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Abstract

Let X be the schematic Fargues-Fontaine curve as defined in [FF]. Following arguments of Bondal and
van den Bergh we show that OX ⊕OX(1) generates the derived category of quasi-coherent OX -modules.
By a theorem of Keller the latter is equivalent to the derived category of an associated differential graded
algebra. We give an explicit description of this algebra in terms of rings of adèles on X and determine the
dg modules corresponding to all coherent OX -modules. We also take first steps in determining the mul-
tiplicative structure of a huge skew field first discovered by Colmez. This involves explicit computations
in the heart of a t-structure constructed by Le Bras.

Zusammenfassung

Sei X die schematische Fargues-Fontaine-Kurve wie in [FF] eingeführt. Argumenten von Bondal
und van den Bergh folgend zeigen wir, dass OX ⊕ OX(1) die derivierte Kategorie der quasi-kohärenten
OX -Modulen erzeugt. Letztere ist nach einem Satz von Keller äquivalent zur derivierten Kategorie einer
assoziierten differentiell graduierten Algebra. Wir geben eine explizite Beschreibung dieser Algebra mit-
tels Adèlen auf X und bestimmen die zu allen kohärenten OX -Moduln korrespondierenden DG-Moduln.
Darüber hinaus unternehmen wir erste Schritte in der Bestimmung der multiplikativen Struktur eines
riesigen Schiefkörpers, der zuerst von Colmez entdeckt wurde. Dies beinhaltet explizite Berechnungen
im Herzen einer von Le Bras konstruierten t-Struktur.



Contents

0 Introduction 2

1 Curves 6
1.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Slope theory for coherent sheaves on complete curves . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Generalized Riemann spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 The Fargues-Fontaine curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Derived categories and t-structures 13
2.1 The complex Hom• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Generators of triangulated categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Torsion pairs and t-structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Differential graded algebras and derived tilting . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 A derived equivalence 19
3.1 A simple generator of the derived category of a curve . . . . . . . . . . . . . . . . . . . . . . . 19
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0 Introduction

Fix a prime p. Let E be a nonarchimedean local field of residue characteristic p and let F be a perfectoid
field of characteristic p. Let X = XE,F be the Fargues-Fontaine curve associated with E,F . This is a con-
nected separated Noetherian regular scheme of dimension 1 which was discovered and studied extensively by
Laurent Fargues and Jean-Marc Fontaine in [FF]. Using this curve Fargues and Fontaine were able to give
geometric proofs of fundamental results in p-adic Hodge theory. More recently ([FS]), Fargues and Scholze
used families of Fargues-Fontaine curves in order to develop a geometric version of the local Langlands pro-
gram.

The motivation for this project comes from the question of Fargues ([LeB], Question 7.18) whether the
Fargues-Fontaine curve is in some sense the Brauer-Severi variety associated with a particular skew field C
that was originally studied by Colmez in his work on Banach-Colmez spaces ([Col]). In his dissertation [LeB]
Le Bras established a connection between Colmez’ skew field and the Fargues-Fontaine curve by showing
that the category of Banach-Colmez spaces is equivalent to the heart of a certain nontrivial t-structure on
the bounded derived category of coherent sheaves on the curve.

The aim of this thesis is to make use of this connection and apply derived tilting theorems to give an algebraic
description of the derived category of X and to gain a better understanding of the skew field C .

To put this into perspective, recall the following classical example. Let K be a field and let A be a k-linear
Grothendieck category. An object T of A is called a tilting object if the functor

RHom(T,−) : D(A)→ D(ModEnd(T ))

is an equivalence of categories. There are explicit criteria characterizing tilting objects (see e.g. [Kel], §4.6).
One can use these criteria to show that if P1

k denotes the projective line over k then OP1
k
⊕OP1

k
(1) is a tilting

object for the category of quasi-coherent sheaves on P1
k, i.e. the functor RHom(OP1

k
⊕OP1

k
(1),−) induces an

equivalence

D(P1
k)

∼=−→ D(R).

Here R = End(OP1
k
⊕OP1

k
(1)) ∼=

(
k 0

k[x, y]1 k

)
where k[x, y]1 denotes homogeneous elements of degree 1.

Although it is far from being a classical variety, the Fargues-Fontaine curve X shares a lot of features with
the projective line over the field k = E. In particular, this concerns the classification of vector bundles (cf.
Theorem 1.29 below). However, there are significant differences leading to the fact that the sheaf OX⊕OX(1)
is not a tilting object in the classical sense above. The issue is that Ext1(OX(1),OX) = H1(X,OX(−1)) ̸= 0
(in fact, it is infinite dimensional over the base field). However, following the strategy of [BvdB], Theorem
3.1.1, we give a self-contained and streamlined proof of the fact that OX ⊕ OX(1) generates Dqcoh(OX) in
the sense of triangulated categories (cf. Theorem 3.3). This allows us to make use of a more general tilting
construction due to Keller.

Namely, let A be a Grothendieck abelian category such that D(A) is generated by a compact object P . Then
Keller showed that D(A) is equivalent to D(A ) where A is a differential graded algebra (dg algebra, for
short) obtained by replacing P by a K-injective complex and whose cohomology is given by Ext∗(P, P ).

By applying Keller’s result to A = QCohX , the category of quasi-coherent sheaves on X, we obtain an
equivalence between Dqcoh(OX) and the derived category of the dg algebra

A = RHom(OX ⊕OX(1),OX ⊕OX(1))

(cf. Theorem 2.20). The dg algebra A may be computed by using an injective resolution I of OX ⊕OX(1).
Then A = Hom•(I, I), where Hom• denotes the Hom complex, see §2.1.

2



As one of our main results we show that the dg algebra A admits an astonishingly explicit algebraic
description. To explain this, let E(X) be the function field of X and denote by EX the constant OX -module
with value E(X). Denote by |X| the set of closed points of X, and let

A0
X :=

∏
x∈|X|

ÔX,x ⊂
∏′

x∈|X|

Frac(ÔX,x) =: AX

be the rings of (integral) adèles on X. For a ring R denote by M2(R) the ring of 2× 2-matrices over R. In
§3.2 we describe Hom•(I, I) in terms of E(X),A0

X and AX . We use this in order to obtain a dg algebra
A ad which is isomorphic to A . Our main result is the following (cf. Theorem 3.24):

Theorem 0.1. Let X be the Fargues-Fontaine curve and let A be the dg algebra described above. Then A
is isomorphic to a differential graded algebra A ad with underlying complex

M2(E(X))×M2(A
0
X)→M2(AX)

with an explicit an easy to write down differential.

If F is algebraically closed then there is a particularly simple classification of vector bundles on X. For
coherent sheaves on X there is a well-defined notion of degree. Putting this together with the rank function
on vector bundles, Fargues and Fontaine introduced a general formalism of slopes leading to a simple classi-
fication result. Namely, for each λ ∈ Q there is a unique stable vector bundle OX(λ) of Harder-Narasimhan
slope λ, and every vector bundle decomposes as a direct sum of stable bundles (cf. Theorem 1.29). The
bundle OX(λ) is the pushforward of a line bundle along a finite étale morphism of curves. In Proposition 3.20
we establish a connection between the differential graded algebras for such finite étale coverings of curves.
Moreover, we show that the derived pushforward and pullback along the covering map translate into derived
scalar restriction and extension between differential graded modules. This allows us to determine explicitly
the differential graded A -modules corresponding to the vector bundles OX(λ) under the equivalence of cat-
egories Dqcoh(OX) ∼= D(A ). In fact, we determine what happens for coherent OX -modules in general (cf.
§3.4).

In principle, our results allow to translate any problem about Dqcoh(OX) into a corresponding problem about
differential graded A -modules. An interesting question that we do not discuss is how to make explicit Le
Bras’ t-structure in terms of D(A ).

We note in passing that many of our results and arguments work for abstract curves in general and also in
the setting of generalized Riemann spheres as introduced by Fargues and Fontaine (cf. §1.3).

In the last part we take a first step in investigating the multiplicative structure of Colmez’ skew field C
which is not well understood. Let us mention that C is a rather mysterious object containing the central
E-division algebras of invariant 1

h for all h > 0, as well as all untilts of F in the sense of Scholze. Note that
the latter are in correspondence with the closed points of X.

Let us sketch the construction of C following Le Bras. Let C be the heart of Le Bras’ t-structure on
Db(X). Let C0 ⊆ C be the Serre subcategory consisting of objects that are finite direct sums of copies of
the structure sheaf OX . The localization Q := C/C0 is a semisimple abelian category with a unique simple
object, and Colmez’ skew field C is the endomorphism algebra of this simple object. We point out that the
aforementioned properties of the category Q are stated in [LeB] without proof. We give a detailed account
of the arguments in §4.2. Since OX(1) represents the simple object of Q, the general theory of localization
shows that C is a filtered colimit

C = EndQ(OX(1)) = lim−→
s:OX(1)→F

HomC(OX(1),F)
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where the index set runs over all morphisms s : OX(1)→ F which become isomorphisms in Q and is filtered
by using pushouts. Therefore, the elements of C are represented by roofs of morphisms in C of the form

F

OX(1) OX(1)

f s

where ker(s), coker(s) ∈ C0 and for which we write s−1f . Here F is an object of C which becomes isomorphic
to OX(1) in Q. A first but important step in determining C consists of giving a complete list of the possible
objects F , i.e. in determining the indexing set of the above colimit. We do so in Proposition 4.9:

Proposition 0.2. (i) If f : OX(1)→ F is a morphism which becomes an isomorphism in Q then
F ∼= OnX ⊕G for some n ≥ 1 and where G is either OX(1), a skyscraper sheaf Cx for some closed point
x ∈ |X|, or OX(− 1

h )[1] for some h ≥ 1.

(ii) If F is of the form in (i) and if f : OX(1) → F is a nonzero morphism in C then f becomes an
isomorphism in Q.

The appearance of the objects OX(− 1
h )[1] shows that C also contains all central E-division algebras of

invariant − 1
h . Although this has not been observed before, we do not know if C contains still other central

E-division algebras.

The multiplication in C is given by the pushout of roofs: Given two roofs

F

OX(1) OX(1)

f s and

G

OX(1) OX(1)

g t

the product t−1g · s−1f is given by the outer roof of the diagram

F
∐

OX(1) G

F G

OX(1) OX(1) OX(1)

f s g t

where the upper square is the pushout of the morphisms s and g in the abelian category C.

We note that the degree function on coherent sheaves is additive in short exact sequences and can therefore
be extended to objects of Dqcoh(OX) and C. An important step in making the multiplication of the skew
field C explicit is to compute the above pushouts in C. In Proposition 4.10 we solve this problem completely:

Proposition 0.3. Let F ,G ∈ C be of degree 1 and let f : OX(1) → F , g : OX(1) → G be two nonzero
morphisms.

(i) If F = OX(1) then their pushout in C is isomorphic to G.

(ii) If F = G = Cx for some x ∈ |X| then their pushout in C is isomorphic to Cx.

(iii) If F = Cx and G = Cy for some x ̸= y then their pushout in C is isomorphic to OX(−1)[1].
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(iv) Let F = OX(− 1
h )[1] for some h ≥ 1 and G = Cx for some x ∈ |X|. Let t ∈ H0(X,OX(1)) be such that

x =∞t. Moreover, suppose that the map f is the class of the extension

0→ OX(− 1

h
)→ Oh+1

X

p→ OX(1)→ 0

where p =
(
s1 . . . sh+1

)
with s1, . . . , sh+1 ∈ H0(X,OX(1)). Then

OX(− 1

h
)[1]

∐
OX(1),C

Cx ∼=

{
OX(− 1

h )[1] if t ∈ ⟨s1, . . . , sh+1⟩E ,
OX(− 1

h+1 )[1] otherwise.

Here ⟨s1, . . . , sh+1⟩E denotes the E-subspace of H0(X,OX(1)) generated by s1, . . . , sh+1.

(v) Let F = OX(− 1
h )[1] and G = OX(− 1

h′ )[1] for some h, h′ ≥ 1. Let f and g be represented by extensions

0→ OX(− 1

h
)→ Oh+1

X

p→ OX(1)→ 0

and

0→ OX(− 1

h′
)→ Oh

′+1
X

q→ OX(1)→ 0,

respectively. Write p =
(
s1 . . . sh+1

)
and q =

(
sh+2 . . . sh+h′+2

)
for some si ∈ H0(X,OX(1))

and set n := dimE⟨s1, . . . , sh+h′+2⟩E. Then the pushout of f and g in C is isomorphic to OX(− 1
n−1 )[1].

In order to make explicit the skew field C in terms of the above colimit formula, one needs to compute
HomC(OX(1),F) for the various possibilities of F . This is a simple task which is already implicit in the
work of Fargues, Fontaine and Le Bras.

The final step in determining C is understanding the transition maps in the above colimit. This is a question
we hope to come back to in the future. A second follow-up project is concerned with the connection between
the skew field C and the dg algebra A ad. As explained earlier, for this one needs to transfer Le Bras’
t-structure to the derived category of A ad and mimic the construction of C .
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1 Curves

In §1.1 we recollect the basic definitions about abstract curves as introduced in [FF], §5. In §1.2 we explain
how to define a degree function on coherent sheaves on a curve, and we recall the Harder-Narasimhan
formalism introduced in [FF], §5.5. In §1.3 we recall the notion of a generalized Riemann sphere as in [FF],
§5.6.4. Finally, in §1.4 we briefly introduce the Fargues-Fontaine curve and state some of its properties as
well as the classification of vector bundles.

1.1 Generalities

Definition 1.1 ([Ked], Definition 3.3.4). An (abstract) curve is a connected separated Noetherian scheme
which is regular of dimension 1.

Lemma 1.2 ([Det], Lemma 1.2). A connected separated scheme is an abstract curve if and only if it admits
a finite affine open covering by spectra of Dedekind domains one of which is not a field. In particular, any
curve is normal and integral.

Let us fix some notation: If X is a curve then we denote by |X| its set of closed points. We let η ∈ X be the
generic point and denote by E(X) := OX,η the function field of X. For each x ∈ |X| the local ring OX,x is
a discrete valuation ring which we may view as a subring of E(X). We have Frac(OX,x) = E(X). If U ⊆ X
is non-empty open then we also view Γ(U,OX) as a subring of E(X). If U is affine, E(X) is the field of
fractions of Γ(U,OX).

For x ∈ |X| we denote by
vx : E(X)× → Z

the normalized valuation and by ϖx a uniformizer of the discrete valuation ring OX,x. We set vx(0) := ∞.
Then OX,x = {a ∈ K | vx(a) ≥ 0}, and by [GW], Proposition 3.29, if U ⊆ X is a nonempty open subset
then

Γ(U,OX) = {f ∈ E(X) | ∀x ∈ |U | : vx(f) ≥ 0}.
Definition 1.3. If X is a curve then Div(X) denotes the free abelian group on the closed points of X. An
element of Div(X) is called a divisor on X. A divisor D =

∑
x∈|X|mx · [x] is called effective if mx ≥ 0 for

all x ∈ |X|. Any divisor D =
∑
x∈|X|mx · [x] gives rise to an OX -module OX(D) as follows: For any open

set U ⊆ X we set
Γ(U,OX(D)) := {f ∈ E(X) | ∀x ∈ |U | : vx(f) +mx ≥ 0}.

If V ⊆ U then the restriction from U to V is the inclusion Γ(U,OX(D)) ↪→ Γ(V,OX(D)). The scalar
multiplication Γ(U,OX) × Γ(U,OX(D)) → Γ(U,OX(D)) is given by multiplication within E(X). If f ∈
E(X)× then we define the divisor of f by

div(f) :=
∑
x∈|X|

vx(f) · [x] ∈ Div(X).

The divisors of the form div(f) for some f ∈ E(X)× are called principal divisors.

Remark 1.4. (i) If D =
∑
x∈|X|mx[x] and D

′ =
∑
x∈|X|m

′
x[x] are divisors on X with mx ≤ m′

x for all

x ∈ |X| then we have a natural inclusion

OX(D) ↪→ OX(D′).

(ii) For every D ∈ Div(X) the OX -module OX(D) is invertible with inverse OX(−D). The sequence of
abelian groups

1→ Γ(X,OX)× → E(X)×
div→ Div(X)→ Pic(X)→ 1

D 7→ [OX(D)]

is exact (cf. [GW], equation (11.12.6) and Propositions 11.27/11.38).
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(iii) A divisor D on X is effective if and only if OX(−D) is an ideal of OX . The corresponding closed
subscheme of X is denoted by D as well. By definition there is an exact sequence of OX -modules

0→ OX(−D)→ OX → OD → 0

(cf. [GW], Remark 11.25). Twisting with OX(D) yields an exact sequence

0→ OX → OX(D)→ OD → 0.

Indeed, write D =
∑
x nx[x]. There is an isomorphism of OX -modules OD⊗OX

OX(D)
∼=−→ OD whose

germ at each point x ∈ supp(D) is given by the OX,x-linear isomorphism

OX,x/ϖnx
x ⊗OX,x

ϖ−nx
x OX,x −→ OX,x/ϖnx

x ,

sending 1⊗ f to ϖnx
x f .

Definition 1.5 ([Ked], Definition 3.3.4). A complete curve is an abstract curve X together with a nonzero
additive map deg : Div(X)→ Z which is nonnegative on effective divisors and zero on principal divisors.

Example 1.6. Let k be a field and X a connected smooth projective curve over k. Set deg(x) := [k(x) : k]
for x ∈ |X|. Then (X,deg) is a complete curve (cf. [Har1], Corollary 6.10).

Remark 1.7. If X is a complete curve then the degree map on Div(X) induces a map

deg : Pic(X)→ Z

(cf. Remark 1.4 (ii)).

Lemma 1.8 ([FF], Lemme 5.1.5). If X is a complete curve then Γ(X,OX) is a subfield of E(X) which is
algebraically closed within E(X).

Proof. Let f ∈ E(X)×. By [GW], Proposition 3.29 (3), Γ(X,OX) =
⋂
x∈|X|OX,x. Hence, f ∈ Γ(X,OX) if

and only if div(f) ≥ 0. Since deg(div(f)) = 0, the latter holds if and only if div(f) = 0. Since the valuations
are multiplicative we have div(f−1) = −div(f). It follows that Γ(X,OX) is a subring of E(X) which is
closed under taking inverses, hence it is a field which we call E.

It remains to show that an element of E(X)× that is algebraic over E lies in E. Let f ∈ E(X)× and suppose

that there are n ∈ N≥1 and a0, . . . , an−1 ∈ E such that fn +
∑n−1
i=0 aif

i = 0. For x ∈ |X| and 0 ≤ i ≤ n− 1
we have

vx(aif
i) = vx(ai) + vx(f

i) = i · vx(f).
In particular, the elements vx(aif

i), 1 ≤ i ≤ n − 1, are pairwise distinct integers. By the strict triangle
inequality,

vx(

n−1∑
i=0

aif
i) = min{i · vx(f) | 0 ≤ i ≤ n− 1}.

Assume that there exists x ∈ |X| such that vx(f) ̸= 0. Then we obtain

n · vx(f) = vx(f
n) = vx(

n−1∑
i=0

aif
i)

= min{i · vx(f) | 0 ≤ i ≤ n− 1}

=

{
0, vx(f) > 0

(n− 1) · vx(f), vx(f) < 0.

In the first case, n = 0, a contradiction. In the second case, vx(f) = 0, a contradiction as well. It follows
that vx(f) = 0 for all x ∈ |X|, whence f ∈ E.
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Definition 1.9. If X is a complete curve then the field Γ(X,OX) is called the field of definition of X.

Lemma 1.10 ([FF], Lemme 5.4.1). Let X be a complete curve admitting a closed point ∞ ∈ |X| such that
deg([∞]) = 1 and such that X \ {∞} is affine. The following are equivalent:

(i) Pic(X \ {∞}) = 0.

(ii) The map deg : Pic(X)→ Z is an isomorphism.

Definition 1.11. Let X be a complete curve satisfying the equivalent conditions of Lemma 1.10. For k ∈ Z
we define

OX(k) := OX(k[∞]).

Note that this definition is independent of the choice of a closed point ∞.

1.2 Slope theory for coherent sheaves on complete curves

Throughout this section let X be a complete curve. In particular, it comes with a degree map deg : Pic(X)→
Z. We will extend this to coherent sheaves on X. An inportant result for us will be that it is additive in
short exact sequences.

Definition 1.12. Let F be a nonzero vector bundle on X. The degree of F is

degF := deg(

rkF∧
F).

Remark 1.13 ([Ked], Example 3.3.2). If 0 → F ′ → F → F ′′ → 0 is a short exact sequence of vector
bundles on X then degF = degF ′ + degF ′′, i.e. deg is additive in short exact sequences of vector bundles.
This relies on the fact that there is a natural isomorphism

rkF∧
F ∼= (

rkF ′∧
F ′)⊗OX

(

rkF ′′∧
F ′′)

of OX -modules.

Definition 1.14. (i) A coherent OX -module G is a torsion sheaf if its stalk at the generic point of X is
0.

(ii) Let G be a torsion sheaf on X. We define its degree to be

deg G :=
∑
x∈X

deg(x) · lengthOX,x
(Gx).

Remark 1.15. Let G ≠ 0 be a torsion sheaf on X. Then supp(G) := {x ∈ X | Gx ̸= 0} is a proper closed
subset of X, hence is finite.

If E is a coherent sheaf on X then E ∼= F ⊕G where F is a vector bundle and G is a torsion sheaf on X. We
define deg E := degF + deg G. One can now show that deg is additive in short exact sequences of coherent
sheaves on X.

Let us introduce the Harder-Narasimhan formalism for vector bundles on X.

Definition 1.16. Let F be a vector bundle on X.

(i) The (Harder-Narasimhan) slope of F is the rational number

µ(F) := degF
rkF

.
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(ii) F is called semistable if for every nonzero subbundle F ′ ⊂ F (the quotient need not be locally free)

µ(F ′) ≤ µ(F).

Theorem 1.17 ([FF], Théorème 5.5.2). Every vector bundle F on X admits a unique filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fr = F

such that

(i) Fi/Fi−1 is semistable for each 1 ≤ i ≤ r, and

(ii) the sequence of slopes (µ(Fi/Fi−1))1≤i≤r is strictly decreasing.

Definition 1.18. Let F be a vector bundle on X. Let 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fr = F be its Harder-
Narasimhan filtration as in Theorem 1.17. The slope multiset of F is the multiset of rational numbers of
cardinality rkF containing µ(Fi/Fi−1) with multiplicity rk(Fi/Fi−1) and which is ordered decreasingly. If
µ = (µ0, . . . , µr) denotes the multiset of slopes of F then the HN polygon HN(F) is the polygon with slope
µi on the interval (i, i+ 1).

We define a partial order on HN polygons as follows: if HN1 and HN2 are two polygons, then we say that
HN1 ≤ HN2 if HN1 lies on or below HN2 and the polygons have the same endpoints (cf. [BFHHLWY],
Definition 2.2.12).

The following result gives an obstruction on the HN polygon of an extension of vector bundles.

Lemma 1.19 ([Ked], Lemma 3.4.17). If 0→ F1 → E → F2 → 0 is a short exact sequence of vector bundles
on X then HN(E) ≤ HN(F1 ⊕F2).

1.3 Generalized Riemann spheres

Definition 1.20 ([FF], Définition 5.6.21). A generalized Riemann sphere is a pair (X,E∞) where

• X is a complete curve with field of definition E, and

• E∞|E is an algebraic field extension which is Galois with Galois group Ẑ

such that

(i) for each closed point x of X, E∞|E embeds into κ(x)|E,

(ii) there is a closed point ∞ ∈ |X| of degree 1 such that for all intermediate extensions E ⊆ E′ ⊆ E∞
with E′|E finite there is a closed point of X ×E E′ in the fiber above ∞ whose complement is the
spectrum of a principal ideal domain, and

(iii) H1(X,OX) = 0.

Let X be a generalized Riemann sphere. For h ∈ Z let Eh := EhẐ∞ . This is a cyclic extension of degree h of
E, and E∞ =

⋃
hEh. We set

Xh := X ×E Eh
and let

πh : Xh → X

be the projection. If y ∈ |Xh| is a closed point then we set deg([y]) := deg([πh(y)]) and extend this linearly
to a function deg : Div(Xh)→ Z.

Lemma 1.21. For any h ≥ 1 the scheme Xh is a complete curve with field of definition Eh.

9



Proof. First of all, Γ(Xh,OXh
) = Γ(X,OX) ⊗E Eh ∼= Eh. If U = Spec(R) ⊆ X is non-empty affine open

then π−1
h (U) = Spec(R)×E Eh ∼= Spec(R⊗E Eh). As Eh|E is separable and E is algebraically closed inside

E(X) = Frac(R), the ring R ⊗E Eh is an integral domain (cf. [Jac], Cor. 1 on page 203), showing that Xh

is an integral scheme.

Set S := R ⊗E Eh. Then S|R is a finite ring extension, hence dim(S) = dim(R) = 1. Fix a closed point
∞h above ∞ such that Xh \ {∞h} is the spectrum of a principal ideal domain. Since Eh embeds into the
residue fields of the closed points of X, the fiber of πh over each closed point consists of h distinct points,
and the group Gal(Eh|E) acts simply transitively on each fiber. In particular, Gal(Eh|E) does not fix the
affine open subscheme Xh \{∞h} (if h ̸= 1). It follows that Xh admits a covering by two spectra of principal
ideal domains, so that Xh is indeed a curve. Let us write E(X) and Eh(Xh) for the function fields of X and
Xh, respectively. We claim that Eh(Xh) = E(X)⊗E Eh.

As before, using Jacobson’s result, the right hand side is an integral domain. Since it is an integral
ring extension of the field E(X), it is a field itself. The inclusions E(X) ⊆ Eh(Xh) and Eh ⊆ Eh(Xh)
induce a canonical field homomorphism E(X) ⊗E Eh ↪→ Eh(Xh). On the other hand, the inclusion
R ⊆ E(X) induces a ring homomorphism R ⊗E Eh ↪→ E(X) ⊗E Eh which extends to a field homomor-
phism Eh(Xh) = Frac(R⊗EEh) ↪→ E(X)⊗EEh. This gives the desired isomorphism Eh(Xh) ∼= E(X)⊗EEh.

It remains to prove that Xh is complete. Note that Gal(Eh|E) also acts on Eh(Xh) = E(X) ⊗E Eh via
the second factor, making Eh(Xh)|E(X) a Galois extension with Galois group isomorphic to Gal(Eh|E). If
y ∈ |Xh| corresponds to the nonzero prime ideal p in the coordinate ring S of some affine open subset of Xh

and if f ∈ Eh(Xh) = Frac(S) and σ ∈ Gal(Eh|E) then

vy(σ(f)) = max{n ∈ N | σ(f) ∈ pn}
= max{n ∈ N | f ∈ σ−1(p)n}
= vσ−1(y)(f).

This implies

deg(div(σ(f))) =
∑

y∈|Xh|

vy(σ(f)) · deg(y)

=
∑

y∈|Xh|

vσ−1(y)(f) · deg(σ−1(y))

=
∑

y∈|Xh|

vy(f) · deg(y)

= deg(div(f)).

Let g ∈ E(X)×. We may also view g as an element of Eh(Xh) = E(X)⊗E Eh. We will write divX(g) (resp.
divXh

(g)) for the principal divisor on X (resp. on Xh) associated with g. Let x ∈ |X| and y ∈ π−1
h (x). Since

the map πh is totally decomposed at the closed points we have vy(g) = vx(g). This shows

deg(divXh
(g)) =

∑
y∈|Xh|

vy(g) deg(y)

=
∑
x∈|X|

∑
πh(y)=x

vx(g) deg(x)

= h · deg(divX(g)).
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Now let f ∈ Eh(Xh). Using that X is complete we obtain

0 = h · deg(divX(N(f)))

= deg(divXh
(
∏
σ

σ(f))

=
∑
σ

deg(divXh
(σ(f)))

= h · deg(divXh
(f)),

showing that also Xh is complete.

Definition 1.22. Let X be a generalized Riemann sphere. Fix a compatible system (∞h)h ∈ lim←−h≥1
|Xh|

of closed points of degree 1 and a generator σ ∈ Aut(Xh/X) ∼= Z/hZ. For k ≥ 1 we define

OXh
(k) := OXh

(

k−1∑
i=0

[σi(∞h)]).

Remark 1.23. • If X is a generalized Riemann sphere then for each h ≥ 1 the map deg : Pic(Xh)→ Z
is an isomorphism (cf. Lemma 1.10). Recall that by the way the degree map on Xh is obtained from the
one on X we have deg(α(∞h)) = deg(∞h) = 1 for all α ∈ Aut(Xh/X). Therefore, up to isomorphism
OXh

(k) is the unique line bundle of degree k on Xh. In particular, this shows that it does not depend
on the choice of generator σ.

• If we write ∞ :=∞1 then we have OXh
(h) = OXh

(π−1
h (∞)).

Definition 1.24 ([FF], Définition 5.6.22). For d ∈ Z and h ∈ N≥1 we define

OX(d, h) := πh,∗OXh
(d).

If (d, h) = 1 and λ = d
h ∈ Q then we set

OX(λ) := πh,∗OXh
(d).

One has the following classification of vector bundles, assuming that certain extensions of vector bundles
always admit global sections:

Theorem 1.25 ([FF], Théorème 5.6.26). Let X be a generalized Riemann sphere. Suppose that for all h
and all n ≥ 1, if

0→ OXh
(− 1

n
)→ F → OXh

(1)→ 0

is a short exact sequence of vector bundles then H0(Xh,F) ̸= 0. Then

(i) the HN filtration of a vector bundle on X splits, and

(ii) the assignment

{(λi)1≤i≤n ∈ Qn | n ∈ N, λ1 ≥ · · · ≥ λn} −→ {vector bundles on X}/ ∼

(λ1, . . . , λn) 7−→ [

n⊕
i=1

OX(λi)]

is a bijection.
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1.4 The Fargues-Fontaine curve

Fix a prime p and let E be a nonarchimedean local field of residue characteristic p. Let F be a complete
algebraically closed nontrivially valued nonarchimedean field of characteristic p. The (schematic) Fargues-
Fontaine curve X = XE,F is a complete curve with field of definition E whose closed points are all of degree 1.
It was first defined by Fargues and Fontaine (cf. [FF], Définition 6.5.1). We have X = Proj(

⊕
n≥0B

φ=πn

)
where B is a Fréchet algebra depending on E and F and which admits a Frobenius endomorphism φ. If
x ∈ |X| is a closed point then we let ιx : {x} → X be the inclusion and write Cx = κ(x) for its residue field.
Abusing notation we will also write Cx = ιx,∗κ(x) for the skyscraper sheaf on X with value Cx at x. We list
some important properties of the curve:

Theorem 1.26 ([FF], Théorème 6.5.2). (i) If E′|E is finite then there is a canoncical isomorphism

XE′
∼=−→ XE ⊗E E′.

(ii) The complement of each closed point x of X is the spectrum of a principal ideal domain. Its residue
field Cx is a complete algebraically closed field whose tilt is isomorphic to F . All untilts of F arise in
this way.

(iii) There is a bijection

(Bφ=π \ {0})/E× ∼=−→ |X|, t 7→ ∞t.

(iv) If E′|E is finite then via the étale covering XE′ → XE the fiber over a closed point x ∈ |XE | consists
of [E′ : E] points of the same residue field as the one of x.

(v) The degree map induces an isomorphism Pic(X)
∼=−→ Z.

(vi) One has H1(X,OX) = 0.

Corollary 1.27. The Fargues-Fontaine curve is a generalized Riemann sphere.

Remark 1.28. There is also a version of the Fargues-Fontaine curve as an adic space Xad over Spa(E) and
a morphism of locally ringed spaces Xad → X pullback along which induces an equivalence of categories
between vector bundles on X and Xad (cf. [KL], Theorem 8.7.7).

One has a classification of vector bundles:

Theorem 1.29 ([FF], Théorème 8.2.10). (i) For each λ ∈ Q the semistable vector bundles of slope λ on
X are isomorphic to finite direct sums of OX(λ).

(ii) The Harder-Narasimhan filtration of any vector bundles splits.

(iii) Every vector bundle F on X admits a direct sum decomposition

F ∼=
⊕
λ

OX(λ)

where the λ run over the slope multiset of F (cf. Definition 1.18).
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2 Derived categories and t-structures

In §2.1 we construct the Hom complex. In §2.2 we recall the basic definition of a generator of a triangulated
category. In §2.3 we recall the definition of a t-structure and explain how to construct kernels and cokernels
in the heart in the case where the t-structure comes from a torsion pair on an abelian category. This will
be helpful when we compute pushouts in §4. Finally, in §2.4 we introduce basic constructions of differential
graded algebras, show how Hom complexes give rise to differential graded algebras, and sketch a proof of
the tilting theorem of Keller that we will use later.

2.1 The complex Hom•

Let A be an additive category admitting countable direct products. If X,Y are two complexes of A then
we let Hom•

A(X,Y ) be the total (product) complex associated to the double complex (HomA(X
n, Y m))n,m.

This defines an additive bifunctor

Hom•
A(−,−) : CoCh

op
A × CoChA −→ CoChZ

(cf. [KS1], Lemma 11.6.1 and Example 11.6.2 (i)). It induces an additive bifunctor

Hom•
A(−,−) : K(A)op × K(A) −→ K(Z).

In the following we will write HomA(X,Y )n instead of Hom•
A(X,Y )n for the nth graded piece. Explicitly,

HomA(X,Y )n :=
∏
k∈Z

HomA(X
k, Y n+k),

and if f ∈ Hom•
A(X,Y )n then dnf ∈ Hom•

A(X,Y )n+1 has kth entry

(dnf)k = dk+nY ◦ fk + (−1)n+1fk+1 ◦ dkX ∈ HomA(X
k, Y n+1+k).

By [KS1], Proposition 11.7.3,
H0(Hom•

A(X,Y )) ∼= HomK(A)(X,Y ).

Proposition 2.1 ([KS1], Corollary 14.3.2 and equation (13.4.2)). Let k be a field and let A be a k-linear
Grothendieck abelian category. Then Hom•

A admits a right derived functor

RHomA : D(A)op × D(A)→ D(k).

Moreover, Hk(RHomA(X,Y )) ∼= HomD(A)(X,Y [k]) =: ExtkA(X,Y ) for all complexes X,Y .

As usual the functor RHomA may be computed by using resolutions by K-injective objects (cf. [Sta], Lemma
070K). Specifically, if X,Y are two complexes and if we choose a quasi-isomorphism Y → I where I is K-
injective then

RHomA(X,Y ) ∼= Hom•
A(X, I).

2.2 Generators of triangulated categories

Definition 2.2. Let D be a triangulated category. An object P of D is called a (weak) generator of D if for
any object F of D, HomD(P[n],F) = 0 for all n ∈ Z implies F = 0.

Remark 2.3. If D = D(A) is the derived category of an abelian category A then a complex K is a generator
of D(A) if and only if RHom(K,−) detects the zero object (cf. Proposition 2.1).

Definition 2.4. Let X be a scheme. We denote by Dqcoh(OX) ⊆ D(OX) the full subcategory of complexes
of OX -modules whose cohomology sheaves are quasi-coherent. Moreover, we say that a complex F of OX -
modules is perfect if it is locally quasi-isomorphic to a bounded complex of vector bundles.

Bondal and van den Bergh proved the following:

Theorem 2.5 ([BvdB], Theorem 3.1.1 (2)). Assume that X is a quasicompact quasiseparated scheme. Then
Dqcoh(OX) is generated by a single perfect complex.
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2.3 Torsion pairs and t-structures

Definition 2.6. Let A be an abelian category. A torsion pair in A is a pair of classes of objects (T ,F) of
A such that

(i) HomA(T, F ) = 0 for all T ∈ T , F ∈ F ,

(ii) if T ∈ A such that HomA(T, F ) = 0 for all F ∈ F then T ∈ T ,

(iii) if F ∈ A such that HomA(T, F ) = 0 for all T ∈ T then F ∈ F , and

(iv) for every X ∈ A there is a short exact sequence

0→ T → X → F → 0

with T ∈ T and F ∈ F .

If (T ,F) is a torsion pair then T is called the torsion class and F is called the torsionfree class.

Definition 2.7. Let D be a triangulated category. A t-structure on D is a pair of strictly full subcategories
(D≤0,D≥0) of D satisfying the condition below. Write D≤n := D≤0[−n] and D≥n := D≥0[−n].

(i) D≤0 ⊂ D≤1 and D≥1 ⊂ D≥0,

(ii) HomD(X,Y ) = 0 for X ∈ D≤0 and Y ∈ D≥1, and

(iii) for each X ∈ D there is a distinguished triangle

A→ X → B → A[1]

with A ∈ D≤0 and B ∈ D≥1.

If (D≤0,D≥0) is a t-structure then the full subcategory D≤0 ∩ D≥0 is called its heart.

Example 2.8 ([KS2], Example 10.1.3 (i)). Let A be an abelian category. Let D≤0 be the full subcategory
of Db(A) consisting of the complexes K• such that Hi(K•) = 0 for all i > 0, and D≥0 the one consisting of
complexes K• satisfying Hi(K•) = 0 for all i < 0. The pair (D≤0,D≥0) is a t-structure on Db(A) called the
trivial t-structure. The functor H0 : Db(A)→ A induces an equivalence D≤0 ∩ D≥0 ∼= A.

Proposition 2.9 ([KS2], Proposition 10.1.4). Let D be a triangulated category. Let (D≤0,D≥0) be a t-
structure on D. The inclusion D≤n → D (resp. D≥0 → D) has a right adjoint functor τ≤n : D→ D≤n (resp.
a left adjoint functor τ≥n : D→ D≥n).

Proof. We may assume n = 0. Let X ∈ D. By the third axiom of a t-structure we may embed X into a

distinguished triangle X0 → X → X1
[1]→ with X0 ∈ D≤0 and X1 ∈ D≥1. One can show that the assignment

X 7→ X0 (resp. X 7→ X1) yields a functor τ≤0 (resp. τ≥1) as desired.

Remark 2.10 ([KS2], eq. (10.1.1)). We have{
τ≤n(X[m]) ∼= τ≤n+m(X)[m],

τ≥n(X[m]) ∼= τ≥n+m(X)[m].

In particular, τ≥0(X) ∼= τ≥1(X[−1])[1].

The functors τ≤n and τ≥n are called the truncation functors with respect to the t-structure.

Proposition 2.11 ([KS2], Proposition 10.1.11 (i)). The heart of a t-structure is an abelian category.
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Proof. We sketch the construction of the kernel and the cokernel of a morphism. Let f : X → Y be a

morphism in the heart. We may embed f into a distinguished triangle X
f→ Y → Z

[1]→. Then{
ker(f) ∼= τ≤0(Z[−1]),
coker(f) ∼= τ≥0(Z).

There is a relation between torsion pairs in an abelian category and t-structures on its bounded derived
category:

Proposition 2.12 ([Mat], Proposition 2.6). Let A be an abelian category and let (T ,F) be a torsion pair
in A. Let

D≤0 := {X• ∈ Db(A) | Hi(X•) = 0 for i > 0, H0(X•) ∈ T },

and
D≥0 := {X• ∈ Db(A) | Hi(X•) = 0 for i < −1, H−1(X•) ∈ F}.

Then (D≤0,D≥0) is a t-structure on Db(A).

Proof. We verify the third axiom: Let X• be a complex of A with bounded cohomology. Since (T ,F) is a
torsion pair in A there is a short exact sequence

0→ T
µ→ H0(X•)

π→ F → 0

with T ∈ T and F ∈ F . Consider the following commutative diagram of exact sequences in A obtained by
pullback along µ from the lower horizontal sequence:

0 0

0 im(d−1) E T 0

0 im(d−1) ker(d0) H0(X•) 0

F F

0 0.

µ′′

µ′ µ

π

Note that pullback preserves monomorphisms, epimorphisms, and kernels. Moreover, since the map ker(d0)→
H0(X•) is an epimorphism, the pullback is also a pushout and hence it also preserves cokernels.

Let d−1 = i ◦ ρ be the canonical factorization of d−1 through im(d−1) and let d̃−1 := µ′′ ◦ ρ. Let X ′• be the
following subcomplex of X•:

X ′• : · · · → X−2 → X−1 d̃
−1

→ E → 0→ · · ·

By construction, X ′• ∈ D≤0. Let X ′′• be the quotient complex X•/X ′•. We obtain a distinguished triangle

X ′• → X• → X ′′• → X ′•[1]

in Db(A). It remains to show that X ′′• ∈ D≥1. By construction, Hi(X ′′•) = 0 for i < 0. Now X ′′0 = X0/E,
X ′′1 = X1, and we have a commutative diagram with exact rows
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0 E X0 X0/E 0

0 0 X1 X1 0

d0 d̃0

where d̃0 denotes the 0-th differential of X ′′•. Hence, H0(X ′′•) = ker(d̃0) ∼= ker(d0)/E ∼= H0(X•)/T ∼= F ∈
F , so that X ′′• ∈ D≥1.

The following result gives a recipe to construct kernels and cokernels of morphisms in the heart of a t-structure
coming from a torsion pair.

Corollary 2.13. Let A be an abelian category with a torsion pair (T ,F). Let (D≤0,D≥0) be the corresponding
t-structure of Db(A) as in Proposition 2.12 with associated heart C := D≤0 ∩ D≥0. Let f : X• → Y • be a
morphism in C. Embed f into a distinguished triangle

X• f→ Y • → Z• → X•[1].

Embed H−1(Z•) into a short exact sequence in A

0→ T → H−1(Z•)→ F → 0

with T ∈ T and F ∈ F . Let

E T

ker(d−1
Z ) H−1(Z•).

be a pullback diagram in A. In other words, E ⊆ ker(d−1
Z ) is such that E/ im(d−2

Z ) ∼= T is the torsionfree
part of H−1(Z•). Then

kerC(f) ∼= (· · · →
−1

Z−2 →
0

E →
1
0→ · · · )

and

cokerC(f) ∼= (· · · → 0→
−1

Z−1/E →
0

Z0 →
1

Z1 → · · · ).

Proof. This follows by combining Proposition 2.11 with the proof of Proposition 2.12.

2.4 Differential graded algebras and derived tilting

Throughout this section let R be a commutative unital ring.

Definition 2.14. A differential graded R-algebra (dg R-algebra, for short) is a Z-graded R-algebra
A =

⊕
n∈Z A n endowed with a differential d of degree 1 such that

d(ab) = d(a)b+ (−1)nad(b)

for all a ∈ A n, b ∈ A . A homomorphism of differential graded R-algebras is a homogeneous morphism of
degree 0 of the underlying Z-graded R-algebras commuting with the differentials.

Remark 2.15. We may view the ring R as a differential graded R-algebra concentrated in degree 0.

Example 2.16. Let A be an abelian category with enough injectives. Let X be a complex of A. Then
A := RHomA(X,X) (cf. §2.1) can be given the structure of a dg algebra. Choose a quasi-isomorphism
X → I where I is K-injective. Then we have A = Hom•

A(I, I). Note that we replace both entries with
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I because we will define a multiplication on A which comes from composition of morphisms I → I. Let
f ∈ A n and g ∈ A m. We define their product f ∗ g ∈ A n+m by

(f ∗ g)k = fk+m ◦ gk for all k ∈ Z.

This makes A into a Z-graded algebra with unit element 1A = (idIk)
k ∈ A 0. It remains to verify the

Leibniz rule:

(d(f) ∗ g)k + (−1)n(f ∗ d(g))k

=[dk+m+n
I ◦ fk+m + (−1)n+1fk+m+1 ◦ dk+mI ] ◦ gk + (−1)nfk+m+1 ◦ [dk+mI ◦ gk + (−1)m+1gk+1 ◦ dkI ]

=dk+n+mI ◦ fk+m ◦ gk + (−1)n+m+1fk+m+1 ◦ gk+1 ◦ dkI
=dk+n+mI ◦ (f ∗ g)k + (−1)n+m+1(f ∗ g)k+1 ◦ dkI
=d(f ∗ g)k.

Definition 2.17. Let A be a dg R-algebra. A differential graded (right) A -module (dg A -module, for
short) is a Z-graded (right) A -module M =

⊕
n∈Z M n endowed with a differential d of degree 1 such that

d(ma) = d(m)a+ (−1)nmd(a)

for all a ∈ A and m ∈M n. A homomorphism of differential graded A -modules is a homogeneous morphism
of degree 0 of the underlying Z-graded A -modules commuting with the differentials. The category of dg
A -modules is denoted ModA . There is a forgetful functor

ModA −→ CoChR

of abelian categories. Here CoChR denotes the category of cochain complexes of R-modules. For n ∈ Z
the n-th cohomology group Hn(M ) of a dg A -module M is defined as the n-th cohomology group of the
underlying cochain complex of R-modules.

In a similar way one defines the notion of a dg left A -module. However, if we say dg A -module we will
always mean a dg right A -module.

Example 2.18. Fix the setting of Example 2.16. For any complex Y of A the complex M = RHomA(X,Y )
can be given the structure of a dg A -module as follows: Choose a quasi-isomorphism Y → J with J
K-injective, so that M = Hom•

A(I, J). If f ∈M n and g ∈ A m then we define

(f ∗ g)k = fk+m ◦ gk for all k ∈ Z.

This makes M into a Z-graded A -module, and the Leibniz rule holds by the same computation as in
Example 2.16.

Lemma 2.19 ([Sta], Lemma 09JJ). The category ModA is abelian and has arbitrary limits and colimits.

If A is a dg algebra then we denote by D(A ) the derived category of the category of dg A -modules.

Let φ : A → B be a homomorphism of dg R-algebras. If N is a dg B-module then we can view it as a dg
A -module via φ. This yields a functor φ∗ : ModB → ModA called restriction of scalars slong φ. It admits
a right derived version Rφ∗ : D(B)→ D(A ) (cf. [Sta], Lemma 09LI).

Let A be a dg R-algebra. Let M be a dg A -module and N a dg left A -module. Then we can consider the
tensor product M ⊗A N of the underlying graded objects. Recall that it is defined by

(M ⊗A N )l = coker(
⊕

r+t+s=l

M r ⊗R A t ⊗R N s →
⊕
p+q=l

M p ⊗R N q)

x⊗ a⊗ y 7→ x⊗ ay − xa⊗ y
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for l ∈ Z. Abusing notation we write x⊗ y for the class of x⊗ y in M ⊗A N . We define a differential d on
M ⊗A N by

d(x⊗ y) = d(x)⊗ y + (−1)nx⊗ d(y)

for all x ∈M n and y ∈ N homogeneous. This makes M ⊗A N into a dg A -module.

Now let again φ : A → B be a homomorphism of dg R-algebras and let M be a dg A -module. We can
view B as a dg left A -module via φ. Abusing notation we will write B instead of φ∗B. Consider the dg
A -module M ⊗A B. Via multiplication on the right factor it becomes a dg B-module which we call the
extension of scalars of M along φ and denote it by φ∗M . This defines a functor φ∗ : ModA → ModB which
admits a left derived version Lφ∗ : D(A )→ D(B) (cf. [Sta], Lemma 09LS).

We will make use of the following tilting theorem due to Bernhard Keller in the case where X is a curve.

Theorem 2.20 ([Sta], Theorem 09M5). Let X be a quasicompact quasiseparated scheme. There exists a
differential graded algebra A such that Dqcoh(OX) ∼= D(A ).

Proof. By Theorem 2.5 there exists a perfect complex P of OX -modules which generates Dqcoh(OX). Set

A := RHomOX
(P,P).

For n ∈ Z its n-th cohomology group is

Hn(A )
2.1
= HomD(OX)(P,P[n])
= ExtnOX

(P,P).

In other words, the cohomology of A computes the Ext-groups of P. By [Sta], Lemma 09LZ, this implies
that the functor

−⊗L
A K : D(A )→ D(OX)

(cf. [Sta], Lemma 09LX) is fully faithful. Hence, its right adjoint

RHom(K,−) : D(OX)→ D(A )

is a left quasi-inverse. On the other hand, the essential image of −⊗L
A P is contained in Dqcoh(OX) (cf. [Sta],

Lemma 09M3). Since P generates Dqcoh(OX), the kernel of the restriction of RHom(P,−) to Dqcoh(OX) is
zero. The statement now follows from a formal result (see [Sta], Lemma 09J1).
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3 A derived equivalence

Using the construction of Bondal and van den Bergh in the proof of Theorem 2.5, in §3.1 we will compute
a particularly simple generator of Dqcoh(OX) if X is a curve admitting a closed point whose complement
is affine. In §3.2 we compute certain sets of morphisms of injective OX -modules in terms of adèles on X.
This finally leads to an explicit description of a dg algebra A such that Dqcoh(OX) ∼= D(A ) which we will
establish in §3.3. Finally, in §3.4 we compute explicit dg modules corresponding to coherent sheaves on the
curve along the equivalence Dqcoh(OX) ∼= D(A ad).

3.1 A simple generator of the derived category of a curve

Lemma 3.1. Let X be a ringed space, U ⊆ X an open subspace and denote by j : U → X the inclusion.
Let G ∈ Mod(OU ) be a skycraper sheaf at a closed point of U . Then j!G = j∗G.

Proof. Let x ∈ U be a closed point and M an OX,x-module such that G ∼= ιx,∗M . Since j! is left adjoint to
restriction we have

HomOX
(j!G, j∗G) = HomOU

(G, (j∗G)|U ) = HomOU
(G,G).

By taking the preimage of the identity on the right, we obtain a canonical morphism j!G → j∗G. Over U
this map is the identity of G and hence an isomorphism. If y /∈ U then both (j!G)y and (j∗G)y are equal to
0. For j! this is clear from the definition. For j∗ we use the fact that x is a closed point of U , hence of X,
and for y /∈ U we therefore find an open subset Vy ⊂ X containing y but not x. Then G(Vy ∩ U) = 0 and
hence (j∗G)y = lim−→y∈V⊂X G(V ∩ U) = 0.

Lemma 3.2 ([Sta], special case of Lemma 09IR). Let X = Spec(A) be an affine scheme, let t ∈ A be a
regular element and denote by j : U = D(t) ↪→ X the corresponding open embedding. Let G ∈ ModOX

be the
sheaf corresponding to the A-module A/tA. If F ∈ Dqcoh(OX) with HomD(OX)(G[n],F) = 0 for all n ∈ Z
then the canonical map F → R j∗(F|U ) is an isomorphism.

Proof. The unit of the adjunction between the direct and inverse image gives a canonical comparison mor-
phism F → Rj∗(F|U ). Since this morphism is functorial in F and since F is quasi-isomorphic to aK-injective
complex, in order to prove the statement we may assume that F itself is K-injective. Since X is affine, we
have an equivalence of categories Dqcoh(OX) ∼= D(A) (see [Sta], Lemma 06Z0). Using this equivalence we will
view F as a complex M• of A-modules. Applying the functor HomD(A)(·,M•) to the short exact sequence
of A-modules

0→ A
t→ A→ A/tA→ 0

and looking at the long exact cohomology sequence, we get that for all n ∈ Z the map

HomD(A)(A,M
•[n]) = ExtnA(A,M

•)→ ExtnA(A,M
•) = HomD(A)(A,M

•[n])

is an isomorphism. Since M•[n] is a K-injective complex, by [Sta], Lemma 070I, we have

HomD(A)(A,M
•[n]) = HomK(A)(A,M

•[n]) = HomCoCh(A)(A,M
•[n])/ ∼,

where ∼ denotes the homotopy relation. Now HomCoCh(A)(A,M
•[n]) is isomorphic to ker(dn :Mn →Mn+1)

by sending a morphism of complexes f : A→M•[n] to the image of 1A under f . Moreover, such a morphism
is homotopic to zero if and only if it factors through im(dn−1). Hence,

HomCoCh(A)(A,M
•[n])/ ∼ ∼= ker(dn)/ im(dn−1) = Hn(M•).

It follows that for all n ∈ Z, multiplication by t on Hn(M•) is bijective.

Using that localization at t is exact (and by definition of j∗), the cohomology groups of the complex j∗(M
•
|U )

are the localizations at t of the cohomology groups of the complexM•. Thus, the canonical map Hn(M•)→
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Hn(j∗(M
•
|U )) is an isomorphism for all n by the bijectivity of multiplication by t on Hn(M•). This means

that M• → j∗(M
•
|U ) is a quasi-isomorphism of complexes, hence is an isomorphism in D(A). Note that since

M• is K-injective the functor R j∗ is computed by applying j∗ in each degree.

Theorem 3.3. Let X be a curve admitting a closed point ∞ such that X \{∞} is affine. Let k be a nonzero
integer. Then OX ⊕OX(k[∞]) generates Dqcoh(OX).

Proof. We follow the strategy of [Sta], Theorem 09IS, which is due to Bondal and van den Bergh (cf. [BvdB],
Theorem 3.1.1).

Write U := X \ {∞}. By [Det], Lemma 1.4, we may choose an affine open neighborhood V = Spec(A) of
∞ such that the prime ideal p ⊂ A corresponding to ∞ is principal. We choose a generator t ∈ A of p. In
other words, {∞} = V(t) as subsets of V = Spec(A). We have the following diagram of open immersions:

U ∩ V U

V X.

h

g f

j

Note that U ∩ V = D(t) as a subscheme of V = Spec(A). Let d be a positive integer. Denote by G the OV -
module associated to the A-module A/tdA. Over D(t) = V \ {∞}, t is a unit, so that G|D(t)

= 0. Moreover,

Gp ∼= Ap/p
dAp
∼= A/pd = A/tdA. Hence, G is the skyscraper sheaf at∞ on V with value A/tdA. By Lemma

3.1 we have j∗G = j!G, which is the skyscraper sheaf at ∞ on X with value A/tdA.

We claim that P := OX ⊕ j∗G generates D(OX). Suppose we have F ∈ D(OX) such that
HomD(OX)(P[n],F) = 0 for all n ∈ Z. We may assume that F is aK-injective complex (cf. [Sta], Proposition
077P and Theorem 079P). Using the adjunction between extension by zero and pullback along j we obtain
that for all n ∈ Z,

0 = HomD(OX)(j!G[n],F) = HomD(OV )(G[n],F|V ).

By Lemma 3.2 this implies that the canonical map

F|V −→ R g∗(F|U∩V
)

is an isomorphism. By [Sta], Lemma 08FE, the right hand side is canonically isomorphic to R f∗(F|U )|V ,
showing that the canonical map

F −→ R f∗(F|U )

is an isomorphism over V . That it is an isomorphism over U follows immediately from the definition of the
pushforward. Using this together with the adjunction between pullback and pushforward along f we obtain
that for all n ∈ Z

0 = HomD(OX)(OX [n],F) = HomD(OX)(OX [n],R f∗(F|U ))

= HomD(OU )(OU [n],F|U ).

Since U is affine, OU generates D(OU ) (cf. [Sta], Theorem 06Z0), showing that F|U = 0, whence
F ∼= R f∗(F|U ) = 0, concluding the proof of the fact that OX ⊕ j∗G generates Dqcoh(OX).

By Remark 1.4 there are short exact sequences of OX -modules

0→ OX → OX(d[∞])→ j∗G → 0

and
0→ OX(−d[∞])→ OX → j∗G → 0.
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If F ∈ D(OX) then the functor HomD(OX)(−,F) is cohomological (see [Sta], Lemma 0149). Therefore,
the distinguished triangles induced by the previous exact sequences induce long exact sequences of abelian
groups

. . . → HomD(OX )(j∗G[n],F) → HomD(OX )(OX(d[∞])[n],F) → HomD(OX )(OX [n],F)

→ HomD(OX )(j∗G[n− 1],F) → . . .

and

. . . → HomD(OX )(j∗G[n],F) → HomD(OX )(OX [n],F) → HomD(OX )(OX(−d[∞])[n],F)

→ HomD(OX )(j∗G[n− 1],F) → . . .

Now if k is positive then the first long exact sequence shows that together with OX⊕j∗G also OX⊕OX(k[∞])
is a generator.

Similarly, for negative k the second long exact sequence shows the desired result.

3.2 Morphisms of sheaves and adèles on curves

Recall the following elementary fact:

Lemma 3.4. Let A be an integral domain with field of fractions K. The multiplication map

m : K → EndA(K), x 7→ (y 7→ xy),

is a K-linear isomorphism.

Proof. It is enough to observe that any A-linear endomorphism of K is automatically K-linear because
K = Frac(A).

Lemma 3.5. Let A be a complete discrete valuation ring with maximal ideal m and fraction field K. Let
a ∈ Z. Then the map

K → HomA(K,K/m
a),

x 7→ mx := (y 7→ xy +ma)

is a K-linear isomorphism.

Proof. The map is clearly K-linear. If x ∈ K with mx = 0 then xy ∈ ma for all y ∈ K, which implies
x = 0. For the surjectivity let g : K → K/ma be given. Let π be a uniformizer of A. For n ≥ 0 write
g(π−n) = xn +ma for n ≥ 0. Since g is A-linear for every n ≥ 0 we have

xn +ma = g(π · π−n−1) = πg(π−n−1) = πxn+1 +ma,

so that xn−πxn+1 ∈ ma and hence πnxn−πn+1xn+1 ∈ ma+n for all n. This implies that x := limn→∞ πnxn
exists in K with πnxn − x ∈ ma+n for all n. Consequently,

mx(π
−n) = π−nx+ma = π−n(x− πnxn + πnxn) +ma = xn +ma = g(π−n).

The A-linearity of g and mx then imply that g = mx.

Proposition 3.6. Suppose that A is a discrete valuation ring with maximal ideal m and fraction field K.
Denote by Â the m-adic completion of A and by K̂ the fraction field of Â. Let a, b ∈ Z. There are natural

A-linear isomorphisms HomA(K,K/m
a)

∼=−−→ K̂ and HomA(K/m
b,K/ma)

∼=−−→ ma−bÂ such that the diagrams
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HomA(K,K) HomA(K,K/m
a)

K K̂

can

∼=∼= 3.4

⊆

and

HomA(K/m
b,K/ma) HomA(K,K/m

a)

ma−bÂ K̂

∼=

can

∼=

⊆

commute.

Proof. First note that for any n ∈ Z we have K ∩mnÂ = mn as Â-submodules of K̂. Since K is dense in K̂
and mnÂ is open, this implies that the map

K/mn → K̂/mnÂ

is an A-linear isomorphism.

Now let f ∈ HomA(K,K/m
a). Base change to Â gives us an Â-linear map f ⊗ idÂ : K⊗A Â→ K/ma⊗A Â.

Under the identifications K⊗A Â ∼= K̂ and K/ma⊗A Â ∼= K̂/maÂ the latter map corresponds to an Â-linear

map f̂ : K̂ → K̂/maÂ. Say f is given by f(π−n) = xn +ma for n ≥ 1 and some xn ∈ K, where π is a fixed

uniformizer of A. Then f̂(π−n) = xn +maÂ for all n ≥ 1.

We claim that the A-linear map

HomA(K,K/m
a)→ HomÂ(K̂, K̂/m

aÂ), f 7→ f̂ ,

is an isomorphism.

For the injectivity, let f : K → K/ma be A-linear with f̂ = 0. Write f(π−n) = xn + ma for n ≥ 1. We

obtain xn ∈ maÂ ∩K = ma for all n ≥ 1 and hence f = 0.

Now let g ∈ HomÂ(K̂, K̂/m
aÂ). Write g(π−n) = xn + maÂ for some xn ∈ K̂ and all n ≥ 1. Using that

the canonical map K/ma → K̂/maÂ is an isomorphism we may assume that the xn lie in K. Now define
f : K → K/ma by f(π−n) := xn + ma and extend A-linearly (note that K = A[π−1]). This is well-defined:

Since g is Â-linear we have

πxn+1 +maÂ = πg(π−n−1) = g(π−n) = xn +maÂ

and hence πxn+1 − xn ∈ maÂ ∩K = ma. Finally, f̂ = g.

By Lemma 3.5 the map

K̂ → HomÂ(K̂, K̂/m
aÂ),

x 7→ mx := (y 7→ xy +maÂ)

is an Â-linear isomorphism. Moreover, from our explicit construction it follows that the first diagram
commutes. To conclude the proof it remains to observe that an element x ∈ K̂ lies in ma−bÂ if and only if
mbÂ ⊆ ker(mx).
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From now on we fix a Dedekind domain A with field of fractions K. If p ⊂ A is a nonzero prime ideal then
we write Âp for its p-adic completion and K̂p for the field of fractions of Âp.

Definition 3.7. We call
AK :=

∏′

p⊂A
maximal

K̂p

the ring of adèles of K, where the restricted direct product is with respect to the subrings Âp ⊂ K̂p, and

A0
K :=

∏
p⊂A

maximal

Âp

the ring of integral adèles of K.

Remark 3.8. Via the diagonal embeddings A
∆
↪→ A0

K and K
∆
↪→ AK , A0

K is an A-algebra and AK a
K-algebra.

Lemma 3.9. The multiplication map
K ⊗A A0

K −→ AK

is an isomorphism of K-algebras.

Proof. If A is a field then A = K = A0
K = AK and the statement is trivially true. Let us now assume that

A is not a field.

Since K is a localization of A, it is a flat A-module. The map of interest is thus the base change to K of the
inclusion A0

K ⊂ AK followed by the multiplication map K ⊗AAK → AK which is an isomorphism because
AK is a K-algebra. It remains to show the surjectivity.

For this, let f = (fp)p ∈ AK be an adèle. For each maximal ideal p of A we denote by vp : K → Z the

p-adic valuation on K. It extends uniquely to a valuation K̂p → Z which we call vp as well. Let Q denote

the finite set of maximal ideals q of A such that fq /∈ Âq. For each maximal ideal p of A we may choose

πp ∈ A such that its image in Âp is a uniformizer. Then α :=
∏

q∈Q π
−vq(fq)
q ∈ A because vq(fq) < 0 for all

q ∈ Q. Define g := α · f ∈ AK . If p /∈ Q then gp = αfp ∈ Âp because α ∈ A and fp ∈ Âp. If q ∈ Q then

vq(gq) = vq(fq)−
∑
q′∈Q

vq′(fq′)vq(πq′) = −
∑
q′ ̸=q

vq′(fq′)︸ ︷︷ ︸
<0

vq(πq′)︸ ︷︷ ︸
≥0

≥ 0.

Hence gp ∈ Âp for all p, whence g ∈ A0
K , and α−1 ⊗ g ∈ K ⊗A A0

K maps to f under the multiplication
map.

Remark 3.10. Let a be a fractional ideal of A. Since A is noetherian, the direct product of any family
of flat A-modules is flat (cf. [Cha], Theorem 2.1). Hence, A0

K is a flat A-module and therefore the map
a⊗A A0

K → K ⊗A A0
K is injective. The isomorphism K ⊗A A0

K
∼= AK then identifies aA0

K with a⊗A A0
K

as A-submodules of AK .

We define the following partial ordering on the set of nonzero ideals of A: If I, J are two fractional ideals of
A then I ≤ J whenever I ⊇ J . In this case there is a natural projection A/J → A/I. This makes the family
(A/I)I into a projective system of A-modules.

Lemma 3.11. There is an A-linear isomorphism A0
K
∼= lim←−I A/I.
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Proof. Since A is Dedekind every nonzero ideal I of A admits a unique decomposition I =
∏

p p
vp(I) with

vp(I) ∈ Z. By the Chinese Remainder Theorem,

A/I ∼=
∏
p

A/pvp(I).

Using that projective limits commute with arbitrary products, we have the following series of ring isomor-
phisms:

lim←−
I

A/I ∼=
∏
p

lim←−
I

A/pvp(I) ∼=
∏
p

lim←−
n≥1

A/pn ∼=
∏
p

lim←−
n≥1

Ap/p
nAp =

∏
p

Âp = A0
K .

Let a be a fractional ideal of A and let p be a maximal ideal. We denote by âp the p-adic completion of a,

i.e. âp = lim←−n a/p
na where the index set runs over all n such that pn ⊂ a. Recall that we have âp ∼= a⊗A Âp.

If aÂp denotes the Âp-submodule of K̂p generated by a then by flatness of A→ Âp we have a⊗A Âp
∼= aÂp.

Proposition 3.12. Let a ⊂ K be a fractional ideal of A. There is a unique K-linear isomorphism

Φ : HomA(K,K/a)
∼=−→ AK

such that for each maximal ideal p of A the diagram

EndA(K) HomA(K,K/a) HomÂp
(K̂p, K̂p/âp)

K AK K̂p

can

Φ∼=

−⊗idÂp

∼= 3.5∼= 3.4

∆ projp

commutes. If b ⊂ K is another fractional ideal then there is a unique A-linear isomorphism

Ψ : HomA(K/b,K/a)
∼=−→ b−1aA0

K

making the diagram

HomA(K/b,K/a) HomA(K,K/a) HomÂp
(K̂p/b̂p, K̂p/âp)

b−1aA0
K AK b̂−1

p âp

∼= Ψ

can

Φ∼=

−⊗idÂp

∼= 3.5

⊆ projp

commutative for any nonzero prime ideal p.

Proof. Step 1: Consider the A-submodule HomA(K/A,K/a) of HomA(K,K/a). We claim that it generates
HomA(K,K/a) as a K-vector space.

To see this, let f : K → K/a be A-linear. Its restriction to A is not injective because K/a is a torsion
A-module. Therefore, there is a nonzero element x ∈ A such that f(x) = 0. This means x · f contains A in
its kernel. Thus, x · f ∈ Hom(K/A,K/a), proving the claim.

Taking the base change of the inclusion HomA(K/A,K/a) ↪→ HomA(K,K/a) along A ↪→ K, we get an
isomorphism

K ⊗A HomA(K/A,K/a)
∼=−→ HomA(K,K/a).
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Indeed, the injectivity of this map follows from the flatness of A ↪→ K, and the surjectivity is the claim above.

Step 2: Therefore, it suffices to construct an A-linear isomorphism

HomA(K/A,K/a)
∼=−→ aA0

K

such that for all p the diagram

HomA(K/A,K/a) HomÂp
(K̂p/Âp, K̂p/âp)

aA0
K âp

∼=

−⊗idÂp

∼= 3.5

projp

commutes. Indeed, the base change to K then gives a unique K-linear isomorphism between HomA(K,K/a)
and

K ⊗A aA0
K
∼= K ⊗A a⊗A A0

K
∼= K ⊗A A0

K
∼= AK

making the diagrams of the proposition commute if we identify âp ⊗A K with K̂p.

Step 3: For any nonzero element x ∈ A evaluation at x−1 +A gives an isomorphism between HomA(x
−1A/

A,K/a) and x−1a/a. The latter is isomorphic to a/xa ∼= A/xA ⊗A a via multiplication by x. Now K/A is
the colimit of the A-modules x−1A/A. By the universal property of colimits HomA(K/A,K/a) is isomorphic
to the limit of the A-modules A/xA ⊗A a where x runs over the nonzero elements of A and the transition
maps are the natural ones. Here the indexing set is ordered by divisibility in A. In this special situation the
base change commutes with the limit because a is finitely presented and the A-modules A/xA are of finite
length (allowing for a Mittag-Leffler argument; cf. the proof of [Jen], Théorème 7.7). Therefore, the limit is
isomorphic to A0

K ⊗A a ∼= aA0
K (by Lemma 3.11, using that the set of nonzero principal ideals is cofinal in

the set of all nonzero ideals of A).

We now show that the first diagram commutes. Let α ∈ K. The corresponding map K → K/a sends x to

αx+ a. Choose y ∈ A such that αy ∈ a. Then under the isomorphism K ⊗A HomA(K/A,K/a)
∼=−→ AK the

above map corresponds to y−1 ⊗mαy on the left. Going through the various isomorphisms from step 3 we
see that mαy corresponds to the adèle (αy)p ∈ A0

K . Hence, we indeed obtain that the adèle corresponding
to α is (α)p, showing the commutativity of the first diagram.

Generalizing the construction in step 3 we now show that HomA(K/b,K/a) is isomorphic to b−1aA0
K . If

x ∈ A is a nonzero element such that b ⊆ x−1A then evaluation at x−1 + b gives an isomorphism between
HomA(x

−1A/b,K/a) and x−1b−1a/a. The latter is isomorphic to b−1a/xa ∼= b−1/xA⊗A a ∼= A/xA⊗ b−1a
via multiplication by x. Now K/b is the colimit of the A-modules x−1A/b such that b ⊆ x−1A, because
the set of such x is cofinal in the set of all nonzero elements of A. By the universal property of colimits
HomA(K/b,K/a) is isomorphic to the limit of the A-modules A/xA ⊗A b−1a. This limit is isomorphic to
A0
K ⊗A b−1a ∼= b−1aA0

K .

For the commutativity of

HomA(K/A,K/a) HomÂp
(K̂p/Âp, K̂p/âp)

aA0
K âp

∼=

−⊗idÂp

∼= 3.5

projp
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we note that the left vertical isomorphism is the projective limit of the isomorphisms
HomA(x

−1A/A,K/a) ∼= a/xa considered above. Likewise, the isomorphism from Lemma 3.5 can be con-

structed as the inverse limit of the analogous isomorphisms HomÂp
(x−1Âp/Âp, K̂p/âp) ∼= âp/xâp. In both

cases we may let x run through the nonzero elements of A because K/A =
⋃
x∈A\{0} x

−1A/A and

K̂p/Âp =
⋃
x∈A\{0} x

−1Âp/Âp, using that Âp ⊆ K̂p is open and K ⊂ K̂p is dense. Therefore, it suffices to
show that the diagram

HomA(x
−1A/A,K/a) HomÂp

(K̂p/Âp, K̂p/âp)

a/xa âp/xâp

∼= ∼=

commutes. Since the lower horizontal map is induced by the inclusion a→ âp this follows directly from the
definition of the vertical isomorphisms.

Remark 3.13. The isomorphism Φ is characterized by the following property: Given an A-linear map
f : K → K/a let x = (xp)p denote the corresponding adèle. For any p let f̂p : K̂p → K̂p/âp denote the base

change of f along A → Âp. Then the relation between f and x is characterized by the fact that for any p

the map f̂p is xp times the residue class map K̂p → K̂p/âp.

Let X be a curve with field of definition E. Let EX denote the constant OX -module associated with the
function field E(X) of X. Similarly to the affine case let

A0
X :=

∏
x∈|X|

ÔX,x ⊂
∏′

x∈|X|

Frac(ÔX,x) =: AX

denote the ring of (integral) adèles over X where the restricted direct product is taken with respect to the

subrings ÔX,x ⊂ Frac(ÔX,x). Recall that a fractional ideal sheaf on X is a subsheaf I ⊂ EX that is a
coherent OX -module.

Lemma 3.14. The map
E(X)→ EndOX

(EX), α 7→ α · idEX
,

is an E(X)-linear isomorphism.

Proof. Since the restriction maps of EX are the identity maps this follows from Lemma 3.4.

If I is a fractional ideal sheaf on X then we write

IA0
X :=

∏
x∈|X|

Îx ⊆ AX .

Note that the arguments in step 3 above also show that aA0
K
∼=

∏
p âp. Therefore, the notation IA0

X is not
an illegitimate abuse of notation if X = Spec(A) is affine.

Corollary 3.15. Let X be a curve with field of definition E and let I,J ⊆ EX be fractional ideal sheaves.
Denote by ∆ : E(X) → AX the diagonal embedding. The isomorphisms from Proposition 3.12 glue to
isomorphisms

HomOX
(EX , EX/I)

∼=−→ AX

and
HomOX

(EX/J , EX/I)
∼=−→ J−1IA0

X

such that the diagrams
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EndOX
(EX) HomOX

(EX , EX/I)

E(X) AX .

can

∼=∼= 3.14

∆

and

HomOX
(EX/J , EX/I) HomOX

(EX , EX/I)

J−1IA0
X AX .

can

∼= ∼=
⊆

commute.

Proof. This follows from Proposition 3.12 and uses the uniqueness statement therein.

Example 3.16. Let X be a complete curve with closed point ∞ whose complement is the spectrum of a
principal ideal domain. For k ∈ Z we have the invertible OX -module OX(k). Choose a uniformizer ϖ of
OX,∞ and let ε ∈ A0

X be the adèle defined by

εx :=

{
ϖ, x =∞
1 else.

Then OX(k)A0
X = ε−kA0

K .

Lemma 3.17. Let X be a curve and let I be a fractional ideal sheaf on X. Then EX/I is an injective
OX-module.

Proof. By [Har2], Proposition 7.17, an OX -module F is injective if and only if for each x ∈ X its stalk Fx
at x is an injective OX,x-module. Since X is a curve, all its local rings are principal ideal domains. By [HS],
Chapter I, Theorem 7.1, a module over a principal ideal domain is injective if and only if it is divisible. Now
for every point x ∈ X, the stalk EX,x = E(X) = Frac(OX,x) is a divisible OX,x-module, hence is injective.
Therefore, EX is an injective OX -module. Since any quotient of a divisible module is again divisible (cf.
[HS], Chapter I, Proposition 7.2), it follows that EX/I is an injective OX -module.

Proposition 3.18. Let I,J ⊂ EX be fractional ideal sheaves. Then there is an exact sequence of abelian
groups

0→ Hom(J , I)→ J−1IA0
X → AX/E(X)→ Ext1(J , I)→ 0.

In particular, we have E-linear isomorphisms

J−1IA0
X ∩ E(X) ∼= Hom(J , I)

and
AX/(E(X) + J−1IA0

X) ∼= Ext1(J , I).

Proof. The statement follows from Corollary 3.15 and the snake lemma applied to the following diagram all
of whose rows and columns are exact by the injectivity of EX and EX/I:
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0

0 Hom(J , I)

0 Hom(EX/J , EX)︸ ︷︷ ︸
=0

Hom(EX , EX)︸ ︷︷ ︸
∼=E(X)

Hom(J , EX) 0

0 Hom(EX/J , EX/I)︸ ︷︷ ︸
∼=J−1IA0

X

Hom(EX , EX/I)︸ ︷︷ ︸
∼=AX

Hom(J , EX/I) 0

Ext1(J , I)

0

3.3 An explicit differential graded algebra

Throughout this section let X be a generalized Riemann sphere over a field E (cf. §1.3). Fix k ∈ Z. Recall
that by Theorem 3.3 P := OX⊕OX(k) is a perfect generator of Dqcoh(OX). Set Ph := π∗

hP = OXh
⊕OXh

(kh),
a perfect generator of Dqcoh(OXh

).

Definition 3.19. For h ≥ 1 set Ah := RHomOXh
(Ph,Ph).

Ah is a dg Eh-algebra (cf. Example 2.16), and by Theorem 2.20, Dqcoh(OXh
) ∼= D(Ah).

Proposition 3.20. There is a homomorphism of dg E-algebras

φh : A1 −→ Ah

such that the diagrams

Dqcoh(OXh
) D(Ah)

Dqcoh(OX) D(A1)

∼=

πh,∗ Rφh,∗

∼=

Dqcoh(OXh
) D(Ah)

Dqcoh(OX) D(A1).

∼=

π∗
h

∼=

Lφ∗
h

commute.

Proof. The map φh is the canonical one mentioned in [Sta], section 0B6A. We need to see that it is a
homomorphism of dg algebras. Explicitly, φh is given as follows: The complex of OXh

-modules

Kh := EXh
⊕ EXh

−→ EXh
/OXh

⊕ EXh
/OXh

(kh)

is K-injective (see Lemma 3.17) and quasi-isomorphic to Ph = OXh
⊕ OXh

(kh). Note that we have
Kh ∼= π∗

hK1.
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Now if f ∈ A1 = Hom•
OX

(K1,K1) is homogeneous of degree n with f = (fk)k then φh(f) = (π∗
h(f

k))k ∈ Ah

is again a homogeneous map Kh → Kh of degree n. One checks that this indeed gives a homomorphism of
dg algebras.

Let F ∈ Dqcoh(OXh
). By [KS1], Theorem 14.4 (c) there is an isomorphism (in D(E))

RHomOXh
(π∗
hP,F) ∼= RHomOX

(P, πh,∗F)

which is functorial in F . This is an isomorphism in D(A ) if the left hand side is given the dg A -module
structure induced by scalar restriction along φ, showing the commutativity of the first diagram.

The second diagram commutes by uniqueness of adjoint functors since the horizontal functors are equiva-
lences.

Proposition 3.21. The canonical map
A1 ⊗E Eh −→ Ah

is an isomorphism of dg Eh-algebras.

Proof. Consider the Cartesian square

Xh X

Spec(Eh) Spec(E).

πh

Since P ∈ Dqcoh(OX) is perfect, by [Sta], Lemma 0AA7, the canonical map

A1 ⊗E Eh = RHomOX
(P,P) −→ RHomOX

(Ph,Ph) = Ah

is an isomorphism in D(Eh). By construction it is comptatible with the algebra structures, hence is an
isomorphism of dg Eh-algebras.

We will now use the results of §3.2 to make the dg algebras more explicit. Let us fix some notation.

Fix a uniformizer ϖ of OX,∞. For h ≥ 1 and y ∈ |Xh| with πh(y) = ∞ set ϖy := π♯h(ϖ), a uniformizer of
OXh,y. Let εh ∈ A0

Xh
be the adèle defined by

(εh)y =

{
ϖy, y ∈ π−1

h (∞)

1, else,

and set Jh :=

(
εh 0
0 1

)
∈M2(A

0
Xh

).

Definition 3.22. We denote by A ad
h the differential graded Eh-algebra with graded pieces

(A ad
h )n :=


M2(Eh(Xh))×M2(A

0
Xh

), n = 0,

M2(AXh
), n = 1,

0 else,

differential

d := d0 : (A ad
h )0 → (A ad

h )1

(M,N) 7→M − JkhNJ−k
h ,
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and whose algebra structure is given by the formulae

(M,N) ∗ (A,B) = (M ·A,N ·B),

(M,N) ∗ P = JkhNJ
−k
h · P,

P ∗ (M,N) = P ·M,

P ∗Q = 0

for (M,N), (A,B) ∈ (A ad
h )0 and P,Q ∈ (A ad

h )1.

Proposition 3.23. Pullback along πh induces a homomorphism of dg E-algebras

φadh : A ad
1 −→ A ad

h .

Proof. For each y ∈ Xh the local homomorphism of local rings π♯h,y : OX,πh(y) → OXh,y extends uniquely

to a local ring homomorphism ÔX,πh(y) → ÔXh,y and further to a field homomorphism Frac(ÔX,πh(y)) →
Frac(ÔXh,y) which we still denote by π♯h,y.

If y = ηh is the generic point of Xh then πh(y) = η is the generic point of X, and we obtain a map
πh,ηh : E(X) = OX,η → OXh,ηh = Eh(Xh) between the function fields. We extend it to a map M2(E(X))→
M2(Eh(Xh)) by applying it to each entry.

If we let y run over all the closed points of Xh then we obtain an E-algebra homomorphism

A0
X =

∏
x∈|X|

ÔX,x →
∏
x∈|X|

∏
y∈π−1

h (x)

ÔXh,y = A0
Xh

and an E(X)-algebra homomorphism

AX =
∏′

x∈|X|

Frac(ÔX,x)→
∏′

x∈|X|

∏
y∈π−1

h (x)

Frac(ÔXh,y) = AXh

given by sending an adèle (fx)x∈|X| to ((π♯h,y(fx))y∈π−1
h (x))x∈|X|. We extend this map to matrices by apply-

ing it componentwise.

Abusing notation we will denote all the maps

M2(E(X))→M2(Eh(Xh)), M2(A
0
X)→M2(A

0
Xh

), and M2(AX)→M2(AXh
)

simply by π♯h. This induces a map φadh : A ad
1 → A ad

h on the level of the underlying complexes.

To show that φadh is a homomorphism of dg algebras amounts to the commutativity of the diagram

M2(E(X))×M2(A
0
X) M2(AX)

M2(Eh(Xh))×M2(A
0
Xh

) M2(AXh
).

d

π♯
h π♯

h

d

Let (M,N) ∈ (A ad
1 )0. If we first apply the differential of A ad

1 and then π♯h then we obtain the matrix

π♯h(M)− π♯h(J1)
kπ♯h(N)π♯h(J1)

−k.
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On the other hand, if we first apply π♯h and then the differential of A ad
h then we get the matrix

π♯h(M)− Jkhπ
♯
h(N)J−k

h .

Hence, it suffices to see that π♯h(J1) = Jh which in turn boils down to π♯h(ε) = εh, which is true by
definition.

Theorem 3.24. For each h ≥ 1 there is an isomorphism of dg Eh-algebras

ψh : Ah

∼=−→ A ad
h

such that the diagram

A1 Ah

A ad
1 A ad

h

φh

ψ1
∼= ψh

∼=

φad
h

commutes.

Proof. Recall that

Kh := EXh
⊕ EXh

ph:=
(
can 0
0 can

)
−→ EXh

/OXh
⊕ EXh

/OXh
(kh)

is a K-injective complex (see Lemma 3.17) which is quasi-isomorphic to Ph = OXh
⊕OXh

(kh).

Also recall that for n ∈ Z the nth graded piece A n is given by

A n
h = HomOXh

(Kh,Kh)n =
∏
l∈Z

HomOXh
(Klh,Kl+nh ).

This can be illustrated as follows, where the labels indicate the degrees of the morphisms:

E2Xh
EXh

/OXh
⊕ EXh

/OXh
(kh)

E2Xh
EXh

/OXh
⊕ EXh

/OXh
(kh).

0

1

0−1

Since EXh
/OXh

and EXh
/OXh

(kh) are torsion OXh
-modules and EXh

is torsion-free, there are no nonzero
morphisms of degree −1 from Kh into itself. Hence, A n = 0 for n ̸= 0, 1, and

A 0
h = End(EXh

⊕ EXh
) × End(EXh

/OXh
⊕ EXh

/OXh
(kh))

= M2(End(EXh
)) ×

 End(EXh
/OXh

) Hom(EXh
/OXh

(kh), EXh
/OXh

)

Hom(EXh
/OXh

, EXh
/OXh

(kh)) End(EXh
/OXh

(kh))

 ,

and

A 1
h = Hom(EXh

⊕ EXh
, EXh

/OXh
⊕ EXh

/OXh
(kh))

=

 Hom(EXh
, EXh

/OXh
) Hom(EXh

, EXh
/OXh

)

Hom(EXh
, EXh

/OXh
(kh)) Hom(EXh

, EXh
/OXh

(kh))

 .
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Recall that we denote by ph : EXh
⊕ EXh

→ EXh
/OXh

⊕ EXh
/OXh

(kh) the differential of Kh . Let
f ∈ End(EXh

⊕ EXh
) and g ∈ End(EXh

/OXh
⊕ EXh

/OXh
(kh)). The differential d : A 0

h −→ A 1
h of A

post- (resp. pre-)composes f (resp. g) with ph and takes the difference of the resulting morphisms of degree
1, i.e. it takes the pair (f, g) to ph ◦ f − g ◦ ph.

The algebra structure on Ah is given by the formulae

(a1, b1) ∗ (a2, b2) = (a1 ◦ a2, b1 ◦ b2),
(a, b) ∗ c = b ◦ c,
c ∗ (a, b) = c ◦ a,

c ∗ d = 0,

for all (a, b), (a1, b1), (a2, b2) ∈ A 0
h and c, d ∈ A 1

h .

Recall that

OXh
(kh)y =

{
mky = ϖk

yOXh,y, y ∈ π−1
h (∞)

OXh,y, else,

showing that OXh
(kh)A0

Xh
= εkhA

0
Xh

.

By Proposition 3.15 we have the following commutative diagrams:

End(EXh
) Hom(EXh

, EXh
/OXh

) End(EXh
/OXh

)

Eh(Xh) AXh
A0
Xh

∼= ∼=

∆

∼=
⊇

End(EXh
) Hom(EXh

, EXh
/OXh

) Hom(EXh
/OXh

(kh), EXh
/OXh

)

Eh(Xh) AXh
εkhA

0
Xh

∼= ∼=

∆

∼=

⊇

End(EXh
) Hom(EXh

, EXh
/OXh

(kh)) Hom(EXh
/OXh

, EXh
/OXh

(kh))

Eh(Xh) AXh
ε−kh A0

Xh

∼= ∼=

∆

∼=

⊇

Abusing notation from now on we will not write ∆ anymore and view it as an inclusion. Let Ã ad
h be the dg

Eh-algebra with underlying complex

M2(Eh(Xh))×
(

A0
Xh

εkhA
0
Xh

ε−kh A0
Xh

A0
Xh

)
d̃−→M2(AXh

)

(A,B) 7−→ A−B

and whose algebra structure is given by the formulae

(A1, B1) ∗ (A2, B2) = (A1 ·A2, B1 ·B2),

(A,B) ∗ C = B · C,
C ∗ (A,B) = C ·A,

C ∗D = 0,
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for all (A,B), (A1, B1), (A2, B2) ∈ A 0
h and C,D ∈ A 1

h .

The commutative diagrams above yield an isomorphism of differential graded Eh-algebras ψ̃h : Ah

∼=−→ Ã ad
h .

We have an isomorphism of Eh-algebras

χh :

(
A0
Xh

εkhA
0
Xh

ε−kh A0
Xh

A0
Xh

)
∼=−→M2(A

0
Xh

)

A 7−→ J−k
h AJkh .

Recall that we denote by d : A ad,0
h → A ad,1

h the differential of the dg Eh-algebra A ad
h which is given by

d(A,B) = (A, JkhBJ
−k
h ). The diagram

M2(Eh(Xh))×
(

A0
Xh

εkhA
0
Xh

ε−kh A0
Xh

A0
Xh

)
M2(AXh

)

M2(Eh(Xh))×M2(A
0
Xh

) M2(AXh
)

d̃

id×χh
id

d

commutes. Therefore, we obtain an isomorphism of differential graded Eh-algebras Ã ad
h

∼=−→ A ad
h which we

still call χh. The composition ψh := χh ◦ ψ̃h defines the desired isomorphism Ah

∼=−→ A ad
h .

The commutativity of

A1 Ah

A ad
1 A ad

h

φh

ψ1
∼= ψh

∼=
φad

h

follows immediately from the construction.

Let us do a sanity check and compute the cohomology of A ad := A ad
1 . By the proof of Theorem 2.20 it

should be isomorphic to Ext∗(P,P). We have

H∗(A ad) =

 E(X) ∩A0
X E(X) ∩ εkA0

X

E(X) ∩ ε−kA0
X E(X) ∩A0

X

⊕
 AX/(E(X) +A0

X) AX/(E(X) + εkA0
X)

AX/(E(X) + ε−kA0
X) AX/(E(X) +A0

X)


on which the algebra structure is induced by the one on A ad.

By Proposition 3.18 applied to I,J ∈ {OX ,OX(k),OX(−k)} we have short exact sequences

0→ H0(X,OX)→ A0
X → AX/E(X)→ H1(X,OX)→ 0,

0→ H0(X,OX(k))→ ε−kA0
X → AX/E(X)→ H1(X,OX(k))→ 0,

0→ H0(X,OX(−k))→ εkA0
X → AX/E(X)→ H1(X,OX(−k))→ 0.

Using this we may identify
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H∗(A ad) =

 H0(X,OX) H0(X,OX(−k))

H0(X,OX(k)) H0(X,OX)

⊕
 H1(X,OX) H1(X,OX(−k))

H1(X,OX(k)) H1(X,OX)



which is exactly Ext∗(OX ⊕OX(k),OX ⊕OX(k)), as it should (cf. the proof of Theorem 2.20).

3.4 The dg modules associated with coherent sheaves

Example 3.25 (Line bundles). Let d be an integer. Then

L(d) = (EX −→ EX/OX(d))

is a K-injective complex of quasi-coherent OX -modules which is quasi-isomrphic to OX(d). Therefore, the
differential graded A -module corresponding to OX(d) is Hom•

OX
(K,L(d)). The following diagram illustrates

the situation.

EX ⊕ EX EX/OX ⊕ EX/OX(k)

EX EX/OX(d).

p

0
1

0

q

We obtain the complex

Hom(E2X , EX)×Hom(EX/OX ⊕ EX/OX(k), EX/OX(d)) −→ Hom(E2X , EX/OX(d))

(f, g) 7−→ q ◦ f − g ◦ p.

The A -module structure is given by the formulae

(m,n) ∗ (a, b) = (m ◦ a, n ◦ b),
(m,n) ∗ c = n ◦ c,
p ∗ (a, b) = p ◦ a,

p ∗ c = 0

for all (a, b) ∈ A 0, c ∈ A 1, (m,n) ∈ Hom•(K,L(d))0 and p ∈ Hom•(K,L(d))1.

By Proposition 3.15 the dg A -module Hom•(K,L(d)) corresponds via base change along the isomorphism

A
∼=→ Ã ad to the dg Ã ad-module M̃ (d) with underlying complex

E(X)2 × (ε−dA0
X ⊕ εk−dA0

X) −→ A2
X

(M,N) 7−→M −N

concentrated in degree 0 and 1. Its Ã ad-module structure is given by the formulae

(M,N) ∗ (A,B) = (M ·A,N ·B),

(M,N) ∗ C = N · C,
P ∗ (A,B) = P ·A,

P ∗ C = 0

for all (A,B) ∈ (Ã ad)0, C ∈ (Ã ad)1, (M,N) ∈ M̃ (d)
0

and P ∈ M̃ (d)
1

.
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Example 3.26 (Skyscraper sheaves). Let x ∈ X be a closed point and let ιx : {x} ↪→ X be the inclusion.
Let d ∈ N⩾1. Then Od[x] = ιx,∗OX,x/mdx is the skyscraper sheaf at x with value OX,x/mdx. There is a short
exact sequence of OX,x-modules

0→ OX,x/mdx −→ E(X)/mdx −→ E(X)/OX,x → 0

the two nonzero terms on the right are divisible OX,x-modules, hence are injective because OX,x is a principal
ideal domain (cf. [HS], Chapter I, Theorem 7.1). Applying ιx,∗ yields a short exact sequence of OX -modules

0→ ιx,∗OX,x/mdx −→ ιx,∗E(X)/mdx −→ ιx,∗E(X)/OX,x → 0

in which the two nonzero terms on the right are injective quasi-coherent OX -modules (cf. [Har2], Proposition
7.17). Hence, the complex of OX -modules

G(d)x := ιx,∗E(X)/mdx −→ ιx,∗E(X)/OX,x

is K-injective and quasi-isomorphic to ιx,∗OX,x/mdx. From now on if M is an OX,x-module we also write M
instead of ιx,∗M for the corresponding skyscraper sheaf on X.

The underlying complex of the corresponding differential graded A -module Hom•
OX

(K,G(d)x ) is

Hom(EX/OX ⊕ EX/OX(k), E(X)/mdx)→ Hom(E2X , E(X)/mdx)×Hom(EX/OX ⊕ EX/OX(k), E(X)/OX,x)

→ Hom(E2X , E(X)/OX,x)

which is concentrated in degrees −1, 0, and 1.

Note that if F is an OX -module and M and OX,x-module then by the adjunction between pullback and
pushforward along ιx there is an isomorphism

HomOX
(F , ιx,∗M) ∼= HomOX,x

(Fx,M)

which is functorial in F and M .

Suppose now that x ̸= ∞. Denote by m̂x = mxÔX,x ⊂ ÔX,x the maximal ideal. Then by Proposition 3.6
the above complex is isomorphic to

M̃ (d)
x = (m̂dx)

2 → Frac(ÔX,x)2 × Ô2
X,x → Frac(ÔX,x)2

using that OX(k)x = OX,x. The first differential is given by f 7→ (f, f), the second one sends (g, h) to

g − h. The scalar multiplication with elements of Ã ad works as follows: If (A,B) ∈ (Ã ad)0, C ∈ (Ã ad)1,

K ∈ (M
(d)
x )−1, (M,N) ∈ (M̃

(d)
x )0 and P ∈ (M̃

(d)
x )1 then

K ∗ C = K · Cx,
K ∗ (A,B) = K ·Bx,

(M,N) ∗ (A,B) = (M ·Ax, N ·Bx),
(M,N) ∗ C = N · Cx,
P ∗ (A,B) = P ·Ax,

P ∗ C = 0.

If x =∞ then we obtain

M̃ (d)
∞ = (m̂d∞ ⊕ m̂d+k∞ )→ Frac(ÔX,∞)2 × (ÔX,∞ ⊕ m̂k∞)→ Frac(ÔX,∞)2
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since OX(k)∞ = m−k
∞ . For the differential as well as for the scalar multiplication with elements of Ã ad we

have the same formulae as in the case x ̸=∞.

Multiplication by πk∞ yields ÔX,∞-linear isomorphisms

ÔX,∞
∼=−→ m̂k∞ and m̂d∞

∼=−→ m̂d+k∞ .

Hence, M̃
(d)
∞ is isomorphic to

(m̂d∞)2 → Frac(ÔX,∞)2 × Ô2
X,∞ → Frac(ÔX,∞)2.

To summarize, for any closed point x of X the differential graded Ã ad-module associated to OX,x/mdx viewed
as a skyscraper sheaf at x is given by the complex

M̃ (d)
x = (m̂dx)

2 → Frac(ÔX,x)2 × Ô2
X,x → Frac(ÔX,x)2

with differentials f 7→ (f, f) and (g, h) 7→ g−h. Note, however, that the scalar multiplication is different for

x =∞. Its cohomology is (ÔX,x/m̂dx)2 in degree 0. The projection

(m̂dx)
2 Frac(ÔX,x)2 × Ô2

X,x Frac(ÔX,x)2

0 (ÔX,x/m̂dx)2 0

induces isomorphisms in cohomology, hence is an isomorphism in D(Ã ad). Note that we have an OX,x-linear
isomorphism

OX,x/mdx
∼=−→ ÔX,x/m̂dx.

Example 3.27 (Vector bundles). Let d ∈ Z and h ∈ N≥1 such that (d, h) = 1. Let OX( dh ) := πh,∗OXh
(d),

the unique stable vector bundle of slope λ = d
h .

We first compute RHomOXh
(Ph,OXh

(d)). There is a short exact sequence of OXh
-modules

0→ OXh
(d)→ EXh

→ EXh
/OXh

(d)→ 0.

We obtain a K-injective complex of OXh
-modules

L(d)
h := EXh

→ EXh
/OXh

(d)

which is quasi-isomorphic to OXh
(d). Hence, we need to compute Hom•

OXh
(Kh,L(d)

h ), that is morphisms of

different degrees Kh → L(d)
h as illustrated by the following diagram:

Kh : E2Xh
EXh

/OXh
⊕ EXh

/OXh
(hk)

L(d)
h : EXh

EXh
/OXh

(d).

0
1

0

Fix a uniformizer ϖ of OX,∞. Recall that εh ∈ A0
Xh

is the adèle with entry ϖy := π♯h,y(ϖ) if y ∈ π−1
h (∞) and

1 otherwise. More generally, let εh,d ∈ A0
Xh

be the adèle with entry ϖy if y = σi(∞h) for some 0 ≤ i ≤ d−1,

and 1 otherwise. The latter notation σi(∞h) was intoduced in Definition 1.22. With this notation, εh,h = εh.
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It follows that the differential graded Ã ad
h -module M̃h(d) corresponding to OXh

(d) has underlying complex

(Eh(Xh)⊕ Eh(Xh))× (ε−1
h,dA

0
Xh
⊕ ε−1

h,dε
k
hA

0
Xh

)→ (AXh
⊕AXh

)

where the differential takes the difference of matrices. The Ã ad
h -module structure is given by the formulae

(M,N) ∗ (A,B) = (M ·A,N ·B),

(M,N) ∗ C = N · C,
P ∗ (A,B) = P ·A,

P ∗ C = 0

for all (A,B) ∈ (Ã ad
h )0, C ∈ (Ã ad

h )1, (M,N) ∈ M̃h(d)
0

and P ∈ M̃h(d)
1

.

Via base change along the isomorphism Ã ad
h

∼=→ A ad
h we obtain a dg A ad

h -module Mh(d) which has the same

underlying complex as M̃h(d) and whose scalar multiplication works according to the formulae

(M,N) ∗ (A,B) = (M ·A,N · JkhBJ−k
h ),

(M,N) ∗ C = N · C,
P ∗ (A,B) = P ·A,

for all (A,B) ∈ (A ad
h )0, C ∈ (A ad

h )1, (M,N) ∈Mh(d)
0 and P ∈Mh(d)

1.

We may view the latter as a dg A ad
1 -module M ( dh ) via scalar restriction along the homomorphism

A ad
1

φad
h−→ A ad

h . By Proposition 3.20, M ( dh ) is the dg A ad
1 -module corresponding to OX( dh ) along the

equivalence Dqcoh(OX)
∼=−→ D(A ad

1 ).

Let us remark that the above examples cover the dg modules associated with all coherent sheaves on X.
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4 Le Bras’ nontrivial t-structure on the derived category of the
Fargues-Fontaine curve

Let X be the Fargues-Fontaine curve. We first recall the t-structure on the bounded derived category of
coherent sheaves on X which was studied by Le Bras in [LeB], §5.2. In §4.2 we explain the construction of
the skew field of Colmez. Finally, we investigate its multiplicative structure by computing pushouts in §4.3.

4.1 A nontrivial t-structure on Db(X)

Let F be a nonzero coherent sheaf on X. Write it as F = E ⊕ T where E is a vector bundle and T a torsion
sheaf. We write F ≥ 0 if all of the slopes in the slope multiset of F are nonnegative. We write F < 0 if
T = 0 and if all the slopes in the slope multiset of F are negative.

Proposition 4.1 ([LeB], Proposition 5.5). The full subcategories

D≥0 = {F ∈ Db(X) | H0(F) ≥ 0 and Hi(F) = 0 for all i > 0},
D≤0 = {F ∈ Db(X) | H−1(F) < 0 and Hi(F) = 0 for all i < −1}

define a t-structure on Db(X). Its heart D≥0 ∩ D≤0 will be denoted by C.

The objects of C are isomorphic to direct sums F ′[1]⊕F ′′ with F ′ < 0 and F ′′ ≥ 0 (see [LeB], computation
after Proposition 5.5).

It will be useful to compute the truncations of particularly simple objects with respect to this t-structure.
If F =

⊕
λO(λ)⊕ T with T torsion then we write F≥0 =

⊕
λ≥0O(λ)⊕ T and F<0 =

⊕
λ<0O(λ).

Lemma 4.2. Let F be a coherent sheaf on X, viewed as an object of Db(X) concentrated in degree 0.

(i) τ≤0F ∼= F≥0 and τ≥0F ∼= F ,

(ii) τ≤0(F [1]) ∼= F [1] and τ≥0(F [1]) ∼= F<0[1].

Proof. Since F ∈ D≥0 the canonical map F → τ≥0F is an isomorphism (see [KS2], Prop. 10.1.6) Similarly
the map τ≤0(F [1])→ F [1] is an isomorphism.

Consider the short exact sequence of coherent sheaves

0→ F≥0︸︷︷︸
∈D≤0

→ F → F<0︸︷︷︸
∈D≥1

→ 0.

Hence by [KS2], Prop. 10.1.4 and its proof, τ≤0F ∼= F≥0. Moreover, τ≥0(F [1]) ∼= τ≥1(F)[1] ∼= F<0[1] using
[KS2], formula 10.1.1 on page 413.

4.2 The skew field of Colmez

We may extend the degree function to bounded complexes of coherent sheaves by setting

deg(F•) :=
∑
i∈Z

(−1)i degF i.

Since it is additive in short exact sequences of coherent sheaves, it is invariant under quasi-isomorphisms.
Therefore, it can be defined on Db(X).

Lemma 4.3. The degree function is additive in short exact sequences in C.
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Proof. Let 0→ F → G → H → 0 be a short exact sequence in C. Then there exists a morphism H → F [1]
in Db(X) such that

F → G → H → F [1]

is an exact triangle in Db(X) (cf. [KS1], Proposition 13.1.13). Now by definition of the triangulated structure
on Db(X) an exact triangle is one that is isomorphic to the image of an exact triangle in Kb(X) under the
localization functor. Since deg is invariant under quasi-isomorphisms we may reduce to the case where

F → G → H → F [1]

is an exact triangle in Kb(X). Now an exact triangle in Kb(X) is one that is isomorphic to the triangle asso-
ciated to a termwise split short exact sequence of complexes (cf. [Sta], Definition 014Q). Since a homotopy
equivalence is a quasi-isomorphism we may thus further reduce to the case where

F → G → H → F [1]

is the triangle associated to a termwise split short exact sequence of complexes, i.e.

0→ F → G → H → 0

is a short exact sequence of complexes, and for each i ∈ Z the sequence of coherent sheaves

0→ F i → Gi → Hi → 0

is split exact. In this case deg is additive.

Definition 4.4 ([Sta], Definition 02MO). Let A be an abelian category. A Serre subcategory of A is a
nonempty full subcategory A0 of A such that given an exact sequence

A→ B → C

with A,C ∈ A0 then also B ∈ A0.

Lemma 4.5 ([Sta], Lemma 02MP). Let A be an abelian category. Let A0 be a subcategory of A. Then A0 is
a Serre subcategory if and only if the following conditions are satisfied:

(i) 0 ∈ A0,

(ii) A0 is a strictly full subcategory of A,

(iii) any subobject or quotient of an object of A0 is an object of A0, and

(iv) if A ∈ A is an extension of objects of A0 then also A ∈ A0.

Moreover, a Serre subcategory is an abelian category and the inclusion functor is exact.

Proposition 4.6. The full subcategory C0 of objects of degree 0 is a Serre subcategory of C.

Proof. Note that the degree function on C takes values only in N0. Indeed, recall that any object of C is
isomorphic to a direct sum F ′[1] ⊕ F ′′ with F ′ < 0 and F ′′ ≥ 0. Hence, its degree is degF ′′︸ ︷︷ ︸

≥0

− degF ′︸ ︷︷ ︸
≤0

≥ 0.

An object of degree 0 in C is thus a finite direct sum of copies of the structure sheaf O. That this is a Serre
subcategory of C follows from the the previous lemma together with the fact that deg : C→ N0 is additive
in short exact sequences of C.
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By [Sta], Lemma 02MS, we obtain an abelian category Q = C/C0 together with an exact functor F : C →
Q = C/C0 which is essentially surjective and whose kernel is C0. The objects of Q are the objects of C and
a morphism from x→ y is a fraction s−1f where f : x→ y′ is a morphism in C and s : y → y′ is an element
of the multiplicative system

S := {f ∈ Mor(C) | ker(f), coker(f) ∈ C0}.
The category Q is called the localization of C at the set S.

Remark 4.7 ([LeB], §7.3). Note that the objects of degree 0 do not form a Serre subcategory of the category
CohX of coherent sheaves on X. For example, O(−1) is a subobject of O but it has degree −1. Instead, the
objects of rank 0 do so. These are precisely the torsion objects, and the localization CohX/Coh

tors
X identifies

via F 7→ Fη with the category of finite dimensional E(X)-vector spaces. In particular, this category is
semisimple with a unique simple object.

Proposition 4.8 ([LeB], §7.3). The category Q = C/C0 is semisimple with a unique simple object.

Proof. We first show that the degree function deg is additive in short exact sequences in Q. As we have
seen before it is additive in short exact sequences in C. Now if X ∼= Y in Q then degX = deg Y . Indeed,
let a : X → Y be an isomorphism in Q. Then a = s−1f for some s : Y ′ → Y in S and f : X → Y ′ in
C. Denote by F : C → Q the localization functor. Its kernel is C0 (cf. [Sta], Lemma 02MS). By the proof
of [Sta], Lemma 05QG, F (ker(f)) is a kernel of s−1f and similarly for the cokernel. This means that both
ker(f) and coker(f) lie in the kernel of the localization functor F , hence deg ker(f) = deg coker(f) = 0, i.e.
f ∈ S. This implies

deg Y = deg Y ′ = deg coker(f) + deg im(f)

= deg coker(f) + degX − deg ker(f)

= degX.

Now let s−1f : X → Y be a monomorphism in Q, where f : X → Y ′ and s : Y → Y ′. Then

deg Y = deg Y ′ = deg coker(f) + deg im(f)

= deg coker(f) + degX − deg ker(f)

= deg coker(s−1f) + degX,

showing that the degree function is indeed additive in short exact sequences in Q.

Now we prove that any object of Q is isomorphic to a finite direct sum of copies of O(1). This follows from
the following short exact sequences in C for d ≥ 2 and k ≥ 1 (cf. [LeB], Lemme 7.3):

0→ O → O(1)⊕O(d− 1)→ O(d)→ 0

0→ O → O(k)→ ι∞,∗O∞/m
k
∞ → 0

and
0→ O → ι∞,∗O∞/m

k
∞ → O(−k)[1]→ 0.

Indeed, by the classification of vector bundles on X every vector bundle is a finite direct sum of O(λ) for
λ ∈ Q, where O( dh ) = πh,∗Oh(d) if (d, h) = 1. By looking at the first sequence on the degree h covering

and applying the direct image functor, we obtain inductively that O( dh ) ∼= O(
1
h )

⊕d′ in Q for some d′ ≥ 1.
By looking at the second sequence on the degree h covering and using that the extension of residue fields is
trivial we obtain O( 1h ) ∼= ι∞,∗κ(∞) ∼= O(1) for all h ≥ 1. Now if d ≥ 1 then the second and third sequences

together imply O(− d
h )[1]

∼= ι∞,∗OX,∞/md∞ ∼= O( dh ). Again using the first and second sequence we see that
every torsion sheaf is isomorphic to a finite direct sum of copies of O(1).

Together with the additivity of the N0-valued degree function on C we can now conclude the proof of the
proposition. It remains to see that O(1) is simple in Q. Given a subobject F of O(1) then F ∼= O(1)⊕n
which by additivity of deg forces n to be either 0 or 1.
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For example, for any h ⩾ 1 the vector bundle O( 1h ) represents the simple object of Q. By Schur’s lemma, its
endomorphism ring in Q is a skew field which we call C . Le Bras constructed an equivalence of categories
between C and BC, the category of Banach-Colmez spaces introduced by Colmez ([Col]). This equivalence
identifies C/C0 with a localization of BC, from which Le Bras deduced that C is the skew field first studied
by Colmez in [Col], §5 and §9. We aim to give a more explicit description of the skew field C .

4.3 Multiplicative structure of C

By [Sta], 05Q1,
C = EndQ(O(1)) = lim−→

s:O(1)→F
HomC(O(1),F)

where the index set runs over all morphisms s : O(1)→ F which lie in S and is filtered by using pushouts.
More explicitly, if s : O(1)→ F and t : O(1)→ G are morphisms in S then we form their pushout

O(1) F

G F
∐

O(1) G

s

t

and the composition is an element of S (see the proof of [Sta], Lemma 02MS).

An element of C can be illustrated as a roof of morphisms in C of the form

F

O(1) O(1)

f s

where ker(s), coker(s) ∈ C0 and for which we write s−1f . Here F is an object of C which becomes isomorphic
to O(1) in Q.

The multiplication in C is given by the pushout of roofs: Given two roofs

F

O(1) O(1)

f s and

G

O(1) O(1)

g t

the product t−1g · s−1f is given by the outer roof of the diagram

F
∐

O(1) G

F G

O(1) O(1) O(1)

f s g t

where the upper square is the pushout of the morphisms s and g in C.

Proposition 4.9. (i) If f : O(1) → F is a morphism in S then F ∼= On ⊕ G for some n ≥ 1 and where
G is either O(1), a skyscraper sheaf Cx for some closed point x ∈ |X|, or O(− 1

h )[1] for some h ≥ 1.
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(ii) If F is of the form in (i) and f : O(1)→ F is a nonzero morphism then f ∈ S.

Proof. Recall that we can write F = F ′[1] ⊕ F ′′ for some coherent sheaves F ′ and F ′′ where F ′ only
has negative slopes and F ′′ only has nonnegative slopes. Moreover, we have the additive degree function
deg : C→ N0. That s is an element of S therefore implies that degF = 1. By [FF], Proposition 5.6.23 (5),
Hom(O(1),O( 1h )) = 0 for all h ≥ 2. Hence, if f : O(1)→ F is an element of S then F is one of the objects
mentioned in the statement.

In order to prove the second part of the statement, let us investigate the cases separately.

Firstly, since Hom(O(1),O(1)) = H0(X,O) = E (cf. [FF], Théorème 6.4.1), any nonzero morphism
O(1)→ O(1) is an automorphism, hence lies in S.

Secondly, any nonzero map O(1) → Cx is automatically surjective and has kernel O for reasons of degree
and rank, hence lies in S.

Now let h ≥ 1. A morphism f : O(1)→ O(− 1
h )[1] in C corresponds to a class of extensions

0→ O(− 1

h
)→ E → O(1)→ 0.

Since E [1] is isomorphic to the mapping cone of f , we may read off the kernel and cokernel of f from the
vector bundle E using Lemma 4.2:

ker(f) ∼= τ≤0E ∼= E≥0,

coker(f) ∼= τ≥0(E [1]) ∼= E<0[1].

Let us use Lemma 1.19 in order to restrict the possibilties for E . First let us draw the HN polygon of
O(− 1

h )⊕O(1):

1 h+1

1

It follows that the slopes of E are between 0 and 1. However, none of its slopes can be strictly between 0 and
1. Indeed, any such could be written as µ = r

s with r, s ∈ Z, r < s and s > 1, and the straight line from the
origin to the point (s, r) crosses through HN(O(− 1

h )⊕O(1)). Hence, there are only two possibilties: Either
the largest slope of E is equal to 1. In this case, E ∼= O(− 1

h )⊕O(1) is a split extension. Or E has only slope
0 and is hence isomorphic to Oh+1.

In the case of the split extension we obtain cokerC(f) ∼= E<0[1] ∼= O(− 1
h )[1], so that f does not lie in S. If

E ∼= Oh+1 then f ∈ S.
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Note that the morphisms f : O(1)→ O(− 1
h )[1] corresponding to a nonsplit extension class are precisely the

nonzero morphisms O(1)→ O(− 1
h )[1], and that the space of such is nonempty because

Hom(O(1),O(− 1

h
)[1]) ∼= H1(X,O(−1− h

h
)) ∼= H1(Xh,OXh

(−h− 1)) ∼= OXh,∞h
/(Eh +mh+1

∞h
).

To conclude the proof recall that Hom(O(1),O) = H0(O(−1)) = 0. Hence, if f : O(1) → G is a morphism

in S with G as in the statement then also the map O(1) (0,f)−→ On ⊕ G lies in S because kerC(0, f) = kerC(f)
and cokerC(0, f) ∼= On ⊕ cokerC(f).

In order to understand the composition of morphisms in the filtered colimit above, we are led to compute
pushouts of diagrams

O(1) F

G

f

g

in the category C, where F and G are objects as in the previous lemma.

Proposition 4.10. Let F ,G ∈ C be of degree 1 and let f : O(1) → F , g : O(1) → G be two nonzero
morphisms.

(i) If F = O(1) then their pushout in C is isomorphic to G.

(ii) If F = G = Cx for some x ∈ |X| then their pushout in C is isomorphic to Cx.

(iii) If F = Cx and G = Cy for some x ̸= y then their pushout in C is isomorphic to O(−1)[1].

(iv) Let F = O(− 1
h )[1] for some h ≥ 1 and G = Cx for some x ∈ |X|. Let t ∈ H0(X,O(1)) be such that

x =∞t. Moreover, suppose that the map f is the class of the extension

0→ O(− 1

h
)→ Oh+1 p→ O(1)→ 0

where p =
(
s1 . . . sh+1

)
with s1, . . . , sh+1 ∈ H0(X,O(1)). Then

O(− 1

h
)[1]

∐
O(1),C

Cx ∼=

{
O(− 1

h )[1] if t ∈ ⟨s1, . . . , sh+1⟩E ,
O(− 1

h+1 )[1] otherwise.

Here ⟨s1, . . . , sh+1⟩E denotes the E-subspace of H0(X,O(1)) generated by s1, . . . , sh+1.

(v) Let F = O(− 1
h )[1] and G = O(− 1

h′ )[1] for some h, h′ ≥ 1. Let f and g be represented by extensions

0→ O(− 1

h
)→ Oh+1 p→ O(1)→ 0

and

0→ O(− 1

h′
)→ Oh

′+1 q→ O(1)→ 0,

respectively. Write p =
(
s1 . . . sh+1

)
and q =

(
sh+2 . . . sh+h′+2

)
for some si ∈ H0(X,O(1))

and set n := dimE⟨s1, . . . , sh+h′+2⟩E. Then the pushout of f and g in C is isomorphic to O(− 1
n−1 )[1].

Proof. (i) Since Hom(O(1),O(1)) ∼= E, f is an isomorphism. Therefore,
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O(1) O(1)

G G

f

g g◦f−1

id

is a pushout diagram in C.

(ii) Note that HomO(O(1), Cx) = HomOX,x
(O(1)x, Cx) ∼= Cx by the adjunction of pullback and pushfor-

ward along ιx and because O(1)x is a free OX,x-module of rank 1. Hence, a nonzero map O(1)→ Cx
is automatically surjective, and we have g = af for some a ∈ C×

x . Now

cokerC(

(
f
−af

)
: O(1)→ Cx ⊕ Cx)

∼=cokerC(

(
f
0

)
: O(1)→ Cx ⊕ Cx)

∼=Cx

by applying the automorphism given by the matrix

(
1 0
a 1

)
on the target.

(iii) The map

(
f
−g

)
: O(1)→ Cx⊕Cy is surjective as a map of O-modules. Its kernel (in CohX) is therefore

a vector bundle of rank 1 and degree −1, hence is isomorpic to O(−1). Therefore, we have a short
exact sequence of O-modules

0→ O(−1)→ O(1)→ Cx ⊕ Cy → 0

which by rotation of the corresponding exact triangle induces a short exact sequence

0→ O(1)→ Cx ⊕ Cy → O(−1)[1]→ 0

in the category C, showing that cokerC

(
f
−g

)
∼= O(−1)[1].

(iv) The map g fits into the short exact sequence of O-modules

0→ O t→ O(1) g→ Cx → 0.

The map of complexes

O(− 1
h )

Oh+1 O(1)p

is a quasi-isomorphism, and up to post-composition with its inverse the map f is the morphism of
complexes

O(1)

Oh+1 O(1).

id

p
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Therefore, the map

(
f
−g

)
: O(1)→ O(− 1

h )[1]⊕ Cx can be replaced by the map of complexes

O(1)

Oh+1 O(1)⊕ Cx.

 id

−g

p
0



The mapping cone of the latter is the complex

Z : O(1)⊕Oh+1 d−→ O(1)⊕ Cx

with differential d =

(
id p
−g 0

)
. By the formulas for kernels and cokernels from Corollary 2.13 we

obtain

kerC(

(
f
−g

)
) ∼= H−1(Z)≥0[0] = ker(d)≥0[0]

and

cokerC(

(
f
−g

)
) ∼= (Z−1/ ker(d)≥0 d→ Z0) ∼= ker(d)<0[1].

Hence, we are left with computing ker(d). The kernel of the composition of d with the projection onto
Cx is O ⊕ Oh+1. Restricting d to the latter and composing with the projection onto O(1) yields the
map d̃ =

(
t s1 . . . sh+1

)
: Oh+2 −→ O(1) with ker(d) = ker(d̃). By the above formula for the

cokernel of

(
f
−g

)
it remains to see that ker(d̃) is isomorphic to O⊕O(− 1

h ) if t ∈ ⟨s1, . . . , sh+1⟩E and

to O(− 1
h+1 ) otherwise.

If t =
∑
i αisi for αi ∈ E then set

A :=



1 0 . . . . . . 0
−α1 1 0 . . . 0

−α2 0 1
...

...
...

. . . 0
−αh+1 0 . . . 0 1

 ∈ GLh+2(E).

Then (
t s1 . . . sh+1

)
·A =

(
0 s1 . . . sh+1

)
.

Hence, by precomposing d̃ with the automorphism of Oh+2 given by A we obtain the morphism(
0 s1 . . . sh+1

)
: Oh+2 → O(1)). Since s1, . . . , sh+1 are linearly independent (cf. Lemma 4.11),

its kernel is isomorphic to O⊕O(− 1
h ). If instead the elements t, s1, . . . , sh+1 are linearly independent

then by Lemma 4.11 the kernel of d̃ is O(− 1
h+1 ).

(v) We need to compute cokerC(

(
f
−g

)
: O(1)→ O(− 1

h )[1]⊕O(−
1
h′ )[1]). Consider the quasi-isomorphisms

O(− 1
h )

Oh+1 O(1)p
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and

O(− 1
h′ )

Oh′+1 O(1)q

where O(− 1
h ) and O(−

1
h′ ) are in degree −1 (so that we should rather write O(− 1

h )[1] and O(−
1
h′ )[1]).

We may then replace the map

(
f
−g

)
by the morphism of complexes

O(1)

Oh+1 ⊕Oh′+1 O(1)2.

 id

−id

p
q



Its mapping cone is the complex

Z : O(1)⊕Oh+1 ⊕Oh
′+1 d→ O(1)2

where d =

(
id p 0
−id 0 q

)
. By Corollary 2.13 we obtain

kerC(

(
f
−g

)
) ∼= H−1(Z)≥0[0] = ker(d)≥0[0]

and

cokerC(

(
f
−g

)
) ∼= (Z−1/ ker(d)≥0 d→ Z0) ∼= ker(d)<0[1].

Hence, we are left with computing ker(d). By applying the automorphism

(
id 0
id id

)
of O(1)2 the map

d corresponds to the map

O(1)⊕Oh+1 ⊕Oh
′+1

id p 0
0 p q


−→ O(1)2.

By applying the automorphism given by the matrix

1 −p 0
0 1 0
0 0 1

 on the left hand side, the latter map

can be replaced by

O(1)⊕Oh+1 ⊕Oh
′+1

id 0 0
0 p q


−→ O(1)2.

The kernel of its composition with the projection to the first copy of O(1) is Oh+1⊕Oh′+1. The kernel
of its composition with the projection to the second copy of O(1) is

O(1)⊕ ker(Oh+1 ⊕Oh
′+1

(
p q

)
−→ O(1)).

To compute the second direct summand, we may assume that h ≥ h′. By Lemma 4.11, the elements
s1, . . . , sh+1 are linearly independent. In particular, n ≥ h + 1. Since we may choose a maximal
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linearly independent subset of s1, . . . , sh+h′+2, up to reordering the elements sh+2, . . . , sh+h′+2 we may
assume that s1, . . . sn are linearly independent. Then the elements sn+1, . . . , sh+h′+2 lie in the E-
subspace of H0(X,O(1)) spanned by the s1, . . . , sn. Hence, we find a matrix A ∈ Mn,h+h′+2−n(E)

such that
(
s1 . . . sn

)
· A =

(
sn+1 . . . sh+h′+2

)
. Set Ã :=

(
In A
0 −Ih+h′+2−n

)
∈ GLh+h′+2(E) =

AutO(Oh+h
′+2). Then

(
s1 . . . sh+h′+2

)
· Ã =

(
s1 . . . sn 0 . . . 0

)
.

Hence, by precomposition with the automorphism of Oh+1 ⊕Oh′+1 given by the matrix Ã we identify
the map

(
p q

)
=

(
s1 . . . sh+h′+2

)
with the map(

s1 . . . sn 0 . . . 0
)
: Oh+1 ⊕Oh

′+1 −→ O(1).

The kernel of this map is ker
(
s1 . . . sn

)
⊕ Oh+h′+2−n. Since the elements s1, . . . , sn are linearly

independent, ker
(
s1 . . . sn

) ∼= O(− 1
n−1 ) by Lemma 4.11. Putting everything together we now know

that ker(d) ∼= O(− 1
n−1 )⊕O

h+h′+2−n. Therefore,

O(− 1

h
)

∐
O(1),C

O(− 1

h′
) ∼= ker(d)<0[1] ∼= O(−

1

n− 1
)[1].

Lemma 4.11. Let h ≥ 1. A set of h+ 1 global sections s0, . . . , sh of O(1) is E-linearly independent if and

only if the map Oh+1 (s0,...,sh)−→ O(1) has kernel O(− 1
h ).

Moreover, in this case the map Oh+1 (s0,...,sh)−→ O(1) is surjective, so that we obtain a short exact sequence

0→ O(− 1

h
)→ Oh+1 (s0,...,sh)−→ O(1)→ 0.

Proof. Suppose that s0, . . . , sh are linearly independent over E. For 0 ≤ i ≤ h the map O si→ O(1) is

surjective (even an isomorphism) over D+(si). Hence, the direct sum map Oh+1 (s0,...,sh)−→ O(1) is surjective
over

⋃h
i=0D+(si) = X using the linear independence (see [FF], Théorème 6.5.2 (3) and (4)). Its kernel F is

a subobject of Oh+1 not containing a copy of O. Indeed, if there was 0 ̸=

α0

...
αh

 ∈ HomO(O,Oh+1) ∼= Eh+1

such that the composition with Oh+1 (s0,...,sh)−→ O(1) is zero then
∑h
i=0 αisi = 0 contradicting the linear

independece of the si. Therefore, all of the slopes of F are negative. Its HN polygon has endpoint (h,−1)
by Lemma 1.19. By concavity of the HN polygon F is isomorphic to O(− 1

h ), as desired. In particular, we

obtain a short exact sequence 0→ O(− 1
h )→ O

h+1 (s0,...,sh)−→ O(1)→ 0.

Conversely, suppose that the kernel of the map Oh+1 (s0,...,sh)−→ O(1) is O(− 1
h ). If

∑
i αisi = 0 for some αi ∈ E

which are not all 0 then the map

α0

...
αh

 : O−→Oh+1 is injective and the composition withOh+1 (s0,...,sh)−→ O(1)

is zero, hence the kernel of the latter map contains a copy of O. This is impossible since HomO(O,O(− 1
h )) =

0.
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