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Abstract. If G is a p-adic reductive group with connected center we study
the universal spherical Hecke module M of G associated with a weight V' in
characteristic p. We show that the space of invariants of M under a fixed
pro-p Iwahori subgroup of G is free over the spherical Hecke algebra and
that its rank is equal to the order of the Weyl group. Our proof relies on an
acyclicity result for coefficient systems of representations of finite groups of
Lie type in natural characteristic. We then study the action of the spherical
Hecke algebra on suitable spaces of coinvariants of the universal spherical
Hecke module. For the general linear group we obtain that any supersingu-
lar quotient of M is supercuspidal and has trivial smooth dual.
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1 Universal spherical Hecke modules

Let F' be a non-archimedean local field with valuation wval, valuation ring
o and residue class field k. Let p and ¢ denote the characteristic and the
cardinality of k, respectively. Throughout the article F will denote an alge-
braically closed field containing k.

Let G be an F-split connected reductive F-group with connected center Z,
T a maximal F-split F-torus of G, B a Borel F-subgroup of G containing T
and N the unipotent radical of B. Let ® denote the root system of (G, T)
and denote by ®T the set of positive roots corresponding to B. Let A de-
note the set of simple roots inside &, and let W denote the Weyl group of .

Let x be a fixed hyperspecial point of the Bruhat-Tits building X of G :=
G(F') which is contained in the apartment corresponding to 7" := T(F) (cf.



[20], §1.10.2). By [20], §3.8.1, there is a smooth o-group scheme G = G,
whose generic fibre Gg is isomorphic to G and whose special fibre G is a
k-split connected reductive k-group. Identifying the F-groups G and Gr we
may view K := G(o0) as a maximal compact open subgroup of G (cf. [20],
§3.2). For the natural action of G on X we then have

K={geGlg-z=x}

by [20], §3.4.1.

There is a closed o-subgroup scheme B of G with Bp = B and whose special
fibre By, is a Borel k-subgroup of Gi. As an o-scheme B = N x, T with closed
o-subgroup schemes N and T of G such that Nz = N and Tp = T. Further,
the special fibers 7 and N}, are, respectively, a maximal k-split k-torus of
Gr and the unipotent radical of B. The root systems ® = &(G,T) and
®(Gy, Ti) are isomorphic and will henceforth be identified.

By construction, the o-scheme N is the direct product of one dimensional
o-subgroup schemes N,, a € ®, whose fibres over F' and k are the root
groups of N and N, respectively, corresponding to «. The former will be
denoted by N,.

For any subset I of A we denote by Wy the subgroup of W generated by
the simple reflections s, with a € I. Further, P; (resp. P;) denotes the
parabolic subgroup of G (resp. Gi) generated by B (resp. By) and Wy (cf.
[2], §14.17). Let Ny (resp. Nj) denote the unipotent radical of P; (resp. Pr).
Let Mj (resp. M) denote the Levi subgroup of P; (resp. Pr) containing T
(resp. Tk).

Working with the Borel subgroup B of G corresponding to the basis —A of
®, the opposite versions of the various group schemes above will be marked
with a bar on top, as well.

Let X,(T) and X*(T) denote the group of cocharacters and characters of
T, respectively. They are in perfect duality with respect to a natural pair-
ing (-,-). There is an epimorphism 7" — X,(T) of abelian groups which
is characterized by the condition that (t,x) = wval(x(t)) for all ¢t € T and
x € X*(T). Its kernel is the maximal compact subgroup 7o =7 N K of T.

We let
X (T)" :={X € X.(T) | (\,a) >0 for all a« € A}

denote the monoid of dominant cocharacters of T with respect to A and de-
note by T its preimage in 7. We have T+ = {t € T | tN (o)t~ C N(0)} =
{t € T | tN(0)t™* D N(0)}, as can be seen by choosing a T-equivariant



isomorphism of group schemes G, — N, for any root o € ® (cf. [2], Remark
14.4). Similarly, X.(T)~ denotes the monoid of antidominant cocharacters
of T with preimage T~ = {t € T | tN (o)t 1 D N(0)} = {t € T | tN (o)t C
N(o)}in T.

The F-group G/Z is connected and semisimple of adjoint type with T/Z as
a maximal F-split torus. There is a natural identification ® = ®(G,T) =
®(G/Z,T/Z) of root systems. The monoid X, (T/Z)* of dominant cochar-
acters of T/Z is freely generated by the fundamental dominant coweights
(Aa)aca, i.e. the fundamental dominant weights of the dual root system ®.

Since Z is connected there is an F-subtorus T’ of T such that the multipli-
cation map Z x T" — T is an isomorphism (cf. [2], Corollary 8.5). It induces
an isomorphism X, (T") & X,(T/Z) of groups. Consequently, any funda-
mental dominant coweight Ao, @ € A, can be represented by an element
ta € T" :=T'(F) such that to € (g (o} ker(8). Fixing such representa-
tives once and for all, any element ¢ € T' can be written as t = z-t5-[[,ea ta®
with uniquely determined elements z € Z := Z(F'), t;, € T'N K and integers
Na, @ € A. Choosing t;, = 1 and fixing a set of representatives of Z/Z in
Z, Zy:= Z N K, we obtain a fixed set of representatives of X, (T)" in T7.

Remark 1.1. The fixed representatives chosen above have the following
important property. If I is a subset of A and if t = 2z -] c;ta> then
the centralizer of ¢ in G contains the groups Ng(F') for any root S which
is a linear combination of the elements of A\ I. This follows from ¢ €
Ngea\s ker(8) and [2], Remark 14.4.

Let V be an E-vector space carrying an irreducible E-linear representation
of G(k). We view V as a representation of K via inflation along the natural
reduction homomorphism

red : K = G(0o) — G(k).

Let M = indIG((V) denote the E-vector space of all compactly supported
maps f : G — V which satisfy f(gh) =h~!f(g) forallg€ G and h € K. If
g runs through the elements of G and if v runs through an F-basis of V' then
a basis of the E-vector space ind% (V') is given by the collection of functions
[9,v] with support gK and value v at g. The space M = ind%(V) carries
an E-linear smooth action of G via (g- f)(¢') := f(g~'g’) for all ¢,¢' € G.

The E-algebra
H =H(G,K;V) := Endg(M) = Endg(ind%(V))

of G-equivariant E-linear endomorphisms of ind?{(V) is called the spherical
Hecke algebra of G associated with V. Note that M is a module over H in



a natural way.

We let Hp denote the image of the natural homomorphism E[Z] — H of
E-algebras. Note that Endg (V) is a skew field which is of finite dimen-
sion over E. Since E is algebraically closed, we have Endg,) (V) = E. As a
consequence, the group Zy = ZNK acts on V via a character (y : Zg — E*.

For any dominant cocharacter A € X, (T)" there is a specific element T) €
H, the so-called Hecke operator associated with X (cf. [11], proof of Theorem
1.2). In order to define it let

AN :={ae A| N\ a)>0}.

We set Py := Paa) and P_y := fA\A()\) with common Levi subgroup
M)\ = M,/\ = MA\A()\)-

The unipotent radicals of Py and P_) extend to closed o-subgroup schemes
Ny and N_ of N and N, respectively. As an o-scheme Ny, (resp. N_)) is the
direct product of the root groups N, (resp. N_,) with o € T\ [A\ A(N)]T.
Here [A\ A(M\)]T denotes the set of all positive roots which are linear com-
binations of the elements of A\ A(A).

According to [11], Lemma 2.5 (ii), the natural map
VNA(k)C_> V —s VN_A(k)

is an isomorphism of irreducible representations of M (k). Using the inverse
of this isomorphism we obtain the M (k)-equivariant map

én: VH)VN—A(/C) o~ VNA(]‘?)C_>V

If t € T denotes an arbitrary element of 7' mapping to A under the natural
map T — X,(T) then the Hecke operator T, € H associated with A is
defined by

O Tg)i= Y lgetee o) forany g€ Gue V.
gKtK=]] gatK

That T) is well-defined, i.e. is independent of the choice of ¢t and of the rep-
resentatives z, is due to the relation [gz,v] = [g,zv] for g € G, x € K and
v €V, as well as to the relation t~1xt - £\(v) = &x(av) for 2 € K NtKt™!
and v € V (cf. [11], proof of Theorem 1.2).

The following fundamental result is due to Schneider, Teitelbaum, Herzig,
Henniart and Vignéras, in varying degrees of generality (cf. [10], Proposition
2.1). It is a characteristic p version of the classical isomorphism of Satake.
Keep in mind that we assume the center Z of G to be connected.



Theorem 1.2. If Zy = Z N K denotes the maximal compact subgroup of
Z and if (v : Z — E* extends the central character Cy of V then the
homomorphism E[Z] — Ho, sending z to 6‘;1(2)2, induces an isomorphism
E[Z/Zy] — Ho of E-algebras. The Ho-algebra H is commutative and freely
generated by the Hecke operators Ty, o € A. In particular, H is an integral
domain.

Proof. For the structure of H over Hy see [10], Proposition 2.1. Note that
Z/Zy is a free abelian group of finite rank because Z is an F-split torus.
Thus, Hg = E[de, ..., X:H] so that Hg and H are integral domains. [

If t € T maps to A € X, (T)* we put
K;:= KNtKt™' and I := red " (P_\(k)).

Denoting by K7 := ker(red) C K the first congruence subgroup of K, Propo-
sition 3.8 of [11] shows that we have the decomposition

I; = K1 K.
We shall also set I := red~*(B(k)) which is an Iwahori subgroup of G.

Proposition 1.3. Let a € A, and let A € X.(T)™ be represented byt € T+.
Letting Wy and W), denote the stabilizers of A and A\, in W, respectively,
we have

ItKt K N Ktt K = ]_[ Itlwt K = ]_[ Ttwt, K.
wEWNW,, /Wi, wWEWNW,, /Wi,

More precisely, if w € W)Wy, then [tlwt,K = Itwt, K C Ktt,K. If
w €W with w & W\Wy,, then ItIwt, K N Ktto K = (.

Proof. The disjointness of the required decompositions follows from the
Cartan-Iwahori decomposition G = [ | pex.(m) LPis.

If 1 € Xi(T)* is represented by s € T then K = [[,cpw, [wKs, as

follows from the Bruhat decomposition G(k) = [T,,.cw/w, B(k)wP_,(k) by
applying red —*. Note that red ' (P_,(k)) = I; = K1 K5 where K; is normal
in K. As a consequence, KsK = HweW/WM TwsK.

Let C' be the chamber of X which is pointwise fixed by I. Further, let
A = X, (T)g be the apartment of X corresponding to 7', and let pc: X — A
denote the retraction of X to A centered at C. Note that our fixed vertex
x corresponds to the origin of the real vector space X, (T)g. The restriction
of the metric d from X to A is given by d(u,v) = || — v|| where || - || is



the norm associated with a W-invariant scalar product w(-,-) on X, (T)g. If
a € A and if & denotes the corresponding coroot then

X (T)T ={\ € Xi(T) |[Va € A: w(\, &) >0}

If £ € K then there is an element s € T" and an element b € I with tkt, K =
bsK. Let p denote the image of s in X, (T), and note that pEl (n) =1Ip=
Isz. By [7], Proposition 7.4.20, we have

|AN—pu|| = d(te,sz)=d(pc(tz), pc(bsz)) < d(tz, bsx)
= d((tk~ % Y, (k71 Ybsx) = d(tx, ttax) = || Aall.

If [IA = ul] < ||Aal] then s & Ktto K = UyewIwtt, K. Indeed, if w € W
then A — w™!()\) is a non-negative real linear combination of the coroots ¢
with a € A (cf. [5], VI.1.6 Proposition 18). Therefore,

A +Xa) = AP = [Aa+A=w ' (V)P
= [all? +1IA =0T NP + 200 A = w7 (V)
> |all® > [l = All.

Thus, p # w(A 4+ Aa). On the other hand, assume ||\ — p|| = [|Aa||. There
is a labelling of X by A U {0} with the following property. The vertex tz is
of type 0 and if w € W and 8 € A then the unique neighbor of tx in twC
which is of type ( is contained in the line segment [tz, ttgx] in A. Let y be
the neighbor of tz in tC which is of type a. Setting z := pc(tkt~'y) and
using [7], Proposition 7.4.20 again, we have

d(tz,sx) < d(tx,z)+d(z,sz)
d(po(tht™'tx), pe(tht™y)) + d(pc(tkt™"y), po(tkt ™ tto))
< d(tz,y) + d(y, ttax) = d(tz, ttax) = || Na|| = d(tz, sz).

It follows from [7], Proposition 7.4.20 (iii), that z € [tz,sz]. However,
pc o tkt~! is a label preserving simplicial map. Therefore, z is a neighbor
of tx in A which is of type o. This implies z € [tx, tt¥z] for some w € W.
Since z # tx it follows that sz is contained in the half line in A through tt%z
with endpoint tz. The equation |[sx —tz|| = || Aa|] = [|w(Aa)|| = ||[ttEz —tz]|
then implies that sx = tt%x and hence sK = ttv K.

Now if w € W is such that Itwt, K C Ktto K = Uyew Ivtt, K then there is
an element v € W such that t"t)" K = tt, K. Computing in X, (T) this im-
plies A—v(A) = vw(Aq)—Aq. By [5], VI.1.6 Proposition 18, both A—v(\) and
Ao —vw(Aq) are non-negative real linear combinations of the coroots 3 with
B € A. Therefore, v € W), vw € W), and hence w = v low € WiW,, -
Conversely, if w = o7 with ¢ € W) and 7 € W), then tty = t7t7" =
(tt7)7 = (tta)? € Ktto K and hence Itwt, K C ItKt,K N Ktt, K. Thus,



ItKto K N KttoK = [Tyew,wy ., TwtaK.

If w= or € W) \W,, then the above equation tt% = (tt,)° also im-
plies that ¢ and t% lie in the closure of a common Weyl chamber. There-
fore, their lengths in the affine Weyl group add up to the length of tt%.
It then follows from [21], Theorem 1, that Itt¥] = ItIt¥I. Therefore,
HweWAWM/WM Itlwt, K = HwEWAW)\a/WM Itwt, K, proving the desired
decompositions.

It remains to see that Itlwt, K N Ktt, K = 0 if w ¢ W) W,,. If this
intersection is non-empty then the above decompositions imply the existence
of an element v € W)\W,_ such that ItIwt,K N Itvt, K # (). Hence, there
are elements b,0' € I and k, k' € K with tbwt,k = btut K, i.e.

bwv ! =W E Y € K (T 1K)
= (KNt 'It) - (KNt KtY).

The last equality comes from [7], Corollaire 4.3.2, applied to Q = {z}, Q' =
t71C and Q" = tYx. As a consequence, wv~! € [(K Nt~ 1It)(K NtLKt.°).

It follows from the Iwahori decomposition I = N(0)To(N (o) N K1) that
KNt 11t = N(o)To(t 1 (N (o) N K1)t N K). Therefore, red(I(K Nt~11t)) =
E(k)NA\A(A)(k) = P_x(k). Since red(K NtLKt") = U'P_)\a(k)v_l, we
obtain that the image of wv~! in G(k) is contained in P_y(k)vP_», (k)v~t =
P_r(k)P_y, (k)v~L. Thus, the image of w in G(k) is contained in the double
coset P_x(k)P_», (k). Since G(k) = HaeWA\W/WAa P_r(k)oP_y,(k), we
obtain w € W,W,_, in contradiction with our assumption. ]

Remark 1.4. Let o € A. The coweight A\, is minuscule, i.e. satisfies
(Ao, B) € {0,£1} for all g € @, if and only if A, = t,x is a neighbor of
x in the apartment A = X.(T)r of X. In this case I;, = K;, by [12],
Sublemma 6.8. This gives K = Uy,ew N (0)wK;, and hence

ItKto K = Upew ItN ()t Hwto K = Uyew Ttwt o K

for all £ € T—. This decomposition does generally not hold if A, is not
minuscule. For the root system ® = (G, for example, let « be the short
positive simple root, and let C' be the chamber of X which is pointwise
fixed by I. There is a unique chamber C’ of X in A containing )\, and
sharing a face with C' of codimension one (cf. [5], page 276, where A\, = w1).
Thus, t;'C’ is the unique chamber of X in A containing x and sharing
a face with t;1C which is of codimension one. Since t;!It, fixes t;1C
pointwise, we obtain pc(t; Itaz) C {z,t 'z} because the retraction pc
of X to A centered at C' is a simplicial map. However, we cannot have
po(t; tax) = {2} because this would imply ¢, It, C K and hence that A\,



was a neighbor of . As a consequence, It 'K C It 'It,K C It;'Kt,K
where apparently —A, € —Ao, + W ().

Corollary 1.5. Let a € A, and let A € X, (T)" be represented by t € T.
We have

ItKto K N Ktto K = Il WtKtaKnKit,K).
yel/(INtKt=1)

Ify € I then ytKt K N Ktto K = yK;tt K = H-’EEKt/Ktt yxtto K.

Proof. For the disjointness of the first decomposition we need to see that if
x,y € I with 2tKt, K NytKt, K N Kttty K # () then 27ty € T NtKt™ L. Tt
follows from Proposition 1.3 that tKt,K N Ktto K = Uyew, tIwt K.

First we claim that if w € W) then tlwt, K C K;tt, K. Indeed, the Iwahori
decomposition I = (N (o) N K1)ToN (0), as well as the root group decompo-
sitions of A'(0) and N (o), imply that w™'Tw = (w™ TwNN(0))To(w™H TwN
N (0)). Since Tp(w™Hw NN (0))ta K = to K, we obtain

tTIwto K = wt(w™ ' Tw NN (0))to K C wtN (o)t 't K C Kty K,

because w € W), possesses a representative in K;. As a consequence of this
claim and the above decomposition we obtain

tKto K N Ktto K = Kitt, K = H Tt K,
LEEKt/Kua

using that Ky, C K; by [7], Proposition 4.4.4 (iv). Multiplying through by
y € I, we obtain the second assertion of the corollary. Coming back to our
initial disjointness assertion,

2tKto K NytKto K N Ktto K = 2 Kitto K NyKtto K # ()

implies that 2~y € (K;-tto K (tty) 1 K;)NK = K; Ky, Ky = K;. Therefore,
rlye INtKtL. O

Remark 1.6. The proof of Corollary 1.5 shows that there is in fact no need
to restrict to the elements y of the subgroup I of K. We have Ktt, K =
HyeK/Kt(ythaK N Kitto,K) with ytKto, K N Ktt, K = yKitto K for any
element y € K. The above weaker formulation of Corollary 1.5 is simply
adjusted to our later needs.

For the following result see also [15], §3.3 Fact 2.



Proposition 1.7. Let A\ € X.(T)" be arbitrary. If we view the My (k)-
representation VN®) as o representation of P_y(k) by letting N_\(k) act
trivially, then there is an isomorphism

. ~ - 1G(k
M = indG (V)2 @ mdlY (VA0
AeX, (T)+

of E-linear representations of G(k) = K/K;.

Proof. If a general element A € X,(T)" is represented by t € T then
the Cartan decomposition G = [, x,(my+ KK induces a K-equivariant
decomposition
M=indF(V)= P M,
AeXL(T)+

where M) denotes the K-subrepresentation of M consisting of all functions
supported on KtK. The K-representation M) is isomorphic to ind%t(Vt)
by sending f € M) to the function (h — f(ht)): K — V. Here V! denotes
the E-linear representation of K; whose underlying E-vector space is V and
on which h € K; acts via v — t~'ht - v. We point out that the isomorphism
M) = indﬁt (V) depends on the choice of the representative t € T of . Re-
call, however, that we chose fixed representatives as in the paragraph before
Remark 1.1.

Since K is a normal subgroup of K we have

. ~ - ~ . 1K/K
indf¥, (VO = indff, g, (V)08 2 ind ) (V0K

where K/K; = G(k) and K1 K/K1 = /K1 = P_)(k). Note that N_y(0)
acts trivially on (V)15 because t 7N _)(0)t C K. Thus, the action of
P_x(k) on (VHELOE: factors through My (k).

Further, M (k) is generated by the images in G(k) of Ty = TNK and N, (o),
a € £(A\ A()N)), all of which centralize t (cf. Remark 1.1). Therefore, the
action of M (k) on V! agrees with that on V. Now consider the Iwahori
type decomposition

K1 = (N(U) N Kl)(T N Kl)(/\/(ﬂ) N Kl)
in which the two factors on the left are contracted under conjugation with
t~1. As a consequence,

tKitN K =t Y (N (o) N KT N Ky (1N (o) N KDt NN (o).

The two factors on the left are contained in K and hence act trivially on
V. It remains to note that (V#)K1NKe — yt7 KitNK 4nq that the image
of t=Y(N(0) N K1)t N N(0) in G(k) under the reduction homomorphism is
precisely Ny (k). O



Let A € X.(T)" be represented by ¢t € T™, and let & € A. Since A(\) C
A(X + Ny) we have Py(k) 2 Pxia, (k). This also follows from the relation
Ky, € Ky (cf. [7], Proposition 4.4.4 (iv)). We let

Pyt M = @ MN — M)\
HEX,(T)T

be the projection onto the component corresponding to .

Since the Hecke operators T, are G-equivariant, the K-subrepresentation
M5 = ind%(V)E1 of M is an H-submodule. The action of the operators
T, on this space can partially be made explicit.

Proposition 1.8. If A € X.(T)" and a € A then the diagram

PTatrq Ta

Moo - M M
. k fr>éaof . k
lndgsz(k)(VNA(k)) md7g>(,j,m (k)(VNA+Aa (k))

is commutative. Here the vertical isomorphisms come from Proposition 1.7.

In order to prove this result we need a property of the endomorphisms &)
which is partially responsible for the commutativity of the E-algebra H.

Lemma 1.9. If A, N € X.(T)T then &, o0&y = Exan. In particular, the
E-linear endomorphisms £\ and & of V' commute with each other and

é*X(VNA(k)) — YNAR) A N (R) — N ()

Proof. We will first show that £, and £y commute with each other. Since
both of them are projections it suffices to show that ker(§)) = ker(V —
Vi k) and im(§y) = VM) are stable under £y, This, however, follows
from the fact that £y is My (k)-equivariant. Indeed, this equivariance im-
plies that &y (VM%) is invariant under the subgroup of G(k) generated by
Ny (k) and My (k) NNy (k). However, this subgroup contains N (k). More
precisely, the product map

(M (k) N NA(R)) x Ny (k) — Nygx (k)

is bijective, whence &y (VMAK)) C YN (k) — yNa(k)  yNa (k)

Finally, the kernel of £, is the E-subspace of V' generated by all elements of
the form v—nv with v € V and n € N_y(k). As above, we can write n = mn’
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with m € My (k) "NN_x(k) and n’ € N_y/(k). The M (k)-equivariance of
&y then implies

Ex(v —nv) = Ex(v) — m&y(n'v) = Ex(v) — méxy (v) € ker(Ey),

where the second equality uses v — n’v € ker(&y).

Thus, &) 0 &y = &y 0 &y In particular, £, o £y is again a projection. Since
it is the identity on VNAF) q VN (R) — yNaev(®) — im(¢y, ), it remains
to show that &) o &y is zero on the kernel of &y, . However, N__ (k) is
generated by N_,(k) and N_y (k) so that the relation &y o &3 = &y 0 &y
implies (£x 0 &) (nv) = (Exoéx)(v) foralln e Ny (k) andv e V. O

Proof of Proposition 1.8. Note first that the lower map of the diagram is
well defined, i.e. if f € indg(_’?(k)(VNA(“) then the map &u 0 f : G(k) = V
has image in VN3 (®) and satisfies (&4 o f)(zy) = vy~ (€a o f)(z) for all

z € G(k)and all y € P_y_», (k).

The first assertion follows from Lemma 1.9. For the latter assertion it suf-
fices to show that &, : VAAK) 5 yNaaa (F) g P_xr—n, (k)-equivariant for the
actions of P_x_», (k) C P_,(k) as described in Proposition 1.7. The map
&4 1s equivariant with respect to My, (k) D My, (k). Further, the group
N_x_», (k) is generated by N_,_ (k) and N_(k)N M, (k) (confer the proof
of Lemma 1.9 with A’ = \,). It remains to show that the restriction of &,
to VMK is equivariant for the action of N_y, (k).

Let 2 € N_y. (k) and v € VMR If o € A(N) then N_y, (k) € N_x(k)
and therefore zv = v for the action as in Proposition 1.7. Since N, (k) C
Noga, (k) we also have £4(v) € VM) whence 26, (v) = €4 (v) = Ea(zv). If
a & A(X) then x € M)\ (k), and the action of z on V' is the usual one. In this
case, the general properties of &, yield &, (zv) = &, (v) because z € N_,_ (k).
As seen above, we also have x&,(v) = £, (v), proving that the map f — £,o0f
is well-defined.

Let € X.(T)*, z € P_,(k) and v € VNe®), Tn analogy with our previous
notation we let [L,v]p_ ) € ind%(_kj(k)(VNu(k)) denote the function with
support P_, (k) and value v at .

Let X be represented by t € T+, and let v € VNA(K) | The lower horizon-
tal map of the diagram is determined by sending [1,v]p_ (k) to the func-
tion ExE’P,A(k)/P,A,Aa(k) [ac,{a(:nflv)]p_k_ka (k). Under the identifications
of Proposition 1.7 the function [1,v]p | () correponds to the element of
ind% (V)51 with support I;t K = K tK and value v at t, i.e. to >yl /K, Yt V-
Similarly, for any = € P_yu)/P-r-x, (k) = I;/1u,, [m,ﬁa(a:_lv)]pikm(k)
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corresponds to >0 ok, [zytt e, £t o~ v)] in ind% (V)Y with sup-
port in xly tto, K. Thus, erP_A(k)/P_A_M(k)[xa§a($_lv)]7>44a(k) corre-
sponds to the function F := sumuer, /1, >yer.. /K. [Tytta, Eo(t™ 2 t0)).

On the other hand, since I;tK = [tK, Corollary 1.5 implies that

C=pra,Tal Y )= 3 Y lyetta &t e ).

yeli /Ky yel /Kt x€ Ky /Kty

Let x1, 2 and y run through systems of representatives for K;/(K; N Iy, ),
(KyN1y,)/ Ky, and Iy, /(K¢ N Iy,,), respectively. Note that

Iy = KKy =K\ Ky, K = Iy, Ky

= KKy = KiKy, K1 = Ky,
so that the natural maps Kt/(Kt N Itta) — It/-[tta and Itta/(Kt N Itta) —
I;/ Ky are bijective. As a consequence, we may also regard z; and y as run-

ning through systems of representatives for I/l and I/ K}, respectively.
Therefore, we have the simultaneous decompositions

I, = H yxri172Ky,, where H 122Ky, = Ky,
Y, 1,22 X1,T2
= H r1yro Ky, where H yro Ky, = Iy,
Y,T1,T2 Y, T2

Since I;/K; = K1 /(K1 N K;), we may assume all y to be contained in Kj.

Now keep z; fixed and note that x; acts on K;/(Kj N K;) by conjugation.
This implies that also ][, ,, (27 'yx1) w2 Ky, = Iy, Thus, for any y and x9
there are ¢’ and xf, such that

—1 /1
yr1xo Ky, = x1(x] yx1) oKy, = 1y w9 Ky, .

Now (K;N1Iy,)/Ku, C Iy, /Ku, = K1/(K1NKy,), so that we may assume
all x2 to be contained in K7, as well. By assumption, v € ViKUK g fived
by t~lazot. Since t7'K;t N K is normalized by t~lzt € t71Kt N K, also
t~lzytv is fixed by t~lzot. This yields

G(yxixatty) = §a(t_1w2_1x1_1tv) = fa(t_l:rl_ltv) = F(x1y 2htty).

By construction, z := (24) " (y/)"Na] yz1)z2 € K1 N Ky,. The relation
Ky, C Ky then implies t~lzt € K, so that

F(yzizotty) = F(zy zhtte(tte) t2tty) = (tte) 2tto F(z1y zhtty)
= tgl(tilzt)toa : fa(tilxltv) = fa(tilzt . t71$1t1})
= &t i) = F(a1y'ohtts) = G(yz1xatty).
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Corollary 1.10. If o« € A and X € X, (T)* then the map pry,y. o To :
My — Myy»,, s injective.

Proof. Since pry o Ty is Ki-equivariant and since K is a pro-p group it
suffices to see that the induced map pry,, o7k : M){ﬁ — M){il)\a is injective
(cf. [16], Lemma 2.1). By Proposition 1.8 this is equivalent with the injectiv-
ity of the map ind%{kz(k)(VNA(k)) — indi{kzﬂa(k)(VNHM(’“)), sending f to
&a o f. Note, however, that if f # 0 then its image as a map G(k) — YNa(K)
generates all of VMAK) over E. Indeed, by its equivariance for the action of
P_x(k) its image generates a subrepresentation of the irreducible M (k)-
representation VNA() | Thus, éao f = 0implies f = 0 because &, is E-linear
and non-zero. O

Under certain conditions one even has the following bijectivity result.

Corollary 1.11. If a € A and X\ € X (T)* with a € A(\) then the map
Praga, © Lo : Mfl — M){ilAa is bijective. In particular, the H-module
M¥X1 s generated by the sum of all le(l for which u = ZﬁeA ngAg with
ng € {0,1} for all B € A.

Proof. If o € A(X) then A(X) = AA+ Ay), P-x = P_x_», and &, is the
identity on VM) — yNataa (k) Therefore, the first claim follows from
Proposition 1.8. The second assertion is an immediate consequence of the
first one by induction on Eﬁe A ng. Note that if M /{{1 is contained in the

H-submodule of M%1 generated by the above set of components M 51 then
so is M/fil/\, for any N € X,(Z) C X,.(T)". Indeed, if ) is represented by
2 € Z then MY, = M C HoM . O

Remark 1.12. We warn the reader that the natural inclusion VNa+xa (%) -
VNA(®) need not be equivariant for the actions of P_r-a, (k) C P_x(k)
described in Proposition 1.7 unless @ € A(A). Indeed, if & ¢ A(\) then
M (k)NN_x_a, (k) contains the root subgroup N_, (k) which acts trivially
on VNa+aa (k) bug possibly non-trivially on VNAK),

Using the identification made in Proposition 1.8 there is yet another natural
description of the map pry ), o Ta : My — Myiy,-

Lemma 1.13. Let o € A and X € X,(T)". The diagram

. k f=€aof . k
mdi(_)(k)(vj\/x(k)) >-1ndg( ) (k)(VN)\—O—)\a (k))

A P_r-ra
k)

. 1G
ind?") ) (Vi 0)

1%

(=23

ind2") o (VW @)

13



of G(k)-equivariant maps is commutative. Here the actions of P_x(k) and
P rxa(k) on Vi ) and VN_y_x. (k)s Tespectively, are the natural ones.
The lower horizonal arrow composes a function with the natural projection
VN_atk) = VN, (k) Finally, the left (resp. right) vertical arrow is induced
by the M (k)-equivariant isomorphism VN ®) v — V- \(k) (resp. by the
Mg, (k)-equivariant isomorphism VNxra(®) 7 VN sCaa (k)

Proof. 1t suffices to show that the two maps
VMR Ve Vi ) —= V)

and
o
V/\[A(k;) _ s VN)\+)\Q (B o V — V./\/fA—Aa (k)

coincide. The first one simply sends v € VM) to its residue class modulo
ker(V' — Vi, ,,)- The second one sends v to the residue class of &,(v).
However, v = £,(v) + v — &4 (v) where v — &, (v) € ker(&,) = ker(V —
Viv_,. (k) because &, is a projection. Now N_,, (k) € N_x_,, (k) so that
ker(£q) C ker(V — Vv, . )- O

2 Freeness of the pro-p Iwahori invariants

The E-linear smooth G-representation M = ind% (V) is a module over its
endomorphism ring H, the latter being freely generated by the Hecke oper-
ators Ty, a € A, over the subalgebra Hy (cf. Theorem 1.2).

The structure of M over H was studied in detail by Bellaiche-Otwinowska
and Grofle-Klonne. For G = PGL3 and V = FE the trivial representa-
tion, the H-module M is free for any ring E (cf. [1], Théoreme 1.5). In a
much wider class of examples, yet assuming F' = Q,,, Grofie-Klonne showed
that M ®,0 E is a free module over H/ker(6)H for any homomorphism
0 :Hy — E of E-algebras (cf. [10], Theorem 1.1).

The group I; := red ' (N(k)) is a pro-p Sylow subgroup of K, a so-called
pro-p Iwahori subgroup. The aim of this section is to show that the H-
submodule Mt of I -invariants of M is finitely generated and free without
any restriction on V or F. The structure of Mt as a module over the
so-called pro-p Iwahori-Hecke algebra was determined by Ollivier (cf. [15],
Lemma 3.6)

Theorem 2.1. For any irreducible E-linear representation V' of G(k) the
module Mt = ind%(V)" is finitely generated and free over H = Endg(M).
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Proof. By Corollary 1.11 the H-module M is finitely generated. Since
H is a noetherian ring the submodule M is finitely generated, as well.
By a theorem of Quillen-Suslin (cf. [19], Corollary 7.4) and by [4], 11.5.3
Corollaire 2, it now suffices to see that M1t is flat over H. By [4], 11.3.4
Proposition 15 and I1.3.2 Corollaire 2, it suffices to show that the torsion
group Tor?lm (Hum @3¢ M, Hyn/mHy) vanishes for any maximal ideal m of
H. Here H,, denotes the localization of H at m. Further,

Tor ™ (Huy @3 M, Hy /mHey) =2 Torf (MO H /m)
by [3], X.6.6 Proposition 8.

Since E is algebraically closed and H is an FE-algebra of finite type any
maximal ideal m of H is the kernel of a uniquely determined homomor-
phism x : H — E of E-algebras. We denote by 8 : Hyg — E its restriction
to Ho and set Hg := H/ker(8)H, as well as MGI1 = M /ker() M.

Putting M’ := @,c x, (1y+ Mx € M we claim that the E-linear map

(2) HO ®EM,11 —>M117 90®m'_>90(m)>

is bijective. Indeed, any set of representatives of Z/Z; gives rise to an FE-
basis of Hg (cf. Theorem 1.2). Now if z € Z then (2) maps Fz @ M
bijectively onto the subspace of M1 consisting of all functions supported on
2KT'K. Since G = HzEZ/Zo 2KT'K the claim follows. In particular, the
Ho-module M is free. As a consequence, if P* — M is a free resoluton
of M over H then P® @y Hg — MGI1 is a free resolution of MGI1 over Hy.
Therefore, we obtain an isomorphism

Torf (M, H /m) 2 Tor]" (M[*, Hg/mH,).

We fix an enumeration A = {ay,...,aq} of A. Since the ordered family
(To, — X(Tay), -+ Ta, — x(Tw,)) is a regular sequence of the ring Hy =
E[T, | « € A], the groups TOI"Z-LQ(Meh,/Hg/m/Hg) are the homology groups
of the Koszul complex M(,I1 ®r \°® B2 associated with the above regular se-
quence (cf. [3], X.9.4, page 155). We will show that this complex is acyclic,
i.e. has trivial homology in positive degrees. In an essential way this relies
on an acyclicity result for coefficient systems of representations of the finite

group G(k) of Lie type which will be proved in the following section.

It follows from (2) that that the inclusion Mt C M't induces an E-linear
bijection Mt = Meh. Further, if A € X,(T’) and p € X, (Z) then MAI1 and
M iﬁr , map isomorphically to the same subspace of MGI '. We will therefore
write MQI1 = @)\GX*(T/Z)+ MAI1 and denote the projections Mé’l — MAI1 by
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pry as before.

We choose a total ordering < on X,(T/Z) which refines the dominance
relation and which is compatible with the group structure, i.e. satisfies
w+ XN < A+ X for all g, \, N € X.(T/Z) with p < A\. To give an ex-
plicit example, write X.(T/Z) C > - Ra and choose the lexicographical
ordering for the usual ordering of the real numbers on the right. Here &
denotes the coroot associated with o € A, and the usual dominance relation
is defined by p < X if and only if A — p € 3 ca R>oa.

For o € A let e, € E® be the corresponding standard unit vector. For any
subset J = {aj,,...,a;} CAwithji <...<j,setes:=eq; N...Ne€q; €
A E? and py =3, c; Aa. We endow the Koszul complex ]\/.I'(;I1 ®p \*EA
with the following filtration indexed by X, (T/Z)*. For any \ € X.(T/Z)*
set

(3) Fil) :=FilNM,' @ )\ E?) = D M} ®p Ee,.
JCA,|J|=e
REX(T/Z) T, ptp g <X

Further, set

Fil}™ == Fil* (M, @ \ E®) := P M} @ Ee,.
JCA,|J|=e
REX(T/Z)F ptp g <A
If fe MAI1 and J C A with |J| = r then the boundary maps of the Koszul
complex MQI1 ®@p \® E® are given by

On(f@es) = sgn(o, J)(To — X(T))(f) @ €1\(a}s

aeJ

where the sign sgn(a, J) == (=1)" if J = {aj,,...,q;} with j; < ... < j;
and a = ;.

Assume that p € X, (T/Z)" is represented by s € T with u+ p; < X €
X, (T/Z)" for some subset J of A. If f € Mil then (1) shows that T, (f)
is supported on KsKt,K where the latter is a finite union of double cosets
Kt'K such that the image X of t' in X,(T/Z) satisfies N < p+ A, for
the usual dominance relation (cf. [7], Proposition 4.4.4 (iii)). Therefore,
the boundary maps 9, are filtered of degree zero, i.e. leave Fil} and Fil)~
invariant. More precisely, (To —X(Ta))(f) @€ (o} = PTpir, 0 Ta(f)®en fa)

mod Filf‘f'_l, so that the associated graded complex
(M @ \ E?) = Fil} /Fil}~ ~p MP @p \ EA
w(Mg op \E%):= D Fil/ 0 @ [\

+
EX(T/2)F T
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is the Koszul complex associated with the family of commuting E-linear en-
domorphisms gr(7,), a € A, of MQI1 sending f € ]\4)\11 to (praga, ©Ta)(f) €
M /{}Ma. In particular, this graded Koszul complex is independent of the
character x. We denote its boundary maps by gr(ds).

We claim that it suffices to show that this associated graded complex is
acyclic. Since we are not in the rank one situation treated in [13], 1.4.2
Theorem 4, this requires an extra argument. The technical problem is that
there are usually infinitely many elements y € X, (T/Z)" with u < X for a
given dominant cocharacter A of T/Z. Further, Fili‘_ need not be equal to
Fil¥ for any u < A.

Let us now prove the claim. If F' € ker(d,) is not equal to zero, write
F= Z|J|:r f7 ® ey. By abuse of notation we call the subset

supp(F) :={A+ps | |[J| =7, A € X (T/Z)*, pry(fs) # 0}

of X.(T/Z)" the support of F. Let {u1,...,un} with0 =3 < ... < pux be
the finite set of elements of X,(T/Z)" which are less than or equal to some
element of supp(F') for the usual dominance order (not its refinement). Then
pn is the maximal element of supp(F) so that F' € Fil*~N. Denoting by F
the image of F in gri’¥ we have F € ker(gr(9,)). By our assumption, there
is G € gri'™, with F = gr(9,4+1)(G). Choose G € D j=ri1 M;ﬁv—m ® Fey
whose image in grf'Y, is G. We have F — 9,41(G) € Fili!N ™.

On the other hand, we have seen above that the support of 9,11(G) is con-
tained in the set of all u € X, (T/Z)" for which pu < py with respect to the
usual dominance relation (not its refinement). This implies that F'—9,11(G)
is supported on {1, ..., un—1} and hence is contained in Fil#*N-1. It is pre-
cisely for this conclusion that we require the set {1, ..., un—1} to be totally
ordered. Note that together with p;, 1 <j < N —1, the set {u1,...,un—1}
contains all elements p € X,(T/Z)" which are less than or equal to p;
for the usual dominance relation. If F’ := F — 9,41(G) € ker(d,) is non-
zero, the analogous procedure for F’ yields a set {y}, ..., py,} contained in
{p1,...,un—1}. We can thus proceed inductively and obtain F' € im(9y41)
after finitely many steps. Note that Fil?~ = 0. This proves the claim.

We will now show that the graded piece gry of our complex is acyclic for
any A € X.(T/Z)*. We have

(4) ga=[0— P M, ®gFEe; — 0

JCA(N)
|J|=e
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with boundary maps

gr(0)(fr®ey) = ngn o, J)gr(Tu)(f1) @ en\(a}-
acJ

We will distinguish two cases. First assume that there is a € A with A —
2\q € X, (T/Z)*. In particular, @« € A()). For 0 < r < |A()N)| we define
the E-linear map ¢, : gry — grp,; as follows. If J C A(X) with |J| = r and
if f5 € MAhp then

w(fr®ey) = { sgn(a, J U {a})gT(Ta)_l(fJ) ® €eju{a} ifadJ,

0 , faeld
Note that gr(7y) : M /{1 proe) - M /{1_ ,, is an E-linear isomorphism for any

J not containing a since a € A(X — pyufay) by our assumption on A and
because of Corollary 1.11. We also set ¢—1 := 0 and ¢|o(y) = 0.

Ifo<r <|A(\)| and J C A(A) with |J| = r then gr(dy4+1) o, maps fr®ey
to 0 if @ € J and to

> sgn(B.J U{a})sgn(a, J U {a})er(Tp)er(Ta) ™" (fr) ® eufap\is)
BesU{a}

if « ¢ J. On the other hand, ¢,_1 o gr(d,) maps fy®eyto fyReyifa e J
and to

> " sgn(on, (J\{B}) U{a})sgn(B, J)gr(Ta) er(Ts)(£1) @ e(n (a1 0ia}

BeJ

ifa ¢ J. Now gr(T,) ! commutes with gr(7) whenever it is defined because
gr(7T,) commutes with gr(7). Moreover, if o ¢ J and S € J one readily
checks the sign relation

sgn(a, (JAA{BY) U{a})sgn(B, J) = —sgn(B, J U {a})sgn(a, J U {a}).

As a consequence, we obtain gr(9,41) ot + tr—1 0 gr(9,) = idgrﬁ, so that
Le is & contracting homotopy of the complex gr). Therefore, gr) is even exact.

Now assume that A — 2\, € X, (T/Z)" for all « € A. In this case we have
A= papy and A(A—py) = A(M)\J for all subsets J of A()). By Proposition
1.7, Proposition 1.8 and Lemma 1.13, the graded piece gry can be identified
with the natural complex

g(k) N(k
0— @ indp" p](k)(VN—A+pJ) k) 0.
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Here P_)4,, is opposite to the standard parabolic subgroup of Gj, associated
with the subset A\ (A(X) \ J). Therefore, we can rewrite this complex as

0— D gl (V) —0.
A\A(N)CJCA J
1T1SIAVA (=

In Theorem 3.2 below, complexes of this type will be shown to be acyclic. [

The following consequence of the freeness assertion in Theorem 2.1 was first
proved by Herzig, using different methods (cf. [12], Corollary 6.5).

Corollary 2.2. For any irreducible E-linear representation V' of G(k) the
H-module M = ind%- (V) is torsion free.

Proof. Since I, is a pro-p group, it suffices to see that the H-module M1
is torsion free (cf. [16], Lemma 2.1). By Theorem 2.1 the latter is even
free. ]

Corollary 2.3. For any irreducible E-linear representation V' of G(k) the
rank of M = ind% (V)1 as a module over the spherical Hecke algebra H is
equal to the order of the Weyl group W.

Proof. We take up the notation of the proof of Theorem 2.1. Choose an
arbitrary character 6 : Hg — E of Hg and consider the Koszul complex
(C*,0.) = MGI '@p \* E? associated with the family of endomorphisms T,
a € A, of ZMQI1 = @)\GX*(T/ZV Mil. As above, we endow it with a filtra-

tion Fil} indexed by Ac X, (T/Z)*. By the proof of Theorem 2.1 it suffices to
show that the E-vector space C_; := M,'/ Y acA T,(M}') has dimension
[W.

We endow C_; with the quotient filtration induced by Filg(C,), i.e.

Fil), = (Fil} +im(d))/im(dy) and
Fil'] = (Fily~ +im(8p))/im(dp).

All E-linear maps in the exact complex
o—
2o 2o e, —o

respect the filtrations so that by passing to the graded objects we obtain a
complex

(0 (O, T(0_
gr(Cs) g(—1>) gr(Ch) gﬁi) gr(Cp) g(—>1) gr(C_;) — 0

of E-vector spaces that we claim to be exact. The exactness at gr(Cy) was
shown in the proof of Theorem 2.1. We claim that this implies that Jy is
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strict, i.e. that it satisfies im(9) N Fily = dp(Fil}) for any A € X, (T/Z)*.
Since we are not in the rank one situation treated in [13], 1.4.2 Theorem 4(2),
this requires an argument close to the one given in the proof of Theorem 2.1.

Let ' = ) cA fa ® eq € C1 be non-zero, define the support supp(F) C
X.(T/Z)* of F as in the proof of Theorem 2.1 and let {p1,...,un} with
0= g1 <...<pupn be the finite set of elements of X,(T/Z)" which are less
than or equal to one of the elements of supp(F') for the usual dominance
relation (not its refinement). We then have F' € Fil{V and dy(F) € Filj™.
As seen before, the support of 9y(F) is contained in {u1,...,un}, as well.
Therefore, if 9y(F) € Filj¥~ then 9y(F) € Filj™~'. Further, the image
of F in grf" is then contained in the kernel of gr(dy). Hence, there is
G e ®|J\=2 M/ﬁv—m ®p Fey C Fil4Y whose image in gri™ maps to the
image of F in gri™ under gr(d1). The support of d;(G) is again contained
in {p1,...,un}. As a consequence, the support of F'— 0;(G) is contained in
{p1, ..., un—1}. Since 0o(F) = 9p(F—01(G)) we obtain 9y (F') € do(Fil{¥ )
and may replace F' by F'—0;(G). Proceeding inductively and using Filg_ =0
the strictness of Jy follows after finitely many steps.

Adjusting the proof of [13], 1.4.2 Theorem 4(1), in a similar fashion, the
strict exactness of the complex

o—
CH £§>Cb——$(?,1——+o
implies the exactness of the associated graded complex, as desired.

Since the filtration Fil_; of C_q is exhaustive and Fil(f1 = 0, the E-vector
spaces C_; and gr(C_1) have the same dimension. By our above arguments,
this dimension in turn is equal to the dimension of coker(gr(dp)). By the
proof of Theorem 2.1 and by Corollary 3.3 below we have

dimp [coker(gr(dp))] = Y > (—)M=wyw;|

ICAICT

= > QDWW

JCA ICJT
The summand corresponding to J = () gives |W|. If J # () then

/]

S — 3 ('i') ()= = (1 = 1) =0,

1CJ n=0
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3 An acyclicity result for finite reductive groups

In order to simplify our notation we will assume in this section that G is
a split connected reductive group over the finite field k of characteristic p
with a maximal k-split k-torus 7 and a Borel k-subgroup B with unipotent
radical N. As before we denote by ® the root system of (G, 7) with positive
roots ®T corresponding to B, negative roots ®~ and positive simple roots A.

For any subset J of A we denote by P the standard parabolic subgroup of
G containing B and corresponding to J. In particular, Py = B. Let further
N denote the unipotent radical of P; and M the Levi subgroup of Py
containing 7. We denote by W the subgroup of W generated by the simple
reflections s, with o € J. We denote by /W the set of minimal length coset
representatives of W/W. Finally, we denote by B the Borel subgroup of G
opposite to B and by A its unipotent radical.

We write < for the Bruhat ordering of W in which v < w if and only if v
can be written as a subexpression of some reduced expression of w in terms
of the simple reflections so, @ € A (cf. [14], Theorem 5.10). If J C A and
w € YW, for example, then w < ww' for any w’ € W;. This follows from
the fact that the length of ww’ is the sum of the lengths of w and w’.

Let E be any algebraically closed field containing k and let V' be any E-linear
irreducible representation of the finite group G(k) of Lie type. According to
[11], Lemma 2.5 (i), the E-vector space VN®) is one dimensional. We fix a
non-zero element v € VN®*). The crucial fact that we are going to need is
that for any subset J of A the natural map VN®) — (VNJ(k))MJ(k)ON(k) is
bijective (cf. [11], Lemma 2.5 (ii), noting that N'(k) = N ;(k)(M;(k)NN (k)).
Here Vi, () denotes the maximal quotient of V' on which N (k) acts triv-
ially, viewed as a representation of Ps(k).

For any subset J C A we have the induced E-linear G(k)-representation
indggk()k)(VNJ(k)). We choose an enumeration W = {wy, ..., wy} of W such

that if w; < wj; for the Bruhat ordering then ¢ < j. It gives rise to the

following filtration Fil% on indgg%)(VNJ (k))ﬁ(k);

Fit .= {f mdig()k)

if 1 <j <N and Filf*! = 0.

(Ve o)V &) | F(B(kywiB(k)) = 0 for all i < j}

Lemma 3.1. Let J be a subset of A. For 1 < j < N the E-vector space
gr)y = Fil?]/Filf,Jrl is of dimension one if w; € W and of dimension zero,
otherwise. In particular, the E-dimension of ind%g]&)(VNJ(k))N(k) s equal

to |W/WJ|
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Ij roof. If gI“Lj] # 0 then there exists f € indigk()k

B(k)w;B(k) for i < j but for which f|B(k)w;B(k) # 0. Assume w; & W
and let w; € YW with wjWy; = w;W;. Then w; < w; with w; # w; and
therefore i < j. In particular, f|B(k)w;B(k) = 0. However, f is P;(k)-right
equivariant so that even f|B(k)w;Ps(k) = 0. Since P;(k) contains repre-
sentatives of the elements of W, we have B(k)w;P;(k) 2 B(k)w;B(k) and
arrive at a contradiction.

)(V/\/J(k))ﬁ(k) vanishing on

Conversely, assume w; € JW. First of all, we claim that in this case there
is a subgroup N7 (k) of N(k) such that
wi "N (k)w; NPy (k) = N (k) - (M(k) N N (k).

Indeed, w; "N (k)w; = (w; "N (k)w; NN (k)) - (w; "N (k)w; NN (k)). By [22],
Lemma 3.1.2 (a), we have wj_qu N®*T C &\ [J]T, where [J]* denotes the
set of all positive roots which are linear combinations of the elements of J.
Since @71\ [J]T is precisely the set of roots whose corresponding root groups
appear in N we obtain N7/ (k) := wj_lﬁ(k)wj NN (k) C Nj(k) C Ps(k).
This also implies w; "N (k)w; NPy (k) = N (k) (w; "N (k)w;nP (k)N (),
where

w; "N (k)yw; N Py(k) NN (k) = wi "N (k)w; 0 My (k) NN (k).
However, by [22], Lemma 3.1.2 (a), we have —[J]* C w;lq)_. Since M ;NN
is the direct product of the root subgroups corresponding to the elements of
—[J]T we obtain M (k) NN (k) C wj_lﬁ(k:)wj, proving our claim.

Next we claim that setting f(zw;y) ==y~ v+ Vi, if 2 € N(k), y € Ps(k),
and f(g) :==0if g € N(k)w;Ps(k) = B(k)w;P;(k), gives a well-defined ele-

ment f of indggk&)(VNJ(k))N(k). To see this, note that v+ Vs ;) is invariant

under NV (k) - (M (k) NN (k)) = w;%ﬁ(k)wj N Ps(k) because of our above
reasoning. Apparently, f € Fil; \ Fil?,“.

On the other hand, the map VV®) — (VNJ(k))MJ(k)mN(k) is bijective, so
that the latter space is of dimension one over E. The same arguments as
above then show that the E-vector space grf] is at most one dimensional. [

For any subset J of A and any element o € A\ J let pr : VNJU{Q}(k) —
Vi, (k) be the natural P;(k)-equivariant projection and consider the G(k)-
equivariant map

k)

L s 1G(k) - 16(
Ta : lndPJu{a}(k) (VNJU{Q}(k)) — lndPJ(k) (V./\/'J(k))a f = pr o f
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It is obvious that T}, respects the above filtrations, i.e. satisfies Ta(Fil?']U (o}

Fﬂf} for all 1 < j < N+ 1. Therefore, it induces a T (k)-equivariant E-linear
map gr(7,) on the corresponding graded objects.

) C

Let w; € Juledpy YW . By the proof of Lemma 3.1 there is a commutative
T (k)-equivariant diagram

1 gr(Ta) j
gr?]u{a} grfi
M Uy (K)NN (k) pr v M (R)ON (k)
NiUgay (k) Ny (k) ’

in which the vertical arrows are induced by evaluation at w;. Let ¢ :

ij‘/ J(](c];)nﬁ(k) — FE be the E-linear isomorphism sending the class of v to 1.
Since pr sends the class of v in VNJU{Q}(I@) to that of v in Vj/, (1), there is a

commutative diagram of T (k)-equivariant E-linear maps

e r(Ta) :1®
gr(Fil} () — er(Fil3)
E[Ju{a}W] E[JW]

in which the lower horizontal arrow is induced by the inclusion 7 U{Q}W C
JW. The right vertical arrow sends the class of a function f € Fil; in g1/,
to (¢ o f)(wj) - wj. The definition of the left vertical arrow is analogous.

Now let I be any subset of A and consider the complex

. k
(5) 0— @ nd Va,m) — 0
T2

for the alternating sum of the natural face maps T, « € A\ J, [ CJ C A,
with the same sign conventions as in the previous section. For the induced
complex of N (k)-invariants we have the following very general acyclicity
result.

Theorem 3.2. For any subset I of A the complex

. k N
(6) 0— @ wmd% (Vi,w)V™® — 0

ICJCA
17|~ |I]=e

s acyclic, i.e. has trivial homology in positive degrees.
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Proof. As seen above, the complex (6) admits a decreasing, separated and
exhaustive filtration with only finitely many jumps. By a standard argument
it suffices to prove that the associated graded complex is acyclic (cf. [13],
1.4.2 Theorem 4(5)). By the above remarks, the latter is isomorphic to the
complex

0— @ E'W]—o0

ICJCA
|J|—|I|=e

for the alternating sum of the inclusions E[/“1*}W] ¢ E[/W] whenever
ICJCAand ae A\ J. We apply [18], §2 Proposition 6, to the abelian
group E['W] and its family of subgroups E[!{} W], a € A\ I.

If A and B are two subsets of W then we have the obvious relations
E[AUB] =E[A|+ E[B] and E[ANB]= E[A]NE|B|

inside E[W]. Together with the usual associativity and distributivity rules
for unions and intersections of sets this gives

(3 BV () BEYOW) = S (B W A () EFUPT)

aEM BEN aEM BEN

for any two subsets M, N of A\ I. According to the proof of [18], §2
Proposition 6, our complex is an acyclic resolution of 3\, E['Y} W] as

a subgroup of E[!W]. O

Corollary 3.3. For any subset I of A the 0-th homology group of the com-
plex (6) has dimension

> MWWy

ICJCA
over E.

Proof. This follows from the dimension formula for exact sequences of finite
dimensional E-vector spaces, as well as from Lemma 3.1 and Theorem 3.2.
O

Without passing to the graded objects one can still prove the distributivity
property needed to apply [18], §2 Proposition 6, to the proof of Theorem 3.2.
This direct strategy is followed in [9] if V' is the trivial representation (cf. [9],
Proposition 3.2.9 and Theorem 7.1.10). It seems more elaborate than our
filtered approach. Since the authors of [9] work over a field of characteristic
zero they can even deduce the acyclicity of the original complex (5) from
the result in Theorem 3.2. This is not possible in natural characteristic, as
we shall now explain.
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If J CAanda ¢ Jthen Njya(k) C Ny(k), and we have the P;(k)-

equivariant inclusion VN7®) ¢ yNiufar (k) indi(fu){ }(k)(VNJU{a}(k)). By

Frobenius reciprocity it gives rise to a G(k)-equivariant map

Lo 1G(k) Ny (k . 1G(k) NiGiar (k
Sy : 1nd7,J(k)(V 7( )) SN mdPJU{a}(k:)(V Ju{a}( ))'

For any subset I of A we may then consider the complex

(7) 0— @ mdh (VN®) —0

ICJCA

[T|—[T]=e
for the alternating sum of the face maps Sy, o« € A\ J, I C J C A, with the
same sign conventions as in the previous section. Up to its numbering, this
is the chain complex of the fixed-point sheaf on the spherical building of G
associated with V', as studied by Ronan and Smith (cf. [17], page 322 and
page 324). Although it is generally not acyclic (cf. [17], Section 1, Example
4), we have the following general acyclicity result for the associated complex
of N (k)-coinvariants.

Theorem 3.4. For any subset I of A the complex

8) 0— P nd} (VN F)g, —0

ICJCA

|- T|=e
s acyclic, i.e. has trivial homology in positive degrees. Its 0-th homology
group has dimension ZIQJQA(—].)‘JI_|I”W/WJ| over E.

Proof. As in Theorem 3.2 and Corollary 3.3 this can be proved by endowing
the complex (8) with a suitable filtration and by analyzing the associated
graded complex. One can also deduce the assertions directly from Theorem
3.2 and Corollary 3.3 by making use of the following duality argument.

For any finite group H and any finite dimensional F-linear representation W
of H we denote by W* := Hompg (W, E) the E-linear dual of W endowed with
the contragredient representation of H. Dualizing the inclusion W C W
gives rise to a natural F-linear surjection (W*)y — (WH)*. It is in fact
bijective because ((W*)g)* € (W*)7 = WH . Further, if H is a subgroup
of some finite group G then the map

(9) indf (W*) — indf(W)*, Fe (f= Y Flg)(f(9)),
geG/H

is a natural G-equivariant bijection. In fact, it is easily seen to be injective
and hence bijective for dimension reasons.
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Now note that the natural map from V into its E-linear double dual V** is
a G(k)-equivariant bijection. Therefore, V** is irreducible over G(k) and so
must be V*. Dualizing the complex (8), the above arguments show that we
obtain a complex of the form

. Gk . N
0— @ ndd (V@) —o0.
ICJCA
I T=e
We claim that it coincides with the complex (6) associated with the irre-
ducible G(k)-representation V*. This will follow once we can show that the
diagram

. 1G(k) N 0tay (k) # o .Gk .
mdPJu{a}(k)(V Ju{a}( )) mdpJ(k)(VNJ(k))

. 1G(k) * Ta . .G(k) .
iy ) VN0 () indp ) (V) (k)

is commutative for any J C A and o ¢ J. Here the vertical arrows are
as in (9) and use the identifications (V*)NJU{Q}(IC) >~ (Y Niuey(R))* and
(V)N ) = (VNs()Y* | Further, S* is the transpose of S,. For the commu-
tativity of the above diagram, it suffices to see that the diagram of natural
maps

(VNJU{a}(k))* . (VNJ(k))*

| |

V)N ) = (Vo)

is commutative, which is obvious. Since the functor (-)* is an exact auto-

equivalence of the category of finite dimensional F-vector spaces, the asser-
tions follow from Theorem 3.2 and Corollary 3.3. O

4 Supercuspidality and smooth duals

We turn back to the notation introduced in Section 1. In particular, M =
ind% (V) is a smooth E-linear representation of G and a module over the
spherical Hecke algebra H = Endg(M).

For any subgroup H of G we denote by My the space of H-coinvariants of
M, i.e. the largest quotient of M on which H acts trivially. The kernel of
the natural map M — My will be denoted by M (H). For certain subgroups
H of G, the action of the Hecke operators T, o € A, on My simplifies as
follows.
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Lemma 4.1. Let « € A andt € t;'T~. Ifv €V then
To([t,v]) = Z [tata, Ea(v)] mod M(Ki N Npy(a}(F)).
tTta K=] [ tata K
Proof. Consider the generalized Bruhat decomposition

G(k) = H N (E)wP ayfay (k)

wEW/WA\{a}

of G(k). As in the previous section we denote by M@}V the set of coset
representatives of W/W\ (4} Which are of minimal length. We then have

N (k)wP a\(ay (k) = 1T nwP a\ o} (k)
neN (k)NwN (k)w—1

for any w € AMMW (cf. [2], Lemma 21.14 and Proposition 21.29). Thus,

we obtain
K = H H nwly,
weAMIW neN (k)nwN (k)w—1

by applying red ™! to the above decomposition of G(k). This in turn yields

Kty K = H H nwlt, K,
weAMAIW neN (k) nwN (k)w=1

because I;, = IK;,. For the rest of the proof we fix an arbitrary ele-
ment w € AMAW with w # 1. As a set, N (k) N wAN (k)w™" is the direct
product of the root groups Ns(k) with 8 € &~ Nwd*. We claim that
w®t N (P~ \ [A\ {a}]7) # 0 where [A\ {a}]” is the set of all roots which

are negative linear combinations of the elements of A\ {«a}.

To see this, let 0 € Wa\{o be such that ow is of minimal length in its
right coset Wa\(ayw. By [22], Lemma 3.1.2 (a), we have cw®* N d~ C
@~ \[A\ {a}]”. Since the right hand side is stable under W\ o) We obtain
wdt No~1d~ C d~ \ [A\ {a}]”, giving the claim unless the left hand side
is empty. This is true if and only if

0=|wdT™No™'®7| = |owdT Nd|,

which is the length of cw. This is zero if and only if ow = 1 which is
equivalent to w = o~ € Wa\{a}- This, however, implies w = 1 because w
is of minimal length in wWa\ (4} Since we assumed w # 1, the claim follows.

Now choose 8 € w®t N (P~ \ [A\ {a}]7) and put
Nk = J[ Nk

~NEPTNwdT
Y#£B
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By (1) and the above decomposition of Kt,K it suffices to show that

Z Z [tn'nwarty, (w*ln*1 (n')*ly)]

neNp (k) zel/(INtoa Kt3t)

is contained in M (K1NNp\ (o} (F)) for any n’ € N’ (k). Note that the natural
map K1 /(K1 Nto Kt 1) — I/(INt, Kt ') is bijective so that we may choose
the representatives x to lie in K and hence to act trivially on V. Since tn/t !
is contained in (o) and therefore stabilizes M (K1 NNu\ {3 (F)), it suffices
to prove the corresponding statement for

Sy [tnwate, w0 (0) )]
neNp(k) zel/(INta Kt3")

= Z tnt~ ! Z [thta,§a(w*1n’1(n’)’1v)].

neNg(k) zel/(INta Kt51)

Now tNp(0)t™ ! € K1 NNp\ (o} (F) because ¢ € t,1T~ and since the root 3
is contained in @~ \ [A\ {«a}]”, hence has a negative contribution from «.
Therefore, it suffices to show that

0 = Z [twrte, Eo(w in~(n) )]
nENg(k)

= [twxty, &a( Z (w™nw)w ™ (n')"1v))
neNg(k)

for any x € I. In fact, we shall see that the E-linear endomorphism ¢ :=
) Zne/\/ﬁ(k) w™nw of V is zero. Note that

Z wnw = Z n

neNg(k) neN, (k)

where v := w™(B) € ®T Nw™1d~ C &F \ [A\ {a}]T, the last inclusion
coming from [22], Lemma 3.1.2 (a). Now ®* \ [A\ {a}]T is precisely the
set of roots whose corresponding root groups occur in N, A\{a}- Since the
cardinality of A (k) is a positive power of p and since E is of characteristic
p, the endomorphism ¢ is zero on VNavay (k)

On the other hand, V = VVava®) g ker(&,) where the kernel of &, is a
sum of Tp-weight spaces of V' (confer the proof of [11], Lemma 2.5). Since
the group N, (k) is stable under Tp, the endomorphism Y e N (k) T of V
preserves the Ty-weight spaces of V. Therefore, it also preserves ker(&,). [

As an immediate consequence we obtain the following surjectivity result of
T,, provided that the fundamental dominant coweight A, is minuscule, i.e.
satisfies Ao (8) € {0,1} for any 8 € ®T.
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Theorem 4.2. If a € A is such that A\, is minuscule then the endo-

morphism of MNA\{Q}(F) induced by T, 1is surjective. In particular, the

NA\{Q}(F)-coinvam'ants of M/To(M) and those of Mo := M/ 5. n Tp(M)

are zero.

Proof. Since G = PK, the P-representation M is generated by the E-
subspace V of M = ind% (V). Since the E-subspace im(To)+M (N {3 (F))
of M is P-stable, it suffices to prove that it contains V. Letting v € V,
Lemma 4.1 implies that

€a(v) = Ta([ta",v]) € M(Nay(ay (F))

because t,'It, € K by our assumption on A, (cf. [12], Sublemma 6.8).
However, v — £, (v) € ker(€a) = V(N a\(a} (k) € M(Na\ (o} (F)), so that

v =E(q(0) + v —Ea(v) = To([t,,v]) mod M(NA\{Q}(F)).

The final statements follow from the right exactness of the coinvariance
functor. ]

We call a (not necessarily irreducible) G-representation 7 supercuspidal if
the space of coinvariants my(r) is equal to zero for the unipotent radical U
of any proper parabolic F-subgroup P of G. By Frobenius reciprocity such a
representation does not admit any non-zero G-equivariant homomorphisms
into representations of the form ind%(s) where ¢ is any smooth E-linear
representation of P = P(F') on which U(F) acts trivially.

In a more precise form, the following result is due to Herzig (cf. [12], Corol-
lary 1.2).

Theorem 4.3. If the root system ® is equal to Aq then the G-representation
My and all of its quotients are supercuspidal.

Proof. Any proper parabolic F-subgroup of G is G-conjugate to one con-
tained in @A\{a} for some a € A (cf. [2], Proposition 21.12). By the right
exactness of the coinvariance functor it suffices to show that the space of
N\ {a} (F)-coinvariants of My is zero. This follows from Theorem 4.2, using
that in ® = Ay any fundamental dominant coweight is minuscule. O

A surjectivity statement similar to Theorem 4.2 can be proved for the coin-
variants modulo K.

Proposition 4.4. If a € A is such that Ay is minuscule then im(Ty) +

M (K1) contains all functions in M = ind% (V') whose support is contained
in Kt ,;'T~K.
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Proof. Since im(Ty,) + M (K1) is a K-subrepresentation of M, it suffices to
see that [t,'t,v] is contained in im(7T,) + M (K1) for any t € T~ and any
velV.

By Lemma 4.1 the function [t} 't, £, (v)]—Tw([t; %, v]) is contained in M (K1),
using once again that t;llta C K because A, is minuscule. However,
[t;1t7v] - [ta_ltaga(v)] = [ta_lt’v — &a(v)] where v — & (v) € ker(§n) =
V(N a\{a}(k)). Thus, there are elements n; € Na\jq3(0) € K and vec-
tors v; € V such that v — &, (v) = Y, (1 — n;)v;. This yields

[tat, 0 — Ea(0)] =D (1=t it~ ta)[t5 1t vil.

)

Since t; N A\ [} (0)t o C K1, we obtain [t ¢, 0] — [t ', Ea(v)] € M (K1),
proving the proposition. O

Recall that if 7 is a smooth E-linear representation of G then its smooth
dual 7 is the subrepresentation of the contragredient G-representation 7* =
Hompg(7, E') consisting of all vectors whose stabilizers in G are open.

For the group GL2(Q)) the following statement seems to have first been
proven in an unpublished work of Livné.

Theorem 4.5. Assume that the root system ® is equal to Ay. The space of
Ki-coinvariants of the G-representation Mo = M/ cn To(M) and that
of any of its quotients is zero. In particular, the smooth dual of any of these
G-representations is zero.

Proof. Since & = Ay all A\, with a € A are minuscule. It follows from
Proposition 4.4 by multiplication with the elements of W that [g,v] €
Y oaeaim(Ty) + M(Ky) for all g € G, v € V except possibly for the
case ¢ € K. Since the K-representation V is irreducible we will have
M =3 caim(Ty)+M (K1) once we can show that the K-subrepresentation
V of M intersects ) . im(7T,)+ M (K1) non-trivially. However, by Propo-
sition 4.4 again, we have £,(v) € im(T,) + M(K;) for any v € V. As a
consequence, the space of Kj-coinvariants of My and any of its quotients is
Z€ero.

Now let m be any quotient of the G-representation My. We claim that
751 = 0 which implies # = 0 because K is a pro-p group (cf. [16], Lemma
2.1). Now 751 = (7*)%1. However, any Kj-invariant linear form 7 — E
factors through g, = 0, hence is the zero map. O

Remark 4.6. Theorem 4.5 implies that the smooth duality functor is not an
autoequivalence of the category of E-linear admissible smooth G-represen-
tations once the G-representation My admits non-zero admissible quotients.

30



By [6], Theorem 1.5, this is true for G = GLy(F'), for example, and is in
stark contrast to the situation over a field of characteristic zero (cf. [8],
Proposition 2.1.10).
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