to B ∩ N∆\{α} are rigid analytic on
any coset modulo (Bn ∩ N∆\{α}) (or equivalently, which are rigid analytic on
any coset in B/Bn). We use the same integer n to define the subspace A of
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IndBB∩P (χ) so that Aα = A ∩ IndBB∩P∆\{α}
(χ).

Note that the restriction of χ to the subgroup N ∩ P∆\{α} of P∆\{α} is trivial.
Indeed, as in the proof of Proposition 2.4 there is an element t ∈ T− ⊆M∆\{α}
such that the sequence (tmnt−m)m≥0 of elements of N tends to 1 for any n ∈ N .
Assuming n ∈ N ∩ P∆\{α}, we have χ(n) = χ(tmnt−m) for all integers m ≥ 0,
and the continuity of χ implies χ(n) = 1 as claimed.

Note further that the multiplication map N∆\{α} × (N ∩ P∆\{α})
'→ N is an

isomorphism, as follows from [19], Theorem 30.1.b. By (3) it induces isomor-
phisms

(15) (Bm ∩N∆\{α})× (Bm ∩N (α))
'−→ (Bm ∩N) with N (α) := N ∩ P∆\{α}

for any integer m ≥ 0. We obtain that Aα is the subspace of (B ∩N (α))-right
invariant functions of A.

The group Bn is normal in B, and N∆\{α} is normalized by P∆\{α} ⊃ N . It
follows that Bn ∩ N∆\{α} is normal in B ∩ N . Thus, given b = b1b2 ∈ B ∩ N
with b1 ∈ B ∩N∆\{α} and b2 ∈ B ∩N (α) we have

b(Bn ∩N) = b1(Bn ∩N∆\{α})b2(Bn ∩N (α)).

In other words, any coset in (B ∩ N)/(Bn ∩ N) is a product of a coset in
(B∩N∆\{α})/(Bn∩N∆\{α}) and of a coset in (B∩N (α))/(Bn∩N (α)). Letting
b and b̃ run through representatives of the last two quotients, we conclude that
the set of products bb̃ runs through a set of representatives of the first. Denoting
by Bα the K-Banach space of all functions in Can(B ∩N (α),K) which are rigid
analytic on any coset modulo (Bn∩N (α)), the above reasoning shows that there
is a topological isomorphism

(16) Aα⊗̂KBα
'−→ A

with (F ⊗G)(bb̃) = F (b)G(b̃) for all b ∈ B ∩N∆\{α} and b̃ ∈ B ∩N (α). Under
this isomorphism the inclusions Aα ⊆ A and Bα ⊆ A correspond to the maps
Aα → Aα⊗̂KBα and Bα → Aα⊗̂KBα sending F ∈ Aα to F ⊗ 1 and G ∈ Bα to
1⊗G, respectively.

It follows from (1) and (4) that B ∩ N (α) is stable under conjugation by any
element t ∈ T−. In particular, the endomorphism ψt of A restricts to an en-
domorphism of the B-invariant subspace Aα of A consisting of (B ∩ N (α))-
right invariant functions. It follows that the G-equivariant endomorphism Ut of
c-IndGB(A) restricts to a G-equivariant endomorphism of c-IndGB(Aα), denoted
by Ut again.

Let Γ continue to be a discrete and cocompact subgroup of G. As in Proposition
3.1, c-IndGB(Aα)Γ is naturally a K-Banach space and the operator induced by
Ut is continuous. If G is semisimple and adjoint and if t = tα, however, we have
the following more precise result.
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Proposition 3.4. Let G be semisimple and adjoint, and let Γ be a discrete
and cocompact subgroup of G. Let α ∈ ∆ be a positive simple root, and let χ
be a locally analytic K-valued character of M∆\{α}. The continuous K-linear
endomorphism Utα of the K-Banach space c-IndGB(Aα)Γ is compact, i.e. it is
the strong limit of continuous K-linear operators of finite rank.

Proof: Using (8) and the fact that the K-subspace of compact endomorphisms of
a K-Banach space forms an ideal inside the K-algebra of all continuous K-linear
endomorphisms (cf. [27], Remark 16.7 (i)), it suffices to see that the K-linear
continuous endomorphism ψtα of the K-Banach space Aα is compact. By the
product structure of Aα one is further reduced to showing that the restriction
homomorphism O(tα(Bn ∩N∆\{α})t−1

α )→ O(Bn ∩N∆\{α}) is compact.

Any root β such that the root subgroup Nβ appears in the product decompo-
sition (3) of Bn ∩N∆\{α} lies in Φ(∆ \ {α})−, i.e. has a negative contribution
from α. Therefore, val(β(tα)) > 0 for any such root, and the restriction of ψtα
to a continuous K-linear endomorphism of O(Bn ∩Nβ) is compact (cf. (1), (4)
and [27], proof of the claim on page 98). Since

O(Bn ∩N∆\{α}) ' ⊗̂β∈Φ(∆\{α})−O(Bn ∩Nβ),

the claim follows from [27], Lemma 18.12. �

Remark 3.5. The endomorphism of c-IndGB(A)Γ induced by Utα is generally
not compact. The reason is that the continuous K-linear map ψtα : A → A
is generally not compact because tα(Bn ∩ N)t−1

α is generally not a relatively
compact affinoid subdomain of Bn ∩N . More precisely, by our choice of tα, if
β ∈ Φ− has a trivial contribution from α then conjugation by tα is the identity
on Nβ . It follows that ψtα restricts to the identity on Bα. This fact will be used
crucially in Lemma 3.6 below.

Let α ∈ ∆ and χ : M∆\{α} → K× be as in Proposition 3.4. We denote by

ζΓ,tα,χ(T ) := det(id− T · Utα |c-IndGB(Aα)Γ)

the characteristic power series (or Fredholm determinant) of the compact oper-
ator Utα on the K-Banach space c-IndGB(Aα)Γ (cf. [33], section 5), and point out
that in spite of our notation it certainly depends on the K-Banach space Aα
and hence on the integer n. It is a power series with coefficients in K with an
infinite radius of convergence and which has the property that ζΓ,tα,χ(λ) 6= 0 for
λ ∈ K if and only if id− λUtα is bijective on c-IndGB(Aα)Γ (cf. [33], Proposition
7 and Proposition 11). We shall now see that in this case the operator id−λUtα
is even bijective on the larger space c-IndGB(A)Γ, provided Γ is torsion free.

Lemma 3.6. Let Γ ⊂ G, α ∈ ∆ and χ : M∆\{α} → K× be as in Proposition
3.4, and assume Γ to be torsion free. If λ ∈ K is not a zero of ζΓ,tα,χ(T ) then
the endomorphism id− λUtα of c-IndGB(A)Γ is bijective.

Proof: As mentioned in Remark 3.5, our choice of tα ensures that conjugation
by tα is the identity on B ∩N (α). First of all, this implies that the natural map

(17) (B ∩N∆\{α})/tα(B ∩N∆\{α})t−1
α

'−→ (B ∩N)/tα(B ∩N)t−1
α
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is bijective. Further, since Γ is torsion free, (16) gives rise to a K-linear topo-
logical isomorphism

(18) c-IndGB(A)Γ ' c-IndGB(Aα)Γ⊗̂KBα.

Indeed, as in the proof of Proposition 3.1 there are elements g1, . . . , gr ∈ G such
that the projections c-IndGB(A)→ c-IndGB(A)Γ and c-IndGB(Aα)→ c-IndGB(Aα)Γ

restrict to isomorphisms

c-IndGB(A)(∪igiB) ' c-IndGB(A)Γ and c-IndGB(Aα)(∪igiB) ' c-IndGB(Aα)Γ.

Since c-IndGB(A)(∪igiB) ' c-IndGB(Aα)(∪igiB)⊗̂KBα by (16), the claim follows.

Note that if x ∈ B ∩N∆\{α} then under (16), the endomorphism ψtα ◦ x−1 of
A is given by ψtα(x−1(F ⊗ G)) = ψtα(x−1F ) ⊗ ψtα(G) = ψtα(x−1F ) ⊗ G for
F ∈ Aα and G ∈ Bα. It follows from (8) and the bijectivity of (17) that under
(18) the endomorphism Utα of c-IndGB(A)Γ is given by (Utα |c-IndGB(Aα)Γ)⊗̂id.
Therefore, the endomorphism id− λUtα of c-IndGB(A) is given by

(id− λUtα |c-IndGB(Aα)Γ)⊗̂id,

which is bijective if ζΓ,tα,χ(λ) 6= 0. �

Note that the set of zeros of ζΓ,tα,χ(T ) is a discrete subset of K because the
power series in question is entire. Also, it is disjoint from {λ ∈ K | val(λ) > 0}.
Indeed, the arguments of the proof of Proposition 3.1 show that on c-IndGB(Aα)Γ,
the norm of the operator Utα is bounded above by 1. Therefore, the claim follows
from [6], 1.2.4 Proposition 4. These considerations show that if the character χ
of T is the restriction of a locally analytic character of M∆\{α} for some positive
simple root α ∈ ∆, then the following theorem gives a significant sharpening of
the vanishing result of Theorem 3.2. Using Lemma 3.6, its proof proceeds as
above.

Theorem 3.7. Let G be semisimple and adjoint, and let Γ be a discrete, torsion
free and cocompact subgroup of G. Let α ∈ ∆ be a positive simple root, and
let χ be a locally analytic K-valued character of M∆\{α}, viewed as a locally
analytic character of T via restriction. If χ(tα)−1 is not a zero of ζΓ,tα,χ(T )
then Hq(Γ, IndGP (χ)) = 0 for all q ≥ 0. �

Remark 3.8. If Γ is a discrete and cocompact subgroup of G then Γ possesses
a normal subgroup Γ′ of finite index which is torsion free, as follows from the ar-
guments in [5], page 237. Since we are working over a field of characteristic zero,
there are natural equivalences H•(Γ, ·) ' H•(Γ′, ·)Γ/Γ′ of δ-functors, so that the
homological triviality with respect to Γ′ of any Γ-module implies its homological
triviality with respect to Γ. Thus, Theorem 3.7 leads to a vanishing criterion for
the Γ-homology of certain locally analytic principal series representations even
if Γ is not necessarily torsion free.

A far reaching consequence of the above compactness arguments is given by the
following two theorems.

Theorem 3.9. Let G be semisimple and adjoint of rank d, and let Γ be a discrete
and cocompact subgroup of G. If χ is a locally analytic K-valued character of
T then the following assertions hold.
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(i) For each q ≥ 0, the K-vector space Hq(Γ, IndGP (χ)) is finite dimensional.

(ii) Let q ≥ 0. Endowing Hq(Γ, IndGP (χ)) with its natural topology of a finite
dimensional K-vector space, there is a natural isomorphism

Hq(Γ, IndGP (χ)′) ' Hq(Γ, IndGP (χ))′.

(iii) We have
∑d
q=0(−1)q dimK Hq(Γ, IndGP (χ)) = 0.

Proof: Setting t =
∏
α∈∆ tα, the operator Ut is a compact operator of the

K-Banach space c-IndGB(A)Γ. This can be shown by the same arguments as
in the proof of Proposition 3.4. Namely, it suffices to see that the K-linear
continuous endomorphism ψt of the K-Banach space A is compact. However,
A '

∏
b∈(B∩N)/(Bn∩N)O(b(Bn∩N)), and for any b ∈ B the map ψt restricts to

a map ψt : O(tbt−1(Bn ∩N)) → O(b(Bn ∩N)). This map factors through the
restriction map O(tbt−1(Bn ∩ N)) → O(tbt−1 · t(Bn ∩ N)t−1), induced by the
open immersion t(Bn ∩N)t−1 ⊆ (Bn ∩N) of rigid affinoid spaces. By construc-
tion and our choice of t we have val(β(t)) > 0 for any negative root β ∈ Φ−.
This implies that t(Bn ∩Nβ)t−1 is relatively compact in (Bn ∩Nβ) in the sense
of [6], 9.6.2, and we may conclude as above.

If y := Ut − χ(t) then by [27], Proposition 22.8, there exists an integer m ≥ 0
such that we have a decomposition

c-IndGB(A)Γ = ker(ym)⊕ im(ym).

Moreover, y is a topological automorphism of im(ym) and ker(ym) is finite
dimensional (cf. [27], Lemma 22.4). As the endomorphisms yα := Utα − χ(tα)
commute with y, both ker(ym) and im(ym) are stable under all yα. Therefore,
the Koszul complex of c-IndGB(A)Γ is the direct sum of the Koszul complexes of
ker(ym) and im(ym). In particular,

TorRq (R/m, c-IndGB(A)Γ) = TorRq (R/m, ker(ym))⊕ TorRq (R/m, im(ym)),

where, as before, R = K[Xα, α ∈ ∆] and m is the ideal generated by the ele-
ments Xα − χ(tα) with α ∈ ∆.

As y is induced by an element of m, it acts trivially on TorRq (R/m, im(ym)).
On the other hand, it is bijective on im(ym) and hence on TorRq (R/m, im(ym)).
Thus, TorRq (R/m, im(ym)) = 0 for any q ≥ 0. Now ker(ym) is finite dimensional
and the Koszul complex of ker(ym) is a complex of finite dimensional K-vector
spaces. This implies that TorRq (R/m, ker(ym)) is finite dimensional for each q,
thus proving (i).

Assertion (ii) is a consequence of (i) and the arguments given in the proof of
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[32], Théorème 3.15. Finally,

d∑
q=0

(−1)q dimK Hq(Γ, c-IndGB(A)Γ) =
d∑
q=0

(−1)q dimK TorRq (R/m, ker(ym))

=
d∑
q=0

(−1)q dimK ker(ym)(
d
q)

= (dimK ker(ym))
d∑
q=0

(−1)q
(
d

q

)
= 0,

the second equality resulting from the dimension formula for K-linear maps be-
tween finite dimensional K-vector spaces. �

The techniques of the above proof also lead to the following, conditional van-
ishing criterion for H•(Γ, IndGP (χ)).

Theorem 3.10. Under the hypotheses of Theorem 3.9, the following assertions
are equivalent.

(i) For each q ≥ 0 we have Hq(Γ, IndGP (χ)) = 0.

(ii) We have Hd(Γ, IndGP (χ)) = 0.

(iii) We have H0(Γ, IndGP (χ)) = 0.

Proof: With the notations of the proof of Theorem 3.9, Hq(Γ, IndGP (χ)) is the q-
th homology space of the Koszul complex corresponding to the family (yα)α∈∆

acting on the finite dimensional K-vector space ker(ym). It is clear that (i)
implies both (ii) and (iii).

Let us denote by yα the restriction of yα to ker(ym). TheK-vector space ker(ym)
is finite dimensional so that for each α ∈ ∆ there is an integer mα ≥ 0 such
that ker(ym) admits the yα-stable decomposition

ker(ym) = ker(ymαα )⊕ im(ymαα ).

Since the endomorphisms yα of ker(ym) pairwise commute and since the projec-
tions of ker(ym) onto ker(ymαα ) and im(ymαα ) are polynomials in yα, we obtain
ker(ym) =

⊕
I⊂∆ ker(ym)I with

ker(ym)I =
⋂
α∈I

ker(ymαα ) ∩
⋂
α/∈I

im(ymαα ).

Each member of this direct sum is stable under yα for all α ∈ ∆, so that the
Koszul complex of ker(ym) is the direct sum of the Koszul complexes of the
spaces ker(ym)I . Moreover, if α ∈ ∆ then yα is bijective on im(ymαα ). As
ker(ym) is finite dimensional, this implies that yα is bijective on every subspace
of im(ymα ) which is stable under yα. In particular, yα is invertible on ker(ym)I
if α /∈ I. As a consequence, the Koszul complex of ker(ym)I is acyclic if I 6= ∆,
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and the homology of the Koszul complex of ker(ym)∆ is exactly H•(Γ, IndGP (χ)).

The yα are commuting nilpotent operators on ker(ym)∆ so that their common
kernel is trivial if and only if ker(ym)∆ = 0. By our above reasoning, the former
is precisely Hd(Γ, IndGP (χ)), so that (ii) implies ker(ym)∆ = 0, which in turn
implies (i).

Now suppose that H0(Γ, IndGP (χ)) = 0. This implies that if λ is a linear form
on ker(ym)∆ such that λ ◦ yα = 0 for all α ∈ ∆, then λ = 0. In other words, the
operators y∗α on ker(ym)∗∆ have no common zero. However, they commute with
each other and are nilpotent, so that ker(ym)∗∆ = 0 and thus ker(ym)∆ = 0.
This implies (i). �

As we shall now explain, Theorem 3.2, Theorem 3.7, Theorem 3.9 and Theorem
3.10 lead to homological vanishing and finiteness theorems for principal series
representations of arbitrary L-split connected reductive groups over L. Given
such a group G let Gad be its maximal semisimple adjoint quotient (cf. [3],
section 24.1). According to [3], Proposition 11.14, given a maximal L-split
torus T of G (resp. a Borel subgroup P of G containing T) the image Tad of
T in Gad (resp. the image Pad of P in Gad) is a maximal L-split torus of Gad

(resp. a Borel subgroup of Gad containing Tad). If Γ is a discrete and cocompact
subgroup of G such that the image Γad of Γ in Gad is discrete then Γad is a
discrete and cocompact subgroup of Gad. This follows from the fact that the
image of the continuous homomorphism G→ Gad is open of finite index (cf. [4],
Corollaire 3.20).

Proposition 3.11. Let G be an L-split connected reductive group defined over
L, and let Gad be its maximal semisimple adjoint quotient. Let Γ be a discrete
and cocompact subgroup of G whose image Γad in Gad is discrete (hence is
discrete and cocompact). Let χ be a locally analytic K-valued character of T ad,
viewed as a character of T via the homomorphism T → T ad.

(i) If the intersection of Γ with the center of G is finite then there are iso-

morphisms Hq(Γad, IndG
ad

Pad(χ)) ' Hq(Γ, IndGP (χ)) for all q ≥ 0.

(ii) If Hq(Γad, IndG
ad

Pad(χ)) = 0 for all q ≥ 0 then Hq(Γ, IndGP (χ)) = 0 for all
q ≥ 0.

Proof: The kernels of the homomorphisms G → Gad and G → Gad are central
by definition of a central isogeny and [3], Proposition 11.21. Therefore, the
natural map G/P → Gad/Pad is an isomorphism of complete varieties and it
follows from [3], Proposition 20.5, that the natural map

(19) IndG
ad

Pad(χ) '−→ IndGP (χ)

is bijective. Let Γ′ be the kernel of the surjective homomorphism Γ→ Γad. Since
Γ′ is central in G it is contained in the kernel of the homomorphism T → T ad. It
follows that Γ′ acts trivially on IndGP (χ) and that the action of Γ factors through
Γad. Therefore, the initial terms of the Hochschild-Serre spectral sequence

Hp(Γad,Hq(Γ′, IndGP (χ))) =⇒ Hp+q(Γ, IndGP (χ))
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satisfy

Hp(Γad,Hq(Γ′, IndGP (χ)) ' Hq(Γ′,K)⊗K Hp(Γad, IndGP (χ)),

where Hp(Γad, IndGP (χ)) ' Hp(Γad, IndG
ad

Pad(χ)) by (19). This proves assertion
(ii). Under assumption (i) the group Γ′ is finite. Therefore, the spectral sequence
degenerates and gives (i). �

Remark 3.12. If G is semisimple and if Gad is its maximal adjoint quotient
then the image in Gad of any discrete subgroup Γ of G is again discrete. This
follows from the fact that in this case the kernel of the homomorphism G→ Gad

is finite.

Combining Theorem 3.2 and Proposition 3.11 we obtain the following vanishing
result for a large class of algebraic characters.

Theorem 3.13. Let G be an L-split connected reductive group and let Γ be a
discrete and cocompact subgroup of G whose image in the group of L-rational
points of the maximal semisimple adjoint quotient of G is discrete. If the al-
gebraic character χ ∈ X∗(T) is contained in the root lattice of Φ(G,T) with a
positive contribution from at least one positive simple root β ∈ ∆ then

Hq(Γ, IndGP (χ)) = 0

for all q ≥ 0.

Proof: G and its maximal semisimple adjoint quotient have the same root sys-
tems so that the hypotheses of Proposition 3.11 are satisfied. We may thus
assume G to be semisimple and adjoint. Writing χ =

∑
α∈∆mαα, we have

mβ > 0 by assumption. By our choice of tβ ∈ T− the element χ(tβ) = β(tβ)mβ
of K has negative valuation. Thus, the assertion follows from Theorem 3.2. �

Unfortunately, the previous theorem does not cover the important case of alge-
braic characters which are contained in the subset

∑
α∈∆ Z≤0 ·α of X∗(T). For

characters of the form χ = mαα with an integer mα ≤ 0, one might hope to ap-
ply the stronger vanishing result of Theorem 3.7. However, we have practically
no information on the set of zeros of the power series ζΓ,tα,χ(T ) apart from its
disjointness from the open unit ball in K. Using a technique of M. Strauch and
S. Orlik we can show, however, that the above vanishing theorem has at least
one possible exception.

Theorem 3.14. Let G and Γ be as in Theorem 3.13. Let 1 be the trivial
character of T , and let IndGP (1)∞ be the K-vector space of all locally constant
K-valued P -right invariant functions on G, endowed with the action of G by
left translation. The G-equivariant inclusion IndGP (1)∞ → IndGP (1) induces
isomorphisms

(20) Hq(Γ, IndGP (1)∞) ' Hq(Γ, IndGP (1))

for all q ≥ 0. We have dimK Hq(Γ, IndGP (1)) =
(

dim(T )
q

)
· µ(Γ), where the con-

stant µ(Γ) is as in [28], page 92 (see also (22) below). In particular, if µ(Γ) 6= 0,
if G is semisimple and adjoint, and if Γ is torsion free, then ζΓ,tα,1(1) = 0 for
all α ∈ ∆.
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Proof: Let ` denote the length function on W with respect to ∆ and consider
the weight δ := 1

2

∑
α∈Φ+ α of the root system Φ = Φ(G,T). The group W acts

on X∗(T) via w(χ)(t) := χ(w−1tw). We consider the so-called affine action of
W on X∗(T) given by w∗χ := w(χ+δ)−δ, where the addition takes place in the
weight lattice of the root system Φ. If χ ∈ X∗(T) is a dominant character, i.e.
if 〈χ, α̌〉 ≥ 0 for all α ∈ ∆, and if V (χ) denotes the finite dimensional algebraic
representation of G of highest weight χ, then there is a G-equivariant exact
sequence

(21) 0 −→ V (χ)′ ⊗K IndGP (1)∞ −→
⊕
w∈W
`(w)=•

IndGP ((w ∗ χ)−1) −→ 0

of length `(w0) + 1 (cf. [25], section 4.9). For 0 ≤ q ≤ `(w0) the above direct
sum is taken over all elements w ∈ W of length q, so that for q = 0 we simply
obtain IndGP (χ−1). Associated with this exact resolution is a spectral sequence

Epq2 := Hp(
⊕
w∈W
`(w)=•

Hq(Γ, IndGP ((w ∗ χ)−1))) =⇒ Hp+q(Γ, V (χ)⊗K IndGP (1)∞).

If w ∈ W \ {1} then the character (w ∗ 1)−1 = δ − w(δ) is non-trivial and is a
non-negative linear combination of positive simple roots (cf. [8], VI.1.6 Propo-
sition 18). Thus, if χ = 1 then Theorem 3.13 implies that the above spectral
sequence degenerates. Since V (1) = 1, this proves (20).

In order to compute the Γ-homology of IndGP (1)∞ we are going to closely follow
the strategy of [28], §5, propositions 5 to 8, making strong use of results of Borel
and Casselman concerning smooth representations of p-adic reductive groups.

Note first that as in the proof of [26], §1 Lemma 3, we have

HomK(H•(Γ, IndGP (1)∞),K) ' Ext•K[Γ](IndGP (1)∞,1).

The G-representation IndGP (1)∞ admits a resolution by finitely generated free
K[Γ]-modules (cf. [28], §6 Proposition 16, for the case G = GLd+1, and the gen-
eralized arguments of [29], Theorem II.3.1; one can also use (21) and Theorem
2.5). As in [26], §1 Lemma 4, this implies that we may replace K by the field
C of complex numbers everywhere. If Ext•H(·, ·) denotes the bifunctor of exten-
sions in the category of smooth complex representations of a locally compact
totally disconnected group H then Shapiro’s lemma implies

Ext•K[Γ](IndGP (1)∞,1) ' Ext•G(IndGP (1)∞, IndGΓ (1)∞)

(cf. [5], Proposition IX.2.3). By the arguments given in [28], page 88, the rep-
resentation IndGΓ (1)∞ decomposes into a direct sum

IndGΓ (1)∞ ' V0 ⊕ V1 ⊕ . . .⊕ Vm

of admissible unitary G-representations Vj such that V B0 = 0, and such that
for 1 ≤ j ≤ m the G-representation Vj is irreducible with V Bj 6= 0. By [11],
Theorem 1.1, the irreducible composition factors of IndGP (1)∞ are the so-called
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generalized Steinberg representations vJ = vGPJ , parametrized by the subsets
J ⊆ ∆. As in [28], §5 Proposition 5, 6 and 7, we obtain

Ext•G(IndGP (1)∞, IndGΓ (1)∞) '
Ext•G(IndGP (1)∞,1)⊕ [HomG(v∅, IndGΓ (1)∞)⊗C Ext•G(IndGP (1)∞, v∅)].

Denote by δP : P → C× the modulus character of P . Since the Steinberg
representation v∅ is selfdual, [11], Proposition A.11, [12], Theorem 2.4.2, and
Shapiro’s lemma imply

Ext•G(IndGP (1)∞, v∅) ' Ext•G(v∅, IndGP (δP )∞)
' Ext•P (v∅, δP )
' Ext•T ((v∅)N , δP ).

According to [11], Corollary 1.3, we have (v∅)N ' δP as a T -representation
where dimC(ExtqT (δP , δP )) =

(
dim(T )

q

)
for all q ≥ 0 (cf. the arguments of [5],

Proposition X.2.6).

Similarly, Ext•G(IndGP (1)∞,1) ' Ext•T (1, δP ) = 0 by the same argument as in
[5], Theorem I.4.1 (cf. the proof in [5], I.4.5). We obtain that

dimK Hq(Γ, IndGP (1)) = dimK Hq(Γ, IndGP (1)∞) =
(

dim(T )
q

)
· µ(Γ)

for all q ≥ 0, where

(22) µ(Γ) := dimC HomG(v∅, IndGΓ (1)∞)

is the multiplicity of the Steinberg representation v∅ in IndGΓ (1)∞. The final
assertion of the theorem follows from Theorem 3.7. �

Remark 3.15. There is one easy case in which we can also treat the Γ-homology
of principal series representations associated with antidominant weights. Namely,
if G has semisimple rank 1 and if Γ is as in Theorem 3.14, then

Hq(Γ, IndGP (χ−1)) ' Hq(Γ, V (χ)′ ⊗K IndGP (1)∞)

for all q ≥ 0 and all dominant characters χ ∈ X∗(T) which are contained in
the root lattice of Φ. Indeed, in this case the resolution (21) is just a short
exact sequence in which IndGP ((w0 ∗ χ)−1) has vanishing Γ-homology in all de-
grees. As in the proof of Theorem 3.14 this follows from Theorem 3.13 and the
fact the (w0 ∗ χ)−1 is a strictly dominant weight. As above, the vanishing of
H•(Γ, IndGP (χ−1)) can be related to the vanishing of the constant µ(Γ, V (χ)) of
[26], §1. We leave the details to the reader.

We shall now show how the above vanishing results for locally analytic principal
series representations lead to vanishing theorems for the much broader class of
locally analytic representations considered by S. Orlik and M. Strauch in [25].
We note that according to [25], section 7, these representations figure promi-
nently in the (topological dual of) global sections of equivariant vector bundles
on Drinfeld’s upper half space if G = PGLd+1(L) for some integer d ≥ 1 (see
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also our section 4 below).

In order to introduce these representations let G again be an arbitrary L-split
connected reductive group. If I ⊆ ∆ is a subset and if pI denotes the Lie
algebra of the standard parabolic subgroup PI of G, then we denote by OpI

alg the
category of U(g)-modules introduced in [25], section 2.2. It is a subcategory of
the category O of Bernstein-Gelfand-Gelfand. If I = ∅, for example, then the
category Op

alg contains all Verma modules

m(χ) := U(g)⊗U(p) χ for χ ∈ X∗(T),

as well as their simple quotients. If V is a K-vector space carrying an ad-
missible smooth representation of the Levi subgroup MI of PI , and if m is an
object of OpI

alg, then Orlik and Strauch construct a locally analytic represen-
tation FGPI (m, V ) of G over K which is cut out from a parabolically induced
representation by certain differential equations (cf. [25], section 4). Accord-
ing to [25], Proposition 4.6, the assignment (m, V ) 7→ FGPI (m, V ) is a bifunctor
which is exact in both arguments. If χ ∈ X∗(T) and if ψ is a smooth K-valued
character of T , for example, then

(23) FGP (m(χ), ψ) = IndGP (χ−1ψ).

Theorem 3.16. Assume G and Γ to be as in Proposition 3.11. Let m be a
simple object of the category Op

alg whose highest weight χ is contained in the
root lattice of Φ(G,T), and let ψ be a smooth K-valued character of T ad. If the
slope s(χ−1ψ) of the character χ−1ψ in the sense of Remark 3.3 has a positive
contribution from at least one positive simple root β ∈ ∆ then

Hq(Γ,FGP (m, ψ)) = 0

for all q ≥ 0.

Proof: According to [20], Proposition 1.15 (b) and 1.16 (3), the isomorphism
class of m is contained in the subgroup of the Grothendieck group of Op

alg which
is generated by the Verma modules m(w ∗ χ) with w ∈ W and χ ≥ w ∗ χ. The
exactness of the functor FGP (·, ψ) and the long exact homology sequence reduce
us to showing that Hq(Γ,FGP (m(w ∗ χ), ψ)) = 0 for all q ≥ 0 if w ∈ W satisfies
χ ≥ w ∗ χ. With the notation of Remark 3.3 we have

s((w ∗ χ)−1ψ) = s(ψ)− w ∗ χ ≥ s(ψ)− χ = s(χ−1ψ).

Hence, (23), Proposition 3.11, Theorem 3.2 and Remark 3.3 allow us to con-
clude. �

If I is a subset of ∆ then we denote by WI the corresponding subgroup of W
and by w0

I the longest element of WI . If J ⊆ I then we denote by vPIPJ the
generalized smooth Steinberg representation of MI over K corresponding to J ,
i.e.

vPIPJ := IndMI

MI∩PJ (1)∞/(
∑

J$H⊆I

IndMI

MI∩PH (1)∞).

27



Corollary 3.17. Assume G and Γ to be as in Proposition 3.11. Let I be a subset
of ∆, and let m be a simple object of the category OpI

alg whose highest weight χ
is contained in the root lattice of Φ(G,T). If the character χ−1(w0

I ∗1)[L:Qp] has
a positive contribution from at least one positive simple root β ∈ ∆ then

Hq(Γ,FGPI (m, v
PI
PJ

)) = 0

for all q ≥ 0 and all subsets J ⊆ I.

Proof: As above, let δP : P → K× be the modulus character of P . If t ∈ T−
then

δP (t) =
(t(B ∩ P )t−1 : t(B ∩ P )t−1 ∩ (B ∩ P ))

(B ∩ P : t(B ∩ P )t−1 ∩ (B ∩ P ))
= (t(N ∩B)t−1 : N ∩B)

=
∏
α∈Φ+

(α(t)oL : oL) = (oL : πoL)−
P
α∈Φ+ val(α(t)).

In the notation of Remark 3.3 this implies s(δP ) = −2[L : Qp] · δ because the
element (oL : πoL) ∈ Z ⊂ K has valuation [L : Qp]. According to [8], VI.1.10
Proposition 29, δ = 1

2

∑
α∈Φ+ α is an integral weight so that w(δ)−δ is contained

the root lattice of Φ for each w ∈W . The character δPw(δ−1
P ) admits the square

root δ1/2
P w(δ−1/2

P ) : P → K× defined by

δ
1/2
P w(δ−1/2

P )(tn) = (oL : πoL)−val((δ−w(δ))(t))

for all t ∈ T and all n ∈ N . We then have [L : Qp]−1s(δ−1/2
P w(δ1/2

P )) =
−w(δ) + δ = −w ∗ 1 for all w ∈ W . Given w ∈ WI we have w ≤ w0

I for the
Bruhat ordering and w(δ) ≥ w0

I (δ) (cf. [20], §5.2), so that

s(χ−1δ
1/2
P w(δ−1/2

P )) = −s(χ) + [L : Qp](−δ + w(δ))

≥ −s(χ) + [L : Qp](−δ + w0
I (δ)) = s(χ−1(w0

I ∗ 1)[L:Qp]).

Since m is also a simple object of the category Op
alg with highest weight χ, we

can apply Theorem 3.16 with ψ := δ
1/2
P w(δ−1/2

P ) and obtain

Hq(Γ,FGP (m, δ1/2
P w(δ−1/2

P ))) = 0

for all q ≥ 0. By [25], Proposition 4.6 (b), this implies

(24) Hq(Γ,FGPI (m, IndPIP (δ1/2
P w(δ−1/2

P ))∞)) = 0

for all q ≥ 0.

The restriction of δP from P to MI ∩P is the modulus character δPI of MI ∩P .
Therefore, restriction from PI to MI induces a PI -equivariant isomorphism

IndPIP (δ1/2
P w(δ−1/2

P ))∞ ' IndMI

MI∩P (δ1/2
PI
w(δ−1/2

PI
))∞ =: Iw

for any element w of the Weyl group WI of the reductive group MI ; here NI
acts trivially on Iw. It follows from [5], X.3.2, that each Iw admits a unique

28



irreducible quotient Jw and that Iw admits a Jordan-Hölder series whose irre-
ducible subquotients are among the representations (Jw′)w′∈WI

. For any ele-
ment w ∈WI let Qw be the kernel of the surjection Iw → Jw.

We are going to prove by induction on q that FGPI (m, Jw) and FGPI (m, Qw) have
vanishing Γ-homology in degree q. For q = 0 and any of the representations
Jw this follows from (24) (with q = 0) and the right exactness of the functor
H0(Γ,FGPI (m, ·)). But then it also follows for q = 0 and any of the representa-
tions Qw because the irreducible constituents of Qw are among those of Iw and
hence among the representations Jw′ with w′ ∈ WI . Using (24), the induction
step is achieved by considering the long exact homology sequence.

According to [11], Theorem 1.1, the representations vPIPJ are the Jordan-Hölder
constituents of I1. This completes the proof of the corollary. �

4 Applications to p-adic symmetric spaces

In this final section of our article we take up some of the problems concerning
the de Rham cohomology of local systems on p-adic symmetric spaces which
were identified by P. Schneider in [26]. For this we assume K = L.

Let d ≥ 1 be an integer, and let X be Drinfeld’s p-adic upper half space of
dimension d over K. Recall that X is the open rigid analytic subvariety of the
projective space PdK obtained by removing all K-rational hyperplanes. It carries
an action of the group PGLd+1(K) and hence of G := SLd+1(K).

We fix a discrete and cocompact subgroup Γ of G which acts without fixed
points on X. Let M denote the underlying K-vector space of an irreducible
algebraic representation of G := SLd+1. It gives rise to a locally constant sheaf
MΓ on the étale site of the quotient variety XΓ := Γ\X. As in [26] we define the
de Rham cohomology H•dR(XΓ,MΓ) of MΓ to be the étale hypercohomology
of the complex Ω•XΓ

⊗K MΓ. The dimensions of these K-vector spaces were
computed in [26], §1 Corollary 6, by considering the covering spectral sequence

(25) Epq2 := Hp(Γ,Hq
dR(X)⊗K M) =⇒ Hp+q

dR (XΓ,MΓ).

We let F •Γ be the filtration it induces on Hd
dR(XΓ,MΓ). §1 Theorem 2 of [26]

gives the K-dimensions of the graded pieces of the filtration F •Γ and asserts that
the spectral sequence (25) degenerates.

According to [28], §1 Proposition 4, the variety X is a Stein space, so that one
of the standard hypercohomology spectral sequences can be rewritten as

(26) Epq1 := Hq(Γ,ΩpX(X)⊗K M) =⇒ Hp+q
dR (XΓ,MΓ)

and is called the Hodge-de Rham spectral sequence. It does generally not degen-
erate in E1 (cf. [26], page 649). We denote by F •dR the filtration of Hd

dR(XΓ,MΓ)
induced by the spectral sequence (26).

We let P denote the Borel subgroup of G = SLd+1 of upper triangular matrices
and choose for T the subgroup of diagonal matrices. In the notation of Example
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1.1 we then have ∆ = {α1, . . . , αd}. Set I := {α2, . . . , αd}. If V is a finite
dimensional algebraic representation of PI over K then we denote by FV the
G-equivariant vector bundle (as well as its analytification) on PdK ' G/PI whose
fiber in [PI ] is V (cf. [22], I.5.8). We denote by

X∗(T)−I := {µ ∈ X∗(T) | 〈µ, α̌〉 ≤ 0 for all α ∈ I}

the subset of characters of T whose restriction to MI is antidominant. Given
µ ∈ X∗(T)−I we denote by Vµ the irreducible algebraic representation of MI

of lowest weight µ. We view Vµ as a representation of PI via the projection
PI → PI/NI 'MI and set Fµ := FVµ , as well as Dµ := Fµ(X).

Denoting by WI the subgroup of W corresponding to I, the coset space WI \W
has cardinality d+ 1 and admits a unique set of representatives {cj}0≤j≤d such
that cj is of minimal length in WIcj . The representatives cj are characterized
by the condition that `(sαcj) > `(cj) for any simple reflection sα ∈ W with
α ∈ I. As before, we set δ := 1

2

∑
α∈Φ+ α. Given w ∈ W and a weight λ of

Φ(G,T) we set w∗λ := w(λ− δ) + δ. Denoting by λ ∈ X∗(T) the lowest weight
of the G-representation M we set λ(j) := cj∗λ for 0 ≤ j ≤ d. For any j this is
a character of T whose restriction to MI is antidominant, i.e. λ(j) ∈ X∗(T)−I ,
as follows from the above characterization of the representatives cj .

In [26], §3, P. Schneider constructs G-equivariant maps dj : Dλ(j) → Dλ(j+1)

making (Dλ(•), d
•) a complex which is quasi-isomorphic to the global de Rham

complex Ω•X(X) ⊗K M (cf. [26], §3 Theorem 3). Note that Schneider works
with the highest weight w0(λ) of the representation M , so that Dλ(j) coincides
with what is called Dw0(λ)(j) in [26] (cf. [26], §3 Lemma 2 and Remark 4). The
resulting spectral sequence

(27) Epq1 := Hq(Γ, Dλ(p)) =⇒ Hp+q
dR (XΓ,MΓ)

is called the reduced Hodge-de Rham spectral sequence. We denote by F •red
the filtration it induces on Hd

dR(XΓ,MΓ). In [26], page 630 and page 648, P.
Schneider formulates the following conjectures.

Conjecture 4.1 (Schneider).

(i) For any integer j with 0 ≤ j ≤ d+1 we have Hd
dR(XΓ,MΓ) = F jΓ⊕F

d+1−j
dR .

(ii) The reduced Hodge-de Rham spectral sequence (27) degenerates in E1.

(iii) The filtrations F •dR and F •red of Hd
dR(XΓ,MΓ) coincide.

Remark 4.2. Apart from our result in Theorem 4.10 below, Conjecture 4.1
is known to be true in many cases. In [26], P. Schneider himself proved it
unconditionally for d = 1, and for d = 2 when M is integral. Later, A. Iovita
and M. Spieß gave a proof of Conjecture 4.1 for arbitrary d when M is the
trivial representation (cf. [21]). Their proof uses certain integral structures of
the de Rham complex of X. A second proof of this case was given by G. Alon
and E. de Shalit in [1] and a third one by E. Große-Klönne in [15]. Generalizing
the integral structures of Iovita and Spieß to arbitrary coefficients, E. Große-
Klönne proved the conjecture for arbitrary d when M is the restriction of the
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regular representation of GLd+1(L) or its dual (cf. [16]). Finally, in [17], E.
Große-Klönne used global methods to prove part (ii) of Conjecture 4.1 under
the assumption that Γ is of arithmetic type in the sense of [17], §4.

We are now going to give an alternative construction of the reduced Hodge-de
Rham complex (Dλ(•), d

•) which has the advantage of directly leading to a proof
of Conjecture 4.1 (iii) (cf. Theorem 4.9 below).

Given any G-equivariant vector bundle F on PdK , the space F(X) of rigid an-
alytic sections of F over X naturally is a K-Fréchet space carrying a locally
analytic representation of G in the sense of [30], section 3 (cf. [24], section 1.1).
According to [30], Proposition 3.2, the action of G on F(X) extends to an action
of the K-algebra D(G) of locally analytic K-valued distributions on G. The K-
algebra D(G) contains the universal enveloping algebra U(g) of the Lie algebra
g of G as a subalgebra. We denote by Z(g) the center of U(g). The restriction
of the projection

pr : U(g) ' U(t)⊕ (nU(g) + U(g)n) −→ U(t)

from U(g) to Z(g) is a homomorphism of K-algebras. Given µ ∈ X∗(T) we
denote by χµ := (µ + δ) ◦ pr : Z(g) → K the corresponding Harish-Chandra
character. The following fact is proved in [32], Lemme 6.4 (note that the author
works with −∆ instead of with ∆, which changes both the definition of δ and
the notion of dominance).

Lemma 4.3. If µ ∈ X∗(T)−I then Z(g) acts on Dµ = Fµ(X) through the
character χµ−δ. �

If V is a Z(g)-module, and if χ : Z(g) → K is a K-valued character (i.e. a
homomorphism of K-algebras), then we denote by Vχ the K-subspace of V
consisting of all elements v ∈ V for which there exists an integer n ≥ 1 such
that (x− χ(x))nv = 0 for all x ∈ Z(g). It is known that Z(g) is contained in the
center of the ring D(G) (cf. [30], Proposition 3.7). It follows that if the Z(g)-
action on V comes from an action of D(G), then Vχ is even a D(G)-submodule
of V .

Lemma 4.4. Let G and H be G-equivariant vector bundles on PdK .

(i) Letting χ run through all K-valued characters of Z(g), the natural map
⊕χG(X)χ → G(X) is bijective. We have G(X)χ = 0 for almost all χ. For
all characters χ and all elements x ∈ Z(g) the endomorphism x − χ(x) of
G(X)χ is nilpotent.

(ii) Let d : G(X) → H(X) be a homomorphism of D(G)-modules, let χ be a
K-valued character of Z(g), and let dχ : G(X)χ → H(X)χ be the induced
D(G)-linear map. In the category of (abstract) D(G)-modules we have
ker(dχ) = ker(d)χ, im(dχ) = im(d)χ and coker(dχ) = coker(d)χ. Fur-
ther, d = ⊕χdχ, ker(d) = ⊕χker(dχ), im(d) = ⊕χim(dχ) and coker(d) =
⊕χcoker(dχ).

Proof: Denoting by V the fiber of G in [PI ] ∈ G/PI ' PdK , there is an isomor-
phism G ' FV of G-equivariant vector bundles on PdK . The PI -representation V
admits a decomposition series whose irreducible subquotients have the property
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that the action of PI factors through PI/NI ' MI (cf. [22], I.2.14 (8)). Since
the functor V 7→ FV is exact (cf. [22], Proposition I.5.9), Theorem A for rigid
analytic Stein spaces implies that G(X) admits a finite filtration by D(G)-stable
OX(X)-submodules, the graded pieces of which are of the form Dµ for certain
elements µ ∈ X∗(T)−I .

We will prove (i) by induction on the length of such a filtration. Using Lemma
4.3 it suffices to show that if V is a D(G)-module containing a submodule of the
form Dµ and such that V/Dµ has the properties in (i), then so does V . Given χ
let V (χ) denote the inverse image of (V/Dµ)χ in V under the projection V →
V/Dµ. By assumption, V is the sum of finitely many of its D(G)-submodules
V (χ) each of which is an extension 0→ Dµ → V (χ)→ (V/Dµ)χ → 0. Further,
given x ∈ Z(g), the action of x−χ(x) on (V/Dµ)χ is nilpotent. If χ = χµ−δ then
so is the action on V (χ) (cf. Lemma 4.3). If χ 6= χµ−δ then the above exact
sequence admits a D(G)-linear section. Indeed, there is an element x ∈ Z(g)
such that χ(x) 6= χµ−δ(x), so that the endomorphism x − χ(x) is nilpotent on
(V/Dµ)χ whereas it is bijective on Dµ. Thus, one can argue as in [5], I.4.5.

It follows that the natural map ⊕χVχ → V is surjective. Further, if χ 6= χµ−δ is
chosen such that (V/Dµ)χ = 0 then Vχ = 0 because Vχ maps to zero in V/Dµ

and Vχ∩Dµ = 0. Our above reasoning also shows that for any element x ∈ Z(g)
the endomorphism x − χ(x) of Vχ is nilpotent. In fact, this was pointed out
for Vχµ−δ = V (χµ−δ) and otherwise follows from the fact that Vχ injects into
(V/Dµ)χ. Finally, if (vχ)χ ∈ ⊕χVχ is an element with

∑
χ vχ = 0 in V , then

vχ ∈ Dµ for all χ by assumption on V/Dµ. Since Vχ ∩Dµ = 0 unless χ = χµ−δ,
this implies the map ⊕χVχ → V to be injective.

Assertion (ii) follows from (i) and the fact that if χ and χ′ are two distinct
K-valued characters of Z(g) then HomZ(g)(G(X)χ,H(X)χ′) = 0. �

Via restriction, the G-representation M of lowest weight λ can be viewed as a
representation of PI . Further, if j is an integer with 0 ≤ j ≤ d then

∧j
n∗I is

an algebraic PI -representation via the adjoint action of PI on nI . It is shown in
[26], §3 Proposition 1 and Lemma 2, that

(28) ΩjX(X)⊗K M ' FVj n∗I⊗KM
(X).

Proposition 4.5. If M is the irreducible G-representation of lowest weight
λ ∈ X∗(T), and if j is an integer with 0 ≤ j ≤ d, then there is a D(G)-linear
isomorphism (ΩjX(X)⊗K M)χλ−δ ' Dλ(j).

Proof: Choose µ1, . . . , µr ∈ X∗(T)−I such that the irreducible MI -representations
Vµ1 , . . . , Vµr are the (not necessarily pairwise non-isomorphic) Jordan-Hölder
constituents of

∧j
n∗I ⊗KM . As can be seen from (28) and the proof of Lemma

4.4, the D(G)-module (ΩjX(X) ⊗K M)χλ−δ admits a finite filtration by D(G)-
submodules whose associated graded object is naturally isomorphic to the di-
rect sum over those modules Dµi = Fµi(X) for which χµi−δ = χλ−δ. Note
that χµi−δ = χλ−δ if and only if µi = w∗λ for some element w ∈ W (cf. [20],
Theorem 1.10; note that our character χµ is the character which is denoted by
χµ−δ in [loc.cit.]).
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Together with λ also cj(λ) is a weight of M . Since cj∗1 is a weight of
∧j

n∗I ,
it follows that λ(j) = cj∗λ = cj(λ) + cj∗1 is a weight of

∧j
n∗I ⊗K M . Note

that if w ∈ W then w∗λ ∈ X∗(T)−I if and only if w = ci for some i. Indeed,
otherwise there is an element α ∈ I for which `(sαw) < `(w) so that w(α) and
α lie on opposite sides of the hyperplane determined by the simple reflection sα
(cf. [20], 0.3 (4) and [8], VI.1.6 Proposition 17).

Altogether, it suffices to prove that the weight λ(j) = cj∗λ appears with mul-
tiplicity one in

∧j
n∗I ⊗K M , and that ci∗λ does not appear in

∧j
n∗I ⊗K M if

i 6= j. This can be seen by considering the t-representation ⊕di=0(
∧i

n∗ ⊗K M)
in which each of the weights w∗λ = w0((w0ww

−1
0 ) ∗ w0(λ)) for w ∈ W appears

with multiplicity one (cf. [23], Lemma 5.12). �

Remark 4.6. Our proof of Proposition 4.5 also shows the following. If V and
W are PI -subrepresentations of

∧j
n∗I⊗KM with W ⊂ V and V/W ' Vλ(j) then

(ΩjX(X)⊗KM)χλ−δ is contained in theD(G)-submodule FV (X) of ΩjX(X)⊗KM
and the surjective D(G)-linear homomorphism FV (X)→ FV/W (X) restricts to
an isomorphism (ΩjX(X)⊗K M)χλ−δ ' FV/W (X) ' Dλ(j).

The boundary maps of the complex Ω•X(X)⊗KM are defined by differentiating
along local coordinates. Thus, one can verify that they are continuous for the
K-Fréchet topology of the spaces ΩjX(X)⊗KM . According to [30], Proposition
3.2, they are even D(G)-linear, so that we obtain the D(G)-stable subcomplex

C• := (Ω•X(X)⊗K M)χλ−δ ⊆ Ω•X(X)⊗K M.

Lemma 4.7. For any non-negative integer j the center Z(g) of U(g) acts on
Hj(Ω•X(X)⊗KM) through the character χλ−δ. As a consequence, the inclusion
C• ⊆ Ω•X(X)⊗K M is a quasi-isomorphism.

Proof: Since Hj(Ω•X(X)⊗KM) ' Hj
dR(X)⊗KM , the computation of Hj

dR(X) in
[28], §3 Theorem 1 and §4 Lemma 1, shows that U(g) acts trivially on Hj

dR(X).
Therefore, Z(g) acts on Hj(Ω•X(X)⊗KM) through the central character of M ,
which is χλ−δ. Together with Lemma 4.4 this implies

Hj(Ω•X(X)⊗K M) ' ⊕χHj((Ω•X(X)⊗K M)χ)
= ⊕χ(Hj(Ω•X(X)⊗K M))χ = (Hj(Ω•X(X)⊗K M))χλ−δ
= Hj((Ω•X(X)⊗K M)χλ−δ) = HjC•. �

Proposition 4.5 and Lemma 4.7 suggest that the complex C• is isomorphic to
the reduced Hodge-de Rham complex. This is indeed the case, so that Lemma
4.7 reproves [26], §3 Theorem 3.

Proposition 4.8. The complex C• := (Ω•X(X) ⊗K M)χλ−δ is G-equivariantly
isomorphic to the reduced Hodge-de Rham complex Dλ(•) of [26], §3.

Proof: In [26], §3, P. Schneider defines a certain filtration F •M of M by PI -
subrepresentations. It leads to a corresponding filtration F•,• of the complex
Ω•X(X)⊗K M by the D(G)-subcomplexes

Fr,s := FVs n∗I⊗F r−sM (X).
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Write the highest weight w0(λ) of M as w0(λ) = (λ1, . . . , λd) with integers λj
satisfying 0 ≥ λ1 ≥ . . . ≥ λd. Let 0 ≤ j ≤ d and consider the quotient complex
Fλd−j+j,•/Fλd−j+j+1,•. According to the proof of [26], §3 Lemma 9, there are
PI -subrepresentations V ′ and W ′ of

∧j
n∗I ⊗K grλd−jM such that W ′ ⊂ V ′,

and such that FV ′(X) (resp. FW ′(X)) can be identified with the kernel (resp.
with the image) of the differential in degree j of the above quotient complex.
Further, V ′/W ′ ' Vλ(j).

Let V and W be the inverse images of V ′ and W ′ in
∧j

n∗I ⊗K Fλd−jM under
the projection

∧j
n∗I ⊗K Fλd−jM →

∧j
n∗I ⊗K grλd−jM , respectively. In the

notation of the proof of [26], §3 Theorem 3, we then have

Bj = FW (X) ⊆ Zj = FV (X) ⊆ Fλd−j+j,j(ΩjX(X)⊗K M) ⊆ ΩjX(X)⊗K M.

According to Remark 4.6 we have Cj ⊂ Zj , and the natural projection Zj →
Zj/Bj restricts to an isomorphism Cj ' Zj/Bj ' Dλ(j). In particular, C• is
a subcomplex of the complex Z• + dB•−1 of [26], page 647, and the surjective
homomorphism of complexes Z•+dB•−1 → Z•/B• restricts to an isomorphism
C• ' Z•/B•. Since the quotient Z•/B• of the subcomplex Z• + dB•−1 of
Ω•X(X)⊗K M is the reduced Hodge-de Rham complex (cf. the proof of [26], §3
Theorem 3), we are done. �

For the rest of this article we are going to identify the two complexes C• and
Dλ(•).

Given any complex (C•, d•) in non-negative degrees and any integer i ≥ 0, we
define the following truncations of C•:

t≤iC
• := [C0 → . . .→ Ci−1 → ker(di)→ 0→ . . .]

C•≤i := [C0 → . . .→ Ci−1 → Ci → 0→ . . .]

t≥iC
• := [0→ . . .→ 0→ Ci/im(di−1)→ Ci+1 → . . .]

C•≥i := [0→ . . .→ 0→ Ci → Ci+1 → . . .].

Theorem 4.9. If j is an integer with 0 ≤ j ≤ d+ 1 then F jdR = F jred and

F jΓ = im(Hd(Γ, t≤d−jDλ(•))→ Hd(Γ,Ω•X(X)⊗K M))

= ker(Hd(Γ,Ω•X(X)⊗K M)→ Hd(Γ, t≥d+1−jDλ(•))).

Proof: By functoriality, Hd
dR(XΓ,MΓ) ' Hd(Γ,Ω•X(X)⊗KM) carries the struc-

ture of a Z(g)-module. Further, the degeneration of the covering spectral se-
quence implies that it admits a filtration by Z(g)-submodules such that the suc-
cessive quotients are among the modules Hr(Γ,Hs

dR(X)⊗K M) on which Z(g)
acts through the character χλ−δ (cf. the proof of Lemma 4.7). If χ is a character
of Z(g) which is distinct from χλ−δ, and if V is any Z(g)-module with V = Vχ,
then this implies HomZ(g)(V,Hd

dR(XΓ,MΓ)) = HomZ(g)(Hd
dR(XΓ,MΓ), V ) = 0.

It follows from Lemma 4.4 that

Hd(Γ, (Ω•X(X)⊗K M)≤j−1) = ⊕χHd(Γ, ((Ω•X(X)⊗K M)≤j−1)χ),
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where ((Ω•X(X) ⊗K M)≤j−1)χ = ((Ω•X(X) ⊗K M)χ)≤j−1 for any K-valued
character χ of Z(g). Referring to Proposition 4.5, we obtain that the natural
map

(29) Hd(Γ, (Dλ(•))≤j−1)→ Hd(Γ, (Ω•X(X)⊗K M)≤j−1)

is injective. Further, our above reasoning implies that the natural Z(g)-linear
map Hd

dR(XΓ,MΓ)→ Hd(Γ, (Ω•X(X)⊗KM)≤j−1) factors through the inclusion
(29). Since F jdR (resp. F jred) is the kernel of the Z(g)-equivariant homomorphism
Hd

dR(XΓ,MΓ)→ Hd(Γ, (Ω•X(X)⊗KM)≤j−1) (resp. of the Z(g)-equivariant ho-
momorphism Hd

dR(XΓ,MΓ)→ Hd(Γ, (Dλ(•))≤j−1)), the first assertion follows.

Using Lemma 4.4, the formation of the truncations t≤d−j and t≥d+1−j com-
mutes with (·)χ, as well. Given the descriptions of F •Γ in [26], page 631, the
proof of the second assertion is then similar. �

As is customary, we identify a character λ ∈ X∗(T) with the family λ =
(λ1, . . . , λd+1) of integers λj determined by λ(diag(t1, . . . , td+1)) =

∏d+1
j=1 t

λj
j

for all elements diag(t1, . . . , td+1) ∈ T .

We conclude our article by proving the following special case of Conjecture 4.1,
using the vanishing theorems of section 3.

Theorem 4.10. Assume d = 2. If the character λ ∈ X∗(T) is of the form
λ = (a, 0,−a) for some integer a ≤ 0, then all assertions of Conjecture 4.1 are
true.

Proof: We have ∆ = {α1, α2} as in Example 1.1 and denote by s1 := sα1 ∈ W
and s2 := sα2 ∈ W the simple reflections corresponding to α1 and α2, respec-
tively. We also set P1 := P{α1} and P2 := P{α2}.

Given µ ∈ X∗(T) we denote by L(µ) the irreducible U(g)-module of highest
weight µ. Set λ′ := w0(λ) = (−a, 0, a), which is a dominant character. The
U(g)-modules L(s1 ∗ λ′) and L((s1s2) ∗ λ′) are objects of the category Op2

alg.
Setting n := [L : Qp] we compute

−s1 ∗ λ′ + n(s2 ∗ 1) = (1, a− 1,−a) + n(0,−1, 1)
= (1, a− 1− n,−a+ n) and

−(s1s2) ∗ λ′ + n(s2 ∗ 1) = (2− a, a− 1,−1) + n(0,−1, 1)
= (2− a, a− 1− n,−1 + n).

These weights both have a positive contribution from the root α1, so that Corol-
lary 3.17 applies and yields

Hq(Γ,FGP2
(L(s1 ∗ λ′), vP2

P )) = Hq(Γ,FGP2
(L((s1s2) ∗ λ′), vP2

P )) = 0

for all q ≥ 0. By a similar calculation Corollary 3.17 implies

Hq(Γ,FGP1
(L(s2 ∗ λ′),1)) = Hq(Γ,FGP1

(L((s2s1) ∗ λ′),1)) = 0

for all q ≥ 0.
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Based on results from [24], the Jordan-Hölder constituents of the D(G)-modules
Dλ(j) were computed in [32], §6. More precisely, the strong dual D′λ(0) of
Dλ(0) possesses a finite exhaustive filtration by D(G)-submodules whose as-
sociated graded pieces are ker(d0)′ = FGG (L(λ′),1) = M ′, FGP1

(L(s2 ∗λ′),1) and
FGP2

(L((s1s2) ∗ λ′), vP2
P ). As a consequence, we have isomorphisms

Hq(Γ, D′λ(0)) ' Hq(Γ,M ′) ' Hq(Γ, ker(d0)′)

for all q ≥ 0.

The D(G)-module D′λ(1) has a finite exhaustive filtration by D(G)-submodules
whose associated graded pieces are FGP1

(L(s2 ∗ λ′),1), FGP2
(L((s1s2) ∗ λ′), vP2

P ),
H1

dR(X)′ ⊗K M ′, FGP1
(L((s2s1) ∗ λ′),1) and FGP2

(L(s1 ∗ λ′), vP2
P ). The graded

pieces of the induced filtration on ker(d1)′ are given by FGP1
(L(s2 ∗ λ′),1),

FGP2
(L((s1s2) ∗ λ′), vP2

P ) and H1
dR(X)′ ⊗K M ′. Further, the graded pieces of

the induced filtration on coker(d0)′ are H1
dR(X)′ ⊗K M ′, FGP1

(L((s2s1) ∗ λ′),1)
and FGP2

(L(s1 ∗ λ′), vP2
P ). As before we deduce isomorphisms

Hq(Γ, D′λ(1)) ' Hq(Γ,H1
dR(X)′ ⊗K M ′) ' Hq(Γ, ker(d1)′)

' Hq(Γ, coker(d0)′)

for all q ≥ 0.

Using [32], (6.37), one similarly obtains isomorphisms

Hq(Γ, D′λ(2)) ' Hq(Γ,H2
dR(X)′ ⊗K M ′) ' Hq(Γ, ker(d2)′)

' Hq(Γ, coker(d1)′)

for all q ≥ 0.

It follows from [26], §1 Proposition 2, that Hq(Γ,Hp
dR(X) ⊗K M) is a finite

dimensional K-vector space for any q ≥ 0. Arguing as in [32], Théorème 3.15,
we can dualize the above results and conclude that

Hq(Γ, Dλ(p)) ' Hq(Γ,Hp
dR(X)⊗K M) ' Hq(Γ, ker(dp))

' Hq(Γ, coker(dp−1))

for all q ≥ 0 and all p ≥ 0.

Using Theorem 4.9 and reasoning as in the proof of [26], §2 Lemma 2 (iii), Con-
jecture 4.1 will be proved once we can show the natural maps Hd(Γ, t≤jDλ(•))→
Hd(Γ, (Dλ(•))≤j) and Hd(Γ, (Dλ(•))≥j)→ Hd(Γ, t≥jDλ(•)) to be bijective for all
j. To see this, consider the following diagram of complexes with exact rows

0 // (Dλ(•))≤j−1 // t≤jDλ(•) //

��

ker(dj)[−j]

��

// 0

0 // (Dλ(•))≤j−1 // (Dλ(•))≤j // Dλ(j)[−j] // 0.
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We showed above that Hq(Γ, ker(dj)) ' Hq(Γ, Dλ(j)) for any q ≥ 0. The long
exact hypercohomology sequence therefore leads to the desired isomorphism

Hd(Γ, t≤jDλ(•)) ' Hd(Γ, (Dλ(•))≤j).

The bijectivity of the second map is proved similarly. �
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simples, Ann. of Math. 97, 1973, pp. 499–571

[5] A. Borel, N. Wallach: Continuous Cohomology, Discrete Subgroups,
and Representations of Reductive Groups, 2nd Edition, Mathematical Sur-
veys and Monographs 67, AMS, 2000
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