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Introduction

Let p be a prime number. An IF,-algebra A is called perfect if the Frobenius homo-
morphism F4 = (x — 2P) on A is an isomorphism. Of course, not every F,-algebra is
perfect. For example, A := F,[t] is not perfect as the element ¢ does not have a p-th
root in A. In [3] Marvin J. Greenberg showed that one can always construct a so-called
perfect closure AP of an F,-algebra A, coming with a ring homomorphism A — APef
satisfying a certain universal property. If A is a domain, one can construct the perfect
closure within an algebraic closure of the field of fraction of A. In this simple case
one can obtain the perfect closure by adjoining all p™-th roots of elements of A to A.
The general case of the perfect closure as well as the dual notion, the so-called inverse
perfection Aper, will be discussed in detail in the first section of this work.

In contrast to the inverse perfection, we will show that the perfect closure commutes
with localizations. This has the far reaching consequence that this functor can be
globalized to the perfect closure of Fp-schemes. In modern algebraic geometry the no-
tion of a perfect [F)-scheme is becoming increasingly important, as exemplified by the
works [4] and [5] of Peter Scholze and Bhargav Bhatt. In the first section, we discuss
properties of the perfect closure that we will need in the second part of our work. The
perfect closure and the inverse perfection will be constructed explicitly and interpreted
as adjunctions for the inclusion of the category of perfect [F,-algebras into the category
of all Fp-algebras. In the second part of our work, we will construct the perfect closure
of an [F)-scheme. To this end, we briefly discuss the construction of projective limits in
the category of schemes. Our final result will be an equivalence of categories between
the small étale site of an IF,-scheme and that of its perfect closure.

We point out that the perfect closure of [F,-schemes is also the topic of the recent
master’s thesis [6] of Robin Suxdorf. However, in contrast to our work, it does not
treat the above questions on étale coverings.



1 Perfect closure and inverse perfection of IF,-algebras

Let us fix a prime p and let us assume that all rings in this work are commutative and
unital.

Definition 1.1
(i) F,-alg denotes the category of F,-algebras.

(ii) For an IF,-algebra A, the mapping F4 := (z — 2?) : A — A s called the Frobenius
homomorphism of A.

(iii) An F,-algebra A is called perfect if and only if F4 is bijective. In this case, the
inverse of F} will usually be denoted by (x — xl/ pn).

(iv) F,-perf denotes the category of perfect IF,-algebras.
Remark 1.2
(i) Fp-perf is a full subcategory of F,-alg.
(ii) Perfect rings are reduced: If ™ = 0, then for suitable m € N we have
" = (apm_”) a" =0
and thus a = 0, i.e., A is reduced.

Definition 1.3

For an F,-algebra A, a perfect closure of A is a perfect F,-algebra AP together with
a ring homomorphism ¢4 : A — AP in short (AP, ), such that it satisfies the
following universal property:

For any ring homomorphism f : A — B with B a perfect [F,-algebra, there exists a
unique ring homomorphism f . AP — B such that f = f 0 4, i.e., the following
diagram commutes:

A PA Aperf

B

Sometimes, the terms perfection or direct perfection are used to denote the perfect
closure AP°. The notation AP~ is also frequently used.

Proposition 1.4
Every F,-algebra A has a perfect closure (AP, o).

Proof
Let A be an Fj-algebra and set A, :== A forn € N, ¢,,,, := F} ™ : A,, = A, for
n,m € N such that m < n. This defines an inductive system (A,,, Ymn) over N:

L SOHnZFg:ZdA

L mﬁnﬁk‘, then@nkOSOmn:Fﬁ_nOFZ_mZFZ_m:gpmk.



Set At = ligneN A, = (HneN An) / ~ coming with a canonical ring homomorphism

wa=(a+[a]) : A= Ay — AP,

Now let B be a perfect F,-algebra and let f € Homp,..g(A, B).

Set f, := (a+ f(a)'/?") : A, — B and note that f, is well-defined since B is perfect,
i.e., we find unique p™-th roots for elements in B by the bijectivity of Fp.

Let m,n € N with m < n, then for all a € A,, we have

1/p"

(fa© Pmn) (@) = fu (F5(@) = fu (@) = £ ()7 = F@"" = fula).

Thus, by the universal property of the inductive limit there exists a unique ring homo-
morphism f : AP — B s.t. fopy=f.

Finally, we note that AP is perfect:

Now let [a] € AP be represented by a € A, = A with [0] = [a]? = [a?] = [Fa(a)]. By
definition of the inductive limit, we find m € N with n < m such that

0 = @um(0) = um (Fa(a)) = F{'™" (Fa(a)) = 1" (a),

i.e., we obtain that ©,,,11(a) = 0 = ©,me1(0) and therefore [a] = [0] in AP This
shows that Flyper is injective.

To see that Fper is also surjective, let [a] € AP be represented by a € A,, = A. Note
that we can use n < n+1 and n+1 < n+1 to see that ¢, n11(a) = Pni1n+1 (Prni1(a)) .
Thus [a] = [Fa(a)] = [a?] = [a]P, which shows the surjectivity of Fjpet. Altogether,
Arert s a perfect F,-algebra.

L]

The following strong uniqueness property comes directly out of the universal property
of the perfect closure.

Corollary 1.5
Let (R, ¢r) be a perfect closure of A. Then there is a unique isomorphism ¢4 : R — A
of F,-algebras satisfying ¢4 = pa o pg.

perf

Proof

Consider the ring homomorphism ¢4 : A — AP®f. By the universal property of R there
exists a unique ring homomorphism @4 : R — AP such that ¢4 = g4 0 pg. Likewise,
we can apply the universal property of AP to pr : A — R and find a unique ring
homomorphism @z : AP*f — R such that pr = g o pa.

We notice that o4 09props = paowr =4 and thus, both g4 0 pi and id gper make

A YA Aperf

|

Aperf

commutative, i.e. p4 0 Pr = id gpert by uniqueness.



Likewise pg 0 v4 0 @r = pr o wa = pgr and therefore, both r o p4 and idr make

A5 R
N
R

commutative, i.e. we see that @ o p4 = idp by uniqueness. Thus, AP =~ R,
]

Example 1.6

Let K be a field of characteristic p and define L := {z € K6 :3n>0:2"" € K}.
Then L is a perfect field that contains K. We claim that (L, C) has the universal
property of KPf. Let A be a perfect F,-algebra and let f : K — A be a ring
homomorphism. For x € L arbitrary we find n > 0 such that 27" € K and we
define f = (a: > f(xpn)l/pn) : L — A. Note that if m > 0 such that 27" € K, say
m =n + k, then

£ =g (@) = @) = )

and hence, f is well-defined. One can check directly that f is a ring homomorphism
and it is clear by construction that

1/p™

K

-
;}
X‘

commutes. For the uniqueness of f assume that h : L — A is another ring homomor-
phism that makes

e

K—S51

N
A
commutative. Let € L, then there exists n > 0 such that 27" € K and we calculate
M) = h @) = £ (@) = (£ @)"7) = Fay
and see that h = f since A is perfect. Thus, by Corollary 1.5 we have L 2 KPerf.

Lemma 1.7
oA : A — AP gatisfies ker(p4) = Rad4(0). In particular, o4 is injective if and only
if A is reduced, i.e. Rad4(0) = 0.

Proof
Let a € A = Ay such that p4(a) = 0, i.e. [a] = [0] in AP*L. By definition of AP we
find m € N such that 0 = ©o,,(0) = Yom(a) = F7(a) = a?”, i.e. a € Rad(0).

Conversely, let a € Rad4(0), then there exists n € N such that ¢ = 0 in A. Now
choose m € N such that n < p™, then a?" = a?""a"™ = 0 and with that we see
(@)™ =4 (a?") = pa(0) =0, i.e. pa(a) =0 by the bijectivity of Fyper. O
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Remark 1.8
The above proof also shows that ker(pa) = (,> ker(F}).

Lemma 1.9
If Fy is injective, so is p4. If Fj is surjective, 4 is surjective as well, in particular
A/ Rad4(0) =2 Apert,

Proof

If F4 is injective, then so is ¢4 by Remark 1.8. Now assume that F)4 is surjective
and let [a] € AP be represented by a € A, = A. Since Fj is surjective, there is
be A= A such that F}(b) = a, i.e. ©on(b) = pnn(a) and thus [a] = [b] = @a(b). The

final statement follows from Lemma 1.7. OJ

Example 1.10

Let A :=F,[t], we claim AP = B =] _ T, [t}/7"] C Frac (F,[t])"®.

Indeed, (B, Q) is a perfect closure of A. To see this, let C' be a perfect F,-algebra and
let f € Homg, a4(A, C). We define f : B — C'in the obvious way by mapping t'/7" to
f(#)YP" which is possible since C' is perfect. We see that

A—>B

Nl

commutes and an easy calculation shows that f is the unique ring homomorphism with
that property and thus, by Corollary 1.5, AP*f =~ B

We will now consider the dual notion of the inverse perfection of an IF,-algebra.

Definition 1.11

For an F,-algebra A, an inverse perfection of A is a perfect F,-algebra Ape together
with a ring homomorphism 4 : Aperr = A, in short (Aperr, ¥4), such that it satisfies
the following universal property:

For any ring homomorphism f : B — A with B a perfect F,-algebra there exists a
unique ring homomorphism f : B — Apers such that f = 140 f, ie., the following
diagram commutes:

af
B > Aperf

N fm



Proposition 1.12
Every F,-algebra A has an inverse perfection (Ape, 14).

Proof
Let A be an Fj-algebra and set A, := A and ¢, == Fy ™" : A, = A, for m < n.
This defines a projective system (A, @mn) over N:

o v =Fl =idy
o m <n <k, then @,, 0@, =F; ™o FZ’” = FA’f*m = O -

Set

Aperf = 1&1 An

neN

= {(an)n € HA” D Gy = ©mnlay) for all m <n in N}

neN

= {(an)n € HAn: Fa(any1) = a, for all n EN},

neN
coming with a ring homomorphism 14 : Aper = Ao = A, (an)n — ao.

Let B be a perfect F-algebra and let f & Home_alg(B ,A).

Set f, = (b = f (bl/pn)) : B — A, and note that f,, is well defined since B is perfect.
Let m,n € N with m < n, then ¢,,, o f, = fn and, by the universal property of the
projective limit, there exists a unique ring homomorphism f : B — Apers such that

f=1vaof. Infact, f(b) = (f (")) .
Finally, we note that Ape is perfect:

For the surjectivity of Fa,. let (an)n € Aperr and notice that
(an)n = (ag, a1, a9,as,...) = (af,db, ds, ...) = (a1, as, as, ...)?

where (a1, az,as, ...) € Aper, 1.6, Fa . is surjective.

erf

In order to see that F _, is injective as well, let (a,), € ker(Fy ). Then

0= (a,) = (ab), = (ag, a0, a1, a2,as,...),
i.e. (an)n = 0. Altogether, this shows that Fy _ is bijective. O

The following strong uniqueness property comes directly out of the universal property
of the inverse perfection.

Corollary 1.13
Let (R,vg) be an inverse perfection of A. Then there is a unique isomorphism

—~

Ya i Apet — R of F-algebras satisfying 14 = ¥r o @Z;‘.
Proof
The result follows from the application of the universal property to both ¥4 and ¢¥g. A

direct computation shows that the obtained ring homomorphisms are inverse to each
other using the uniqueness statement in the universal property. O



Lemma 1.14

If F is surjective or if F4 is injective, it holds that Im(14) = ey Im (7).
Proof
Let @ € Im(¢4), then we have a = 14 ((an),) = ao for some (a,), € Aper, i-e.

Fa(an41) = a, for all n € N. By induction on n € N we see that a = a?" for all n € N
and thus a € [),,cy Im(F7}).

Conversely, let a € (), .y Im(F7), then for all n € N there exists some a, € A such
that a = aP". If F4 is injective, it follows from

n

n n+1
a =a=ay, = (ap,)"
that a},, = a, and thus (a,), € Apers such that a = ¥a((an),) € Im(y).

If Fy is surjective, we set ap := a und use the surjectivity to define (a,), € Apert
inductively such that a = ¥ 4((ay),) € Im(1)4). O

Remark 1.15
One can show that the conclusion of the previous lemma holds more generally if the
projective system (ker(F7), Fia)nen satisfies the so-called Mittag-Leffler condition.

Lemma 1.16
If F4 is surjective, so is 4. If F is injective, so is 14 and we have:

Apert = () Im(F5).
neN
Proof
We only need to show that the injectivity of F4 implies the injectivity of 14, the rest
follows from the previous lemma. Therefore, let F4 be injective. Let (a,), € ker(t4),
ie. 0=1va((an)n) = ap. Using Fa((ans1)) = a, for all n € N, an induction on n € N

shows that (a,), = 0 because F} is injective. This implies that 14 is injective as well.
O

Example 1.17
Let A :=F,[t]. By the previous lemma we see that

Apert & Im(¢hs) = (Im(F}) = (| F, "] =F, CF,[t] = A.

neN neN



We now show that both the direct perfection as well as the inverse perfection are
functorial and that they give rise to certain adjunctions. This result is completely
formal and follows from the universal properties in Definition 1.3 and Definition 1.11.

Proposition 1.18
The inclusion functor ¢ : F,-perf — IF,-alg has a left adjoint

(-)pt: Fp-alg — F,-perf
and a right adjoint
(‘)pert : Fp-alg — Fp-perf,

i.e. functors such that for all A € F,-alg and for all B € F,-perf we have a functorial
bijection in A and B:

Homp, a15(A, B) = Home_perf(Aperf, B)
and
Hom]Fp—alg(Ba A) = Home—perf(Ba Aperf)-

Proof

We have done some of the work already by showing the existence of AP and Ape.
Now let us first focus on (-)P* : Fy-alg — F,-perf. Let f € Homp, ae(A, B) and
consider pg o f: A — BPf since BP*™ is perfect we get a commutative diagram:

A PA Aperf

ipreties]
%h L]

Bperf
Thus, fP* o4 =gpo f.
Consider the diagram:

A PA Aperf

, Juigeert
YA Om\4 ~ A

Aperf
Clearly id gpers 0 o4 = 4 = @4 0 id 4 and therefore id‘;‘erf = id gpers by uniqueness.

Now let f € Homp, aig(A, B) and let g € Homp, (B, C) and consider go f: A — C.
We apply the universal property of AP to pco(go f) and get the following commutative
diagram:

A PA Aperf

o erf
9000(9% \}3!(9 h®

Cfperf



Now consider the diagram:

A YA Aperf

fl lfperf

B ¥B Bperf

gl lgperf

C rc Cperf

The two small squares commute by construction of fP°f and gP*'f. Therefore, also the
outer square commutes. Thus, uniqueness gives gP® o fPef = (g o f)pert,

Altogether, we have a functor (-)Pef
F,-alg > A+ AP € F-perf
Homg, ag(A, B) 3 f — [P € Homa, pere( AP, BPH).

Let us now show that (-)PT is left adjoint to ¢, for this let A € F,-alg and let B € F,-
perf. Consider

® = (f > f): Homp, ae(A, B) — Homg (AP, B) and
U= (gr>gopa): Home_perf(Aperf, B) — Homp,ag(A, B),

we see that for f € Homp,4,(A, B) we have

(Wod)(f) = (f) =Fopa=1.
For the other direction note that both ¢4 and id 4perr make the diagram

A ‘F’A} Aperf

|

Aperf

commutative, i.e. P = idpert by uniqueness. Furthermore, both g and g o ¢4 make
the diagram

A YA Aperf
g% l
B

commutative, i.e. g=¢g o 4 by uniqueness. Now we calculate

—~——

((I)o\Il)(g) = ¢(gOSOA> :gOQOA :goidAperf :g

and thus Homp,_a5(A, B) = Hom]Fp_perf(Aperf, B), i.e. (-)P is left adjoint to .



Let us now focus on (-)per, for this let f € Homp, a5(A, B) and define fotpy : Apers — B,
by the universal property of By we get the commutative diagram:

Ap erf T » B perf
liﬁB
m
B

ThUS, wB o fperf = f © wA-
Now consider the diagram

Aperf — Aperf
l"Z’A
idAm
A

and notice that both idy4 ., and (id4)perr make the diagram commutative and therefore
by uniquenuess ida, ., = (ida)pert-

Now let f € Homp, aig(A, B) and let g € Homp, a1z(B, C) and consider ((go f) o1y) :
Apers = C. We notice that both (g o f)perr and gpert © fpert make the diagram

Aperf — C(perf
llllc
(gof )m
C

commutative. To see this, consider the diagram:

fperf Y9perf
Aperf E— Bperf I Cvperf

o) [
> B ! ¢

A f

The two small squares commute by construction of fper and gperr. Therefore, also the
outer square commutes. Thus, by uniqueness (g © f)pert = Gpert © fpert-

Altogether we have a functor (-)pert
F,-alg 5 A+ Aperr € Fp-perf

HOme-alg(A, B) > f —> fperf c Home-perf(Apcrf, Bporf).

10



Let us now show that (-)per is right adjoint to ¢, for this let A € F,-alg and let B € F,-
perf. Consider

= (f— f) : HOHI]Fp_alg<B, A) — Home_perf(B, Apers) and
U = (g 1a0g): Homp, peri(B, Apert) — Homp, _a15(B, A),

we see that for f € Homp,.,(B, A) we have
(Wo®)(f) =W () =vuof="

For the other direction note that both ida,, . and @; make the diagram

erf

Aperf — Aperf
m l’lﬁA
A

= 122 by uniqueness. Furthermore, both ida o g and 4 0g

commutative, i.e. ida,
make the diagram

erf

B —— Aperf

Yaog lm
A

commutative, and by uniqueness we see once more that ida . 0g =14 o g. This gives
us for g € Homp, pert( B, Apert)

(PoW)(g9) =P(Wa0g) =vao0g=rida,.09=g

Thus, Homg,a4(B, A) = Homp, pert( B, Apert), 1.€. (*)pert is right adjoint to ¢.
]

Remark 1.19

Note that we can give an explicit description of fP°f by considering the mapping
g := ([a] = [f(a)]) : APt — BPerf Tet us first note that if [a] = [b] in AP*T where
a € A,and b € A, thereis k € N with n < k and m < k such that by definition of the
inductive limit £~ "(a) = F4~™(b) and applying f gives us Fp. "(f(a)) = FE™™(f(b)),
i.e. [f(a)] = [f(b)] in BP. Of course g is a ring homomorphism and for a € A we
have

(90 wa)a) = g(la]) = [f(a)] = ¢5(f(a)) = (¢5 o f)(a).

And therefore fP°f = g by uniqueness since both g and fP*f make the following diagram
commutative:

A PA Aperf
®

.

Bperf

11



Likewise we can give an explicit description of fper as well. For this consider the
mapping g := ((an)n — (f(an))n) : Apert = Bpert. Note that this defines a well defined

ring homomorphism since Fg(f(ant1)) = f(Falant1)) = f(an), i.e. (f(an))n € Bper
Now let (ay)n € Aperr and calculate

(¥5 0 g)((an)n) = ¥B((f(an))n) = flao) = f(¥al(an)n)) = (f © Ya)((an)n).

By uniqueness fpef = g since both make the following diagram commutative:

Aperf — Bperf
le
fcm
B

Lemma 1.20
Localizations of perfect IF,-algebras are perfect.

Proof

Let A € Fy-perf and S C A multiplicatively closed. We need to check that Fg-1 is
an isomorphism. For that let ¢ € AS~! such that (%)p = 0in AS~!. By definition of
AS~! there exists an u € S such that a’u = 0 in A. But then

Fa(aw) = (au)” = au” = (a"u) = = 0

and this means au = 0 in A since A is perfect, by definition of AS~! we see that £=0
in AS~! ie. Fug-1 is injective. Now let ¢ € AS~!, then ¢ = % with as?~! € 4, by
S S

sp

surjectivity of F4 there exists b € A such that o? = asP~?, it follows

b b\’ ¥ asP! a
F —1 —_ = —_ = — = = —.
A9 (5> (s) sP sP S

Thus, Fag-1 is an isomorphism. O

Proposition 1.21
()P commutes with localizations in the following sense, let A € F,-alg and let S C A
multiplicatively closed. Then

(PA(S) C gDA<S)perf — {a c Aperf :In>0: ap” c SDA(S)} C Aperf
are both multiplicatively closed and we have
AperfSOA(S)fl o~ Aperf((goA(S))perf)fl ~ (ASfl)perf.

Proof
It is clear that the two sets in question are multiplicatively closed. Let us first show
that APy ,4(S)~1 = (AS~1)PeL. For this consider the canonical ring homomorphisms

fag—1: A— AS™H and  faper,, (g-1 2 AP — APp, (G) 7L
va(S)

Deﬁne ()0 = prerf
for all s € S.

oa(s)-100a 1 A — AP, (S) 71 and note that ¢(s) € (AP, (S)~1)>

12



By the universal property of localization we obtain a unique ring homomorphism ¢
such that the following diagram commutes:

A Jasmt o pg-1

=il

~

ApeerOA(S)_l

We now claim that (APp,(S)~!, @) has the universal property of (AS~1)Pert e
APty 1 (8)~1is a perfect closure of AS~!. For this note that AP, (S)~! is perfect
by the previous lemma. Let C' € Fp-perf and let g € Homp, ,(AS ~1.C). We apply
the universal property of AP to (go fag-1) : A — C and we obtain a unique ring
homomorphism (g o f45-1)~ such that the following diagram commutes:

A SOAE Aperf

\ T(gofug-1)™
gofag—1 ~
C

It follows that for all u € p4(S) we have (g o fas-1)~(u) € C* and thus, by the
universal property of APy 4(S)~! we obtain a unique ring homomorphism g such that
the following diagram commutes:

prerstA(S)—l
R LN

Aperf AperfSOA(S)fl
;3!~
(gofAsfl)N ~ !
C

Note that g makes the diagram

Asfl ® AperfSOA(S>fl
\ l~
C

commutative, because if ¢ € AS™!, then

09 (3 ) i(#(3))
=g (v(@)e(s)™") = gle(a)(g(e(s) ™
=(go prerf@A (5)-1 © 0a)(a)((g o faverty,(5)-1 0 @a)(s))
= ((g fAS 1)~ o pa)(@)(((go fas—1)~ 0 pa)(s) ™
= (g0 fas-1)(a)((g 0 fas—1)(s)™"

= g(fas—1(a) (fas—1(s) ) =g <g> .

-1

13



Assume h : APp 4 (S)™! — C makes the diagram commutative as well, i.e. ho @ = g.
Then we have

ho faperty,(sy-10pa=hop=ho@o fag-1 =go fas—1

and hence, by the uniqueness in the universal property of AP it follows that

ho faperty,(s)-1 = (g © fas—1)™, i.e. h = g by the uniqueness in the universal property
of the localization APy 4(S)~t. Thus, APy 4(S)~t is a perfect closure of AS~! and
by corollary 1.5 APy ,4(S)~1 = (AS—1)Pe! as claimed.

It is clear from the universal property that p4(S) and p4(S)P lead to isomorphic
localizations.

]

Remark 1.22
The analogous statement for Ape is wrong which is the main reason why we cannot
glue (-)pert to a functor on F,-schemes.

Example 1.23

Let A:=T,[t]/(t?) and S := {t" : n € N}. It is easy to check that S is multiplicatively
closed. Obviously 0 € S and therefore we have AS™" = 0 and thus (AS™!) et = 0.
Moreover it is easy to check that the ring homomorphism (o — (o, o, v, ...)) : Fpy = Apers
is an isomorphism of F,-algebras. But then ¥,'(S) = {1} and we see

Aperfd)zl( ) = Aperf = IF ?é 0=AS" 1

Lemma 1.24
If f € Homp, a5(A, B) is injective, so are Pt and foer If f € Homg,_a15(A, B) is
surjective, so is fPef.

Proof

Assume f : A — B is injective. Say [a] € AP represented by a € A, = A, such
that 0 = fP([a]) = [f(a)] where [f(a)] is represented by f(a) € B, = B. Then there
exists m > n such that 0 = F~"(f(a)) = f(a?" ") and by injectivity of f we see that
a?" " =0, ie F}7"(a) =0 and thus [a] = 0, i.e. fPT is injective.

If (an)n € Apers such that 0 = foer((@n)n) = (f(an))n, then f(a,) = 0 for all n € N.
Hence a,, = 0 for all n € N by injectivity of f and thus fper is injective.

Let us now assume that f : A — B is surjective and let [b] € BP* be represented by
b € B, = B. Since f is surjective, there is a € A,, = A such that f(a) = b, but then
fPi([a]) = [f(a)] = [b], i.e. fPeis surjective. O

Proposition 1.25
If f € Homp, (A, B), then AP/ ker(fPe) = (A/ ker(f))Pet.

Proof
Let m : A — A/ker(f) be the canonical map. By the previous lemma we see that
apert o Apert (A /ker(f))P is surjective. Thus, we claim ker(fPe) = ker(7Pf). Let
[a] € ker(mPet) be representated by a € A,, = A. Then we have 0 = 7P*([a]) = [7(a)] in
(A/ker(f))Pet i.e. there exists m > n such that 0 = B ey (m(@)) = m(a?""). This
means that a?" " € ker(f), ie. 0= f(a*" ") = F3"(f(a)), but then 0 = [f(a)] =
fPei([a]), i.e. [a] € ker(fPeT). Reversing these steps shows that ker(fPef) C ker(7Pert).
[
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Proposition 1.26
If Areqa := A/Rad(0) then the canonical map 7 : A — A,eq induces an isomorphism
7T.perf . Aperf N (Ared)perf-

Proof

By the previous proposition we have (A,q)P*t = AP/ ker(wP°t) and therefore it is
enough to see that ker(wP!) = 0. For this let [a] € ker(7P!) be represented by
a € A, = A. Then 0 = 7P*([a]) = [r(a)] in (Areq)P® and thus, there exists m > n
such that 0 = F}'~"(n(a)) = n(a?" "), ie. a?" " € ker(m) = Rada(0) = ker(pa) by
Lemma 1.7. This means 0 = @4(a?" ") = F. (pa(a)), i.e. ¢a(a) = 0. Recall that

Aperf

by definition of AP we therefore have that 0 = p4(a) = [a]", i.e. [a] = 0. O

Example 1.27

The analogous statement for A,es is wrong, i.e. in general (Aed)pert 7# (Apert). Let
B =T, [t]Pet = U0 F,[t'/?"] and A := B/(t).

Then we have Rad4(0) = (t/7" + (t) : n € N) and therefore A,.q = F,, this means
(Aved)pert = F,. But the canonical ring homomorphism 7 : B — A induces a ring
isomomorphism

Tperf - B = Bperf — Aperf
b (BV77) = (07" + (1)

n

and thus,
(Aperf)red = Bred =B 7£ ]Fp = (Ared)perf-

Proposition 1.28
Let A € Fp-alg and let B and C be A-algebras. Then the canonical map

B ®A C _> .Bperf ®Aperf Cperf
induces an isomorphism of perfect F,-algebras
(B ®A O)perf — Bperf ®Aperf Operf‘

Proof

The strategy of the proof is to use the Yoneda lemma after showing that for arbitrary
D € F,-perf we have Homp, a5 ((B ®4 C)P™, D) = Homg, a4 (B @ gpert C*™, D).

For more details see Lemma 4.10 in [1]. O

Proposition 1.29
Let f € Homp,ai4(A, B). If f is a flat ring homomorphism so is the ring homomorphism
fperf c Hom]Fp—alg(Aperf; Bperf>.

Proof

Since f is a flat ring homomorphism, we see that B, is flat over A, for all n € N.
Thus, for all n € N we get that B, ®4, AP is flat over AP*f and since direct limits
preserve flatness, we see that @neN B, ®4, AP is flat over AP, Finally, we note that
ligneN B, ®4, APt = Bret and thus, BP' is flat over AP via P!, The isomorphism
is due to Bourbaki in [2], Chapter 2, § 6, Corollary 2 after Proposition 7. ]
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Proposition 1.30
If A € F,-alg then Spec(pa) : Spec(AP™) — Spec(A) is a homeomorphism.

Proof
Let p € Spec(A) and 7w : A — A/p be the canonical map. Note that together with

A/p also its perfect closure (A/p)Pe is an integral domain. Thus, 0 is a prime ideal
of (A/p)Pf and f(p) := ker(wPet : AP — (A/p)Pert) = (xP)=1(0) is a prime ideal of
Aperf.

We can now define f := (p > ker(mPet : Apef — (A/p)Perf)) : Spec(A) — Spec(APeT)
and we claim that f is the inverse of Spec(pa):
Let p € Spec(A). Then we have

(Spec(os) 0 ) () = 3 (her (7))
={a€A:pua)€ ker(ﬂperf)}
={a€A:0=1""pa(a)) = [r(a)]}
={a€A:Im>0: O—FA/p(TF(CL)) =
={a€A:3Im>0:a"" €ker(n) =p}
={a€cA:acp}

m(a)}

And for p € Spec(AP*T) we have

(f o Spec(pa)) (p) = f (¥4'(p))
= ker (AP — (A/5' (p))")
={a€e A" :3In>0:a" € pales'(p)}
Z{aeAperf:ElnzO:apn Gp}
=p
where we used that if z € p, there exists n € N such that 27" € p4(A), i.e. 27" = pa(a)
with a € ¢, (p). Therefore f is the inverse of Spec(p4) as claimed.

It is a well-known fact that Spec(¢4) is continuous and therefore we just need to show
that f is continuous as well. For this let I C AP be an ideal, then we have the equality
FHV(I)) = V(31 (I)). In order to see this let q € f~1(V (1)), then f(q) € V(I), i.e.
I C f(q), but then

wa (1) € 4" (f(a)) = (Spec(pa) o f)(a) = a,

ie. qe V(e (D).

Conversely let q € V(' (1)), then ¢! (I) C q. Now let x € I, then there exists n > 0
such that 27" € p4(A), say 27" = pa(a) with a € ;' (I) C q, then

perf (xp") — pperf (pa(a)) = [r(a)] = 0.

Hence, 27" € f(q), i.e. € f(q) and thus I C f(q). But this means that f(q) € V(I),
ie. g€ f~1(V(I)). Consequently, Spec(p,) is a homeomorphism. ]
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2 Perfect closure of [F,-schemes

Lemma 2.1
If A € F,-alg then the following statements are equivalent:

(i) A is perfect.
ii) For all p € Spec(A) it holds that A, perfect.
(i) b p

Proof
(i) = (ii): Follows from Lemma 1.20.

(ii) = (i): Let B be the scalar restriction of A with respect to Fly, i.e. B := Fy,A
where ab := F4(a)b for all a,b € A. Now we can view F : A — B as an A-linear map
and thus, F) is bijective if and only if for all p € Spec(A)

is bijective.

Let p € Spec(A) and let ¢ = ((z,a) — 2Pa) : A, x B — A,. We note that ¢ is A-
balanced and thus, by the universal property of the tensor product we obtain a unique
ring homomorphism ¢ = (z ® a — 2Pa) : Ay ®4 B — A,. Now we claim that ¢
is an isomorphism. If ¢ € A, then ¢ (% ® asp_l) = %, l.e. ¢ is surjective. Now let
x € ker(p), then z = % ® a since every element in A, ®4 B is a simple tensor. By
definition of localization 0 = @(z) = ¢ (1 ® a) = % gives us the existence of u € A\ p
such that au = 0 in A. Thus, we see that a:z%@a: —®a= j@aupzo, ie. @pis

injective. By construction the diagram

Fa,
_—
Ap Ap

{7

Ap XA A (F—A)p> Ap XA B
is commutative. Since Fj, is bijective we see that (Fy), is bijective. Altogether, A is
perfect. ]

Proposition 2.2
For an F,-scheme X the following statements are equivalent:

(i) X admits an affine open covering X = (J,.; X; such that for all ¢ € I the ring

Ox(X;) is perfect.

iel

(ii) For all z € X the ring Ox , is perfect.
(iii) For all U C X affine open the ring Ox(U) is perfect.
(iv) For all U C X open the ring Ox(U) is perfect.

Proof

(i)=(ii): Let x € X and choose i € I such that z € X;. Write X; = Spec(4;) and
write x = p, viewed as a prime ideal of A;. Then Ox, = Ox,, = (4;), and (4;), is
perfect by Lemma 2.1 since A; = Ox(X;) is perfect.

17



(il)=-(i): Let (X;):esr be any affine open covering of X and write X; = Spec(A4;). Then
we have (4;), = Ox, for all p € Spec(4;), i.e. (4;), is perfect for all p € Spec(A4;),
but then Ox(X;) = A; is perfect by Lemma 2.1.

(ii)=(ili): Let U C X be affine open, write U = Spec(A) and let p € U. Then
A, = Ox, and thus, A, is perfect for all p € Spec(A4). By Lemma 2.1 we see that
Ox(U) = A is perfect.

(iii)=(iv): Let U C X be open, then (U, Op) is a scheme and thus, U admits an affine
open covering (U;);er. By assumption for all i € I the ring Oy (U;) is perfect. By (i)
and (ii) we see that we have a ring homomorphism Ox(U) <[], Ov,. where all
the Oy, are perfect. In particular, all Oy, are reduced and thus, Ox(U) is reduced.
This shows that Fo () is injective. For the surjectivity let g € Ox(U). Since all the
Oy (U;) are perfect, we find a preimage f; for g|y,, i.e. fI' = glu,. By the injectivity
of the Frobenius on Oy (U; NU;) we can glue the f; to f € Ox(U), such that by
construction f? = g, i.e. Fo () is surjective. Altogether, Ox(U) is perfect.

(iv)=-(i): Clear.

Definition 2.3
Let X be an F,-scheme, we call X perfect if X satisfies the equivalent conditions in
Proposition 2.2.

Recall that the absolute Frobenius morphism Fx : X — X of an Fp-scheme X is the
identity on the underlying topological space and is the p-power map on Ox(U) for any
open subset U C X. As an immediate consequence of Proposition 2.2 we obtain the
following result.

Corollary 2.4
X is perfect if and only if the absolute Frobenius morphism Fyx : X — X is an
isomorphism.

Note that the absolute Frobenius is functorial in the sense that if f : X — Y is a
morphism of F,-schemes then the following diagram commutes:

X &, x

fl lf (1)

Definition 2.5

Let X be an [F,-scheme. A perfect closure of X is a perfect [F,-scheme X perf together
with a morphism ¢x : XP*f — X, in short (XP*f y), such that it satisfies the
following universal property:

For any morphism of F,-schemes f : Z — X with Z a perfect F,-scheme there exists
a unique morphism f . 7 — XPf gatisfying f = ¢x o f , i.e., the following diagram
commutes:

z 1 x
T“’X
A7

Xperf
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Proposition 2.6
Every F,-scheme X has a perfect closure (XP o).

Proof

There are several approaches to the construction of XP®f, We will start with a con-
struction based on projective limits in the category of IF,-schems. This approach is also
carried out in [6], Theorem 6.2.3. We will comment on alternative constructions below,
relying on the results on perfect closures of rings from the the previous section.

Let X be an F,-scheme and consider the projective system (X,,, ¢ms,) over N given by
Xy =X, omn = F¢™ 0 X, = X, for m < n. By Lemma 32.2.2 in [7], the limit
Xperf . — m X, exists in the category of F,-schemes. For this note that the powers
of Fiy : X - X are affine because they are the identity on the underlying topological
space of X. Consider the canonical projections 7, : XPf — X, and set ¢x := m.
Let ¢, : X,41 — X, be the identity map and consider 1, o T4 : XPT — X,

Then for m <n

X1 —25 X,

@m+l,n+ll l‘pm’ﬂ

Xm+1 W Xm

commutes, and thus

Xperf Ynomn1 X

wmoﬂm-&-ll /

commutes. By the universal property of projective limits there exists a unique mor-
phism ¢ : XPef — XPerf guch that

Xperf Y y Xperf

wnomﬁll %
Xy

commutes. Together with (1) we see that

Tp © Fxpert 090 = Fx, om0
:FXno¢noﬂn+1
= wn o FX,L+1 O Tp+1

= ©n,n+1 © Tpt1
= T,
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And thU.S, bOth iprerf and FXperf ¢] 'QZ) make
Xperf

|

Xperf

Tn N

X, > X

Pmn

commutative. Hence, by the uniqueness statement in the universal property of projec-
tive limits we have F'ypert 010 = idxperr. Analogously one shows that ¢ o Fypert = id xpert
and thus, XP° is a perfect F,-scheme.

Now let Z be a perfect F,-scheme and let f : Z — X be a morphism of [F,-schemes.
For n € N set f, := fo F,;™ where F,;” := (F;1)". Let n > m. On the level of
topological spaces it is clear that @, © fn = fm and for U C X open we have by (1)

And thus, by the universal property of the projective limit there exists a unique mor-
phism f : Z — X?*f such that 7, o f = f, for all n € N. In particular:

¢Xofzfoof:f0:f-
]

The following strong uniqueness property comes directly out of the universal property
of (XPf vy).

Corollary 2.7
The perfect closure is unique up to unique isomorphism, i.e., if (Y,vy) is a perfect
closure of X, then there is a unique isomorphism ¢y : XPf — YV of [F,-schemes

satisfying ¢ x = 1y o px.

Proof
This follows immediately from the universal property. O

The universal property shows that ()P is a functor from the category of F,-schemes
into the category of perfect F,-schemes:

Moreover, the uniqueness in the universal property shows that

(Z'dX>perf — iprerf and (g o f)perf — gperf o fperf.
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Corollary 2.8
If X = Spec(A) is an affine scheme, then (Spec(AP®), Spec(¢4)) has the universal
property of XPert,

Proof
In fact, this follows directly from the construction of projective limits of affine schemes.
Namely, setting X = Spec(A), the proof of Lemma 32.2.2 in [7], shows that

Xperf — SpeC(A)perf
= lim Spec(A)

neN

— Spec(lim ()

neN

= Spec (Aperf) )

One can also argue via the universal property of AP as follows. Recall that if (X, Ox)
is an F)-scheme and if (Y, Oy) is an affine F,-scheme, then the map

Homga, (X, Ox), (Y, Oy)) = Homp, a5 (Oy (Y), Ox (X))
(£ S*) = 1
is a bijection (cf. [7], Lemma 26.6.4). Now let Z be a perfect F,-scheme and let
f:Z — X = Spec(A). Together with Proposition 1.18 we get
Homg (Z, Spec(A)) = Homp, (A, Oz(Z))
=~ Homp, 415( AP, 02(2))
=~ Homge, (Z, Spec (Aperf))

and therefore we obtain a morphism f : Z — Spec (Aperf). By construction it is the
unique morphism such that the following diagram commutes:

Spec(Aperf) peclog S ec(A

\p

Remark 2.9

If X = X, is an affine open covering then XPef = XP"is an affine
icl i€l

open covering. This follows from the construction of projective hmlts of schemes

in the proof of Lemma 32.2.2 in [7].

(ii) Together with Proposition 1.28 and Corollary 2.8 this shows that the fiber product
commutes with the perfect closure, i.e. (X xz Y)Perf o2 xpert 5 . YPe hecause
in the affine case we have for X = Spec(A),Y = Spec(B), Z = Spec(C):

(X x5 V)P = Spec(A ®¢ B)P™*
=~ Spec ((A ®c B)PT)
= Spec (Aperf ®Cpert Bperf)

2 XPOT 5 pens Y PO,
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For the general case let f : X — Z and g : Y — Z. The construction of
the fiber product of schemes shows that if (Z;);c; is an affine open covering of
Z and if for all © € I, (Xjj)jesu) and (Yie)rex() are affine open coverings of
X, = [71S),Y; = g7'(S,), then X xz Y =, Ujesay Unery Xis ¥z Yin is

an affine open covering of X x Y and thus:

XY= U U Xy =z Y

i€l jeJ(i) keK (i)

~ perf perf
=JU U X X gpert Y

i€l jeJ(i) ke K (i)

— Xperf XZperf Yperf.

Remark 2.10

One can give a more explicit construction of X, Namely, we can realize

(X2 O ypert) = (X, O™ where Oypest(U) 1= O (U) := Ox(U)P" for all U C X
open and restriction maps Oy (V)P — Oy (U)P! beeing the perfect closure of the
restriction maps Ox (V) — Ox(U) for all U C V open. The morphism ¢y is the
identity on the level of topological spaces and np}?U = oy ) : Ox(U) = Ox(U)Pet.
That this really gives a sheaf of rings with local stalks can be checked using the results
on perfect closures of rings. For a morphism f : 7 — X, f is just f on the level of
topological spaces and f;f = (f)Pel : Ox(U)P™ — O, (f~1(U))PF =2 O4(f~1(U))
since Z is perfect.

Alternatively, the perfect closure can be constructed in the affine case using the proof
of Corollary 2.8 and glueing. That the perfect closure preserves open immersions can
be deduced from Proposition 1.21. More conceptually, it follows from the following
fact.

Proposition 2.11

¢x @ XP — X is a universal homeomorphism, i.e., for every morphism of F,-schemes
f:Z — X, the morphism px X idy : XP* xx 7 = X xx Z = Z is a homeomorphism
on the level of topological spaces.

Proof

By Remark 2.9 (i), an affine open covering X = (J,; X; gives rise to an affine open Ccov-
ering XPt = J,_; X! perf Let us first check that it is enough to show that @3 (X,,) —
X,, is a universal homeomorphism. In fact, by Remark 2.10 ¢! (X,,) = X2 Let
us now assume that XPf — X is a universally homeomorphism and show that this
is sufficient for the claim of the proposition. By Lemma 29.45.5 in [7] a morphism
of schemes is a universal homeomorphism if and only if it is surjective, integral and
universally injective.

It is clear that the surjectivity of XPf — X, implies the surjectivity of ¢x and by
Lemma 29.44.2 (3) in [7] px is integral. If XPoT — X, is universally injective, using
Lemma 29.10.2 in [7] we see that the diagonal morphism XPef — X, is surjective.
Since X x v XPerf = | ., XP" x x, XP" is an affine open covering, it follows that

Xpert X perf x XPf is surjective. Hence, ¢y is universally injective by Lemma
29.10.2 in [7].
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Altogether, by Remark 2.10 we can reduce to the affine case X = Spec(A4) with
©x = Spec(pa). As seen above, it is sufficient to show that Spec(p4) is univer-
sally injective, surjective and integral. Let us first show that Spec(p4) is univer-
sally injective. By Lemma 29.10.2 in [7] we may show that Spec(p4) is radicial. By
Proposition 1.30 it is clear that Spec(p,) is injective. Let p € Spec(AP) and let
xr € K(p) = Agerf/ pAEerf. Let = = [a] be represented by a € Agerf. Note that by Propo-
sition 1.21 AR = (14%_;103))1361”f where we used that AP*\p = p4(A\p;'(p))>"". But
then we get a well-defined ring homomorphism

P 1= a1y K(SPec(pa(P))) = Ay /93 (DA 1) — AR /pAR.

Interpreting a as element of (Awf(p))perf, we find b € A -1, such that a”" =i _, ()

w0 ()
for some n > 0. By construction we have

o = @ | =lea_,, 0] = o(t) € (Spec(oal(®)))),

O]

where we identify k(Spec(pa(p))) with the image of ¢. This shows that the extension
k(p)/K(Spec(pa)(p)) is purely inseparable, i.e., Spec(pa) is radicial. It is clear by
Proposition 1.30 that Spec(p4) is surjective. By Lemma 29.44.2 (2) in [7], Spec(pa)
is integral if and only if ¢4 is integral. Let a € AP then we find n > 0 and ay € A
such that a?” = p4(ag), hence @4 is integral. ]

The following results are also contained in [5], Lemma 3.4.

Proposition 2.12
Let f : X — Y be a morphism of F,-schemes. The following properties hold for f if
and only if they hold for fPe,

(i) quasi-compact
(ii) quasi-separated

)
)
(iii) affine
(iv) separated
(v) integral
(vi) universally closed
(vii) a universal homeomorphism
If f has one of the following properties, then so does fPe'f.
(viil) a closed immersion
(ix) an open immersion

(x) flat
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Proof
(i) and (iii): Since f and fP°! agree on the level of topological spaces this is clear.

(ii): By definition f : X — Y is quasi-separated if and only if the diagonal morphism
Axsy: X — X Xy X is quasi-compact. Since (X xy X)PT = XPert 5y poe XPF we get

Aperf

)y =2 xvertjyvert. Therefore, the statement follows from (i).

(iv): If f is separated then the diagonal morphism Ax/y is a closed immersion. By (viii)
this implies that so is AI)’f/ri,ZA Xverf/ypert Whence frert is separated by definition. Con-

versely, if fPef is separated then A?f/r; is a closed immersion. But since the diagonal
morphism commutes with base change it is in fact universally closed. By (vi) so is
Axyy. In particular, Ax/y is a closed immersion whence f is separated by definition.

(v): By definition we may assume that f = Spec(g) : Spec(B) — Spec(A) is affine.
Moreover, by Corollary 2.8 f = Spec(gPef)Pert : Spec(BPt) — Spec(AP*). This means
it is enough to show that a ring homomorphism ¢g : A — B is integral if and only
if grert . Aperf . Brerf i integral. Now assume that g : A — B is integral and let
x € BP then there exists n > 0 such that 2" € pp(B), say 27" = pg(b) for some
b € B. Since g is integral there is an equation

0="0"+g(am_1)b" " + ... + g(ap).
By applying pp we obtain the equation
0=a™" + g (pa(am-1))z" " + .+ P (pa(ap)).
For this recall that by the construction of g**f the diagram

A—2—B

o] Jes

Aperf Bperf

gperf

commutes. Hence, gP®" is integral.
For the converse let b € B, since pp(b) € BP* we find an equation

0= 0p(b)" + ¢ (an_1)ppd)" " + ... + g*(ag).

Since a; € AP we find m; > 0 such that a‘?mj = pal(a;) for some a; € A. Let
m := max {my, ..., m,_1} then using the commutativity of the above diagram

0=pp0)" + ¢""(an-1)psd)" " + ...+ ¢""(ao)
= ((0)" + ¢*"(an—1)p5(d)" " + ... + ¢ (ag))""

m

= ()" + g7 (o) @p(B) " 4+ g (o)

m mQ

p—p

= @B(b)np’” + gperf <azm’il)l’m—pm"l S0B<b>(n—1)pm 4o+ gperf <agm0>
(0" + P (o alar))P" P op(0) IR b P (o ()PP
w0 + p(glana)" 7 op(B) T 4+ o (g(do) P
¥B

(bnpm + g(an:lp’"—pm"*l)b(n—l)pm 4+ g(dopm—pmo)) )
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And thus, 6" + ¢ (an~_1pm_pm”_1) =P 44 g (dopm_pmo) € ker(¢p) = Radg(0)
by Lemma 1.7. Taking this element to a high power we get an integral equation for b
over g(A). This implies that g is integral.

(vi): If Z — Y is any Y-scheme, Remark 2.9 (ii) implies that (f x idz)P*f can be
identified with fPf X id pers. Since a morphism and its perfect closure coincide on the
level of topological spaces and since closed immersions are stable under base change,
the claim follows.

(vii): f is a universal homeomorphism if and only if f is integral, surjective and univer-
sally injective. Since f and fPef agree on the level of topological spaces, it is enough
by (v) to show that f is universally injective if and only if fP*'f is universally injective.

But that is clear by Lemma 29.10.2 in [7] and AXperf/Yperf:ApXe/ri‘/.

(viii) and (ix): This follows from the construction in Remark 2.10 and Lemma 1.24.

(x): This follows from Lemma 29.25.3 (3) in [7] and Proposition 1.29.

Remark 2.13

If f: X — Spec(F,) is the structure morphism of X and f is of finite type, then
frert o Xpert 5 Spec(F, )Pt = Spec(F,) is the structure morphism of XP°f. But in
general [P is not of finite type. For example F,[t]Pf = | J, . F,[t'/?"] is no longer of
finite type over [F).

Definition 2.14
A ring homomorphism f : R — S is called étale if and only if it satisfies the following
properties:

(i) f: R — S is of finite presentation, i.e., f makes S a finitely generated R-algebra.
(ii) f: R — S is flat.

(iii) f: R — S is unramified, i.e., if q is a prime ideal of S and if p = q N R, then
pSy = q5; and the field extension

K(q) == Sq/qSq | Rp/pRy =: K(p)

is finite separable.

Definition 2.15
Let f: X — Y be a morphism of schemes.

(i) We say that f is étale at x € X if there exists an affine open neighbourhood
Spec(A) = U C X of x and affine open Spec(B) =V C Y with f(U) C V such
that the induced ring map B — A is étale.

(ii) We say that f is étale if f is étale at every point of X.

Remark 2.16
If K is a field then a ring homomorphism K — A is étale if and only if A = [['_, K; is

a finite direct product of finite separable field extensions K;/K. For more details see
Lemma 10.143.4 in [7].
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Definition 2.17

The small étale site of a scheme X is the category Xg where the objects are all X-
schemes f : Y — X such that the structure morphism f is étale. The morphisms
are all morphisms of X-schemes and the coverings of ¥ — X are all jointly surjective
families (f; : Y; — Y);e; of morphisms of étale X-schemes.

If f:Y — Xisétale and g: Z — X is arbitrary, then f x g: Y xXx Z — Z is étale
(cf. [7], Lemma 29.36.4 ). This way one gets a functor

Xet = Zet, Y = X) = (Y xx Z = Z),
from the small étale site of X to the small étale site of Z.

Remark 2.18
If f:Y — X is a morphism of F,-schemes then

rf
Yperf fre Xperf

ov | |

YﬁX

commutes and by the universal property of the fiber product there exists a unique
morphism YPef — XPerf x oV such that the following diagram commutes:

fperf

Yperf

&

Xperf X x Y Xperf

ov | Jex

YﬁX

Proposition 2.19
Let f:Y — X be an étale morphism of F,-schemes, then:

(i) The canonical morphism YPe — XPerf x V' is an isomorphism.
(ii) The functor Xg — X, e?frf, Y+ YP is an equivalence of categories.

Proof

(i): We may assume Y = Spec(B), X = Spec(A) affine and that f corresponds to a ring
homomorphism x : A — B. By the universal property of AP the ring homomorphism
A S B 22 Bref gives rise to a ring homomorphism y : AP*f — BPerf guch that the
following diagram commutes:

A YA Aperf

|k

B ¥B Bperf
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This implies that the mapping B x APt — BPet (b a) — pp(b)x(a), where we view
AP and B as A-modules via ¢4 respectively Y, is A-balanced and induces a ring
homomorphism B ® 4 AP — BPef. By Corollary 2.8 and by the interrelation of tensor
product and fiber product for affine schemes this corresponds on the level of spectra to
the morphism YPef — XPof » YV ie.

Spec(Bre) — = Spec(B)rert = yrer

| |

Spec(B ® 4 APty — =5 xperf Y

commutes. Thus, we need to see that B ®4 AP — BPef is an isomorphism.

Now as an A-module, AP = lim F%.(A) is the inductive limit of the A-modules
F7%.(A) obtained from A via scalar restriction along F} : A — A. Since tensor products
commute with inductive limits, we have B® 4 APt & hgqn(B ®4F1,(A)) with transition

maps idg @ Fy: B®4 F1,(A) = B®a Fi(A). The resulting map

liny(B ©4 F},(A) = B @, A — BP =l B

n

is the inductive limit of the ring homomorphisms:
Fpia: B4 Fj(A) = Bb®a— V¥ x(a).

This is the so-called n-th relative Frobenius homomorphism of B over A. It is a
standard fact that if x : A — B is étale then all n-th relative Frobenius homomorphisms
B®y F1i.(A) — B are isomorphisms by Lemma 41.14.3 in [7] and hence so is the ring
homomorphism B ®4 AP — BPe Let us briefly sketch the argument.

Set Y®") := Spec(B ®4 F7,(A)) = Y xx X where the fiber product is formed with

respect to f : Y — X and F§ : X — X. Since F§ is a universal homeomorphism,
idy x F%

so is its fiber product pry : Y =V xy X —5 Y xx X 2 Y. Setting FQ‘X =

FTL
Spec(Fgm) the composition Y Iy e Py g equal to Fy, as is easily checked
on the level of rings. Since Fy and pry are universal homeomorphisms, so is F{}| e

On the other hand, x : A — B is étale and so is the A-algebra B4 F,(A) = B®a A
obtained via scalar extension. Now any homomorphism of A-algebras between étale
A-algebras is an étale ring homomorphism by Lemma 10.143.8 in [7]. In particular,
Fp 4 is étale. Since Fyy = Spec(Fp,) is surjective the ring homomorphism Fp ,
is faithfully flat. Moreover, Fj;, : C := B ®a I},(A) — B is an epimorphism of
rings. In fact, by Lemma 10.107.1 in [7], we need to see that the multiplication map
B®cB — B,b®b' +— bb, is an isomorphism. On the level of spectra this is the diagonal
morphism which is an open immersion because Fp, is unramified (cf [7], Lemma
29.35.13). Moreover, it is surjective because FQ‘ « 1s universally injective by Lemma
29.10.2 in [7]. Thus, B ®c B — B is an isomorphism and Fg‘ 4 is an epimorphism of
rings as claimed. Finally, by Lemma 10.107.7 in [7], any faithfully flat epimorphism of
rings is an isomorphism.

(ii)) This is a formal consequence of (i) and a more general result about universal
homeomorphisms. For more details see Theorem 59.45.2 in [7]. O
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Example 2.20

Let X := Spec(K) where K is a field of characteristic p. By Corollary 2.8 we have
Xrert — Spec( KPef) where KP*! is again a field of characteristic p. In particular, by
Example 1.6 we have

KP'={z e K*:3n>0:2" € K}.
By Proposition 2.19 (ii) we have an equivalence of categories
F:Xe 2 XEY o YPOf s oot

Moreover, by Lemma 29.36.7 (2) in [7], étale K-schemes are of the form [, ., Spec(k;)
where K;/K is a finite separable field extension of K. Since by Corollary 2.8 and
Proposition 1.30 the functor (-)P*"! does not change the underlying topological space,
the equivalence F' restricts to an equivalence of the connected étale schemes. It is clear
that [[,.; Spec(K;) is connected if and only if it is a singleton, i.e. [[,.;Spec(K;) =
Spec(L) for some finite separable extension of K. Moving to global sections we get an
equivalence of categories

{L/K : L/K finite and separable} — {L'/KP*": L'/KP*" finite}
L L
o: L — Ly o Lﬁmf — Lgcrf.
Note that any finite extension of KP°™ is automatically separable because KPf is

perfect. Furthermore, by Proposition 2.19 (i) we know that for L/K finite separable
the canonical ring homomorphism KPf @ L — LP®f is an isomorphism. In particular

diprerf<Lperf> = diprerf(errf ®K L) — dlmK<L)
More precisely, since L& = K8 by Example 1.6 we can realize
pert — {xEKalgzﬂnZO:xPn EL}.

Then it is immediately clear that L — LP®f «= KPf Therefore, the multiplication
map K x LPef — [P (7 y) — 2y, induces a well-defined ring homomorphism

errf QK L — Lperf'

This is the above ring isomorphism. Let us check directly that it is bijective. We have
im(KP" @ L — LP) = LKP where LKP®! denotes the compositum. Furthermore,
we have L N KP = K since (L N KP)/K is separable and purely inseparable at the
same time. But then

[LE?™: K] = [L: K|[KP*": K] = dimg(KP @ L)

and thus, KP @ L maps bijectively to LKPet C Lperf,

It remains to show that LKP*f = [Pt For this write L = K[a] with some primitive
element o € L. It is sufficient to show that LPf = KPf[q]. First note that KP[a]
is perfect because KP° is. In fact, any finite extension of KP*[a] is also one of KPe,
hence is separable over KP° hence over KP*![a]. In particular, KP*{[a] contains all
p"-th roots of a. Now if # € LP* then 27" € L = K[a] for some n > 0. If we write

2" =Y ;¢ with elements a; € K then 2 = 3, 0" o//?" € KPf[q].
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This shows LPf C KPf[a]. The reverse inclusion is obvious.

We also note that the inverse functor is given by L’ — L'N K*P. By the above we may
write L' = LK = LP*! for some finite separable extension L/K. Then we have

L N K5 = Lperf N K5 = L,

since (LP"f N K*°P)/L is both separable and purely inseparable at the same time.

It is a formal consequence of the equivalence of categories that L/K is finite Galois if
and only if LP!/ KPe'! is finite Galois. As a consequence, the restriction homomorphism

Gal(K™8/Pet) s Gal(K*P/K)

0 > 0| sen,
is a topological isomorphism. Indeed, we have

Cal( K™/ Pty =~ lim Gal (L'/K**™)
L’ /Krerf finite Galois
= lim  Gal (LK/KP)

L/K finite Galois

lim  Gal (L/LNKP™)
L/K finite Galois

= lm  GalL/K)

L/K finite Galois

~ Gal(K*P/K).

12

Remark 2.21

Gal(K®?/K) (resp. Gal(K®#/KPeT)) can be interpreted as the so-called étale funda-
mental group of X = Spec(K) (resp. XPoT = Spec(KPT)). Although we will not
define this terminology in detail, it is generally true that the equivalence of categories

in Proposition 2.19 (ii) induces an isomorphism between the étale fundamental groups
of X and XPerf,
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