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Introduction

Let p be a prime number. An Fp-algebra A is called perfect if the Frobenius homo-
morphism FA = (x 7→ xp) on A is an isomorphism. Of course, not every Fp-algebra is
perfect. For example, A := Fp[t] is not perfect as the element t does not have a p-th
root in A. In [3] Marvin J. Greenberg showed that one can always construct a so-called
perfect closure Aperf of an Fp-algebra A, coming with a ring homomorphism A→ Aperf

satisfying a certain universal property. If A is a domain, one can construct the perfect
closure within an algebraic closure of the field of fraction of A. In this simple case
one can obtain the perfect closure by adjoining all pn-th roots of elements of A to A.
The general case of the perfect closure as well as the dual notion, the so-called inverse
perfection Aperf, will be discussed in detail in the first section of this work.

In contrast to the inverse perfection, we will show that the perfect closure commutes
with localizations. This has the far reaching consequence that this functor can be
globalized to the perfect closure of Fp-schemes. In modern algebraic geometry the no-
tion of a perfect Fp-scheme is becoming increasingly important, as exemplified by the
works [4] and [5] of Peter Scholze and Bhargav Bhatt. In the first section, we discuss
properties of the perfect closure that we will need in the second part of our work. The
perfect closure and the inverse perfection will be constructed explicitly and interpreted
as adjunctions for the inclusion of the category of perfect Fp-algebras into the category
of all Fp-algebras. In the second part of our work, we will construct the perfect closure
of an Fp-scheme. To this end, we briefly discuss the construction of projective limits in
the category of schemes. Our final result will be an equivalence of categories between
the small étale site of an Fp-scheme and that of its perfect closure.

We point out that the perfect closure of Fp-schemes is also the topic of the recent
master’s thesis [6] of Robin Suxdorf. However, in contrast to our work, it does not
treat the above questions on étale coverings.
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1 Perfect closure and inverse perfection of Fp-algebras

Let us fix a prime p and let us assume that all rings in this work are commutative and
unital.

Definition 1.1

(i) Fp-alg denotes the category of Fp-algebras.

(ii) For an Fp-algebra A, the mapping FA := (x 7→ xp) : A→ A is called the Frobenius
homomorphism of A.

(iii) An Fp-algebra A is called perfect if and only if FA is bijective. In this case, the
inverse of F n

A will usually be denoted by
(
x 7→ x1/pn

)
.

(iv) Fp-perf denotes the category of perfect Fp-algebras.

Remark 1.2

(i) Fp-perf is a full subcategory of Fp-alg.

(ii) Perfect rings are reduced: If an = 0, then for suitable m ∈ N we have

ap
m

=
(
ap

m−n) an = 0

and thus a = 0, i.e., A is reduced.

Definition 1.3
For an Fp-algebra A, a perfect closure of A is a perfect Fp-algebra Aperf together with
a ring homomorphism ϕA : A → Aperf, in short (Aperf, ϕA), such that it satisfies the
following universal property:
For any ring homomorphism f : A → B with B a perfect Fp-algebra, there exists a
unique ring homomorphism f̃ : Aperf → B such that f = f̃ ◦ ϕA, i.e., the following
diagram commutes:

A Aperf

B

ϕA

f
∃!f̃

Sometimes, the terms perfection or direct perfection are used to denote the perfect
closure Aperf. The notation A1/p∞ is also frequently used.

Proposition 1.4
Every Fp-algebra A has a perfect closure (Aperf, ϕA).

Proof
Let A be an Fp-algebra and set An := A for n ∈ N, ϕmn := F n−m

A : Am → An for
n,m ∈ N such that m ≤ n. This defines an inductive system (An, ϕmn) over N:

• ϕnn = F 0
A = idA

• m ≤ n ≤ k, then ϕnk ◦ ϕmn = F k−n
A ◦ F n−m

A = F k−m
A = ϕmk .
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Set Aperf := lim−→n∈NAn =
(∐

n∈NAn
)
/ ∼ coming with a canonical ring homomorphism

ϕA = (a 7→ [a]) : A = A0 → Aperf.

Now let B be a perfect Fp-algebra and let f ∈ HomFp-alg(A,B).
Set fn := (a 7→ f(a)1/pn) : An → B and note that fn is well-defined since B is perfect,
i.e., we find unique pn-th roots for elements in B by the bijectivity of FB.
Let m,n ∈ N with m ≤ n, then for all a ∈ Am we have

(fn ◦ ϕmn)(a) = fn
(
F n−m
A (a)

)
= fn

(
ap

n−m
)

= f
(
ap

n−m
)1/pn

= f(a)1/pm = fm(a) .

Thus, by the universal property of the inductive limit there exists a unique ring homo-
morphism f̃ : Aperf → B s.t. f̃ ◦ ϕA = f .

Finally, we note that Aperf is perfect:

Now let [a] ∈ Aperf be represented by a ∈ An = A with [0] = [a]p = [ap] = [FA(a)]. By
definition of the inductive limit, we find m ∈ N with n ≤ m such that

0 = ϕnm(0) = ϕnm (FA(a)) = Fm−n
A (FA(a)) = Fm+1−n

A (a),

i.e., we obtain that ϕn,m+1(a) = 0 = ϕn,m+1(0) and therefore [a] = [0] in Aperf. This
shows that FAperf is injective.

To see that FAperf is also surjective, let [a] ∈ Aperf be represented by a ∈ An = A. Note
that we can use n ≤ n+1 and n+1 ≤ n+1 to see that ϕn,n+1(a) = ϕn+1,n+1 (ϕn,n+1(a)) .
Thus [a] = [FA(a)] = [ap] = [a]p, which shows the surjectivity of FAperf . Altogether,
Aperf is a perfect Fp-algebra.

The following strong uniqueness property comes directly out of the universal property
of the perfect closure.

Corollary 1.5
Let (R,ϕR) be a perfect closure ofA. Then there is a unique isomorphism ϕ̃A : R→ Aperf

of Fp-algebras satisfying ϕA = ϕ̃A ◦ ϕR.

Proof
Consider the ring homomorphism ϕA : A→ Aperf. By the universal property of R there
exists a unique ring homomorphism ϕ̃A : R→ Aperf such that ϕA = ϕ̃A ◦ϕR. Likewise,
we can apply the universal property of Aperf to ϕR : A → R and find a unique ring
homomorphism ϕ̃R : Aperf → R such that ϕR = ϕ̃R ◦ ϕA.

We notice that ϕ̃A ◦ ϕ̃R ◦ ϕA = ϕ̃A ◦ ϕR = ϕA and thus, both ϕ̃A ◦ ϕ̃R and idAperf make

A Aperf

Aperf

ϕA

ϕA

commutative, i.e. ϕ̃A ◦ ϕ̃R = idAperf by uniqueness.
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Likewise ϕ̃R ◦ ϕ̃A ◦ ϕR = ϕ̃R ◦ ϕA = ϕR and therefore, both ϕ̃R ◦ ϕ̃A and idR make

A R

R

ϕR

ϕR

commutative, i.e. we see that ϕ̃R ◦ ϕ̃A = idR by uniqueness. Thus, Aperf ∼= R.

Example 1.6
Let K be a field of characteristic p and define L :=

{
x ∈ Kalg : ∃n ≥ 0 : xp

n ∈ K
}

.
Then L is a perfect field that contains K. We claim that (L,⊆) has the universal
property of Kperf. Let A be a perfect Fp-algebra and let f : K → A be a ring
homomorphism. For x ∈ L arbitrary we find n ≥ 0 such that xp

n ∈ K and we
define f̃ =

(
x 7→ f(xp

n
)1/pn

)
: L → A. Note that if m ≥ 0 such that xp

m ∈ K, say
m = n+ k, then

f
(
xp

m)1/pm

= f
(

(xp
n

)p
k
)1/pm

= f
(
xp

n)pk/pm
= f

(
xp

n)1/pn

and hence, f̃ is well-defined. One can check directly that f̃ is a ring homomorphism
and it is clear by construction that

K L

A

⊆

f
f̃

commutes. For the uniqueness of f̃ assume that h : L → A is another ring homomor-
phism that makes

K L

A

⊆

f

commutative. Let x ∈ L, then there exists n ≥ 0 such that xp
n ∈ K and we calculate

h(x)p
n

= h
(
xp

n)
= f

(
xp

n)
=
(
f
(
xp

n)1/pn
)pn

= f̃(x)p
n

and see that h = f̃ since A is perfect. Thus, by Corollary 1.5 we have L ∼= Kperf.

Lemma 1.7
ϕA : A → Aperf satisfies ker(ϕA) = RadA(0). In particular, ϕA is injective if and only
if A is reduced, i.e. RadA(0) = 0.

Proof
Let a ∈ A = A0 such that ϕA(a) = 0, i.e. [a] = [0] in Aperf. By definition of Aperf, we
find m ∈ N such that 0 = ϕ0m(0) = ϕ0m(a) = Fm

A (a) = ap
m

, i.e. a ∈ RadA(0).

Conversely, let a ∈ RadA(0), then there exists n ∈ N such that an = 0 in A. Now
choose m ∈ N such that n ≤ pm, then ap

m
= ap

m−nan = 0 and with that we see
ϕA(a)p

m
= ϕA

(
ap

m)
= ϕA(0) = 0, i.e. ϕA(a) = 0 by the bijectivity of FAperf .
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Remark 1.8
The above proof also shows that ker(ϕA) =

⋃
n≥0 ker(F n

A).

Lemma 1.9
If FA is injective, so is ϕA. If FA is surjective, ϕA is surjective as well, in particular
A/RadA(0) ∼= Aperf.

Proof
If FA is injective, then so is ϕA by Remark 1.8. Now assume that FA is surjective
and let [a] ∈ Aperf be represented by a ∈ An = A. Since FA is surjective, there is
b ∈ A = A0 such that F n

A(b) = a, i.e. ϕ0n(b) = ϕnn(a) and thus [a] = [b] = ϕA(b). The
final statement follows from Lemma 1.7.

Example 1.10
Let A := Fp[t], we claim Aperf ∼= B :=

⋃
n≥0 Fp

[
t1/p

n] ⊆ Frac (Fp[t])alg.
Indeed, (B,⊆) is a perfect closure of A. To see this, let C be a perfect Fp-algebra and
let f ∈ HomFp-alg(A,C). We define f̃ : B → C in the obvious way by mapping t1/p

n
to

f(t)1/pn which is possible since C is perfect. We see that

A B

C

⊆

f
f̃

commutes and an easy calculation shows that f̃ is the unique ring homomorphism with
that property and thus, by Corollary 1.5, Aperf ∼= B.

We will now consider the dual notion of the inverse perfection of an Fp-algebra.

Definition 1.11
For an Fp-algebra A, an inverse perfection of A is a perfect Fp-algebra Aperf together
with a ring homomorphism ψA : Aperf → A, in short (Aperf, ψA), such that it satisfies
the following universal property:
For any ring homomorphism f : B → A with B a perfect Fp-algebra there exists a
unique ring homomorphism f̃ : B → Aperf such that f = ψA ◦ f̃ , i.e., the following
diagram commutes:

B Aperf

A

∃!f̃

f
ψA
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Proposition 1.12
Every Fp-algebra A has an inverse perfection (Aperf, ψA).

Proof
Let A be an Fp-algebra and set An := A and ϕmn := F n−m

A : An → Am for m ≤ n.
This defines a projective system (An, ϕmn) over N:

• ϕnn = F 0
A = idA

• m ≤ n ≤ k, then ϕmn ◦ ϕnk = F n−m
A ◦ F k−n

A = F k−m
A = ϕmk .

Set

Aperf := lim←−
n∈N

An

=

{
(an)n ∈

∏
n∈N

An : am = ϕmn(an) for all m ≤ n in N

}

=

{
(an)n ∈

∏
n∈N

An : FA(an+1) = an for all n ∈ N

}
,

coming with a ring homomorphism ψA : Aperf → A0 = A, (an)n 7→ a0.

Let B be a perfect Fp-algebra and let f ∈ HomFp-alg(B,A).
Set fn :=

(
b 7→ f

(
b1/pn

))
: B → An and note that fn is well defined since B is perfect.

Let m,n ∈ N with m ≤ n, then ϕmn ◦ fn = fm and, by the universal property of the
projective limit, there exists a unique ring homomorphism f̃ : B → Aperf such that
f = ψA ◦ f̃ . In fact, f̃(b) =

(
f
(
b1/pn

))
n
.

Finally, we note that Aperf is perfect:

For the surjectivity of FAperf
let (an)n ∈ Aperf and notice that

(an)n = (a0, a1, a2, a3, ...) = (ap1, a
p
2, a

p
3, ...) = (a1, a2, a3, ...)

p

where (a1, a2, a3, ...) ∈ Aperf, i.e. FAperf
is surjective.

In order to see that FAperf
is injective as well, let (an)n ∈ ker(FAperf

). Then

0 = (an)pn = (apn)n = (ap0, a0, a1, a2, a3, ...) ,

i.e. (an)n = 0. Altogether, this shows that FAperf
is bijective.

The following strong uniqueness property comes directly out of the universal property
of the inverse perfection.

Corollary 1.13
Let (R,ψR) be an inverse perfection of A. Then there is a unique isomorphism

ψ̃A : Aperf → R of Fp-algebras satisfying ψA = ψR ◦ ψ̃A.

Proof
The result follows from the application of the universal property to both ψA and ψR. A
direct computation shows that the obtained ring homomorphisms are inverse to each
other using the uniqueness statement in the universal property.
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Lemma 1.14
If FA is surjective or if FA is injective, it holds that Im(ψA) =

⋂
n∈N Im (F n

A).

Proof
Let a ∈ Im(ψA), then we have a = ψA ((an)n) = a0 for some (an)n ∈ Aperf, i.e.
FA(an+1) = an for all n ∈ N. By induction on n ∈ N we see that a = ap

n

n for all n ∈ N
and thus a ∈

⋂
n∈N Im(F n

A).

Conversely, let a ∈
⋂
n∈N Im(F n

A), then for all n ∈ N there exists some an ∈ A such
that a = ap

n

n . If FA is injective, it follows from

ap
n

n = a = ap
n+1

n+1 =
(
apn+1

)pn
that apn+1 = an and thus (an)n ∈ Aperf such that a = ψA((an)n) ∈ Im(ψA).

If FA is surjective, we set a0 := a und use the surjectivity to define (an)n ∈ Aperf

inductively such that a = ψA((an)n) ∈ Im(ψA).

Remark 1.15
One can show that the conclusion of the previous lemma holds more generally if the
projective system (ker(F n

A), FA)n∈N satisfies the so-called Mittag-Leffler condition.

Lemma 1.16
If FA is surjective, so is ψA. If FA is injective, so is ψA and we have:

Aperf
∼=
⋂
n∈N

Im(F n
A).

Proof
We only need to show that the injectivity of FA implies the injectivity of ψA, the rest
follows from the previous lemma. Therefore, let FA be injective. Let (an)n ∈ ker(ψA),
i.e. 0 = ψA((an)n) = a0. Using FA((an+1)) = an for all n ∈ N, an induction on n ∈ N
shows that (an)n = 0 because FA is injective. This implies that ψA is injective as well.

Example 1.17
Let A := Fp[t]. By the previous lemma we see that

Aperf
∼= Im(ψA) =

⋂
n∈N

Im(F n
A) =

⋂
n∈N

Fp
[
tp

n]
= Fp ⊆ Fp[t] = A .
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We now show that both the direct perfection as well as the inverse perfection are
functorial and that they give rise to certain adjunctions. This result is completely
formal and follows from the universal properties in Definition 1.3 and Definition 1.11.

Proposition 1.18
The inclusion functor ι : Fp-perf→ Fp-alg has a left adjoint

(·)perf : Fp-alg→ Fp-perf

and a right adjoint
(·)perf : Fp-alg→ Fp-perf,

i.e. functors such that for all A ∈ Fp-alg and for all B ∈ Fp-perf we have a functorial
bijection in A and B:

HomFp-alg(A,B) ∼= HomFp-perf(A
perf, B)

and
HomFp-alg(B,A) ∼= HomFp-perf(B,Aperf).

Proof
We have done some of the work already by showing the existence of Aperf and Aperf.
Now let us first focus on (·)perf : Fp-alg → Fp-perf. Let f ∈ HomFp-alg(A,B) and
consider ϕB ◦ f : A→ Bperf, since Bperf is perfect we get a commutative diagram:

A Aperf

Bperf

ϕA

ϕB◦f
∃!fperf:=ϕ̃B◦f

Thus, fperf ◦ ϕA = ϕB ◦ f .

Consider the diagram:

A Aperf

Aperf

ϕA

ϕA◦idA
∃!idperfA

Clearly idAperf ◦ ϕA = ϕA = ϕA ◦ idA and therefore idperf
A = idAperf by uniqueness.

Now let f ∈ HomFp-alg(A,B) and let g ∈ HomFp-alg(B,C) and consider g ◦ f : A→ C.
We apply the universal property of Aperf to ϕC◦(g◦f) and get the following commutative
diagram:

A Aperf

Cperf

ϕA

ϕC◦(g◦f)
∃!(g◦f)perf
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Now consider the diagram:

A Aperf

B Bperf

C Cperf

f

ϕA

fperf

g

ϕB

gperf

ϕC

The two small squares commute by construction of fperf and gperf. Therefore, also the
outer square commutes. Thus, uniqueness gives gperf ◦ fperf = (g ◦ f)perf.

Altogether, we have a functor (·)perf

Fp-alg 3 A 7→ Aperf ∈ Fp-perf

HomFp-alg(A,B) 3 f 7→ fperf ∈ HomFp-perf(A
perf, Bperf).

Let us now show that (·)perf is left adjoint to ι, for this let A ∈ Fp-alg and let B ∈ Fp-
perf. Consider

Φ = (f 7→ f̃) : HomFp-alg(A,B)→ HomFp-perf(A
perf, B) and

Ψ = (g 7→ g ◦ ϕA) : HomFp-perf(A
perf, B)→ HomFp-alg(A,B),

we see that for f ∈ HomFp-alg(A,B) we have

(Ψ ◦ Φ)(f) = Ψ
(
f̃
)

= f̃ ◦ ϕA = f.

For the other direction note that both ϕ̃A and idAperf make the diagram

A Aperf

Aperf

ϕA

ϕA

commutative, i.e. ϕ̃A = idAperf by uniqueness. Furthermore, both g and g̃ ◦ ϕA make
the diagram

A Aperf

B

ϕA

g◦ϕA

commutative, i.e. g=g̃ ◦ ϕA by uniqueness. Now we calculate

(Φ ◦Ψ)(g) = Φ(g ◦ ϕA) = g̃ ◦ ϕA = g ◦ idAperf = g

and thus HomFp-alg(A,B) ∼= HomFp-perf(A
perf, B), i.e. (·)perf is left adjoint to ι.
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Let us now focus on (·)perf, for this let f ∈ HomFp-alg(A,B) and define f◦ψA : Aperf → B,
by the universal property of Bperf we get the commutative diagram:

Aperf Bperf

B

∃!fperf:=f̃◦ψA

f◦ψA

ψB

Thus, ψB ◦ fperf = f ◦ ψA.

Now consider the diagram

Aperf Aperf

A
idA◦ψA

ψA

and notice that both idAperf
and (idA)perf make the diagram commutative and therefore

by uniquenuess idAperf
= (idA)perf.

Now let f ∈ HomFp-alg(A,B) and let g ∈ HomFp-alg(B,C) and consider ((g ◦ f) ◦ ψA) :
Aperf → C. We notice that both (g ◦ f)perf and gperf ◦ fperf make the diagram

Aperf Cperf

C
(g◦f)◦ψA

ψC

commutative. To see this, consider the diagram:

Aperf Bperf Cperf

A B C

ψA

fperf

ψB

gperf

ψC

f g

The two small squares commute by construction of fperf and gperf. Therefore, also the
outer square commutes. Thus, by uniqueness (g ◦ f)perf = gperf ◦ fperf.

Altogether we have a functor (·)perf

Fp-alg 3 A 7→ Aperf ∈ Fp-perf

HomFp-alg(A,B) 3 f 7→ fperf ∈ HomFp-perf(A
perf, Bperf).
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Let us now show that (·)perf is right adjoint to ι, for this let A ∈ Fp-alg and let B ∈ Fp-
perf. Consider

Φ = (f 7→ f̃) : HomFp-alg(B,A)→ HomFp-perf(B,Aperf) and

Ψ = (g 7→ ψA ◦ g) : HomFp-perf(B,Aperf)→ HomFp-alg(B,A),

we see that for f ∈ HomFp-alg(B,A) we have

(Ψ ◦ Φ)(f) = Ψ
(
f̃
)

= ψA ◦ f̃ = f.

For the other direction note that both idAperf
and ψ̃A make the diagram

Aperf Aperf

A
ψA

ψA

commutative, i.e. idAperf
= ψ̃A by uniqueness. Furthermore, both idAperf

◦ g and ψ̃A ◦ g
make the diagram

B Aperf

A

ψA◦g
ψA

commutative, and by uniqueness we see once more that idAperf
◦ g = ψ̃A ◦ g. This gives

us for g ∈ HomFp-perf(B,Aperf)

(Φ ◦Ψ)(g) = Φ(ψA ◦ g) = ψ̃A ◦ g = idAperf
◦ g = g.

Thus, HomFp-alg(B,A) ∼= HomFp-perf(B,Aperf), i.e. (·)perf is right adjoint to ι.

Remark 1.19
Note that we can give an explicit description of fperf by considering the mapping
g := ([a] 7→ [f(a)]) : Aperf → Bperf. Let us first note that if [a] = [b] in Aperf where
a ∈ An and b ∈ Am, there is k ∈ N with n ≤ k and m ≤ k such that by definition of the
inductive limit F k−n

A (a) = F k−m
A (b) and applying f gives us F k−n

B (f(a)) = F k−m
B (f(b)),

i.e. [f(a)] = [f(b)] in Bperf. Of course g is a ring homomorphism and for a ∈ A we
have

(g ◦ ϕA)(a) = g([a]) = [f(a)] = ϕB(f(a)) = (ϕB ◦ f)(a).

And therefore fperf = g by uniqueness since both g and fperf make the following diagram
commutative:

A Aperf

Bperf

ϕA

ϕB◦f

11



Likewise we can give an explicit description of fperf as well. For this consider the
mapping g := ((an)n 7→ (f(an))n) : Aperf → Bperf. Note that this defines a well defined
ring homomorphism since FB(f(an+1)) = f(FA(an+1)) = f(an), i.e. (f(an))n ∈ Bperf.
Now let (an)n ∈ Aperf and calculate

(ψB ◦ g)((an)n) = ψB((f(an))n) = f(a0) = f(ψA((an)n)) = (f ◦ ψA)((an)n).

By uniqueness fperf = g since both make the following diagram commutative:

Aperf Bperf

B
f◦ψA

ψB

Lemma 1.20
Localizations of perfect Fp-algebras are perfect.

Proof
Let A ∈ Fp-perf and S ⊆ A multiplicatively closed. We need to check that FAS−1 is
an isomorphism. For that let a

s
∈ AS−1 such that

(
a
s

)p
= 0 in AS−1. By definition of

AS−1 there exists an u ∈ S such that apu = 0 in A. But then

FA(au) = (au)p = apup = (apu)up−1 = 0

and this means au = 0 in A since A is perfect, by definition of AS−1 we see that a
s

= 0

in AS−1, i.e. FAS−1 is injective. Now let a
s
∈ AS−1, then a

s
= asp−1

sp
with asp−1 ∈ A, by

surjectivity of FA there exists b ∈ A such that bp = asp−1, it follows

FAS−1

(
b

s

)
=

(
b

s

)p
=
bp

sp
=
asp−1

sp
=
a

s
.

Thus, FAS−1 is an isomorphism.

Proposition 1.21
(·)perf commutes with localizations in the following sense, let A ∈ Fp-alg and let S ⊆ A
multiplicatively closed. Then

ϕA(S) ⊆ ϕA(S)perf :=
{
a ∈ Aperf : ∃n ≥ 0 : ap

n ∈ ϕA(S)
}
⊆ Aperf

are both multiplicatively closed and we have

AperfϕA(S)−1 ∼= Aperf((ϕA(S))perf)−1 ∼= (AS−1)perf.

Proof
It is clear that the two sets in question are multiplicatively closed. Let us first show
that AperfϕA(S)−1 ∼= (AS−1)perf. For this consider the canonical ring homomorphisms

fAS−1 : A→ AS−1 and fAperfϕA(S)−1 : Aperf → AperfϕA(S)−1.

Define ϕ := fAperfϕA(S)−1◦ϕA : A→ AperfϕA(S)−1 and note that ϕ(s) ∈ (AperfϕA(S)−1)×

for all s ∈ S.

12



By the universal property of localization we obtain a unique ring homomorphism ϕ̃
such that the following diagram commutes:

A AS−1

AperfϕA(S)−1

fAS−1

ϕ ∃!ϕ̃

We now claim that (AperfϕA(S)−1, ϕ̃) has the universal property of (AS−1)perf, i.e.
AperfϕA(S)−1 is a perfect closure of AS−1. For this note that AperfϕA(S)−1 is perfect
by the previous lemma. Let C ∈ Fp-perf and let g ∈ HomFp-alg(AS−1, C). We apply
the universal property of Aperf to (g ◦ fAS−1) : A → C and we obtain a unique ring
homomorphism (g ◦ fAS−1)∼ such that the following diagram commutes:

A Aperf

C

ϕA

g◦fAS−1

∃!(g◦fAS−1 )∼

It follows that for all u ∈ ϕA(S) we have (g ◦ fAS−1)∼(u) ∈ C× and thus, by the
universal property of AperfϕA(S)−1 we obtain a unique ring homomorphism g̃ such that
the following diagram commutes:

Aperf AperfϕA(S)−1

C

f
AperfϕA(S)−1

(g◦fAS−1 )∼
∃!g̃

Note that g̃ makes the diagram

AS−1 AperfϕA(S)−1

C

ϕ̃

g
g̃

commutative, because if a
s
∈ AS−1, then

(g̃ ◦ ϕ̃)
(a
s

)
= g̃

(
ϕ̃
(a
s

))
= g̃

(
ϕ(a)ϕ(s)−1

)
= g̃(ϕ(a))(g̃(ϕ(s)))−1

= (g̃ ◦ fAperfϕA(S)−1 ◦ ϕA)(a)((g̃ ◦ fAperfϕA(S)−1 ◦ ϕA)(s))−1

= ((g ◦ fAS−1)∼ ◦ ϕA)(a)(((g ◦ fAS−1)∼ ◦ ϕA)(s))−1

= (g ◦ fAS−1)(a)((g ◦ fAS−1)(s))−1

= g(fAS−1(a) (fAS−1(s))−1) = g
(a
s

)
.

13



Assume h : AperfϕA(S)−1 → C makes the diagram commutative as well, i.e. h ◦ ϕ̃ = g.
Then we have

h ◦ fAperfϕA(S)−1 ◦ ϕA = h ◦ ϕ = h ◦ ϕ̃ ◦ fAS−1 = g ◦ fAS−1

and hence, by the uniqueness in the universal property of Aperf it follows that
h ◦ fAperfϕA(S)−1 = (g ◦ fAS−1)∼, i.e. h = g̃ by the uniqueness in the universal property
of the localization AperfϕA(S)−1. Thus, AperfϕA(S)−1 is a perfect closure of AS−1 and
by corollary 1.5 AperfϕA(S)−1 ∼= (AS−1)perf as claimed.

It is clear from the universal property that ϕA(S) and ϕA(S)perf lead to isomorphic
localizations.

Remark 1.22
The analogous statement for Aperf is wrong which is the main reason why we cannot
glue (·)perf to a functor on Fp-schemes.

Example 1.23
Let A := Fp[t]/(tp) and S := {tn : n ∈ N}. It is easy to check that S is multiplicatively
closed. Obviously 0 ∈ S and therefore we have AS−1 = 0 and thus (AS−1)perf = 0.
Moreover it is easy to check that the ring homomorphism (α 7→ (α, α, α, ...)) : Fp → Aperf

is an isomorphism of Fp-algebras. But then ψ−1
A (S) = {1} and we see

Aperfψ
−1
A (S) ∼= Aperf

∼= Fp 6= 0 = AS−1.

Lemma 1.24
If f ∈ HomFp-alg(A,B) is injective, so are fperf and fperf. If f ∈ HomFp-alg(A,B) is
surjective, so is fperf.

Proof
Assume f : A → B is injective. Say [a] ∈ Aperf represented by a ∈ An = A, such
that 0 = fperf([a]) = [f(a)] where [f(a)] is represented by f(a) ∈ Bn = B. Then there
exists m ≥ n such that 0 = Fm−n

B (f(a)) = f(ap
m−n

) and by injectivity of f we see that
ap

m−n
= 0, i.e. Fm−n

A (a) = 0 and thus [a] = 0, i.e. fperf is injective.
If (an)n ∈ Aperf such that 0 = fperf((an)n) = (f(an))n, then f(an) = 0 for all n ∈ N.
Hence an = 0 for all n ∈ N by injectivity of f and thus fperf is injective.

Let us now assume that f : A → B is surjective and let [b] ∈ Bperf be represented by
b ∈ Bn = B. Since f is surjective, there is a ∈ An = A such that f(a) = b, but then
fperf([a]) = [f(a)] = [b], i.e. fperf is surjective.

Proposition 1.25
If f ∈ HomFp-alg(A,B), then Aperf/ ker(fperf) ∼= (A/ ker(f))perf.

Proof
Let π : A → A/ ker(f) be the canonical map. By the previous lemma we see that
πperf : Aperf → (A/ ker(f))perf is surjective. Thus, we claim ker(fperf) = ker(πperf). Let
[a] ∈ ker(πperf) be representated by a ∈ An = A. Then we have 0 = πperf([a]) = [π(a)] in
(A/ ker(f))perf, i.e. there exists m ≥ n such that 0 = Fm−n

A/ ker(f)(π(a)) = π(ap
m−n

). This

means that ap
m−n ∈ ker(f), i.e. 0 = f(ap

m−n
) = Fm−n

B (f(a)), but then 0 = [f(a)] =
fperf([a]), i.e. [a] ∈ ker(fperf). Reversing these steps shows that ker(fperf) ⊆ ker(πperf).
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Proposition 1.26
If Ared := A/RadA(0) then the canonical map π : A → Ared induces an isomorphism
πperf : Aperf → (Ared)perf.

Proof
By the previous proposition we have (Ared)perf ∼= Aperf/ ker(πperf) and therefore it is
enough to see that ker(πperf) = 0. For this let [a] ∈ ker(πperf) be represented by
a ∈ An = A. Then 0 = πperf([a]) = [π(a)] in (Ared)perf and thus, there exists m ≥ n
such that 0 = Fm−n

Ared
(π(a)) = π(ap

m−n
), i.e. ap

m−n ∈ ker(π) = RadA(0) = ker(ϕA) by

Lemma 1.7. This means 0 = ϕA(ap
m−n

) = Fm−n
Aperf (ϕA(a)), i.e. ϕA(a) = 0. Recall that

by definition of Aperf we therefore have that 0 = ϕA(a) = [a]p
n
, i.e. [a] = 0.

Example 1.27
The analogous statement for Aperf is wrong, i.e. in general (Ared)perf 6= (Aperf). Let
B := Fp[t]perf =

⋃
n≥0 Fp[t1/p

n
] and A := B/(t).

Then we have RadA(0) = (t1/p
n

+ (t) : n ∈ N) and therefore Ared
∼= Fp, this means

(Ared)perf
∼= Fp. But the canonical ring homomorphism π : B → A induces a ring

isomomorphism

πperf : B ∼= Bperf → Aperf

b 7→
(
b1/pn

)
n
7→
(
b1/pn + (t)

)
n

and thus,
(Aperf)red

∼= Bred = B 6= Fp = (Ared)perf.

Proposition 1.28
Let A ∈ Fp-alg and let B and C be A-algebras. Then the canonical map

B ⊗A C → Bperf ⊗Aperf Cperf

induces an isomorphism of perfect Fp-algebras

(B ⊗A C)perf → Bperf ⊗Aperf Cperf.

Proof
The strategy of the proof is to use the Yoneda lemma after showing that for arbitrary
D ∈ Fp-perf we have HomFp-alg((B⊗AC)perf, D) ∼= HomFp-alg(Bperf⊗Aperf Cperf, D).
For more details see Lemma 4.10 in [1].

Proposition 1.29
Let f ∈ HomFp-alg(A,B). If f is a flat ring homomorphism so is the ring homomorphism
fperf ∈ HomFp-alg(Aperf, Bperf).

Proof
Since f is a flat ring homomorphism, we see that Bn is flat over An for all n ∈ N.
Thus, for all n ∈ N we get that Bn ⊗An A

perf is flat over Aperf and since direct limits
preserve flatness, we see that lim−→n∈NBn⊗AnA

perf is flat over Aperf. Finally, we note that

lim−→n∈NBn⊗AnA
perf ∼= Bperf and thus, Bperf is flat over Aperf via fperf. The isomorphism

is due to Bourbaki in [2], Chapter 2, § 6, Corollary 2 after Proposition 7.
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Proposition 1.30
If A ∈ Fp-alg then Spec(ϕA) : Spec(Aperf)→ Spec(A) is a homeomorphism.

Proof
Let p ∈ Spec(A) and π : A → A/p be the canonical map. Note that together with
A/p also its perfect closure (A/p)perf is an integral domain. Thus, 0 is a prime ideal
of (A/p)perf and f(p) := ker(πperf : Aperf → (A/p)perf) = (πperf)−1(0) is a prime ideal of
Aperf.

We can now define f := (p 7→ ker(πperf : Aperf → (A/p)perf)) : Spec(A) → Spec(Aperf)
and we claim that f is the inverse of Spec(ϕA):
Let p ∈ Spec(A). Then we have

(Spec(ϕA) ◦ f) (p) = ϕ−1
A

(
ker
(
πperf

))
=
{
a ∈ A : ϕA(a) ∈ ker(πperf)

}
=
{
a ∈ A : 0 = πperf(ϕA(a)) = [π(a)]

}
=
{
a ∈ A : ∃m ≥ 0 : 0 = Fm

A/p(π(a)) = π(ap
m

)
}

=
{
a ∈ A : ∃m ≥ 0 : ap

m ∈ ker(π) = p
}

= {a ∈ A : a ∈ p}
= p.

And for p ∈ Spec(Aperf) we have

(f ◦ Spec(ϕA)) (p) = f
(
ϕ−1
A (p)

)
= ker

(
Aperf → (A/ϕ−1

A (p))perf
)

=
{
a ∈ Aperf : ∃n ≥ 0 : ap

n ∈ ϕA(ϕ−1
A (p))

}
=
{
a ∈ Aperf : ∃n ≥ 0 : ap

n ∈ p
}

= p

where we used that if x ∈ p, there exists n ∈ N such that xp
n ∈ ϕA(A), i.e. xp

n
= ϕA(a)

with a ∈ ϕ−1
A (p). Therefore f is the inverse of Spec(ϕA) as claimed.

It is a well-known fact that Spec(ϕA) is continuous and therefore we just need to show
that f is continuous as well. For this let I ⊆ Aperf be an ideal, then we have the equality
f−1(V (I)) = V (ϕ−1

A (I)). In order to see this let q ∈ f−1(V (I)), then f(q) ∈ V (I), i.e.
I ⊆ f(q), but then

ϕ−1
A (I) ⊆ ϕ−1

A (f(q)) = (Spec(ϕA) ◦ f)(q) = q,

i.e. q ∈ V (ϕ−1
A (I)).

Conversely let q ∈ V (ϕ−1
A (I)), then ϕ−1

A (I) ⊆ q. Now let x ∈ I, then there exists n ≥ 0
such that xp

n ∈ ϕA(A), say xp
n

= ϕA(a) with a ∈ ϕ−1
A (I) ⊆ q, then

πperf
(
xp

n)
= πperf (ϕA(a)) = [π(a)] = 0.

Hence, xp
n ∈ f(q), i.e. x ∈ f(q) and thus I ⊆ f(q). But this means that f(q) ∈ V (I),

i.e. q ∈ f−1(V (I)). Consequently, Spec(ϕA) is a homeomorphism.
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2 Perfect closure of Fp-schemes

Lemma 2.1
If A ∈ Fp-alg then the following statements are equivalent:

(i) A is perfect.

(ii) For all p ∈ Spec(A) it holds that Ap perfect.

Proof
(i) ⇒ (ii): Follows from Lemma 1.20.

(ii) ⇒ (i): Let B be the scalar restriction of A with respect to FA, i.e. B := FA∗A
where ab := FA(a)b for all a, b ∈ A. Now we can view FA : A→ B as an A-linear map
and thus, FA is bijective if and only if for all p ∈ Spec(A)

(FA)p := idAp ⊗ FA : Ap ⊗A A ∼= Ap → Bp := Ap ⊗A B

is bijective.

Let p ∈ Spec(A) and let ϕ = ((x, a) 7→ xpa) : Ap × B → Ap. We note that ϕ is A-
balanced and thus, by the universal property of the tensor product we obtain a unique
ring homomorphism ϕ̃ = (x ⊗ a 7→ xpa) : Ap ⊗A B → Ap. Now we claim that ϕ̃
is an isomorphism. If a

s
∈ Ap then ϕ̃

(
1
s
⊗ asp−1

)
= a

s
, i.e. ϕ̃ is surjective. Now let

x ∈ ker(ϕ̃), then x = 1
s
⊗ a since every element in Ap ⊗A B is a simple tensor. By

definition of localization 0 = ϕ̃(x) = ϕ̃
(

1
s
⊗ a
)

= a
sp

gives us the existence of u ∈ A \ p
such that au = 0 in A. Thus, we see that x = 1

s
⊗ a = u

su
⊗ a = 1

su
⊗ aup = 0, i.e. ϕ̃ is

injective. By construction the diagram

Ap Ap

Ap ⊗A A Ap ⊗A B

FAp

∼=

(FA)p

ϕ̃

is commutative. Since FAp is bijective we see that (FA)p is bijective. Altogether, A is
perfect.

Proposition 2.2
For an Fp-scheme X the following statements are equivalent:

(i) X admits an affine open covering X =
⋃
i∈I Xi such that for all i ∈ I the ring

OX(Xi) is perfect.

(ii) For all x ∈ X the ring OX,x is perfect.

(iii) For all U ⊆ X affine open the ring OX(U) is perfect.

(iv) For all U ⊆ X open the ring OX(U) is perfect.

Proof
(i)⇒(ii): Let x ∈ X and choose i ∈ I such that x ∈ Xi. Write Xi = Spec(Ai) and
write x = p, viewed as a prime ideal of Ai. Then OX,x = OXi,x

∼= (Ai)p and (Ai)p is
perfect by Lemma 2.1 since Ai ∼= OX(Xi) is perfect.
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(ii)⇒(i): Let (Xi)i∈I be any affine open covering of X and write Xi = Spec(Ai). Then
we have (Ai)p ∼= OX,p for all p ∈ Spec(Ai), i.e. (Ai)p is perfect for all p ∈ Spec(Ai),
but then OX(Xi) ∼= Ai is perfect by Lemma 2.1.

(ii)⇒(iii): Let U ⊆ X be affine open, write U = Spec(A) and let p ∈ U . Then
Ap
∼= OX,p and thus, Ap is perfect for all p ∈ Spec(A). By Lemma 2.1 we see that

OX(U) ∼= A is perfect.

(iii)⇒(iv): Let U ⊆ X be open, then (U,OU) is a scheme and thus, U admits an affine
open covering (Ui)i∈I . By assumption for all i ∈ I the ring OU(Ui) is perfect. By (i)
and (ii) we see that we have a ring homomorphism OX(U) ↪−→

∏
x∈U OU,x where all

the OU,x are perfect. In particular, all OU,x are reduced and thus, OX(U) is reduced.
This shows that FOX(U) is injective. For the surjectivity let g ∈ OX(U). Since all the
OU(Ui) are perfect, we find a preimage fi for g|Ui

, i.e. fpi = g|Ui
. By the injectivity

of the Frobenius on OU(Ui ∩ Uj) we can glue the fi to f ∈ OX(U), such that by
construction fp = g, i.e. FOX(U) is surjective. Altogether, OX(U) is perfect.

(iv)⇒(i): Clear.

Definition 2.3
Let X be an Fp-scheme, we call X perfect if X satisfies the equivalent conditions in
Proposition 2.2.

Recall that the absolute Frobenius morphism FX : X → X of an Fp-scheme X is the
identity on the underlying topological space and is the p-power map on OX(U) for any
open subset U ⊆ X. As an immediate consequence of Proposition 2.2 we obtain the
following result.

Corollary 2.4
X is perfect if and only if the absolute Frobenius morphism FX : X → X is an
isomorphism.

Note that the absolute Frobenius is functorial in the sense that if f : X → Y is a
morphism of Fp-schemes then the following diagram commutes:

X X

Y Y

FX

f f

FY

(1)

Definition 2.5
Let X be an Fp-scheme. A perfect closure of X is a perfect Fp-scheme Xperf together
with a morphism ϕX : Xperf → X, in short (Xperf, ϕX), such that it satisfies the
following universal property:
For any morphism of Fp-schemes f : Z → X with Z a perfect Fp-scheme there exists
a unique morphism f̃ : Z → Xperf satisfying f = ϕX ◦ f̃ , i.e., the following diagram
commutes:

Z X

Xperf

f

∃!f̃
ϕX

18



Proposition 2.6
Every Fp-scheme X has a perfect closure (Xperf, ϕX).

Proof
There are several approaches to the construction of Xperf. We will start with a con-
struction based on projective limits in the category of Fp-schems. This approach is also
carried out in [6], Theorem 6.2.3. We will comment on alternative constructions below,
relying on the results on perfect closures of rings from the the previous section.

Let X be an Fp-scheme and consider the projective system (Xn, ϕmn) over N given by
Xn := X, ϕmn := F n−m

X : Xn → Xm for m ≤ n. By Lemma 32.2.2 in [7], the limit
Xperf := lim←−n∈NXn exists in the category of Fp-schemes. For this note that the powers
of FX : X → X are affine because they are the identity on the underlying topological
space of X. Consider the canonical projections πn : Xperf → Xn and set ϕX := π0.
Let ψn : Xn+1 → Xn be the identity map and consider ψn ◦ πn+1 : Xperf → Xn.
Then for m ≤ n

Xn+1 Xn

Xm+1 Xm

ψn

ϕm+1,n+1 ϕmn

ψm

commutes, and thus

Xperf Xn

Xm

ψm◦πm+1

ψn◦πn+1

ϕmn

commutes. By the universal property of projective limits there exists a unique mor-
phism ψ : Xperf → Xperf such that

Xperf Xperf

Xn

ψ

ψn◦πn+1
πn

commutes. Together with (1) we see that

πn ◦ FXperf ◦ ψ = FXn ◦ πn ◦ ψ
= FXn ◦ ψn ◦ πn+1

= ψn ◦ FXn+1 ◦ πn+1

= ϕn,n+1 ◦ πn+1

= πn.
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And thus, both idXperf and FXperf ◦ ψ make

Xperf

Xperf

Xn Xm

πn πm

πn πm

ϕmn

commutative. Hence, by the uniqueness statement in the universal property of projec-
tive limits we have FXperf ◦ψ = idXperf . Analogously one shows that ψ ◦ FXperf = idXperf

and thus, Xperf is a perfect Fp-scheme.
Now let Z be a perfect Fp-scheme and let f : Z → X be a morphism of Fp-schemes.
For n ∈ N set fn := f ◦ F−nZ where F−nZ := (F−1

Z )n. Let n ≥ m. On the level of
topological spaces it is clear that ϕmn ◦ fn = fm and for U ⊆ X open we have by (1)

(ϕmn ◦ fn)#
U =

(
ϕmn ◦ f ◦ F−nZ

)#

U

=
(
f ◦ F n−m

Z ◦ F−nZ
)#

U

=
(
f ◦ F−mZ

)#

U

= (fm)#
U .

And thus, by the universal property of the projective limit there exists a unique mor-
phism f̃ : Z → Xperf such that πn ◦ f̃ = fn for all n ∈ N. In particular:

ϕX ◦ f̃ = π0 ◦ f̃ = f0 = f.

The following strong uniqueness property comes directly out of the universal property
of (Xperf, ϕX).

Corollary 2.7
The perfect closure is unique up to unique isomorphism, i.e., if (Y, ψY ) is a perfect
closure of X, then there is a unique isomorphism ϕ̃X : Xperf → Y of Fp-schemes
satisfying ϕX = ψY ◦ ϕ̃X .

Proof
This follows immediately from the universal property.

The universal property shows that (·)perf is a functor from the category of Fp-schemes
into the category of perfect Fp-schemes:

X Y

Xperf Y perf

f

ϕX

∃!fperf

ϕY

Moreover, the uniqueness in the universal property shows that

(idX)perf = idXperf and (g ◦ f)perf = gperf ◦ fperf.
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Corollary 2.8
If X = Spec(A) is an affine scheme, then (Spec(Aperf), Spec(ϕA)) has the universal
property of Xperf.

Proof
In fact, this follows directly from the construction of projective limits of affine schemes.
Namely, setting X = Spec(A), the proof of Lemma 32.2.2 in [7], shows that

Xperf = Spec(A)perf

= lim←−
n∈N

Spec(A)

= Spec(lim−→
n∈N

(A))

= Spec
(
Aperf

)
.

One can also argue via the universal property of Aperf as follows. Recall that if (X,OX)
is an Fp-scheme and if (Y,OY ) is an affine Fp-scheme, then the map

HomSch((X,OX), (Y,OY ))→ HomFp-alg(OY (Y ),OX(X))(
f, f#

)
7→ f#

Y

is a bijection (cf. [7], Lemma 26.6.4). Now let Z be a perfect Fp-scheme and let
f : Z → X = Spec(A). Together with Proposition 1.18 we get

HomSch(Z, Spec(A)) ∼= HomFp-alg(A,OZ(Z))

∼= HomFp-alg(Aperf,OZ(Z))

∼= HomSch

(
Z, Spec

(
Aperf

))
and therefore we obtain a morphism f̃ : Z → Spec

(
Aperf

)
. By construction it is the

unique morphism such that the following diagram commutes:

Spec(Aperf) Spec(A) = X

Z

Spec(ϕA)

f

f̃

Remark 2.9

(i) If X =
⋃
i∈I Xi is an affine open covering then Xperf =

⋃
i∈I X

perf
i is an affine

open covering. This follows from the construction of projective limits of schemes
in the proof of Lemma 32.2.2 in [7].

(ii) Together with Proposition 1.28 and Corollary 2.8 this shows that the fiber product
commutes with the perfect closure, i.e. (X ×Z Y )perf ∼= Xperf ×Zperf Y perf because
in the affine case we have for X = Spec(A), Y = Spec(B), Z = Spec(C):

(X ×Z Y )perf ∼= Spec(A⊗C B)perf

∼= Spec
(
(A⊗C B)perf

)
∼= Spec

(
Aperf ⊗Cperf B

perf
)

∼= Xperf ×Zperf Y perf.
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For the general case let f : X → Z and g : Y → Z. The construction of
the fiber product of schemes shows that if (Zi)i∈I is an affine open covering of
Z and if for all i ∈ I, (Xij)j∈J(i) and (Yik)k∈K(i) are affine open coverings of
Xi := f−1(Si), Yi := g−1(Si), then X ×Z Y =

⋃
i∈I
⋃
j∈J(i)

⋃
k∈K(i) Xij ×Zi

Yik is
an affine open covering of X ×Z Y and thus:

(X ×Z Y )perf =
⋃
i∈I

⋃
j∈J(i)

⋃
k∈K(i)

(Xij ×Zi
Yik)

perf

∼=
⋃
i∈I

⋃
j∈J(i)

⋃
k∈K(i)

Xperf
ij ×Zperf

i
Y perf
ik

= Xperf ×Zperf Y perf.

Remark 2.10
One can give a more explicit construction of Xperf. Namely, we can realize
(Xperf,OXperf) = (X,Operf

X ) where OXperf(U) := Operf
X (U) := OX(U)perf for all U ⊆ X

open and restriction maps OX(V )perf → OX(U)perf beeing the perfect closure of the
restriction maps OX(V ) → OX(U) for all U ⊆ V open. The morphism ϕX is the
identity on the level of topological spaces and ϕ#

X,U := ϕOX(U) : OX(U) → OX(U)perf.
That this really gives a sheaf of rings with local stalks can be checked using the results
on perfect closures of rings. For a morphism f : Z → X, f̃ is just f on the level of
topological spaces and f̃#

U := (f#
U )perf : OX(U)perf → OZ(f−1(U))perf ∼= OZ(f−1(U))

since Z is perfect.

Alternatively, the perfect closure can be constructed in the affine case using the proof
of Corollary 2.8 and glueing. That the perfect closure preserves open immersions can
be deduced from Proposition 1.21. More conceptually, it follows from the following
fact.

Proposition 2.11
ϕX : Xperf → X is a universal homeomorphism, i.e., for every morphism of Fp-schemes
f : Z → X, the morphism ϕX × idZ : Xperf×X Z → X ×X Z ∼= Z is a homeomorphism
on the level of topological spaces.

Proof
By Remark 2.9 (i), an affine open covering X =

⋃
i∈I Xi gives rise to an affine open cov-

ering Xperf =
⋃
i∈I X

perf
i . Let us first check that it is enough to show that ϕ−1

X (Xm)→
Xm is a universal homeomorphism. In fact, by Remark 2.10 ϕ−1

X (Xm) = Xperf
m . Let

us now assume that Xperf
m → Xm is a universally homeomorphism and show that this

is sufficient for the claim of the proposition. By Lemma 29.45.5 in [7] a morphism
of schemes is a universal homeomorphism if and only if it is surjective, integral and
universally injective.
It is clear that the surjectivity of Xperf

m → Xm implies the surjectivity of ϕX and by
Lemma 29.44.2 (3) in [7] ϕX is integral. If Xperf

m → Xm is universally injective, using
Lemma 29.10.2 in [7] we see that the diagonal morphism Xperf

m → Xm is surjective.
Since Xperf ×X Xperf =

⋃
i∈I X

perf
i ×Xi

Xperf
i is an affine open covering, it follows that

Xperf → Xperf ×X Xperf is surjective. Hence, ϕX is universally injective by Lemma
29.10.2 in [7].
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Altogether, by Remark 2.10 we can reduce to the affine case X = Spec(A) with
ϕX = Spec(ϕA). As seen above, it is sufficient to show that Spec(ϕA) is univer-
sally injective, surjective and integral. Let us first show that Spec(ϕA) is univer-
sally injective. By Lemma 29.10.2 in [7] we may show that Spec(ϕA) is radicial. By
Proposition 1.30 it is clear that Spec(ϕA) is injective. Let p ∈ Spec(Aperf) and let
x ∈ κ(p) = Aperf

p /pAperf
p . Let x = [a] be represented by a ∈ Aperf

p . Note that by Propo-

sition 1.21 Aperf
p
∼= (Aϕ−1

A (p))
perf where we used that Aperf\p = ϕA(A\ϕ−1

A (p))perf. But
then we get a well-defined ring homomorphism

ϕ := ϕA
ϕ−1
A

(p)
: κ(Spec(ϕA(p))) = Aϕ−1

A (p)/ϕ
−1
A (p)Aϕ−1

A (p) → Aperf
p /pAperf

p .

Interpreting a as element of (Aϕ−1
A (p))

perf, we find b ∈ Aϕ−1
A (p) such that ap

n
= ϕA

ϕ−1
A

(p)
(b)

for some n ≥ 0. By construction we have

xp
n

=
[
ap

pn
]

= [ϕA
ϕ−1
A

(p)
(b)] = ϕ([b]) ∈ κ(Spec(ϕA((p)))),

where we identify κ(Spec(ϕA(p))) with the image of ϕ. This shows that the extension
κ(p)/κ(Spec(ϕA)(p)) is purely inseparable, i.e., Spec(ϕA) is radicial. It is clear by
Proposition 1.30 that Spec(ϕA) is surjective. By Lemma 29.44.2 (2) in [7], Spec(ϕA)
is integral if and only if ϕA is integral. Let a ∈ Aperf, then we find n ≥ 0 and a0 ∈ A
such that ap

n
= ϕA(a0), hence ϕA is integral.

The following results are also contained in [5], Lemma 3.4.

Proposition 2.12
Let f : X → Y be a morphism of Fp-schemes. The following properties hold for f if
and only if they hold for fperf.

(i) quasi-compact

(ii) quasi-separated

(iii) affine

(iv) separated

(v) integral

(vi) universally closed

(vii) a universal homeomorphism

If f has one of the following properties, then so does fperf.

(viii) a closed immersion

(ix) an open immersion

(x) flat
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Proof
(i) and (iii): Since f and fperf agree on the level of topological spaces this is clear.

(ii): By definition f : X → Y is quasi-separated if and only if the diagonal morphism
MX/Y : X → X ×Y X is quasi-compact. Since (X ×Y X)perf ∼= Xperf ×Y perf Xperf we get

Mperf
X/Y =MXperf/Y perf . Therefore, the statement follows from (i).

(iv): If f is separated then the diagonal morphism MX/Y is a closed immersion. By (viii)

this implies that so is Mperf
X/Y =MXperf/Y perf whence fperf is separated by definition. Con-

versely, if fperf is separated then Mperf
X/Y is a closed immersion. But since the diagonal

morphism commutes with base change it is in fact universally closed. By (vi) so is
MX/Y . In particular, MX/Y is a closed immersion whence f is separated by definition.

(v): By definition we may assume that f = Spec(g) : Spec(B) → Spec(A) is affine.
Moreover, by Corollary 2.8 f = Spec(gperf)perf : Spec(Bperf)→ Spec(Aperf). This means
it is enough to show that a ring homomorphism g : A → B is integral if and only
if gperf : Aperf → Bperf is integral. Now assume that g : A → B is integral and let
x ∈ Bperf, then there exists n ≥ 0 such that xp

n ∈ ϕB(B), say xp
n

= ϕB(b) for some
b ∈ B. Since g is integral there is an equation

0 = bm + g(am−1)bm−1 + ...+ g(a0).

By applying ϕB we obtain the equation

0 = xmp
n

+ gperf(ϕA(am−1))x(m−1)pn + ...+ gperf(ϕA(a0)).

For this recall that by the construction of gperf the diagram

A B

Aperf Bperf

g

ϕA ϕB

gperf

commutes. Hence, gperf is integral.
For the converse let b ∈ B, since ϕB(b) ∈ Bperf we find an equation

0 = ϕB(b)n + gperf(an−1)ϕB(b)n−1 + ...+ gperf(a0).

Since aj ∈ Aperf we find mj ≥ 0 such that ap
mj

j = ϕA(ãj) for some ãj ∈ A. Let
m := max {m0, ...,mn−1} then using the commutativity of the above diagram

0 = ϕB(b)n + gperf(an−1)ϕB(b)n−1 + ...+ gperf(a0)

= (ϕB(b)n + gperf(an−1)ϕB(b)n−1 + ...+ gperf(a0))p
m

= ϕB(b)np
m

+ gperf
(
ap

m

n−1

)
ϕB(b)(n−1)pm + ...+ gperf(ap

m

0 )

= ϕB(b)np
m

+ gperf
(
ap

mn−1

n−1

)pm−pmn−1

ϕB(b)(n−1)pm + ...+ gperf
(
ap

m0

0

)pm−pm0

= ϕB(b)np
m

+ gperf(ϕA( ˜an−1))p
m−pmn−1

ϕB(b)(n−1)pm + ...+ gperf(ϕA(ã0))p
m−pm0

= ϕB(b)np
m

+ ϕB(g( ˜an−1))p
m−pmn−1

ϕB(b)(n−1)pm + ...+ ϕB(g(ã0))p
m−pm0

= ϕB

(
bnp

m

+ g( ˜an−1
pm−pmn−1

)b(n−1)pm + ...+ g(ã0
pm−pm0 )

)
.
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And thus, bnp
m

+ g
(

˜an−1
pm−pmn−1

)
b(n−1)pm + ... + g

(
ã0
pm−pm0

)
∈ ker(ϕB) = RadB(0)

by Lemma 1.7. Taking this element to a high power we get an integral equation for b
over g(A). This implies that g is integral.

(vi): If Z → Y is any Y -scheme, Remark 2.9 (ii) implies that (f × idZ)perf can be
identified with fperf × idZperf . Since a morphism and its perfect closure coincide on the
level of topological spaces and since closed immersions are stable under base change,
the claim follows.

(vii): f is a universal homeomorphism if and only if f is integral, surjective and univer-
sally injective. Since f and fperf agree on the level of topological spaces, it is enough
by (v) to show that f is universally injective if and only if fperf is universally injective.
But that is clear by Lemma 29.10.2 in [7] and MXperf/Y perf=Mperf

X/Y .

(viii) and (ix): This follows from the construction in Remark 2.10 and Lemma 1.24.

(x): This follows from Lemma 29.25.3 (3) in [7] and Proposition 1.29.

Remark 2.13
If f : X → Spec(Fp) is the structure morphism of X and f is of finite type, then
fperf : Xperf → Spec(Fp)perf = Spec(Fp) is the structure morphism of Xperf. But in
general fperf is not of finite type. For example Fp[t]perf =

⋃
n∈N Fp[t1/p

n
] is no longer of

finite type over Fp.

Definition 2.14
A ring homomorphism f : R→ S is called étale if and only if it satisfies the following
properties:

(i) f : R→ S is of finite presentation, i.e., f makes S a finitely generated R-algebra.

(ii) f : R→ S is flat.

(iii) f : R → S is unramified, i.e., if q is a prime ideal of S and if p = q ∩ R, then
pSq = qSq and the field extension

κ(q) := Sq/qSq | Rp/pRp =: κ(p)

is finite separable.

Definition 2.15
Let f : X → Y be a morphism of schemes.

(i) We say that f is étale at x ∈ X if there exists an affine open neighbourhood
Spec(A) = U ⊆ X of x and affine open Spec(B) = V ⊆ Y with f(U) ⊆ V such
that the induced ring map B → A is étale.

(ii) We say that f is étale if f is étale at every point of X.

Remark 2.16
If K is a field then a ring homomorphism K → A is étale if and only if A ∼=

∏r
i=1 Ki is

a finite direct product of finite separable field extensions Ki/K. For more details see
Lemma 10.143.4 in [7].
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Definition 2.17
The small étale site of a scheme X is the category Xét where the objects are all X-
schemes f : Y → X such that the structure morphism f is étale. The morphisms
are all morphisms of X-schemes and the coverings of Y → X are all jointly surjective
families (fi : Yi → Y )i∈I of morphisms of étale X-schemes.

If f : Y → X is étale and g : Z → X is arbitrary, then f × g : Y ×X Z → Z is étale
(cf. [7], Lemma 29.36.4 ). This way one gets a functor

Xét → Zét, (Y → X) 7→ (Y ×X Z → Z),

from the small étale site of X to the small étale site of Z.

Remark 2.18
If f : Y → X is a morphism of Fp-schemes then

Y perf Xperf

Y X

fperf

ϕY ϕX

f

commutes and by the universal property of the fiber product there exists a unique
morphism Y perf → Xperf ×X Y such that the following diagram commutes:

Y perf

Xperf ×X Y Xperf

Y X

ϕY

∃!

fperf

ϕX

f

Proposition 2.19
Let f : Y → X be an étale morphism of Fp-schemes, then:

(i) The canonical morphism Y perf → Xperf ×X Y is an isomorphism.

(ii) The functor Xét → Xperf
ét , Y 7→ Y perf, is an equivalence of categories.

Proof
(i): We may assume Y = Spec(B), X = Spec(A) affine and that f corresponds to a ring
homomorphism χ : A→ B. By the universal property of Aperf the ring homomorphism
A

χ−→ B
ϕB−→ Bperf gives rise to a ring homomorphism χ̃ : Aperf → Bperf such that the

following diagram commutes:

A Aperf

B Bperf

ϕA

χ χ̃

ϕB
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This implies that the mapping B × Aperf → Bperf, (b, a) 7→ ϕB(b)χ̃(a), where we view
Aperf and B as A-modules via ϕA respectively χ, is A-balanced and induces a ring
homomorphism B⊗AAperf → Bperf. By Corollary 2.8 and by the interrelation of tensor
product and fiber product for affine schemes this corresponds on the level of spectra to
the morphism Y perf → Xperf ×X Y , i.e.

Spec(Bperf) Spec(B)perf = Y perf

Spec(B ⊗A Aperf) Xperf ×X Y

∼=

∼=

commutes. Thus, we need to see that B ⊗A Aperf → Bperf is an isomorphism.
Now as an A-module, Aperf = lim−→n

F n
A∗(A) is the inductive limit of the A-modules

F n
A∗(A) obtained from A via scalar restriction along F n

A : A→ A. Since tensor products
commute with inductive limits, we have B⊗AAperf ∼= lim−→n

(B⊗AF n
A∗(A)) with transition

maps idB ⊗ FA : B ⊗A F n
A∗(A)→ B ⊗A F n+1

A∗ (A). The resulting map

lim−→
n

(B ⊗A F n
A∗(A)) ∼= B ⊗A Aperf → Bperf = lim−→

n

B

is the inductive limit of the ring homomorphisms:

F n
B|A : B ⊗A F n

A∗(A)→ B, b⊗ a 7→ bp
n

χ(a).

This is the so-called n-th relative Frobenius homomorphism of B over A. It is a
standard fact that if χ : A→ B is étale then all n-th relative Frobenius homomorphisms
B ⊗A F n

A∗(A)→ B are isomorphisms by Lemma 41.14.3 in [7] and hence so is the ring
homomorphism B ⊗A Aperf → Bperf. Let us briefly sketch the argument.

Set Y (pn) := Spec(B ⊗A F n
A∗(A)) = Y ×X X where the fiber product is formed with

respect to f : Y → X and F n
X : X → X. Since F n

X is a universal homeomorphism,

so is its fiber product prY : Y (pn) = Y ×X X
idY ×Fn

X−−−−−→ Y ×X X ∼= Y . Setting F n
Y |X :=

Spec(F n
B|A) the composition Y

Fn
Y |X−−−→ Y (pn) prY−−→ Y is equal to F n

Y , as is easily checked
on the level of rings. Since F n

Y and prY are universal homeomorphisms, so is F n
Y |X .

On the other hand, χ : A→ B is étale and so is the A-algebra B⊗AF n
A∗(A) = B⊗A,Fn

A
A

obtained via scalar extension. Now any homomorphism of A-algebras between étale
A-algebras is an étale ring homomorphism by Lemma 10.143.8 in [7]. In particular,
F n
B|A is étale. Since F n

Y |X = Spec(F n
B|A) is surjective the ring homomorphism F n

B|A
is faithfully flat. Moreover, F n

B|A : C := B ⊗A F n
A∗(A) → B is an epimorphism of

rings. In fact, by Lemma 10.107.1 in [7], we need to see that the multiplication map
B⊗CB → B, b⊗b′ 7→ bb′, is an isomorphism. On the level of spectra this is the diagonal
morphism which is an open immersion because F n

B|A is unramified (cf [7], Lemma
29.35.13). Moreover, it is surjective because F n

Y |X is universally injective by Lemma
29.10.2 in [7]. Thus, B ⊗C B → B is an isomorphism and F n

B|A is an epimorphism of
rings as claimed. Finally, by Lemma 10.107.7 in [7], any faithfully flat epimorphism of
rings is an isomorphism.

(ii) This is a formal consequence of (i) and a more general result about universal
homeomorphisms. For more details see Theorem 59.45.2 in [7].
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Example 2.20
Let X := Spec(K) where K is a field of characteristic p. By Corollary 2.8 we have
Xperf = Spec(Kperf) where Kperf is again a field of characteristic p. In particular, by
Example 1.6 we have

Kperf =
{
x ∈ Kalg : ∃n ≥ 0 : xp

n ∈ K
}
.

By Proposition 2.19 (ii) we have an equivalence of categories

F : Xét
∼= Xperf

ét , Y 7→ Y perf, f 7→ fperf.

Moreover, by Lemma 29.36.7 (2) in [7], étale K-schemes are of the form
∐

i∈I Spec(Ki)
where Ki/K is a finite separable field extension of K. Since by Corollary 2.8 and
Proposition 1.30 the functor (·)perf does not change the underlying topological space,
the equivalence F restricts to an equivalence of the connected étale schemes. It is clear
that

∐
i∈I Spec(Ki) is connected if and only if it is a singleton, i.e.

∐
i∈I Spec(Ki) =

Spec(L) for some finite separable extension of K. Moving to global sections we get an
equivalence of categories

{L/K : L/K finite and separable} →
{
L′/Kperf : L′/Kperf finite

}
L 7→ Lperf

σ : L1 → L2 7→ σperf : Lperf
1 → Lperf

2 .

Note that any finite extension of Kperf is automatically separable because Kperf is
perfect. Furthermore, by Proposition 2.19 (i) we know that for L/K finite separable
the canonical ring homomorphism Kperf⊗K L→ Lperf is an isomorphism. In particular

dimKperf(Lperf) = dimKperf(Kperf ⊗K L) = dimK(L).

More precisely, since Lalg = Kalg, by Example 1.6 we can realize

Lperf =
{
x ∈ Kalg : ∃n ≥ 0 : xp

n ∈ L
}
.

Then it is immediately clear that L ↪−→ Lperf ←−↩ Kperf. Therefore, the multiplication
map K × Lperf → Lperf, (x, y) 7→ xy, induces a well-defined ring homomorphism

Kperf ⊗K L→ Lperf.

This is the above ring isomorphism. Let us check directly that it is bijective. We have
im(Kperf⊗KL→ Lperf) = LKperf, where LKperf denotes the compositum. Furthermore,
we have L ∩Kperf = K since (L ∩Kperf)/K is separable and purely inseparable at the
same time. But then

[LKperf : K] = [L : K][Kperf : K] = dimK(Kperf ⊗K L)

and thus, Kperf ⊗K L maps bijectively to LKperf ⊆ Lperf.
It remains to show that LKperf = Lperf. For this write L = K[α] with some primitive
element α ∈ L. It is sufficient to show that Lperf = Kperf[α]. First note that Kperf[α]
is perfect because Kperf is. In fact, any finite extension of Kperf[α] is also one of Kperf,
hence is separable over Kperf, hence over Kperf[α]. In particular, Kperf[α] contains all
pn-th roots of α. Now if x ∈ Lperf then xp

n ∈ L = K[α] for some n ≥ 0. If we write

xp
n

=
∑

i aiα
i with elements ai ∈ K then x =

∑
i a

1/pn

i αi/p
n ∈ Kperf[α].
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This shows Lperf ⊆ Kperf[α]. The reverse inclusion is obvious.

We also note that the inverse functor is given by L′ 7→ L′∩Ksep. By the above we may
write L′ = LKperf = Lperf for some finite separable extension L/K. Then we have

L′ ∩Ksep = Lperf ∩Ksep = L,

since (Lperf ∩Ksep)/L is both separable and purely inseparable at the same time.

It is a formal consequence of the equivalence of categories that L/K is finite Galois if
and only if Lperf/Kperf is finite Galois. As a consequence, the restriction homomorphism

Gal(Kalg/perf) 7→ Gal(Ksep/K)

σ 7→ σ|Ksep ,

is a topological isomorphism. Indeed, we have

Gal(Kalg/Kperf) ∼= lim←−
L′/Kperf finite Galois

Gal
(
L′/Kperf

)
∼= lim←−

L/K finite Galois

Gal
(
LKperf/Kperf

)
∼= lim←−

L/K finite Galois

Gal
(
L/L ∩Kperf

)
= lim←−

L/K finite Galois

Gal(L/K)

∼= Gal(Ksep/K).

Remark 2.21
Gal(Ksep/K) (resp. Gal(Kalg/Kperf)) can be interpreted as the so-called étale funda-
mental group of X = Spec(K) (resp. Xperf = Spec(Kperf)). Although we will not
define this terminology in detail, it is generally true that the equivalence of categories
in Proposition 2.19 (ii) induces an isomorphism between the étale fundamental groups
of X and Xperf.
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