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Introduction

Given a finite extension of Qp, or more generally a p-adic field K, we would like to
study its absolute Galois group G through the latter’s continuous Qp-representations.
The category of these representations is however prohibitively large - in a sense because
the topologies of Qp and K are too compatible. Fontaine’s formalism of period rings
lets us single out interesting full subcategories of Qp-representations and relates them to
categories of certain semi-linear objects whose properties mirror those of a “nice” ring
with a G-action.

A particularly important period ring is the ring of crystalline periods Bcris, which
defines the category of crystalline representations. The properties of Bcris are rather
arduous to prove, often requiring elaborate technical arguments which treatments of Bcris

usually omit as a result. Notably, the important property that the Frobenius of Bcris is
injective does not appear to have a full proof anywhere in the literature, as for example
previously noted in [2, Theorem 9.1.8]. The main goal of this thesis is to treat these
aspects in full detail.

Familiarity with the theory of p-adic representations is not strictly required if one
takes the results collected in §1.3 “on faith”, although it will obviously be useful. We
review the important tilting construction and its adjunction to the Witt vector functor
in detail in §1.1 and §1.2.

In §2, we construct the rings Acris and B+
cris (which give rise to Bcris via localization)

and investigate their algebraic properties. While we do not construct Acris using the more
general method from [9, §2.2], we establish that our construction is equivalent in §2.3.

In §3, we relate the ring B+
cris to the so-called Gauß norms which feature promi-

nently in the construction of the Fargues-Fontaine curve. The Gauß norms give rise
to a family of rings B+

ρ and B+, constructed in §3.1, that formalize what used to be
ad hoc topological arguments in older texts. In §3.2, this will result in an embedding
B+
ρp ⊂ B+

cris ⊂ B+
ρ ⊂ B+

dR that lets us reduce many properties of Bcris to properties of BdR

or B+
ρ . We also study the natural filtration on Bcris via the cyclotomic periods in §3.3,

leading to a slightly simpler calculation of the Frobenius fixed points of Bcris.
In the final chapter §4, we return to the original situation from representation theory

and establish how the formalism of period rings applies to Bcris. It turns out that for the
purposes of the period ring formalism, one can replace B+

cris with the slightly nicer B+
ρ

at no loss. We finish with an overview of various results on crystalline representations
in §4.2 and an application to p-divisible groups which was the historical motivation for
the development of Bcris in §4.3.

This thesis is based on a seminar on p-adic Galois representations and a lecture on
the Fargues-Fontaine curve, both held by Prof. Dr. Jan Kohlhaase during the winter
semesters of 2020/2021 and 2019/2020 respectively. I would like to thank him especially;
his thoroughness has been an inspiration.
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1 Preliminaries

We fix a prime p throughout the entire text. Rings and algebras are always commutative.
Recall that every ring homomorphism between p-adically separated and complete rings is
automatically continuous with respect to the p-adic topology. We will often write limn xn
and lim←−j xj instead of limn→∞ xn and lim←−j∈N0

xj for the sake of brevity when this is not

ambiguous. Group actions are written g.x unless specified otherwise. We mark parts of

equations by an ! like in a
!

= b = c to highlight where a nearby assumption applies.

1.1 The Witt-tilting adjunction

We recall the adjunction between Witt vectors and tilting, whose counit plays a central
role throughout this text. The reader is assumed to be familiar with the p-typical Witt
vectors; knowledge of ramified Witt vectors is not necessary because we avoid those
entirely. Recall that if A is a perfect Fp-algebra, then every Witt vector w ∈ W(A) can
be written uniquely as

∑∞
i=0 p

i[wi], where [·] : A → W(A) is the Teichmüller lift and all

wi ∈ A. This differs from the commonly found representation w =
∑∞

i=0 p
i[w′p

−i

i ] whose

behavior is explicitly given by the structure polynomials Sn, Pn, In, but since wp
i

i = w′i, one
easily obtains the adapted formulae In(w0, w

p
1, . . . , w

pn

n )p
−n

, etc. for our representation.

Definition 1.1. Let R be a ring. The tilt of R is the inverse limit ring

R[ := lim←−
j∈N0

R/pR = {(rj)j∈N0 ∈ (R/pR)N0 | rpj+1 = rj for all j ∈ N0},

whose elements we write as lim←−j rj with rj ∈ R/pR. R[ is perfect because pn-th roots

are given by (lim←−j rj)
1/pn = lim←−j rj+n. Clearly, R[ ∼= (R/pR)[. We obtain a functor ·[

from the category of rings to the category of perfect Fp-algebras by sending each ring
homomorphism f : R→ S to the map

f [( lim←−
j∈N0

(rj + pR)) = lim←−
j∈N0

(f(rj) + pS).

Proposition 1.2. Let B be a p-adically separated and complete ring.

(i) There is a unique multiplicative map ·] : B[ → B that yields the canonical projection
(lim←−j bj 7→ b0) : B[ → B/pB when composed with B � B/pB. It is given by

( lim←−
j∈N0

(bj + pB))] = lim
j→∞

bp
j

j .

(ii) If R(B) := {(b(j))j∈N0 ∈ BN0 | (b(j+1))p = b(j)}, then ·] : B[ → B factors through the
multiplicative bijection

B[ � R(B)

lim←−
j∈N0

(b(j) + pB)←[ (b(j))j∈N0

b = lim←−
j∈N0

(bj + pB) 7→ ( lim
k→∞

bp
k

j+k)j = ((b1/pj)])j.

(iii) If B is an Fp-algebra, then R(B) is a ring under componentwise operations and all
three maps above are ring homomorphisms. If B is perfect, then ·] : B[ ∼→ B is a
ring isomorphism.
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Proof. (i): ·] is well-defined because a ≡ b mod pB implies ap
n ≡ bp

n
mod pn+1B for

all a, b ∈ B. This also shows why ·] is unique and given by the above formula: Every
b = lim←−j(bj + pB) ∈ B[ satisfies (b])1/pn = (b1/pn)] ≡ bn mod pB by multiplicativity, so

we must have b] ≡ bp
n

n mod pn+1B for all n ∈ N.
(ii): That the two maps are inverses is verified directly. The factorization is obvious.
(iii): The set R(B) is an inverse limit of rings under ring homomorphisms in this case,

hence itself a ring. That the three maps are ring homomorphisms is immediate. If B is
perfect, the projection onto the zeroth component R(B)

∼→ B is a ring isomorphism, so
·] factors into B[ ∼→ R(B)

∼→ B.

Proposition 1.3. Let B be a p-adically separated and complete ring and consider

θB : W(B[)→ B

θB

(
∞∑
i=0

pi[wi]

)
=
∞∑
i=0

piw]i .

(i) θB is the only ring homomorphism W(B[)→ B which reduces to the projection
(lim←−j bj 7→ b0) : B[ → B/pB modulo p.

(ii) If the Frobenius on B/pB is surjective, then so is θB.

(iii) If a group G acts on B via ring homomorphisms, then θB is equivariant for the
functorially induced action on W(B[) and the action on B.

Proof. (i): By Proposition 1.2, any homomorphism with these properties must map [b]
to b] for any b ∈ B[. Since W(B[) and B are p-adically separated and complete, the
formula for θB follows immediately from continuity. It is however very difficult to verify
directly that this formula results in a ring homomorphism; instead, decompose θB into
three ring homomorphisms

W(B[)
α→ lim←−

fn

Wn(B/pB)
ψ→ lim←−

n∈N
B/pnB

`→ B,

where Wn(B/pB) denotes the ring of truncated Witt vectors of length n, whose elements
we will write as 〈b0, . . . , bn−1〉 := (b0, . . . , bn−1, 0, . . .) + V n(W(B/pB)) here, and

fn : Wn+1(B/pB)→ Wn(B/pB)

fn(〈b0, . . . , bn〉) = 〈bp0, . . . , b
p

n−1〉

is the reduced Frobenius map. Note that there may not be a representation
∑∞

i=0 p
i[xi]

since B/pB need not be perfect, necessitating this argument using classic Witt vector
components. The three homomorphisms are

α(w) = lim←−
fn

(
W ( lim←−

j∈N0

bj 7→ bn)(w) + V n(W(B/pB))

)
,

ψ

(
lim←−
fn

〈v(n)
0 + pB, . . . , v

(n)
n−1 + pB〉

)
= lim←−

n∈N
(Φn(v

(n)
0 , . . . , v

(n)
n−1, 0) + pnB),

`(lim←−
n∈N

(bn + pnB)) = lim
n→∞

bn,
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where Φn is the n-th Witt polynomial. α and ` are easily seen to be well-defined ring
homomorphisms; the argument for ψ is slightly more involved but fundamentally relies
on the facts that the n-th ghost component W(B) → B is a ring homomorphism and
that varying any component of b ∈ Bn+1 by an element of pB changes Φn(b0, . . . , bn) by
an element of pnB. See chapter 5 of [17], in particular Proposition 5.3, for the full details
of this construction in German. The additional assumptions made there are not used to
show that these maps are ring homomorphisms.

(ii): Let b ∈ B and set e0 := b. Given ei ∈ B for any i ∈ N0, we can construct an
xi ∈ B[ with ei − x]i ∈ pB by taking the zeroth component of xi to be ei + pB and then
inductively taking preimages under the surjective Frobenius on B/pB. Letting ei+1 ∈ B
such that ei − x]i = pei+1, we can inductively continue this construction, obtaining

b− θB

(
m∑
i=0

pi[xi]

)
= e0 −

m∑
i=0

pix]i = p1e1 −
m∑
i=1

pix]i = . . . = pm+1em+1 ∈ pm+1B

for all m ∈ N, so that θB(
∑∞

i=0 p
i[xi]) = b.

(iii): The functorial action on W(B[) is g.
∑∞

i=0 p
i[wi] =

∑∞
i=0 p

i[g.wi]. Since the action
of G on B must be p-adically continuous, its action on B[ commutes with ·]. The
statement then follows immediately from the formula.

Proposition 1.4. The Witt vector functor W from the category of perfect Fp-algebras
to the category of p-adically separated and complete rings is left adjoint to the tilting
functor ·[. If A is a perfect Fp-algebra and B is a p-adically separated and complete ring,
then the counit is the map θB : W(B[)→ B from Proposition 1.3 and the unit is the map

ηA : A→ W (A)[

ηA(a) = lim←−
k∈N0

([a1/pk ] + pW(A)).

Therefore, the bijection between Hom-sets can be described explicitly as follows:

Hom(W(A), B) � Hom(A,B[)

f 7→ f [ ◦ ηA
θB ◦W(g)← [ g.

Proof. The final remark on Hom-sets is a simple category theoretical fact, so we just have
to show idW(A) = θW(A) ◦W(ηA) and idB[ = (θB)[ ◦ ηB[ :

θW(A)

(
W(ηA)

(
∞∑
i=0

pi[ai]

))
= θW(A)

(
∞∑
i=0

pi[ηA(ai)]

)

= θW(A)

(
∞∑
i=0

pi[ lim←−
k∈N0

([a
1/pk

i ] + pW(A))]

)

=
∞∑
i=0

pi( lim←−
k∈N0

([a
1/pk

i ] + pW(A)))]

=
∞∑
i=0

pi[ai],
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(θB)[(ηB[( lim←−
j∈N0

(bj + pB))) = (θB)[( lim←−
k∈N0

([ lim←−
j∈N0

(bj+k + pB)] + pW(B[)))

= lim←−
k∈N0

(θB([ lim←−
j∈N0

(bj+k + pB)]) + pB)

= lim←−
k∈N0

(( lim←−
j∈N0

(bj+k + pB))] + pB)

= lim←−
k∈N0

(bk + pB).

1.2 Tilts of perfectoid fields

The tilting construction as applied to the ring of integers of so-called perfectoid fields will
be central throughout this text. We recall the necessary facts about this situation.

Definition 1.5. A non-archimedean field (C, |·|) with residue field of characteristic p is
perfectoid if:

(i) C is complete with respect to |·|.

(ii) The set |C| ⊂ [0;∞) is dense.

(iii) The Frobenius on OC/pOC is surjective.

Proposition 1.6. If C is a perfectoid field, then |x|[ := |x]| is an absolute value on O[C.

Proof. |·|[ is multiplicative because ·] is multiplicative. If x ∈ O[C satisfies x] = 0, then
under the bijection in Proposition 1.2 (ii), x corresponds to a compatible system of pn-th
roots (xn)n∈N0 ∈ R such that 0 = limn x

pn

n = x0. But since OC is a domain, there is only
one such system, viz. the one that corresponds to x = 0. For the strict triangle inequality,
note that for a = lim←−k(ak + pOC), b = lim←−k(bk + pOC) ∈ O[C , we have

|a+ b|[ = lim
k→∞
|ak + bk|p

k ≤ max{ lim
k→∞
|ap

k

k |, lim
k→∞
|bp

k

k |} = max{|a|[, |b|[},

using that we already know that limk|ap
k

k | and limk|bp
k

k | exist.

Proposition 1.7. Let n ∈ N and x = lim←−j(xj + pOC) ∈ O[C. Then xj ∈ pOC for all

0 ≤ j < n if and only if |x|[ ≤ |p|p
n−1

.

Proof. It suffices to prove the case n = 1 because the others follow by repeatedly taking

p-th roots. If x0 ∈ pOC , then xp
j

j ≡ x0 ≡ 0 mod pOC for all j ∈ N0, so |xp
j

j | ≤ |p| and

|x|[ = |x]| = limj|xp
j

j | ≤ |p|. On the other hand, if |x|[ ≤ |p|, then |xp
j

j | ≤ |p| for all but
finitely many j ∈ N0 since |·| is non-archimedean and hence {y ∈ OC | |y| < |p|} is closed.

But if j ∈ N0 is such that |xp
j

j | ≤ |p|, then xp
j

j ∈ pOC , so x0 ≡ xp
j

j ≡ 0 mod pOC .

Remark 1.8. Since O[C admits an absolute value, it is an integral domain; its fraction
field is denoted by C[ and also called the tilt of C. This is not the functor T := ·[ applied
to C! There is however very little ambiguity in practice:

• If charC = 0, then T (C) := R(C/pC) = R(0) = 0, so the functorial construction
is completely uninteresting.
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• If charC = p, the Frobenius on OC/pOC = OC is a surjective ring homomorphism
whose kernel consists of nilpotent elements, therefore is trivial as OC is a domain.
Hence OC is perfect and so is C, which means that C ∼= R(C) ∼= T (C) by 1.2 (iii).
Similarly, C[ = Frac(R(OC/pOC)) = FracOC = C, so the two constructions agree.

• The case charC 6∈ {0, p} is impossible since C has a residue field of characteristic p.

Proposition 1.9 (O[C = OC[). If C is a perfectoid field and C[ = FracO[C, then |·|[
extends to C[ and the ring of integers of C[ is O[C.

Proof. The extension of an absolute value to a fraction field is standard. If a ∈ C[

and b ∈ (C[)× with |a/b|[ ≤ 1, then for all n ∈ N0, we have |a1/pn/b1/pn|[ ≤ 1, hence
(a1/pn)]/(b1/pn)] ∈ OC . The latter form a compatible system of pn-th roots in OC , so the
bijection in Proposition 1.2 (ii) gives an element lim←−j((a

1/pj)]/(b1/pj)] + pOC) ∈ O[C whose

product with b = lim←−j((b
1/pj)] + pOC) is a. Hence a/b ∈ O[C . On the other hand, for every

x = lim←−j(xj + pOC) ∈ O[C we have |xj| ≤ 1 for all j ∈ N0 and thus |x|[ = limj|xp
j

j | ≤ 1,

so x ∈ OC[ .

Lemma 1.10. If C is a perfectoid field, then |C[|[ = |C|.

Proof. It suffices to prove |O[C |[ = |OC |. First let x ∈ OC such that |p| < |x| < 1 and
use the surjectivity of the Frobenius on OC/pOC to inductively construct an element

y = lim←−j(yj + pOC) ∈ O[C with y0 = x. Then yp
j

j ≡ y0 ≡ x mod pOC , so that we have

|y] − x| = limj|yp
j

j − x| ≤ |p| < |x|. Hence |y|[ = |(y] − x) + x| = |x| by the strict triangle
inequality.

Now let x ∈ OC such that |x| ≤ |p|. By the previous part and the density of |C|,
there exists a y ∈ O[C such that |y2|[ < |p| < |y|[. Then |p| < |x|/|y2|[ < 1, so there is a
z ∈ O[C with |z|[ = |x|/|y2|[. Hence |x| = |zy2|[.

Lemma 1.11. If C is a perfectoid field, then C[ is complete.

Proof. We showed in Remark 1.8 that C[ = C if charC = p. Otherwise, it suffices to
prove that O[C is complete. Let (xn)n∈N be a Cauchy sequence in O[C . Then for each
k ∈ N, there is an n ∈ N such that |xn − xn+i|[ ≤ |p|p

k−1
for all i ∈ N. By Proposition 1.7,

this means that the first k components of xn, xn+1, . . . agree, so the sequence converges
componentwise. One easily checks that the resulting sequence is a limit with respect
to |·|[.

Theorem 1.12.

(i) If C is a perfectoid field, then so is C[.

(ii) If C is algebraically closed, then so is C[.

Proof. (i): This follows from Lemma 1.11, Lemma 1.10, and the fact that O[C is perfect.
(ii): The case charC > 0 is trivial. For charC = 0, see e.g. [6, 2.1.11] or [2, 4.3.5].

Proposition 1.13. If s ∈ O[C such that |s|[ = |p|, then O[C/sO[C ∼= OC/pOC.

Proof. The projection O[C
·]→ OC � OC/pOC onto the zeroth component is a ring homo-

morphism and surjective by 1.5 (iii). Its kernel consists of all x ∈ O[C such that x] ∈ pOC ,
i.e. all x ∈ O[C with |x|[ ≤ |p| = |s|[, which are precisely the multiples of s.
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Proposition 1.14. If C is a perfectoid field and ξ =
∑∞

i=0 p
i[ξi] ∈ ker θOC , then the

following are equivalent:

(i) ker θOC = ξW(O[C).

(ii) |ξ0|[ = |p|.

(iii) |ξ1|[ = 1.

Proof. (i) =⇒ (ii): Since ξ ∈ ker θOC , we have |ξ]0| = |−
∑∞

i=1 p
iξ]i | ≤ |p|. Let s ∈ O[C

such that |s|[ = |p|, using Proposition 1.10. Since θOC is surjective, there is an element
w ∈ W(O[C) such that [s] − pw ∈ ker θOC = ξW(O[C), so let z =

∑∞
i=0 p

i[zi] ∈ W(O[C)
such that [s]− pw = ξz. Then |p| = |s|[ = |ξ0z0|[ ≤ |ξ0|[ ≤ |p|, so |ξ0|[ = |p|.

(ii) =⇒ (iii): Since ξ ∈ ker θOC , we have |p||ξ]1| = |−ξ]0 −
∑∞

i=2 p
iξ]i | = |ξ]0| = |p| by

the strict triangle inequality and |ξi|[ ≤ 1. Hence |ξ1|[ = 1.
(iii) =⇒ (i): Let x =

∑∞
i=0 p

i[xi] ∈ ker θOC . Since |pξ]1| = |p| > |p2| ≥ |
∑∞

i=2 p
iξ]i |, we

have |ξ]0| = |
∑∞

i=1 p
iξ]i | = |p| > |

∑∞
i=2 p

iξ]i | and hence

|x0|[ = |x]0| =

∣∣∣∣∣−
∞∑
i=1

pix]i

∣∣∣∣∣ ≤ |p| = |−pξ]1| =
∣∣∣∣∣ξ]0 +

∞∑
i=2

piξ]i

∣∣∣∣∣ !
= |ξ]0| = |ξ0|[,

which implies x0 = ξ0z for some z ∈ O[C by Proposition 1.9. Hence x− [z]ξ ∈ pW(O[C),
i.e. ker θOC ⊂ ξW(O[C) + pW(O[C).

This suffices because when x = a0ξ + b0p ∈ ker θOC for some a0, b0 ∈W(O[C), we must
have θOC (b0p) = θOC (b0)p = 0, so b0 ∈ ker θOC since OC is a domain. Inductively, we
obtain elements ai, bi ∈W(O[C) such that

x = a0ξ + b0p = a0ξ + a1ξp+ b1p
2 = . . . = pnbn +

n∑
i=0

aiξp
i

for all n ∈ N; then x = ξ
∑∞

i=0 p
iai since W(O[C) is p-adically separated and complete.

Proposition 1.15. Let C be a perfectoid field.

(i) For every s ∈ O[C with |s|[ = |p|, there is a w ∈ W(O[C)× such that ker θOC is
generated by [s] + pw.

(ii) If C is algebraically closed, there is an s ∈ O[C with |s|[ = |p| such that ker θOC is
generated by [s]− p.

Proof. (i): Since |θOC (−[s])| = |θOC ([s])| = |s]| = |s|[ = |p|, we have θ([s]) ∈ pOC . By
Proposition 1.3 (ii), θOC is surjective, so there is a w =

∑∞
i=0 p

i[wi] ∈ W(O[C) with
θOC ([s] + pw) = 0. Proposition 1.14 then implies |w0|[ = 1, which means w ∈W(O[C)×.

(ii): Since C is algebraically closed, we can inductively find compatible pn-th roots
sn ∈ OC of p ∈ OC , which defines an s = lim←−j(sj + pOC) ∈ O[C with s] = limn s

pn

n = p.

Then θOC ([s]− p) = p− p = 0, so [s]− p is a generator of ker θOC by Proposition 1.14.
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1.3 Period rings and p-adic representations

We quickly recall the basic ideas behind the theory of period rings and some of its
applications to p-adic representations. For a more detailed overview, see [3, §1]; for a
general treatment of the subject, see [2], in particular §5. The starting point is the
following type of field.

Definition 1.16. A p-adic field is a non-archimedean complete discretely valued field K
of characteristic 0 with perfect residue field k of characteristic p. We usually fix the

completion C = CK = K̂ of a fixed algebraic closure K of K as well.

For the remainder of the chapter, we fix such a p-adic field K and C = CK . The
field C is algebraically closed by Krasner’s lemma. We also fix an algebraic closure k
of k. The absolute Galois group of K is denoted G := Gal(K); its action extends to C
by continuity.

The most obvious examples of p-adic fields are the finite extensions of Qp, which are
precisely those p-adic fields whose residue field is finite rather than perfect. However,
whenever K is a p-adic field, so is the completion of its maximal unramified extension
K̂ur ⊂ C, with residue field an algebraic closure of k, CK̂ur = CK , and its absolute Galois

group Gal(K̂ur) is canonically isomorphic to the inertia group of Gal(K). Hence this
more general definition lets us pass to the inertia group within the same formalism.

We want to study the unwieldy category Repcont
Qp (G) of continuous Qp-representations

of G by singling out suitable full subcategories that contain interesting representations,
such as those that arise naturally in geometry. In analogy to how one relates Repcont

Qp (G)
to a category of étale (Φ,Γ)-modules by producing many invariants (see e.g. [12, Theo-
rem 4.4.2]), we use the following formalism due to Fontaine [10, §1].

Definition 1.17. Let B be a ring containing Qp, with a G-action by ring automorphisms.
B is called (Qp, G)-regular if the following properties hold:

(i) B is a domain.

(ii) BG = (FracB)G. In particular, BG is a field.

(iii) Every b ∈ B \ 0 with G.b ⊂ Qpb is a unit.

Definition 1.18. If B is (Qp, G)-regular, we define the functor

DB(V ) = (B ⊗Qp V )G, DB(f : V → W ) = idB ⊗Qpf

from Repcont
Qp (G) to the category of BG-vector spaces VecBG .

Definition 1.19. If B is (Qp, G)-regular, a B-semilinear representation is a B-module W
with a G-action such that g.(w + w′) = g.w + g.w′ and g.(b · w) = g.b · g.w for all b ∈ B,
w,w′ ∈ W .

Definition 1.20. Let B be (Qp, G)-regular. A continuous Qp-representation V is called
B-admissible if the following equivalent properties hold:

(i) dimBG DB(V ) = dimQp V .

(ii) B ⊗Qp V
∼= BdimQp V as B-semilinear representations, with the componentwise ac-

tion on the right.

(iii) The canonical comparison homomorphism αV : B ⊗BG DB(V )→ B ⊗Qp V of B-
semilinear representations is an isomorphism.
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Note that dimBG DB(V ) ≤ dimQp V is always true and αB⊗QpV
is always at least in-

jective. Property 1.17 (iii) is crucial to establish the equivalence of the three properties
above and ensures that admissibility is well-behaved, see e.g. [3, 1.4.4] and [2, 5.2.1].
Notably, the full subcategory RepBQp(G) of B-admissible representations is stable under
subobjects, quotients, tensor products and duals. Often, the functor DB takes values in
a more refined category than VecBG .

Theorem 1.21. If B is (Qp, G)-regular, then the functor DB : RepBQp(G)→ VecBG is
exact, faithful, and commutes with tensor products and duals.

Proof. See [2, 5.2.1].

Fields are trivially (Qp, G)-regular, but they usually don’t make for good period rings.
For instance, the K-admissible representations are exactly the discrete representations
(see [12, 3.51]), i.e. those representations that factor through some Gal(L/K) for a finite
Galois extension L/K, which is clearly too restrictive. The C-admissible representations
are exactly the potentially unramified representations (see [12, 3.55]), i.e. those repre-
sentations that become unramified after restriction to some Gal(L/K) for a finite Galois
extension L/K. While an improvement, this still excludes the non-trivial powers of the
cyclotomic character χ, which arise rather naturally and ought to be admissible.

Definition 1.22. If η : G→ C× is a character, we write C(η) for the field C with the
twisted G-action g ∗ c := η(g) · (g.c).

Theorem 1.23 (Ax-Tate-Sen). If η : G → O×K is a continuous character such that
η(G) is either finite or contains Z×p as an open subgroup, then the continuous cohomology
satisfies

dimK H
0
cont(G,C(η)) = dimK H

1
cont(G,C(η)) =

{
0 if η(I) is infinite,

1 if η(I) is finite,

where I < G is the inertia subgroup of G. In particular, CG = K.

Proof. The proof of this theorem is rather involved; it is the subject of [2, §14].

Note that the conditions of Theorem 1.23 are satisfied for all continuous η : G→ Z×p .

Definition 1.24. The ring of Hodge-Tate periods is the ring BHT :=
⊕

n∈ZC(χn) with
componentwise addition and G-action and the multiplication induced from the C-module
structure and C(χm)⊗C C(χn) ∼= C(χm+n). A BHT-admissible representation is called a
Hodge-Tate representation.

The ring BHT is (Qp, G)-regular with BG
HT = K (see e.g. [2, 5.1.2]) and already an im-

provement since dimK DHT(χn) = dimK(χn ⊗Qp BHT)G = dimK(
⊕

iC(χi+n))G
1.23
= 1. The

corresponding functor DHT takes values in the category of graded vector spaces and we
call those i ∈ Z with dimK griDHT(V ) > 0 the Hodge-Tate weights of V . Taking the
dimension itself as the multiplicity of i, the Hodge-Tate representations are then those
representations V whose weights with multiplicity add up to dimQp V . For example, the
one-dimensional representation χn : G→ Q×p has the unique Hodge-Tate weight −n.

Although the ring BHT ends up being a useful tool to study other period rings by
reducing their properties to properties of BHT, its own notion of admissibility is unsat-
isfactory. Not only is the category of Hodge-Tate representations still extremely large,
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it also turns out that DHT is not full as a functor to the category of graded vector
spaces. Furthermore, if L/K is a finite Galois extension, then a V ∈ Repcont

Qp (G) will be
Hodge-Tate if and only if its restriction to Gal(L) is. Since this is true even when L/K
is ramified, the Hodge-Tate property is very imprecise. A more detailed treatment of
Hodge-Tate representations that proves all these results can be found in [2, §2].

A refinement of BHT that will be very useful to us is the field of de Rham periods BdR

(giving rise to de Rham representations), which we will explicitly construct in a slightly
more general setting in 3.30. The ring BdR is the fraction field of a discretely valued
and topological ring B+

dR, although it is very important that the topology does not come
from the valuation. This equips BdR with a natural G-stable filtration, so that the
corresponding functor DdR takes values in the category of filtered K-vector spaces FilK
via

FilnDdR(V ) := (FilnBdR ⊗Qp V ) ∩DdR(V ).

Note that we always assume filtered vector spaces to be equipped with a separated and
exhaustive filtration. For more detail on filtered vector spaces, we refer to [2, §6.2]; we
will also recall some basic definitions in Remark 4.11.

We will rely on the following results in §4 without giving a proof ourselves; see e.g. [2,
§4.4, §6]. Note that there is no circularity and no logical gap since our construction of BdR

does not require these statements and §4 is in the same concrete setting as this chapter
and the cited literature.

Proposition 1.25. There is a unique G-equivariant embedding K ↪→ B+
dR under which K

obtains its usual valuation topology as the subspace topology.

Proposition 1.26. BdR is (Qp, G)-regular with BG
dR = K.

Proposition 1.27. We have grBdR
∼= BHT and grDdR(V ) ∼= DHT(V ) for any de Rham

representation V . In particular, de Rham representations are Hodge-Tate.

Proposition 1.28. DdR : RepdR
Qp (G)→ FilK is an exact functor that commutes with ten-

sor products and duals.

Proposition 1.29. For every V ∈ RepdR
Qp (G), the de Rham comparison isomorphism

αV,dR : BdR ⊗K DdR(V )
∼→ BdR ⊗Qp V is an isomorphism in FilK, where BdR ⊗Qp V car-

ries the filtration FilnBdR ⊗Qp V .

Proposition 1.30. For any V ∈ Repcont
Qp (G) and any field extension L/K such that

L ⊂ C is discretely valued, the map L⊗K DK
dR(V )→ DL

dR(V ) is an isomorphism in FilK.
In particular, V is de Rham as a representation of G if and only if it is de Rham as a
representation of Gal(L) ⊂ G.
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2 The construction of Acris

For each perfectoid field C of mixed characteristic, there is a ring Acris, satisfying a certain
universal property (2.35), that gives rise to the ring of crystalline periods via localization
(3.46). In the literature (e.g. [12, 6.1] and [2, §9.1]), one also commonly finds Acris defined
as the p-adic completion of the ring that arises by adjoining all ξ

n

n!
∈W(O[C)[1

p
] to W(O[C),

where ξ is a generator of ker θOC ; that this really results in Acris is however only clear
with the non-trivial result that Acris is p-torsion-free.

While every a ∈ Acris admits a representation
∑∞

i=0 ai
ξi

i!
with ai ∈W(O[C) such that

limi ai = 0, such representations are unfortunately not unique. This makes it cumbersome
to prove various properties of Acris, and as a result such proofs tend to be sketched or
omitted. For example, the Frobenius endomorphism of Acris is injective (2.20), but no
proof of this fact seems to exist in the literature (cf. [2, 9.1.8]).

In §2.1, we construct Acris as an explicit quotient, prove its basic algebraic properties,
and construct its Frobenius endomorphism, which we prove to be injective. In §2.3 we
prove that our construction is equivalent to the more customary definitions found in
[12, 6.1] and [9, §2.2]. The latter requires some notions from the theory of divided power
structures which we quickly review in §2.2. Note that only §2.1 is logically required for
the later chapters.

2.1 The ring Acris(S/sS) and its properties

Throughout this section, we fix a perfect domain and Fp-algebra S and a non-zero s ∈ S.
The case to keep in mind is the ring of integers O[C of the tilt of a perfectoid field C
of mixed characteristic and an element s ∈ O[C with |s|[ = |p|, but our constructions
work in this slightly more general setting, sometimes under the additional assumption
that

⋂
n≥1 s

nS = 0.

Remark 2.1. Recall that if R is a Z-torsion-free ring and x ∈ nR for some n ∈ N, then
there exists a unique element whose product with n is x. We suggestively denote this
element by x

n
and note that the expected identities

x

n
· y
m

=
xy

nm
,

x

n
=
xm

nm
,

x

n
+
y

m
=
xm+ yn

nm

hold for all n,m ∈ N, x ∈ nR and y ∈ mR. If m,n ∈ N and x ∈ R such that xm ∈ m!R
and xn ∈ n!R, then

xm

m!
· x

n

n!
=
xm+n

m!n!
=

(m+ n)!xm+n

m!n!(m+ n)!
=

(m+n)!
m!n!

xm+n

(m+ n)!
=

(
m+n
n

)
xm+n

(m+ n)!
,

so if xn ∈ n!R for all n ∈ N, we have xn

n!
· xm
m!

=
(
m+n
n

)
xm+n

(m+n)!
. for all m,n ∈ N0.

Definition 2.2.

(i) The divided power polynomial algebra over W(S) is the W(S)-subalgebra

W(S)〈X〉 := {
∑n

i=0 ai
Xi

i!
|n ∈ N0, ai ∈W(S)} < W(S)[1

p
][X].

(ii) The divided power series algebra over W(S) is the W(S)-subalgebra

W(S)〈〈X〉〉 := {
∑∞

i=0 ai
Xi

i!
| ai ∈W(S), limi ai = 0} < W(S)[1

p
]JXK.

We will usually write X [i] instead of Xi

i!
to preserve vertical space. Note that X i = i!X [i].
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Remark 2.3. From Remark 2.1 we obtain the formula X [n]X [m] =
(
m+n
n

)
X [m+n], which

shows that W(S)〈X〉 really is a subalgebra. For W(S)〈〈X〉〉, first note that in W(S)[1
p
]JXK,(

∞∑
i=0

aiX
[i]

)(
∞∑
j=0

bjX
[j]

)
=
∞∑
i=0

i∑
j=0

ajbi−jX
[j]X [i−j] =

∞∑
i=0

(
i∑

j=0

(
i

j

)
ajbi−j

)
X [i].

Now assume that limi ai = limj bj = 0. Then for each k ∈ N there are m,n ∈ N such that
ai, bj ∈ pkW(S) for all i ≥ m and j ≥ n. If i ≥ m+ n, we have

(
i
j

)
ajbi−j ∈ pkW(S) for

all 0 ≤ j ≤ i as either aj ∈ pkW(S) (when j ≥ m) or bi−j ∈ pkW(S) (when j < m and
hence i− j > n). Therefore limi

∑i
j=0

(
i
j

)
ajbi−j = 0, which proves that W(S)〈〈X〉〉 is also

a W(S)-subalgebra.

Remark 2.4. There is a unique homomorphism of W(S)-algebras

W(S)[X1, X2, . . .]

〈XiXj −
(
i+j
i

)
Xi+j〉

→W(S)〈X〉

that maps the class of Xi to X [i]. This is in fact an isomorphism: The map that sends∑n
i=0 aiX

[i] to the class of
∑n

i=0 aiXi is easily seen to be an inverse. We thus obtain a
convenient characterization of ring homomorphisms out of W(S)〈X〉.

Proposition 2.5. W(S)〈〈X〉〉 is the p-adic completion of W(S)〈X〉.

Proof. Let f : ̂W(S)〈X〉 →W(S)〈〈X〉〉 be the map

f

(
lim←−
n∈N

(
kn∑
i=0

a
(n)
i X [i] + pnW(S)〈X〉

))
=
∞∑
i=0

( lim
n→∞

a
(n)
i )X [i],

where we set a
(n)
i = 0 when i > kn. f is well-defined since equivalent choices of (a

(n)
i )n

differ only by a null sequence. Furthermore, one easily sees that f is a ring homomorphism
through unwinding definitions and standard properties of limits.

If
∑∞

i=0 aiX
[i] ∈W(S)〈〈X〉〉, then for each n ∈ N there is a kn ∈ N with ai ∈ pnW(S)

for all i > kn. Hence f(lim←−n(
∑kn

i=0 aiX
[i] + pnW(S)〈X〉)) =

∑∞
i=0 aiX

[i], which shows that
f is surjective.

On the other hand, if lim←−n(
∑kn

i=0 a
(n)
i X [i] + pnW(S)〈X〉) ∈ ker f , then limn a

(n)
i = 0 for

all n ∈ N0. Hence for all i ∈ N0 and n ∈ N, there is a ki,n > n such that a
(ki,n)
i ∈ pnW(S);

but then a
(n)
i ≡ a

(ki,n)
i ≡ 0 mod pnW(S) for all i ∈ N0 and n ∈ N, so f is injective.

Definition 2.6. Let [s] be the Teichmüller lift of s. Then we define the W(S)-algebras

A0
cris(S/sS) := W(S)〈X〉/(X [1] − [s]), Acris(S/sS) := W(S)〈〈X〉〉/(X [1] − [s]),

B+
cris(S/sS) := Acris(S/sS)[1

p
].

Remark 2.7. The notation S/sS should be understood formally for our purposes, but
isn’t arbitrary. In [9, §2.2], Fontaine constructs a functor that assigns to each p-adically
separated and complete ring B that is semiperfect (has a surjective Frobenius on B/pB)
a certain ring Acris(B). The ring S/sS is indeed semiperfect because S is perfect; it is
p-adically separated and complete since pS = 0. Note that these are also the preconditions
of Proposition 1.3 (ii) because the map θB plays an important role in this construction.
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When constructing the ring Acris for a perfectoid field C of mixed characteristic, one
uses Acris(OC). Since Acris(OC) ∼= Acris(OC/pOC) by [9, 2.2.3 b] and OC/pOC ∼= O[C/sO[C
for any s ∈ O[C with |s|[ = |p| by Proposition 1.13, we are indeed looking for the ring
Acris(O[C/sO[C) as our notation suggests. We prove in Theorem 2.35 that the functorial
definition agrees with ours in this situation, but will not otherwise concern ourselves with
the functorial point of view.

The notation A0
cris(S/sS) does not appear anywhere in [9] and is merely an analogy

to Acris. It cannot be functorial in S/sS since S/sS = 0 whenever s ∈ S×.

Remark 2.8. The choice of generator of sS is irrelevant. If s′ = su with u ∈ S×, the
W(S)-algebra automorphism χu : W(S)〈X〉 ∼→W(S)〈X〉 with χu(X

[n]) = [u]nX [n] and
inverse χu−1 maps (X [1] − [s′]) to [u](X [1] − [s]). We therefore have

• a canonical isomorphism A0
cris(S/sS) ∼= A0

cris(S/s
′S), induced directly from χu;

• a canonical isomorphism Acris(S/sS) ∼= Acris(S/s
′S), induced from the extension

of χu to an automorphism of W(S)〈〈X〉〉 by continuity;

• and a canonical isomorphism B+
cris(S/sS) ∼= B+

cris(S/s
′S), obtained by localization.

It may seem strange that we quotient out X [1] − [s] since in the perfectoid field case,
[s] ∈W(O[C) can never generate ker θOC , but Proposition 2.11 shows that working with [s]
makes no difference.

Lemma 2.9. If n ∈ N has the p-adic expansion n =
∑l

i=0 aip
i with 0 ≤ ai < p and al 6= 0,

then

vp(n!) =
l∑

i=0

ai
pi − 1

p− 1
.

Proof. By Legendre’s formula (which is proven by a simple counting argument), we have

vp(n!)
!

=
l∑

j=1

⌊
n

pj

⌋
=

l∑
j=1

l∑
i=j

aip
i−j =

l∑
i=1

i∑
j=1

aip
i−j =

l∑
i=1

ai

i−1∑
j=0

pj =
l∑

i=1

ai
pi − 1

p− 1
.

Lemma 2.10. For each n ∈ N, we have pn

n!
∈ pZ(p). In particular, if R is a Z(p)-algebra,

then pn

n!
∈ pR for every n ∈ N.

Proof. Let
∑l

i=0 aip
i with 0 ≤ ai < p and al 6= 0 be the p-adic expansion of n. Then

vp(n!)
2.9
=

l∑
i=0

ai
pi − 1

p− 1
<

l∑
i=0

aip
i = n = vp(p

n).

Proposition 2.11. For all w ∈W(S), there is a unique automorphism of W(S)-algebras

τw : W(S)〈X〉 ∼→W(S)〈X〉 with τw(X [n]) = (X[1]+pw)n

n!
. It induces isomorphisms

A0
cris(S/sS) =

W(S)〈X〉
(X [1] − [s])

∼=
W(S)〈X〉

(X [1] − ([s]− pw))
,

Acris(S/sS) =
W(S)〈〈X〉〉
(X [1] − [s])

∼=
W(S)〈〈X〉〉

(X [1] − ([s]− pw))

of W(S)-algebras that identify the classes of X [n].
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Proof. Uniqueness is clear. (X[1]+pw)n

n!
is really an element of W(S)〈X〉 because

(X [1] + pw)n

n!
=

n∑
i=0

(X [1])i

i!

(pw)n−i

(n− i)!
=

n∑
i=0

pn−i

(n− i)!
wn−iX [i] 2.10

∈ W(S)〈X〉.

By Remarks 2.4 and 2.1, the images τw(X [n]) indeed induce an endomorphism τw which is
an automorphism because its inverse is τ−w. Since τw(X [1] − [s]) = (X [1] − ([s]− pw)), we
obtain the isomorphism for A0

cris(S/sS). By continuity, τw extends to an automorphism
of W(S)〈〈X〉〉 which yields the isomorphism for Acris(S/sS).

Lemma 2.12. If ξ ∈W(S) such that ξ ≡ [s] mod pW(S), then ξw ∈ nW(S) implies
w ∈ nW(S) for all n ∈ N and w ∈W(S).

Proof. All prime numbers except p are units in W(S), so it suffices to consider n = pk.
If k = 1, this follows immediately from the facts that p ∈W(S) is a prime element and
ξ 6∈ pW(S). For k > 1, use the case k = 1 to write w = pw′ for some w′ ∈W(S). Then
ξw = ξpw′ ∈ pnW(S), so ξw′ ∈ pn−1W(S). The lemma then follows by induction.

Proposition 2.13. For each k ∈ N and R ∈ {W(S)〈X〉, W(S)〈〈X〉〉}, we have

(X [1] − [s])R ∩ pkR = pk(X [1] − [s])R.

In particular, A0
cris(S/sS) and Acris(S/sS) are Z-torsion-free.

Proof. The inclusion ⊃ is trivial. Identify W(S)〈X〉 ⊂W(S)〈〈X〉〉 and let
∑∞

i=0 aiX
[i],∑∞

i=0 diX
[i] ∈ R such that

∞∑
i=0

pkaiX
[i] !

= (X [1] − [s])
∞∑
i=0

diX
[i] =

∞∑
i=0

(idi−1 − di[s])X [i],

where we set d−1 = 0. Whenever di−1 ∈ pkW(S) for some i ≥ 0, the comparison of coeffi-
cients pkai = idi−1 − di[s] ∈ pkW(S) shows −di[s] ∈ pkW(S), which implies di ∈ pkW(S)
by Lemma 2.12. It thus follows inductively that all di ∈ pkW(S), proving the statement.

The note on Z-torsion follows from the fact that all prime numbers other than p are
already units in W(S) and hence in A0

cris(S/sS) and Acris(S/sS).

Remark 2.14. In both Acris(S/sS) and A0
cris(S/sS), [s]n is the image of n!X [n] ∈W(S)〈X〉

under the projection and hence divisible by n!. In the notation of Remark 2.1, we have
[s]n

n!
∈ A0

cris(S/sS) and [s]n

n!
∈ Acris(S/sS) for all n ∈ N0. Similarly, both rings contain ξn

n!

for all ξ ∈W(S) with ξ ≡ [s] mod pW(S).

Proposition 2.15. Acris(S/sS) is the p-adic completion of A0
cris(S/sS).

Proof. We have an exact sequence of Z-modules

0→W(S)〈X〉
·(X[1]−[s])
↪→ W(S)〈X〉� A0

cris(S/sS)→ 0. (∗)

Since A0
cris(S/sS) is Z-flat by 2.13 and ̂W(S)〈X〉 = W(S)〈〈X〉〉 by 2.5, the sequence

0→W(S)〈〈X〉〉
·(X[1]−[s])
↪→ W(S)〈〈X〉〉� ̂A0

cris(S/sS)→ 0 (∗∗)
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obtained by completion is also exact (cf. part (iii) of [16, 0315]). We obtain an iso-

morphism ̂A0
cris(S/sS) ∼= Acris(S/sS) of Z-modules. But since all Z-modules and homo-

morphisms in (∗) are rings and ring homomorphisms, so are all Z-modules and homo-

morphisms in (∗∗). Consequently ̂A0
cris(S/sS) ∼= Acris(S/sS) is also a ring isomorphism.

We can now characterize equality in Acris(S/sS) and A0
cris(S/sS). Note that the

argument in the proof of Proposition 2.13 is an instance of this.

Proposition 2.16. Let ξ ∈W(S) such that ξ ≡ [s] mod pW(S). Every a ∈ Acris(S/sS)

can be written (in many ways) as a p-adically convergent series a =
∑∞

i=0 ai
ξi

i!
, where

ai ∈W(S) for all i ∈ N0 and limi ai = 0 ∈W(S). Furthermore, a = 0 if and only if there
exist di ∈W(S) for all i ∈ N0 such that

lim
i→∞

di = 0 ∈W(S), a0 = −d0ξ, ai = idi−1 − diξ for all i ∈ N.

Proof. a is the image of some
∑∞

i=0 aiX
[i] ∈W(S)〈〈X〉〉 under the canonical projection

π : W(S)〈〈X〉〉� Acris(S/sS) from 2.11, which is p-adically continuous and thus satisfies

a = π

(
∞∑
i=0

aiX
[i]

)
=
∞∑
i=0

aiπ(X [i]) =
∞∑
i=0

ai
ξi

i!
.

Clearly a = 0 if and only if
∑∞

i=0 aiX
[i] ∈ kerπ, which is to say that there is some

d =
∑∞

i=0 diX
[i] ∈W(S)〈〈X〉〉 such that

∞∑
i=0

aiX
[i] !

= (X [1] − ξ)d =
∞∑
i=1

(idi−1 − diξ)X [i] − d0ξ.

The statement follows by comparing coefficients.

Proposition 2.17. Let ξ ∈W(S) such that ξ ≡ [s] mod pW(S). Every a ∈ A0
cris(S/sS)

can be written (in many ways) as
∑n

i=0 ai
ξi

i!
, where n ∈ N and ai ∈W(S) for all 0 ≤ i ≤ n.

We have a = 0 if and only if there exist di ∈W(S) for all i ∈ N0 such that di = 0 for all
but finitely many i ∈ N0 and

a0 = −d0ξ, ai = idi−1 − diξ for all 0 < i ≤ n, idi−1 = diξ for all i > n.

Proof. This is proven completely analogously to Proposition 2.16.

Proposition 2.18. Consider the canonical maps W(S)
ι0→ A0

cris(S/sS)
ι1→ Acris(S/sS).

(i) ι0 is injective.

(ii) ι1 is injective if and only if ι := ι1 ◦ ι0 is injective.

(iii) ι is injective if and only if
⋂
n≥1 s

nS = 0.

Proof. (i): Let w =
∑∞

i=0 p
i[wi] ∈W(S) such that ι0(w) = 0, i.e. that there are di ∈W(S)

such that w = −d0[s], idi−1 = di[s] for all i > 0, and di = 0 for all but finitely many i ∈ N0.
Since A0

cris(S/sS) is Z-torsion-free, idi−1 = di[s] shows that di−1 = 0 whenever di = 0 for
some i > 0; but that inductively means d0 = 0, hence w = −d0[s] = 0.
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(ii): If ι1 is injective, then so is ι = ι1 ◦ ι0 by part (i). On the other hand, assume

that ι is injective and let a =
∑n

i=0 ai
[s]i

i!
∈ ker ι1. Then n!a ∈W(S) ⊂ A0

cris(S/sS) and
ι(n!a) = 0, so n!a = 0. But A0

cris(S/sS) is Z-torsion-free, so a = 0.
(iii): We identify W(S) ⊂W(FracS). Since the Teichmüller lift for W(S) is the only

multiplicative section of W(S) � S, the lift for W(FracS) restricts to the lift for W(S)
and we can unambiguously denote both by [·].

Let w =
∑∞

i=0 p
i[wi] ∈ ker ι. Then by Proposition 2.16 there are di ∈W(S) such that

lim
i→∞

di = 0 ∈W(S), w = −d0[s], idi−1 = di[s] for all i ∈ N.

It inductively follows that −w[s−1]i+1i! = di ∈W(S) for all i ∈ N0. In particular, we have
w[s−n] ∈W(S)[1

p
] for all n ∈ N, so that for each n ∈ N there exists a kn ∈ N0 such that

pknw[s−n] =
∞∑
i=0

pi+kn [wis
−n] ∈W(S) ∩W(FracS).

Due to the uniqueness of the Teichmüller expansion in W(FracS) and its compatibility
with W(S), we see that wis

−n ∈ S, i.e. wi ∈ snS, for all i, n ∈ N0.
If
⋂
n≥1 s

nS = 0, this means wi = 0 for all i ∈ N0, i.e. w = 0. On the other hand,

if x ∈
⋂
n≥1 s

nS \ 0, then all xs−n ∈ S and the elements di := −[xs−(i+1)]i! ∈W(S) for
i ∈ N0 show that [x] ∈ ker ι by Proposition 2.16.

Remark 2.19 (Hom-set characterization). Let ξ ∈W(S) such that ξ ≡ [s] mod pW(S).

(i) By Remark 2.4 and Proposition 2.11, ring homomorphisms A0
cris(S/sS)→ R corre-

spond to pairs (f, (ri)i∈N), where f : W(S)→ R is a ring homomorphism and the
ri ∈ R form a sequence with r1 = f(ξ) and rirj =

(
i+j
i

)
ri+j for all i, j ∈ N. Of course

the ri correspond to the images of ξi

i!
∈ A0

cris(S/sS).

(ii) If
⋂
n≥1 s

nS = 0, then the ring homomorphisms Acris(S/sS)→ B with p-adically
separated and complete B correspond to ring homomorphisms A0

cris(S/sS)→ B by
Proposition 2.18 and hence pairs (f, (bi)i∈N) as in (i). If

⋂
n≥1 s

nS 6= 0, one can still
induce every ring homomorphism Acris(S/sS)→ B this way, but distinct pairs need
not induce distinct homomorphisms.

(iii) If B is p-adically separated and complete as well as Z-torsion-free, then any ring
homomorphism f : W(S)→ B admits at most one extension f ′ : Acris(S/sS)→ B
since n!f ′( ξ

n

n!
) = f ′(n! ξ

n

n!
) = f ′(ξn) = f(ξ)n uniquely determines all f ′( ξ

n

n!
). Such an

extension exists if and only if f(ξ)n ∈ n!B for all n ∈ N since the compatibility
condition of (i) is automatically satisfied due to Remark 2.1.

Theorem 2.20.

(i) There is a unique ring homomorphism ϕcris : Acris(S/sS)→ Acris(S/sS) satisfying
ϕcris(A

0
cris(S/sS)) ⊂ A0

cris(S/sS) that extends the Frobenius ϕ : W(S)
∼→W(S).

(ii) ϕcris : Acris(S/sS)→ Acris(S/sS) is injective.

(iii) The localization of ϕcris at p is an injective endomorphism of B+
cris(S/sS). We

likewise denote it by ϕcris.
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Proof. (i): By Remark 2.19, it suffices to show ϕ([s])n ∈ n!A0
cris(S/sS). Indeed we have

ϕ([s])n = [s]np = (np)!
[s]np

(np)!
∈ (np)!A0

cris(S/sS) ⊂ n!A0
cris(S/sS).

(ii): Let a =
∑∞

i=0 ai
[s]i

i!
∈ Acris(S/sS) such that

ϕcris(a) =
∞∑
j=0

ϕ(aj)
(jp)!

j!

[s]jp

(jp)!
= 0.

By 2.16, this means that there are Witt vectors gi ∈W(S) such that for all i ∈ N,

lim
i→∞

gi = 0 ∈W(S), ϕ(a0) = −g0[s], igi−1 − gi[s] =

{
0 if i 6∈ pZ
ϕ(ai/p)

i!
(i/p)!

if i ∈ pZ.

If we set g−1 := 0, we have, for all j ∈ N0 and 0 < r < p,

gjp+r[s] = (jp+ r)gjp+(r−1), gjp[s] = (jp)gjp−1 −
(jp)!

j!
ϕ(aj). (∗)

This gives us the following implications for all j ∈ N0 and 0 < r < p:

gjp+(r−1) ∈ (jp+r−1)!
j!

W(S)
(∗)

=⇒ gjp+r[s] ∈ (jp+r)!
j!

W(S)
2.12
=⇒ gjp+r ∈ (jp+r)!

j!
W(S),

gjp+(p−1) ∈ (jp+(p−1))!
j!

W(S)
(∗)

=⇒ g(j+1)p[s] ∈ ((j+1)p)!
(j+1)!

W(S)
2.12
=⇒ g(j+1)p ∈ ((j+1)p)!

(j+1)!
W(S).

Since trivially g0 ∈ (0p)!
0!

W(S), we inductively get gjp+(p−1) ∈ (jp+(p−1))!
j!

W(S) for all j ∈ N0,
which lets us define

cj :=
j!gjp+(p−1)

(jp+ (p− 1))!
∈W(S), dj := ϕ−1(cj) ∈W(S).

Then

cj[s]
p =

j!gjp+(p−1)[s]
p

(jp+ (p− 1))!

(∗)
=
j!gjp+(p−2)[s]

p−1

(jp+ (p− 2))!

(∗)
= . . .

(∗)
=
j!gjp[s]

(jp)!

for all j ∈ N0; hence −d0[s] = ϕ−1(−c0[s]p) = ϕ−1(−g0[s]) = a0 and

jdj−1 − dj[s] = ϕ−1(jcj−1 − cj[s]p)

= ϕ−1

(
j(j − 1)!gjp−1

(jp− 1)!
− j!gjp

(jp)!
[s]

)
= ϕ−1

(
j!(jp gjp−1 − gjp[s])

(jp)!

)
(∗)
= ϕ−1

(
j!ϕ(aj)

(jp)!
j!

(jp)!

)
= aj (∗∗)

for all j ∈ N. It now only remains to show limi di = 0, since the sequence (di)i∈N0 then
satisfies the conditions of 2.16 and shows that a = 0.

We have shown in (∗∗) that dm+j[s] = (m+ j)dm+j−1 − am+j for all j,m ∈ N, so we

inductively get dm+j[s]
j ∈ ( (m+j)!

m!
dm, am+1, . . . , am+j) / W(S) for all j,m ∈ N. Now let
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k ∈ N be arbitrary and choose n ∈ N large enough so that a(pn−1)+j ∈ pkW(S) for all

j ∈ N and vp(
pn!

(pn−1)!
) = vp(p

n) = n ≥ k. Then

d(pn−1)+j[s]
j ∈ ( (pn−1+j)!

(pn−1)!
dpn−1, apn , . . . , apn+j−1) ⊂ pkW(S)

for all j ∈ N, i.e. d(pn−1)+j ∈ pkW(S) for all j ∈ N by Lemma 2.12, showing limi di = 0.
(iii): Since ϕcris(p) = p ∈ B+

cris(S/sS)×, this is a consequence of Proposition 2.13.

We close with a negative result that illustrates one of the reasons the ring Acris(S/sS)
is not very pleasant to deal with. This is essentially Exercise 9.4.1 in [2].

Lemma 2.21. There is an isomorphism of W(S)-algebras

W(S)〈X〉 ∼=
W(S)[Y0, Y1, . . .]

(Y p
j − cjYj+1; j ∈ N0)

,

where cj := pj+1!(pj!)−p ∈ pZ(p).

Proof. Let I := (Y p
j − cjYj+1; j ∈ N0). First note that we really have cj ∈ pZ(p) because

vp(p
j+1!) =

pj+1 − 1

p− 1
>
pj+1 − p
p− 1

= pvp(p
j!) = vp((p

j!)p).

Define a W(S)-algebra homomorphism f ′ : W(S)[Y0, Y1, . . .]→W(S)〈X〉 via the images
f ′(Yj) := X [pj ], which satisfies f ′(Y p

j − cjYj+1) = 0 and thus induces a homomorphism
f : W(S)[Y0, Y1, . . .]/I →W(S)〈X〉 that we claim to be bijective. Let n ∈ N have the
p-adic expansion n =

∑l
i=0 aip

i; set nk :=
∑k

i=0 aip
i for 0 ≤ k ≤ l and n−1 := 0. Then

X [n] =
l∏

i=0

X [aip
i]

(
nk
nk−1

)−1

=
l∏

i=0

(
X [pi]

)ai (pi!)ai

(aipi)!

(
ni
ni−1

)−1

.

This proves that f is surjective because vp

(
(pi!)ai

(aipi)!

(
ni
ni−1

)−1
)

is

ai ·
pi − 1

p− 1
− ai

pi − 1

p− 1
−

(
i∑

j=0

aj
pj − 1

p− 1
−

i−1∑
j=0

aj
pj − 1

p− 1
− ai

pi − 1

p− 1

)
= 0.

Let x =
∑n

k=0 ak
∏m

i=0 Y
ek,i
i ∈ ker f ′. After adding appropriate elements of I, we may

assume ek,i < p for all k, i. Set ek :=
∑m

i=0 ekip
i ∈ N0. After combining summands, we

may assume that all ek are distinct. But then

0 = f ′(x) = f ′

(
n∑
k=0

ak

m∏
i=0

Y
ek,i
i

)
=

n∑
k=0

akzkX
[ek]

for non-zero zk ∈ Z(p) ⊂W(S) and pairwise distinct X [ek], so all ak = 0, i.e. x = 0. Since
we added elements of I in the reduction step, we have shown x ∈ I, so f is injective.

Proposition 2.22. Let
⋂
n≥1 s

nS = 0. Neither Acris(S/sS) nor A0
cris(S/sS) is noetherian.
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Proof. Since [s]p ∈ pA0
cris(S/sS), Lemma 2.21 shows that

A0
cris(S/sS)/pA0

cris(S/sS) ∼=
W(S)[Y0, Y1, . . .]

(p, Y0 − [s], Y p
j − cjYj+1; j ∈ N0)

∼=
W(S)[Y0, Y1, . . .]

(p, Y0 − [s], Y p
j ; j ∈ N0)

∼=
W(S)[Y1, . . .]

(p, [s]p, Y p
j ; j ∈ N)

∼=
(S/spS)[Y1, . . .]

(Y p
j ; j ∈ N)

.

We must have s 6∈ S× because
⋂
n≥1 s

nS = 0. Therefore S/spS 6= 0, so the ring above is
not noetherian. But if either Acris(S/sS) or A0

cris(S/sS) was noetherian, so would be all

their quotients, in particular Acris(S/sS)/pAcris(S/sS)
2.15∼= A0

cris(S/sS)/pA0
cris(S/sS).

2.2 Notes on divided power structures

The theory of divided power structures is usually intended to work around Z-torsion. In
the Z-torsion-free case it is almost trivial; we effectively used it throughout §2.1 already.
We will however have to consider general rings for Definition 2.32 and Theorem 2.35,
necessitating this short excursion into the general theory. A classic reference is [1, §3];
09PD and 07H7 of [16] might also be of interest.

Definition 2.23. Let R be a ring and I / R an ideal. A divided power structure on I
(in R) is a family γ = (γi)i∈N of maps γi : I → I satisfying the following properties. We
write γ0(x) := 1.

(i) For all x ∈ I, γ1(x) = x.

(ii) For all x ∈ I, r ∈ R and i ∈ N0, γi(rx) = riγi(x).

(iii) For all x, y ∈ I and i ∈ N0, γi(x+ y) =
∑i

j=0 γj(x)γi−j(y).

(iv) For all x ∈ I and i, j ∈ N0, γi(x)γj(x) = (i+j)!
i!j!

γi+j(x) =
(
i+j
i

)
γi+j(x).

(v) For all x ∈ I and i, j ∈ N0, γi(γj(x)) = Ci,jγij(x), where Ci,j = (ij)!/(i!(j!)i) ∈ Z.

We also call (R, I, γ) a divided power algebra or (I, γ) a divided power ideal.
If (R, I, γ) and (S, J, δ) are divided power algebras, a ring homomorphism f : R→ S

is a divided power homomorphism if f(I) ⊂ J and δi(f(x)) = f(γi(x)) for all i ∈ N
and x ∈ I.

Note that Ci,j ∈ Z since it is the number of ways to partition a set of ij elements
into i sets of j elements. In older texts like [1], one also finds the terms PD-structure
and PD-morphism, based on the French puissances divisées. The composition of two
divided power homomorphisms is clearly itself a divided power homomorphism, so divided
power algebras with divided power homomorphisms form a category.

Example 2.24. It follows inductively from properties (i) and (iv) that n!γn(x) = xn for
all n ∈ N and x ∈ I, so if R is a Q-algebra, every ideal admits exactly one divided power
structure, given by γn(x) = xn

n!
, from whose properties (i)-(v) are derived in the first place.

In this case, the theory is completely trivial.
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Proposition 2.25. Let R be a Z-torsion-free ring. If γ and δ are divided power structures
on ideals I / R and J / R respectively, then γn(x) = δn(x) for all n ∈ N and x ∈ I ∩ J .
In particular, there is at most one divided power structure on any given ideal.

Proof. Note that n!γn(x) = xn = n!δn(x) for x ∈ I ∩ J and cancel n!.

Therefore we are only concerned with existence in the Z-torsion-free case. The next
proposition saves us from a laborious verification of all five properties.

Proposition 2.26. If R is a Z-torsion-free ring and I / R is an ideal, then the following
are equivalent:

(i) I admits a divided power structure.

(ii) For all x ∈ I and all n ∈ N, we have xn ∈ n!I.

(iii) There is a generating set S of I such that xn ∈ n!I for all x ∈ S and n ∈ N.

Proof. The implications (i) =⇒ (ii) =⇒ (iii) are trivial and don’t even require that R
is Z-torsion-free. For (iii) =⇒ (ii), it suffices to show that (x+ y)n ∈ n!R for all n ∈ N
whenever xn, yn ∈ n!R for all n ∈ N. Indeed,

(x+ y)n =
n∑
i=0

(
n

i

)
xiyn−i =

n∑
i=0

(
n

i

)
i!xi

i!

(n− i)!yn−i

(n− i)!
=

n∑
i=0

n!
xi

i!

yn−i

(n− i)!
∈ n!I.

(ii) =⇒ (i) follows by taking γn(x) to be xn

n
. To verify that this is a divided power

structure, multiply the equations in 2.23 (i)-(v) by 1!, i!, (i!)2, i!j! or i!j!i respectively and
note that doing so produces an equivalence because R is Z-torsion-free.

Example 2.27. The ideal pZp / Zp admits a unique divided power structure because
pn ∈ n!pZp ⊂ n!Zp by Lemma 2.10.

Proposition 2.28. If (A, aA, γ) with a ∈ A is a divided power algebra and f : A→ B
is a ring homomorphism, then δn(f(a)b) := bnf(γn(a)) for b ∈ B is the unique divided
power structure on f(a)B / B that makes f a divided power homomorphism.

Proof. Uniqueness is clear by 2.23 (ii). δn is well-defined because whenever b, b′ ∈ B
satisfy f(a)b = f(a)b′, we have

f(γn(a))bn − f(γn(a))(b′)n = f(γn(a))(bn − (b′)n) = f(γn(a))(b− b′)
n−1∑
i=0

bi(b′)n−1−i = 0

since f(γn(a)) ∈ f(aA) ⊂ f(a)B is a multiple of f(a). We verify the five properties of 2.23
directly. (i) and (ii) are obvious. For (iii), let b, b′ ∈ B and n ∈ N and note that

n∑
i=0

δi(bf(a))δn−i(b
′f(a)) =

n∑
i=0

bi(b′)n−if(γi(a)γn−i(a))

=
n∑
i=0

(
n

i

)
bi(b′)n−if(γn(a))

= (b+ b′)nf(γn(a))

= δn((b+ b′)f(a))
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since (iv) already holds for γ. Similarly for any b ∈ B and i, j ∈ N0,

δi(bf(a))δj(bf(a)) = bi+jf(γi(a)γj(a))

= bi+jf

((
i+ j

i

)
γi+j(a)

)
=

(
i+ j

i

)
bi+jδi+j(f(a))

=

(
i+ j

i

)
δi+j(bf(a)).

For each n ∈ N, let an ∈ A such that γn(a) = ana, i.e. δn(f(a)) = f(γn(a)) = f(an)f(a).
Then aijaia = Ci,jaija for all i, j ∈ N0 by 2.23 (v), so

δi(δj(f(a)b))
(ii)
= bijδi(δj(f(a))) = bijδi(f(aj)f(a))

(ii)
= bijf(aij)δi(f(a))

= bijf(aij)f(ai)f(a) = bijCi,jf(aij)f(a) = Ci,jδij(f(a)b).

Corollary 2.29. Every p-adically separated and complete ring B admits a unique divided
power structure γ on pB such that each γn(p) ∈ pB is the image of pn

n!
∈ pZp inside B.

Proposition 2.30. If (A, I, γ) and (B, J, δ) are two divided power algebras, f : A→ B
is a ring homomorphism, and S is a generating set of I, then f is a divided power
homomorphism if and only if f(I) ⊂ J and f(γn(s)) = δn(f(s)) for all n ∈ N and s ∈ S.

Proof. The condition is trivially necessary. Let x1, x2 ∈ I such that f(γn(xi)) = δn(f(xi))
for all n ∈ N and i ∈ {1, 2}. It then suffices to show that for all a1, a2 ∈ A and n ∈ N, we
also have f(γn(a1x1 + a2x2)) = δn(f(a1x1 + a2x2)):

f(γn(a1x1 + a2x2)) =
n∑
i=0

f(γi(a1x1))f(γn−i(a2x2))

=
n∑
i=0

f(ai1)f(γi(x1))f(an−i2 )f(γn−i(x2))

=
n∑
i=0

f(ai1)δi(f(x1))f(an−i2 )δn−i(f(x2))

=
n∑
i=0

δi(f(a1x1))δn−i(f(a2x2))

= δn(f(a1x1 + a2x2)).

2.3 Alternative constructions of Acris

We investigate how our construction of Acris compares to two more common alternatives.
Throughout this section, we fix a perfectoid field of mixed characteristic (C, |·|) and apply
the constructions of §2.1 to S := O[C and some fixed s ∈ S such that |s|[ = |p|. Since O[C
is the ring of integers of the valued field C[, all such s are associated and the rings
A0

cris := A0
cris(O[C/sO[C), Acris := Acris(O[C/sO[C) and B+

cris := B+
cris(O[C/sO[C) are uniquely

determined up to canonical isomorphism. Note also that our occasional extra assumption⋂
n≥1 s

nO[C = 0 holds. We additionally fix a ξ ∈W(O[C) with ξ ≡ [s] mod pW(O[C) which
generates ker θOC ; this is guaranteed to exist by Proposition 1.15.
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The first alternative construction we consider is the one given in [12, Definition 6.1],
where Acris is defined as the p-adic completion of W(O[C)[ ξ

n

n!
| n ∈ N].

Theorem 2.31. There is a unique isomorphism of W(O[C)-algebras

A0
cris
∼= A := {

n∑
i=0

ai
ξi

i!
∈W(O[C)[1

p
] |n ∈ N0, ai ∈W(O[C)} < W(O[C)[1

p
].

Proof. A is Z-torsion-free, so it suffices to show that the W(O[C)-algebra homomorphism
π : W(O[C)〈X〉� A with π(X [n]) = ξn

n!
satisfies kerπ ⊂ (X [1] − ξ) (surjectivity and the

other inclusion are trivial). Let a =
∑n

i=0 aiX
[i] ∈ kerπ. If n = 0, then clearly a = a0 = 0.

Otherwise, let dm :=
∑n−m

i=1
m!

(m+i)!
am+iξ

i−1 ∈W(O[C)[1
p
] for all 0 ≤ m < n.

We claim that all dm ∈W(O[C). In fact it suffices to show dmξ ∈W(O[C) because if
pndm ∈W(O[C) for some n ∈ N0, then (pndm)ξ = pn(dmξ) ∈ pnW(O[C). Lemma 2.12 then
implies pndm ∈ pnW(O[C), hence dm ∈W(O[C).

For m = 0, we indeed have

a0 = −[s]
n∑
i=1

ai
ξi−1

i!
= −ξd0 ∈W(O[C)

and thus d0 ∈W(O[C). Now note that

dmξ + am =
n−m∑
i=1

m!

(m+ i)!
am+iξ

i +
m!

m!
amξ

m−m

=
n−m∑
i=0

m!

(m+ i)!
am+iξ

i

= m ·
n−(m−1)∑

i=1

(m− 1)!

((m− 1) + i)!
a(m−1)+iξ

i−1

= mdm−1

for all 0 < m < n, so inductively dmξ ∈W(O[C) and consequently dm ∈W(O[C). Now by
construction, we have

a =
n∑
i=1

aiX
[i] + a0 =

n∑
i=1

(idi−1 − diξ)− ξd0 = (X [1] − ξ)
n−1∑
i=0

diX
[i].

Finally, we show that our construction of Acris results in the universal p-adic formal
divided power thickening of OC and therefore agrees with the more general universal
construction in [9, §2.1].

Definition 2.32. Let R be a ring. A p-adic formal divided power thickening of R is a
p-adically separated and complete ring B together with a surjective ring homomorphism
ρ : B � R and a divided power structure δ on ker ρ such that δn(b) = γn(b) for all n ∈ N
and b ∈ ker ρ ∩ pB, where γ is the natural divided power structure on pB from 2.29.

Lemma 2.33. If (B, ρ, δ) is a p-adic formal divided power thickening of a ring R, then
ρ[ : B[ → R[ is an isomorphism.
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Proof. The key observation is that if k ∈ ker ρ, then kp = p!δp(k) ∈ pB.
For injectivity, note that if lim←−j(bj +B/pB) ∈ ker ρ[, then there are kj ∈ ker ρ with

bj ≡ kj mod pB for all j ∈ N0, which shows bj ≡ bpj+1 ≡ kpj+1 ≡ 0 mod pB.

For surjectivity, let r = lim←−j(rj +R/pR) ∈ R[. Since ρ is surjective, there exist ele-

ments bj ∈ B such that ρ(bj) = rj+1 for all j ∈ N0. These elements necessarily satisfy
ρ(bpj+1) ≡ rpj+2 ≡ rj+1 ≡ ρ(bj) mod pR, so bpj+1 ≡ bj + kj mod pB for some kj ∈ ker ρ.

Hence (bpj+1)p ≡ bpj + kpj ≡ bpj mod pB. But then b := lim←−j(b
p
j + pB) ∈ B[ satisfies

ρ[(b) = lim←−
j∈N0

(ρ(bpj) + pR) = lim←−
j∈N0

(rpj+1 + pR) = lim←−
j∈N0

(rj + pR) = r.

Proposition 2.34. θOC extends to a unique ring homomorphism θcris : Acris � OC. Its
kernel admits divided powers, turning (Acris, θcris) into a p-adic formal divided power thick-
ening of OC.

Proof. Since θOC is already surjective, so are all its extensions. The compatibility between
divided power structures follows from 2.25 and 2.13. Note that∣∣∣∣θOC ([s])n

n!

∣∣∣∣ =
|(s])n|
|n!|

=
|sn|[
|n!|

=

∣∣∣∣pnn!

∣∣∣∣ 2.27

≤ 1,

so we have θOC ([s])n ∈ n!OC . By Remark 2.19 (iii), this suffices to construct the unique
extension θcris : Acris � OC as OC is Z-torsion-free and p-adically separated and complete.

Since OC is Z-torsion-free, all ξ
n

n!
∈ Acris lie in ker θcris. To construct the divided power

structure on ker θcris, first note the following:

• If w = ξv ∈ ker θOC with some v ∈W(O[C), then wn = ξnvn = n!vn ξ
n

n!
∈ n! ker θcris.

• For all i, n ∈ N, we have ( ξ
i

i!
)n = (in!)

(i!)n
ξin

(in)!
= n!Cn,i

ξin

(in)!
∈ n! ker θcris, where Cn,i is the

integer (in)!
n!(i!)n

from Definition 2.23.

• If x ∈ ker θcris, then (px)n = n!p
n

n!
xn ∈ n! ker θcris.

Now write any x ∈ ker θcris as x = a0 +
∑m

i=1 ai
ξi

i!
+ p

∑∞
i=m+1

ai
p
ξi

i!
, where all ai ∈W(O[C)

such that limi ai = 0, and m ∈ N such that ai ∈ pW(O[C) for all i > m. Then x is a finite
sum of elements of the three types discussed above, so the existence of the divided power
structure follows from 2.26 (iii).

Theorem 2.35 (Universality). If (B, ρ, δ) is a p-adic formal divided power thickening
of OC, then there is a unique divided power ring homomorphism

α : (Acris, ker θcris, γ)→ (B, ker ρ, δ)

such that θcris = ρ ◦ α.

Proof. The map ρ ◦ − : Hom(W(O[C), B)→ Hom(W(O[C),OC) factors into the bijections
(cf. 1.4, 2.33) between homomorphism sets of Zp-algebras (equivalently, rings)

Hom(W(O[C), B)
θB◦W(−)

�
−[◦ηO[

C

Hom(O[C , B[)
(ρ[)−1◦−
�
ρ[◦−

Hom(O[C ,O[C)
−[◦ηOC
�

θOC ◦W(−)

Hom(W(O[C),OC)
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because for each homomorphism f : W(O[C)→ B, we have

θOC ◦W(ρ[ ◦ f [ ◦ ηO[C ) = θOC ◦W((ρ ◦ f)[ ◦ ηO[C )
1.4
= ρ ◦ f.

Hence there is a unique homomorphism α′ : W(O[C)→ B with ρ ◦ α′ !
= θOC = θcris|W(O[C).

We define α : Acris → B via the images α( ξ
n

n!
) := δn(α′(ξ)), which satisfy the compatibility

conditions of Remark 2.19 (i) because of 2.23 (i) and 2.23 (iv). By continuity and the
construction of α′, we can check θcris = ρ ◦ α on all elements ξn

n!
:

ρ

(
α

(
ξn

n!

))
= ρ(δn(α′(ξ))) =

n!ρ(δn(α′(ξ)))

n!
=
ρ(α′(ξ)n)

n!
=
θOC (ξ)n

n!
= θcris

(
ξn

n!

)
.

It only remains to show that α commutes with the divided power structures. By
construction we have α(γn(ξ)) = δn(α(ξ)) for all n ∈ N, so by the decomposition into sums
from the proof of 2.34 and Proposition 2.30, it suffices to check compatibility on p ker θcris.
But if x ∈ ker θcris, then α(γn(px)) = α

(
pn

n!
xn
)

= pn

n!
α(x)n = δn(pα(x)) = δn(α(px)).
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3 The rings of Gauß norm completions and Bcris

If C is a perfectoid field of mixed characteristic, the ring B+
cris := B+

cris(O[C/sO[C) can
be considered a subring of the field of de Rham periods BdR (cf. §1.3 and 3.30). This
embedding is conveniently studied through completions of W(O[C)[1

p
] with respect to

Gauß norms, which play an important role in the construction of the Fargues-Fontaine
curve and can often be used as a replacement for B+

cris. An overview of how these rings fit
into the general theory can be found in the beginning of [7]; a detailed and more general
treatment can be found in [6, §1].

Our approach is not fundamentally different from the classical one. Many of our
arguments in §3.2 and §3.3 can be found in their original, more ad hoc form in [11, §4].
Another overview of this approach to B+

cris ⊂ BdR via Gauß norms can be found in [3,
§3]; note however that Caruso fixes a logarithmic valuation, so that his B+

µ corresponds
to our B+

ρ for ρ = |p|µ. Furthermore, Caruso’s Bµ and Fontaine’s Ba in [11] do not
correspond to Fontaine’s Bρ in [6], but instead B+

ρ [1
t
], which is the notation we will use.

3.1 Bounded Laurent series in mixed characteristic

Throughout this section, we fix a perfectoid field F of characteristic p > 0 with absolute
value |·|, which notably means that F is perfect. The case to keep in mind is F = C[ for
a perfectoid field C of mixed characteristic.

Definition 3.1. We write Bb,+ := W(OF )[1
p
].

Note that every x ∈ Bb,+ can be written as x =
∑

i∈Z p
i[xi], where all xi ∈ OF are

uniquely determined by x and almost all xi = 0 for i < 0. Therefore, whenever some
x ∈ Bb,+ is given, we will simply write xi for these coefficients when this is unambiguous.

The + in Bb,+ refers to the fact that the Newton polygon of each x ∈ Bb,+ (the
convex hull of all (i,− logp(|xi|)) ∈ R2 and the “points at infinity” (0,∞) and (∞, 0))
lies above the x-axis. For x ∈ Bb,+, this simply corresponds to |xi| ≤ 1, but for the other
rings we construct its definition and meaning become less elementary. Like its classical
counterpart, the Newton polygon contains divisibility information; we will only use it
indirectly through the function ψx from Proposition 3.10, to which it is related via the
Legendre transform. See [6, §1.5, §1.6.3] for details.

The b in Bb,+ is to be understood as “bounded” since Bb,+ is a subring of the ring
Bb := {x =

∑
i p

i[xi] ∈W(F )[1
p
] | supi|xi| <∞}, which can be thought of as a mixed

characteristic analogue of the ring of bounded formal Laurent series, in p instead of
a formal variable. The rings we construct in this section can be similarly considered rings
of functions. We do not need this point of view, but will shortly sketch it here since it
motivates various constructions and terminology.

A w ∈W(OF ) is primitive of degree 1 when w0 6= 0 and w1 ∈ O×F . For each such
element, one has a projection W(OF ) � W(OF )/wW(OF ). The ring W(OF )/wW(OF )
admits the absolute value |x+ wW(OF )|w := infz∈W(OF ) supi∈N0

|(x+ wz)i| and therefore
is a domain; it turns out to be the ring of integers of a perfectoid field C of characteristic
zero with an isometric isomorphism C[ ∼= F and |p|w = |w0|. Under this isomorphism,
the projection is identified with θOC and its localization θ : Bb,+ → C can be considered
an evaluation homomorphism at a point of magnitude |p|w. For more details, see [6, §2.2].

The analogy between Bb,+ and Laurent series makes the following definition natural.
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Definition 3.2. Let ρ ∈ (0; 1) and x =
∑

i p
i[xi] ∈ Bb,+. The ρ-Gauß norm of x is

|x|ρ := sup
i∈Z

ρi|xi|.

Note that this supremum is actually a maximum since xi = 0 for almost all i < 0 and
limi ρ

i|xi| ≤ limi ρ
i = 0. This also shows that the maximum is attained for only finitely

many i ∈ Z if x 6= 0; we will develop bounds on possible i in Proposition 3.10. We already
called |·|ρ a norm, but this is non-trivial and requires a technical argument.

Lemma 3.3. For each n ∈ N0, the Witt structure polynomial

S̃n = Sn(X0, X
p
1 , . . . , X

pn

n , Y0, Y
p

1 , . . . , Y
pn

n ) ∈ Z[X0, . . . , Xn, Y0, . . . , Yn]

adapted to the representation
∑∞

i=0 p
i[xi] is homogeneous of degree pn.

Proof. The case n = 0 is trivial. Let Φm be the m-th Witt polynomial and note that
Φm(X0, X

p
1 , . . . , X

pm

m ) =
∑m

i=0 p
iXpm

i is always a homogeneous polynomial of degree pm.
Let all S̃i for i < n + 1 be homogeneous polynomials of degree pi. Then the polynomial

Φn(S̃p0 , S̃
p
1 , . . . , S̃

p
n) =

∑n
i=0 p

iS̃p
n+1−i

i is homogeneous of degree pn+1. Now note that

pn+1S̃n+1 + Φn(S̃p0 , . . . , S̃
p
n) = Φn+1(S̃0, . . . , S̃n+1)

= Φn+1(X0, X
p
1 , . . . , X

pn+1

n+1 ) + Φn+1(Y0, Y
p

1 , . . . , Y
pn+1

n+1 )

by the defining property of Sn+1, which shows that S̃n+1 is a sum of homogeneous poly-
nomials of degree pn+1 as claimed.

Proposition 3.4. |·|ρ is a non-archimedean absolute value on Bb,+.

Proof. First note that if |x|ρ = supi ρ
i|xi| = 0, then all |xi| = 0, i.e. x = 0. It suffices

to show the triangle inequality and multiplicativity on W(OF ) ⊂ Bb,+ because for all
x, y ∈ Bb,+, there is an m ∈ N such that pmx, pmy ∈W(OF ); since it is clear from the
definition of |·|ρ that |pnx|ρ = ρn|x|ρ for all n ∈ Z, we then have

|x+ y|ρ = ρ−m|pmx+ pmy|ρ
!

≤ ρ−m max{|pmx|ρ, |pmy|ρ} = max{|x|ρ, |y|ρ},

|xy|ρ = ρ−2m|pmxpmy|ρ
!

= ρ−2m|pmx|ρ|pmy|ρ = |x|ρ|y|ρ.

Hence let x, y ∈W(OF ). The strict triangle inequality follows from

|x+ y|ρ = sup
i≥0

ρi|Si(x0, x
p
1, . . . , x

pi

i , y0, . . . , y
pi

i )p
−i |

3.3

≤ sup
i≥0

max
0≤j≤i

{ρi|xj|, ρi|yj|}

≤ sup
i≥0

max
0≤j≤i

{ρj|xj|, ρj|yj|}

= max{sup
i≥0

ρi|xi|, sup
i≥0

ρi|yi|}

= max{|x|ρ, |y|ρ}.
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For multiplicativity, assume without loss of generality that x, y, xy 6= 0 since Bb,+ is
a domain and let n ∈ N be large enough such that |p|n+1

ρ < |x|ρ, |y|ρ, |xy|ρ. Then we have

xy ≡
∑n

i=0 p
i
∑i

j=0[xjyi−j] mod pn+1W(OF ), so the strict triangle inequality implies

|xy|ρ
!

=

∣∣∣∣∣
n∑
i=0

pi
i∑

j=0

[xjyi−j]

∣∣∣∣∣
ρ

!

≤ max
0≤i≤n

ρi max
0≤j≤i

|xj||yi−j| ≤ ( max
0≤i≤n

ρi|xi|)( max
0≤i≤n

ρi|yi|) ≤ |x|ρ|y|ρ.

Finally, let ix, iy ∈ Z be minimal such that |x|ρ = ρix |xix| and |y|ρ = ρiy |yiy |, and let
x′ =

∑∞
i=ix

pi[xi], y
′ =
∑∞

i=iy
pi[yi]. Then x′y′ =

∑∞
i=ix+iy

pi[wi] for some wi ∈W(OF ),

where notably wix+iy = xixyiy . Hence |x|ρ|y|ρ = ρix+iy |xixyiy | ≤ |x′y′|ρ. By construction,
|x− x′|ρ < |x|ρ and |y − y′|ρ < |y|ρ, which shows

|xy − x′y′|ρ = |(x− x′)y − x′(y′ − y)|ρ
≤ max{|(x− x′)y|ρ, |x′(y′ − y)|ρ}
≤ max{|x− x′|ρ|y|ρ, |x′|ρ|y′ − y|ρ}
< |x|ρ|y|ρ = |x′y′|ρ.

Therefore |x|ρ|y|ρ ≤ |x′y′|ρ = |xy|ρ as well by the strict triangle inequality.

Remark 3.5. Since |x| = 1 for all x ∈ F×p ⊂ O×F , the Gauß norms restrict to the p-adic
absolute value on Qp = W(Fp)[1

p
] ⊂ Bb,+, normalized to |p| = ρ. The topology on W(OF )

induced by |·|ρ is however not the p-adic topology but the coarser weak topology, which
arises as the product topology from the identification

(
∞∑
i=0

pi[wi] 7→ (wi)i) : W(OF ) �
∞∏
i=0

OF ,

where each OF is given its usual valuation topology. Contrast this with how the p-adic
topology arises by equipping OF with the discrete topology instead. Clearly, W(OF ) is
Hausdorff and complete with respect to the weak topology.

Proposition 3.6. If ρ ∈ (0; 1), then |·|ρ induces the weak topology on W(OF ).

Proof. Note that for all x ∈W(OF ) and n ∈ N0, the function fx,n : W(OF )→ OF with

fx,n(y) := Sn(x0, . . . , x
pn

n , y0, . . . , y
pn

n )1/pn

is continuous with respect to the weak topology on W(OF ) because Sn is a polynomial.
In particular, translation is a homeomorphism with respect to both topologies on W(OF )
and it suffices to consider neighborhoods of zero.

Let U = {y ∈W(OF ) | |y|ρ < ε} for some ε > 0. Then there is an n ∈ N0 such that
ερ−n > 1, so that

{y ∈W(OF ) | |yi| < ερ−i for all 0 ≤ i ≤ n} !
= {y ∈W(OF ) | |yi| < ερ−i for all i ≥ 0}
= {y ∈W(OF ) | |y|ρ < ε}

is a weakly open neighborhood of zero contained in U .
On the other hand, if V = {y ∈W(OF ) | |yi| < εi for all 0 ≤ i ≤ n} for some n ∈ N0

and ε0, . . . , εn > 0, then for ε := min{ε0, ε1ρ
−1, . . . , εnρ

−n} the set

{y ∈W(OF ) | |y|ρ < ε} = {y ∈W(OF ) | |yi| < ερ−i for all i ≥ 0}
⊂ {y ∈W(OF ) | |yi| < ερ−i for all 0 ≤ i ≤ n}

is a |·|ρ-neighborhood of zero contained in V .
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In particular, we see that all Gauß norms on W(O[C) are equivalent and that W(O[C)
is complete with respect to them. This situation is very different from the one for Bb,+,
where completion and varying the Gauß norm are important tools.

Definition 3.7. Let ρ ∈ (0; 1).

(i) We write B+
ρ for the completion of Bb,+ with respect to |·|ρ. The absolute value |·|ρ

extends to an absolute value on B+
ρ which we likewise denote by |·|ρ.

(ii) The ring of power-bounded elements of B+
ρ is

◦
B+
ρ := {x ∈ B+

ρ | |x|ρ ≤ 1}.

The ring B+
ρ too has an interpretation as a ring of functions, specifically those that

converge on the closed annulus with radius between ρ and 1. We can make this more

precise using Proposition 3.25. For the ring
◦
B+
ρ , the following compatibility statement

regarding the p-adic and |·|ρ topologies holds.

Proposition 3.8. Let ρ ∈ (0; 1).

(i) We have pn
◦
B+
ρ = {x ∈

◦
B+
ρ | |x|ρ ≤ ρn} for all n ∈ N0. In particular, the p-adic and

|·|ρ-norm topologies coincide on
◦
B+
ρ , which is thus p-adically separated and complete.

(ii) The ring
◦
B+
ρ is the p-adic completion of Sρ := Bb,+ ∩

◦
B+
ρ .

(iii) The natural homomorphism
◦
B+
ρ [1

p
]→ B+

ρ is an isomorphism.

Proof. (i): If x ∈
◦
B+
ρ and n ∈ N0, then |pnx|ρ = |pn|ρ|x|ρ ≤ ρn. On the other hand, if

x ∈
◦
B+
ρ satisfies |x|ρ ≤ ρn, then |p−nx|ρ ≤ 1, so p−nx ∈

◦
B+
ρ and x = pn(p−nx) ∈ pn

◦
B+
ρ .

(ii): Let x ∈
◦
B+
ρ and x(n) ∈ Bb,+ such that x = limn x

(n). Since |·|ρ is non-archimedean,

either x = 0 and |x(n)|ρ < 1 for almost all n ∈ N, or |x(n)|ρ = |x| ≤ 1 for almost all n ∈ N;

either way x(n) ∈ Sρ for almost all n ∈ N, so Sρ ⊂
◦
B+
ρ is dense. The result now follows

immediately from (i) since
◦
B+
ρ ⊂ B+

ρ is closed.

(iii): The homomorphism is injective because we localized the injective
◦
B+
ρ ↪→ B+

ρ . It
is surjective because any x ∈ B+

ρ can be written as p−n(pnx) for some n ∈ N such that

pnx ∈
◦
B+
ρ .

Lemma 3.9. If 0 < σ ≤ ρ < 1, then |x|ρ ≤ |x|logσ(ρ)
σ for all x ∈ Bb,+.

Proof. Write x =
∑

i∈Z p
i[xi] and let n ∈ Z such that |x|ρ = ρn|xn|. Then

|x|ρ = ρn|xn| = σn logσ(ρ)|xn| ≤ σn logσ(ρ)|xn|logσ(ρ) = (σn|xn|)logσ(ρ) ≤ |x|logσ(ρ)
σ ,

where the first inequality uses |xn| ≤ 1 and 0 < logσ(ρ) ≤ 1.

Proposition 3.10. For b ∈ Bb,+ \ 0, let ψb : (0;∞)→ R be ψb(t) = logp(|b|p−t).

(i) ψb is convex (hence continuous) and piecewise affine linear with integral slopes.

(ii) Let t ∈ (0;∞). Then

d−ψb(t) := lim
h→0
h<0

ψb(t+ h)− ψb(t)
h

= min{i ∈ Z | |b|p−t = p−ti|xi|},

d+ψb(t) := lim
h→0
h>0

ψb(t+ h)− ψb(t)
h

= max{i ∈ Z | |b|p−t = p−ti|xi|}.
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Proof. Let 0 < r < s and consider the restriction of ψb to [r; s]. Write σ = p−s < p−r = ρ

and set C = min{|b|logρ(σ)
ρ , |b|ρ} (logρ, not logp!). Then for all t ∈ [r; s],

|b|p−t
3.9

≥ |b|logρ(p−t)
ρ ≥

{
|b|logρ(ρ)

ρ = |b|ρ if |b|ρ ≥ 1,

|b|logρ(σ)
ρ if |b|ρ < 1,

i.e. |b|p−t ≥ C > 0. Therefore, if n ∈ N is large enough so that p−n < C and bi = 0 for
all i < −n, we have, for all t ∈ [r; s],

ψb(t) = logp

∣∣∣∣∣
n∑

i=−n

pi[bi]

∣∣∣∣∣
p−t

 = max
−n≤i≤n

(logp(|bi|)− it). (*)

(i): By elementary analysis, being convex and piecewise affine linear with integral
slopes is stable under finite maxima and can be checked on compact subintervals of (0;∞),
so this follows directly from (∗) since each logp(|bi|)− it is of this form.

(ii): Let 0 < r < t < s and choose an n ∈ N as before so that (∗) holds. Since all
(t′ 7→ logp(|bi|)− it′) are continuous, there is a δ > 0 such that for all h ∈ (−δ; δ),

ψb(t+ h) = max{logp(|bi|)− i(t+ h) | − n ≤ i ≤ n}
!

= max{logp(|bi|)− i(t+ h) | − n ≤ i ≤ n, ψb(t) = logp(|bi|)− it}
= max{logp(|bi|)− i(t+ h) | − n ≤ i ≤ n, |b|p−t = p−it|bi|}
≤ max{logp(|bi|)− i(t+ h) | i ∈ Z, |b|p−t = p−it|bi|}
≤ max{logp(|bi|)− i(t+ h) | i ∈ Z}
= ψb(t+ h).

Since {logp(|bi|)− it | i ∈ Z, |b|p−t = p−it|bi|} is a singleton set, it follows that

ψb(t+ h)− ψb(t)
h

=
max{logp(|bi|)− i(t+ h)− (logp(|bi|)− it) | i ∈ Z, |b|p−t = p−it|bi|}

h

=
max{ih | i ∈ Z, |b|p−t = p−it|bi|}

h

=

{
min {i ∈ Z | |b|p−t = p−ti|xi|} if h < 0,

max{i ∈ Z | |b|p−t = p−ti|xi|} if h > 0

for all h ∈ (−δ; δ) \ 0.

Corollary 3.11. For all b ∈ Bb,+ \ 0, the function (ρ 7→ |b|ρ) : (0; 1)→ R is continuous.

Proof. The function factors into the continuous functions expp ◦ ψb ◦ (− logp).

If 0 < σ ≤ ρ < 1, the composition (Bb,+, |·|σ)
id→ (Bb,+, |·|ρ) ↪→ B+

ρ is continuous by
Lemma 3.9 and extends to a continuous ring homomorphism ισ,ρ : B+

σ → B+
ρ . Since ισ,ρ

simply maps limn xn ∈ B+
σ with xn ∈ Bb,+ to limn xn ∈ B+

ρ , the maps ισ,ρ form a directed
system. They turn out to be injective, but this is surprisingly non-trivial.

Lemma 3.12. If 0 < σ ≤ ρ < 1, then |ισ,ρ(x)|ρ ≤ |x|logσ(ρ)
σ for all x ∈ B+

σ .

Proof. Write x = limn xn ∈ B+
σ , where all xn ∈ Bb,+. By the continuity of ισ,ρ,

|ισ,ρ(x)|ρ = lim
n→∞
|xn|ρ

3.9

≤ lim
n→∞
|xn|logσ(ρ)

σ = |x|logσ(ρ)
σ .
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Lemma 3.13. Let 0 < σ < τ < ρ < 1, λ := logσ/ρ(τ/ρ) ∈ (0; 1), and x ∈ B+
σ . Then

|ισ,τ (x)|τ ≤ |x|λσ|ισ,ρ(x)|(1−λ)
ρ .

Proof. For b ∈ Bb,+, this is a multiplicative rewording of the convexity statement in 3.10,
although it can also be proven directly by a straightforward manipulation. We obtain
the lemma by taking limits as in 3.12.

Proposition 3.14. If 0 < σ < ρ < 1, then ισ,ρ : B+
σ → B+

ρ is injective.

Proof. Assume to the contrary that there is an x ∈ B+
σ \ 0 such that ισ,ρ(x) = 0. Then

|ισ,τ (x)|τ ≤ 0 for all τ ∈ (σ; ρ] by Lemma 3.13. For each ε ∈ (0; 1), there is a y ∈ Bb,+ such
that |x− y|σ < min{εlogρ(σ), |x|σ} (and notably, |x|σ = |y|σ) since Bb,+ ⊂ B+

σ is dense and
x 6= 0. Furthermore there is a τ ∈ (σ; ρ) such that ||y|σ − |y|τ | < ε by continuity (3.11),
and hence |y|σ ≤ ||y|σ − |y|τ |+ |y|τ < ε+ |y|τ . Therefore, using |x− y|σ < 1,

|x|σ = |y|σ < ε+ |y|τ = ε+ |ισ,τ (x− y)|τ
3.12

≤ ε+ |x− y|logσ(τ)
σ

!

≤ ε+ |x− y|logσ(ρ)
σ < 2ε.

This holds for all ε ∈ (0; 1), so absurdly |x|σ = 0.

Note how Proposition 3.14 requires convexity, continuity and Lemma 3.12, which is
completely specific to Gauß norms. In general, maps induced from the identity in this
manner need not be injective. The following result shows that the choice of ρ does matter.

Proposition 3.15. The map ισ,ρ : B+
σ ↪→ B+

ρ is not surjective when 0 < σ < ρ < 1.

Proof. Call Cauchy/null sequences with respect to |·|ρ ρ-Cauchy/ρ-null for short. Since F
is perfectoid, there is an x ∈ OF with σ < |x| < ρ; then the sequence (p−n[x]n)n is ρ-null
but not σ-null because

lim
n→∞
|p−n[x]n|ρ = lim

n→∞
(ρ−1|x|)n = 0, lim

n→∞
|p−n[x]n|σ = lim

n→∞
(σ−1|x|)n =∞.

Therefore the sequence xn :=
∑n

i=0 p
−i[xi] ∈ Bb,+ is ρ-Cauchy but not σ-Cauchy. Now

recall the construction of the completion as classes of Cauchy sequences. If the class of
(xn)n in B+

ρ was in ισ,ρ(B
+
σ ), there would be a ρ-null sequence (en)n in Bb,+ such that

(xn + en)n is σ-Cauchy; but by Proposition 3.14, ρ-null and σ-Cauchy together imply
σ-null, so it absurdly follows that (xn)n is σ-Cauchy.

Definition 3.16. We write B+ := lim←−0<ρ<1
B+
ρ , where the transition maps of the inverse

limit are the maps ισ,ρ : B+
σ → B+

ρ for each pair 0 < σ ≤ ρ < 1.

Due to Proposition 3.14, we may identify the various B+
ρ as subrings of each other

and view B+ as the intersection of all B+
ρ , which gives it an interpretation as functions

that converge on the unit disk. The ring B+ can frequently be substituted for B+
cris and

tends to have nicer properties.

Remark 3.17. The natural choice of topology on B+ is the inverse limit topology, i.e. the
coarsest topology such that all inclusions ιρ : B+ ↪→ B+

ρ are continuous. Equivalently,
one uses B+ ∼= lim←−n≥2

B+
1/n and equips B+ with the coarsest topology such that all

B+
ι1/n
↪→ B+

1/n for n ≥ 2 are continuous, since B+
ιρ
↪→ B+

ρ factors into B+
ι1/n
↪→ B+

1/n

ι1/n,ρ
↪→ B+

ρ

for n = d1/ρe. This shows that the topology of B+ is metrizable via

d(x, y) := sup
n≥2

2−n
|x− y|1/n

1 + |x− y|1/n
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(the restriction of the product metric for B+ ∼= lim←−n≥2
B+

1/n), so a sequence converges

in B+ if and only if its image in every B+
1/n (or equivalently, in every B+

ρ ) converges. It

follows immediately that B+ is the completion of Bb,+ with respect to this metric.

Proposition 3.18. {x ∈ B+ | |x|ρ ≤ 1 for all 0 < ρ < 1} =
⋂

0<ρ<1

◦
B+
ρ = W(OF ).

Proof. Clearly W(OF ) ⊂
⋂
ρ

◦
B+
ρ . On the other hand, let x ∈ B+ \ 0 with |x|ρ ≤ 1 for all

ρ ∈ (0; 1) and let x(1), x(2), . . . ∈ Bb,+ \ 0 be a sequence that converges to x with respect to

all Gauß norms. Set y(n) :=
∑∞

i=0 p
i[x

(n)
i ] ∈W(OF ). We claim that limn|x(n) − y(n)|ρ = 0

for all ρ, which implies that x is a |·|ρ-limit of elements of W(OF ) and hence itself
in W(OF ) by Remark 3.5 and Proposition 3.6.

Let ρ, ε ∈ (0; 1). Since limn x
(n) = x in B+

ερ, there is an n ∈ N with |x(j)|ερ = |x|ερ ≤ 1

for all j > n. Hence |x(j)
i |(ερ)i ≤ 1 for all j > n and i ∈ Z, which in particular means

|x(j) − y(j)|ρ = sup
i<0
|x(j)
i |ρi ≤ sup

i<0
ε−i = ε.

Proposition 3.19. Let ρ ∈ (0; 1) and ϕ : Bb,+ ∼→ Bb,+ the Frobenius automorphism.

(i) There exists a unique continuous isomorphism ϕρ : B+
ρ
∼→ B+

ρp that restricts to ϕ.

(ii) ϕρ restricts to a continuous isomorphism
◦
ϕρ :

◦
B+
ρ
∼→

◦
B+
ρp.

(iii) If 0 < σ < ρ < 1, then ϕσ = ϕρ ◦ ισ,ρ.

Proof. (i): Uniqueness follows from the density of Bb,+ ⊂ B+
ρ . If x ∈ Bb,+, then

|ϕ(x)|ρp = sup
i∈Z

ρpi|xi|p = sup
i∈Z

(ρi|x|ρ)p = |x|pρ, (∗)

so ϕ maps Cauchy sequences relative to |·|pρ (i.e. |·|ρ) to Cauchy sequences relative to |·|ρp .
Hence ϕ extends to a continuous homomorphism ϕρ : B+

ρ → B+
ρp . This is in fact an

isomorphism: ϕ−1 similarly extends to a continuous homomorphism B+
ρp → B+

ρ , so since
either composition of the two is continuous and the identity on the dense subset Bb,+, it
is itself the identity.

(ii): Note that (∗) still holds after taking limits and that every x ∈
◦
B+
ρ can be written

as a limit of elements of
◦
B+
ρ ∩Bb,+ by Proposition 3.8.

(iii): This follows immediately from continuity.

Corollary 3.20. For any ρ ∈ (0; 1), the ring B+ =
⋂
n≥0B

+
ρpn

=
⋂
n≥0 ϕ

n
ρ(B+

ρ ) is the

largest subring of B+
ρ where ϕρ is bijective. The restriction of ϕρ to B+ is continuous

and denoted by ϕB.

Proposition 3.21. Let mF = {x ∈ OF | |x| < 1}. For all x ∈ 1 + mF , the series

log([x]) :=
∞∑
i=1

(−1)i+1 ([x]− 1)i

i

converges in B+. The resulting map log([·]) : 1 + mF → B+ is a continuous group homo-
morphism with respect to the additive structure on B+.
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Proof. Let ρ ∈ (0; 1) and w ∈W(OF ) such that [x]− 1 = [x− 1] + pw. Then

|[x]− 1|ρ ≤ max{|x− 1|, |pw|ρ} ≤ max{|x− 1|, ρ} < 1.

The series converges in B+
ρ because if λ := logρ(|[x]− 1|ρ) ∈ (0;∞), then

lim
n→∞

∣∣∣∣([x]− 1)n

n

∣∣∣∣
ρ

= lim
n→∞

ρλn−vp(n) ≤ lim
n→∞

ρλn−logp(n) = 0.

Since [·] : OF →W(OF ) is an isometry for |·|ρ and satisfies [xy] = [x][y] for all x, y ∈ OF ,
one obtains a continuous group homomorphism 1 + mF → B+

ρ for every ρ ∈ (0; 1) through
the same formal arguments as for the ordinary logarithm. These homomorphisms are
evidently compatible with the inclusions ισ,ρ for σ ≤ ρ, so we obtain a continuous group
homomorphism log([·]) : 1 + mF → B+.

Proposition 3.22. If x ∈ 1 + mF , then ϕB(log([x])) = p log([x]).

Proof. Since ϕB is continuous, we have

ϕB(log([x])) =
∞∑
i=1

(−1)i+1 ([xp]− 1)i

i
= log([xp]) = p log([x]).

Remark 3.23. One can in fact prove that every b ∈ B+ with ϕB(b) = pb is of the form
b = log([x]) for some x ∈ 1 + mF , see [6, 4.4.7].

3.2 The chain of inclusions B+
|p|p ↪→ B+

cris ↪→ B+
|p| ↪→ B+

dR

Throughout this section, we fix a perfectoid field C of mixed characteristic. Then F := C[

is perfectoid of characteristic p by Theorem 1.12 (i), so we have the rings Bb,+, B+
ρ ,

◦
B+
ρ , B

+

from §3.1. Furthermore, we fix an arbitrary s ∈ O[C with |s|[ = |p| and obtain the rings
Acris := Acris(O[C/sO[C) and B+

cris := B+
cris(O[C/sO[C) from 2.6. Note that

⋂
n≥1 s

nO[C = 0
by simple absolute value considerations, so all conditional results of §2.1 apply.

Our goal is to realize B+
cris as an intermediate ring between B+

|p|p and B+
|p| and to

embed it into the field of de Rham periods BdR, which will be an important tool for our
representation-theoretic arguments in §4.

Definition 3.24. We write θ : Bb,+ � C for the localization of θOC : W(O[C) � OC at p.

Since Bb,+ is a domain and C = OC [1
p
], the map θ is surjective. As explained in the

beginning of §3.1, the map θ can be thought of as an evaluation homomorphism. It is
central for all constructions in this chapter.

Proposition 3.25. For all ρ ∈ (0; |p|], there is a continuous and surjective ring homo-
morphism θρ : B+

ρ � C which restricts to θ. It satisfies |θρ(x)| ≤ |x|ρ for all x ∈ B+
ρ if

and only if ρ = |p|.

Proof. We first show |θ(x)| ≤ |x|ρ for x ∈ Bb,+ and ρ = |p|. The case x ∈ ker θ is trivial;
otherwise choose n ∈ N such that ρn < |θ(x)| and xi = 0 for all i < −n. Since |xi|[ ≤ 1
for all i ∈ Z and ρ = |p|, we have

|θ(x)| =

∣∣∣∣∣∑
i∈Z

pix]i

∣∣∣∣∣ =

∣∣∣∣∣ ∑
−n≤i≤n

pix]i

∣∣∣∣∣ ≤ sup
−n≤i≤n

|p|i|x]i|
!

≤ sup
i∈Z

ρi|xi|[ = |x|ρ.
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Norm-decreasing maps are uniformly continuous; since θ is already surjective, so is the
unique continuous extension θρ. The norm inequality for θρ follows from the one for θ by
taking limits. For ρ < |p|, take θρ := θ|p| ◦ ιρ,|p|, which is clearly surjective and continuous.
It isn’t norm-decreasing because |θ(p)| = |p| > ρ = |p|ρ.

This too can be considered an evaluation homomorphism, which makes more precise
how B+

ρ is a ring of functions that converge on the annulus with radius between ρ and 1.
Given an f ∈ B+

σ for some σ ∈ (0; 1), one “evaluates” f at a primitive element of de-
gree 1 corresponding to a perfectoid field C of mixed characteristic with ρ = |p| ≥ σ via
θσ(f) = θρ(ισ,ρ(f)) ∈ C, which is indeed limn θ(fn) ∈ C for fn ∈ Bb,+ with f = limn fn.

The map θ cannot extend to B+
ρ when ρ > |p| because limn|p−n(s])n| = 1 even though

limn|p−n[s]n|ρ = 0. The restriction to (0; |p|] is therefore fundamental and the reason
why B+

|p| is called B+
max by some authors.

Proposition 3.26. If ρ ∈ (0; |p|], then ker θρ is the topological closure of ker θ in B+
ρ . In

particular, whenever ker θ = ξBb,+ for some ξ ∈ Bb,+, then ker θρ = ξB+
ρ as well.

Proof. Let x = limn x
(n) ∈ ker θρ ⊂ B+

ρ , where x(n) ∈ Bb,+. Since θρ is continuous, we

have limn θ(x
(n)) = θρ(x) = 0 and may pass to a subsequence such that θ(x(n)) ∈ pnOC

holds for all n ∈ N. Now let

vn :=
∑
i<n

pi[x
(n)
i ] ∈ Bb,+, wn :=

∞∑
i=0

pi[x
(n)
n+i] ∈W(O[C)

for each n ∈ N. Then by construction, x(n) = vn + pnwn, so that

θ(vn) = θ(x(n))− pnθOC (wn) ∈ pnOC .

Since θOC is surjective, there is a un ∈W(O[C) such that θ(vn) = pnθOC (un). Setting
y(n) := vn − pnun ∈ ker θ, we then have

|x(n) − y(n)|ρ = |pnwn + pnun|ρ = |pn|ρ|wn + un|ρ ≤ ρn.

This shows that limn y
(n) = x, so ker θρ lies in the closure of ker θ; the other inclusion is

trivial since ker θρ = θ−1
ρ ({0}) is closed.

Finally, if ker θ = ξBb,+ for some ξ ∈ Bb,+, there are z(n) ∈ Bb,+ such that y(n) = ξz(n)

for each n ∈ N. These form a Cauchy sequence since |z(n) − z(n′)|ρ = |ξ|ρ|y(n) − y(n′)|ρ for
all n, n′ ∈ N; hence x = ξ limn z

(n) ∈ ξB+
ρ .

Proposition 3.27. If ρ ∈ (0; |p|] and ξ ∈ Bb,+ is a generator of ker θ, then for each
n ∈ N, the map Bb,+/ξnBb,+ → B+

ρ /ξ
nB+

ρ induced by Bb,+ ↪→ B+
ρ is an isomorphism.

Proof. The equality

B+
ρ

3.25
= θ−1

ρ (C) = θ−1
ρ (θρ(B

b,+)) = Bb,+ + ker θρ
3.26
= Bb,+ + ξB+

ρ

inductively extends to B+
ρ = Bb,+ + ξnB+

ρ for n ≥ 1, showing surjectivity.
Injectivity also follows by induction over n. The base case is ker θρ ∩Bb,+ = ker θ,

which was the subject of 3.26. Then ξnB+
ρ ∩Bb,+ ⊂ ker θρ ∩Bb,+ = ker θ = ξBb,+ shows

ξnB+
ρ ∩Bb,+ !

⊂ ξnB+
ρ ∩ ξBb,+ = ξ(ξn−1B+

ρ ∩Bb,+)
ind.
= ξ(ξn−1Bb,+) = ξnBb,+

for all n > 1. Note that ξnB+
ρ ∩ ξBb,+ = ξ(ξn−1B+

ρ ∩Bb,+) uses that B+
ρ is a domain.
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Lemma 3.28. If ξ ∈W(O[C) is a generator of ker θOC , then

ψξ(t) = logp(|ξ|p−t) =

{
−t if t < − logp(|p|),
logp(|p|) if t ≥ − logp(|p|).

for all t ∈ (0;∞), where ψξ is the function from Proposition 3.10. In particular,

d+ψξ(− logp(|p|))− d−ψξ(− logp(|p|)) = 1.

Proof. Proposition 1.14 implies |ξ0|[ = |p| and |ξ1|[ = 1, so that

logp(|ξ|p−t) = sup
i≥0

(logp(|ξi|[)− ti)

= max{logp(|ξ0|[), logp(|ξ1|[)− t, sup
i≥2

(logp(|ξi|[)− ti)}

= max{logp(|p|), −t, sup
i≥2

(logp(|ξi|[)− ti)}

= max{logp(|p|), −t}

=

{
−t if t < − logp(|p|),
logp(|p|) if t ≥ − logp(|p|)

for all t ∈ (0;∞) since all |ξi|[ ≤ 1. The remark on derivatives follows immediately.

Proposition 3.29. If ρ ∈ (0; |p|], then B+
ρ is ker θρ-adically separated.

Proof. We first consider the case ρ = |p|. Let ξ ∈W(O[C) be a generator of ker θOC (hence
of ker θρ) and f ∈

⋂
n≥0 ξ

nB+
ρ \ 0. Since Bb,+ ⊂ B+

ρ is dense, there is an f ′ ∈ Bb,+ with

|f − f ′|ρ < |f |ρ. Let λ = − logp(ρ) and N = d+ψf ′(λ)− d−ψf ′(λ)
3.10
∈ N0. By assumption

there exists a g ∈ B+
ρ \ 0 such that f = ξNg, for which there is again a g′ ∈ Bb,+ such

that |g − g′|ρ < |g|ρ. Therefore

|ξNg′ − f ′|ρ = |ξN(g′ − g) + (f − f ′)|ρ ≤ max{|ξN(g′ − g)|ρ, |f − f ′|ρ}
!
< |f |ρ = |f ′|ρ,

so since |·|ρ is continuous in ρ (3.11), we have ψf ′ = ψξNg′ = Nψξ + ψg′ near λ. Hence

N = d+ψf ′(λ)− d−ψf ′(λ)

!
= N(d+ψξ(λ)− d−ψξ(λ)) + d+ψg′(λ)− d−ψg′(λ)

3.28
= N + d+ψg′(λ)− d−ψg′(λ),

which shows d+ψg′(λ)− d−ψg′(λ) = 0. By Proposition 3.10 (ii), this means that there is
a unique m ∈ Z with |g′|ρ = ρm|g′m|[, so |g′ − pm[g′m]|ρ < |g′|ρ, so

|θ(g′ − pm[g′m])|
3.25

≤ |g′ − pm[g′m]|ρ
!
< |g′|ρ = |pm[g′m]|ρ = |pmg′]m| = |θ(pm[g′m])|.

This shows |θ(g′)| = |θ(pm[g′m])|, and thus

|θρ(g − g′)|
3.25

≤ |g − g′|ρ < |g|ρ = |g′|ρ = |θ(pm[g′m])| !
= |θ(g′)|,

whence we finally conclude

|θρ(g)| !
= |θ(g′)| = |θ(pm[g′m])| = ρm|g′m|[ = |g′|ρ = |g|ρ.

But since g 6= 0, this means g 6∈ ker θρ, which absurdly implies f 6∈ ξN+1B+
ρ .
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In the general case, let σ ∈ (0; |p|]. Then we have an injection

B+
σ ↪→ B+

ρ ↪→ lim←−
n∈N

B+
ρ /ξ

nB+
ρ

3.27∼= lim←−
n∈N

Bb,+/ξnBb,+
3.27∼= lim←−

n∈N
B+
σ /ξ

nB+
σ .

This result isn’t too surprising; it essentially states that “functions” f ∈ B+
ρ with

zeros of infinite order vanish, just like in the classical situation.

Definition 3.30. Let ρ ∈ (0; |p|].

(i) The field of de Rham periods is the fraction field (cf. 3.31) BdR := FracB+
dR, where

B+
dR := lim←−

n∈N
Bb,+/(ker θ)n

3.27∼= lim←−
n∈N

B+
ρ /(ker θρ)

n.

The ring B+
dR is equipped with the inverse limit topology relative to the quotient

topologies induced by the norm |·|ρ. The choice of ρ or Bb,+ vs. B+
ρ is irrelevant

since Bb,+/(ker θ)n ∼= B+
ρ /(ker θρ)

n is a homeomorphism by definition. The map
B+
ρ ↪→ B+

dR is continuous by definition and injective by Proposition 3.29.

(ii) We write θdR : B+
dR � C for the composition B+

dR � Bb,+/(ker θ)
θ→ C, or equiv-

alently, B+
dR � B+

ρ /(ker θρ)
θρ→ C for any ρ ∈ (0; |p|]. This map is by definition

continuous and open.

Proposition 3.31. B+
dR is a complete discrete valuation ring with residue field C and

maximal ideal ker θdR. Every generator ξ ∈W(O[C) of ker θOC is a uniformizer of B+
dR.

Proof. [17, 5.10] Since C = Bb,+/ ker θ = B+
dR/ ker θdR is a field, it follows that ker θdR is

maximal and ξ ∈ Bb,+ is a prime element. The maximal ideals of Bb,+/ξnBb,+ correspond
to maximal ideals of Bb,+ that contain ξn; the only such ideal is ξBb,+, so all Bb,+/ξnBb,+

are local with maximal ideal ξBb,+/ξnBb,+.
Let x = lim←−n(xn + ξnBb,+) ∈ B+

dR \ ker θdR. Then x1 6∈ ξBb,+ by definition of θdR,

hence xn 6∈ ξBb,+, i.e. xn + ξnBb,+ ∈ (Bb,+/ξnBb,+)×, for all n ∈ N. For each n ∈ N,
let x′n ∈ Bb,+ such that xnx

′
n ≡ 1 mod ξnBb,+. Then

(x′n+1 − x′n)xnxn+1 ≡ x′n+1xnxn+1 − x′nxnxn+1 ≡ xn − xn+1 ≡ 0 mod ξnBb,+;

it follows that x′n+1 − x′n ∈ ξnBb,+ because xn, xn+1 6∈ ξBb,+, ξ ∈ Bb,+ is a prime element,
and Bb,+ is a domain (cf. proof of 2.12). Hence lim←−n(x′n + ξnBb,+) = x−1 ∈ B+

dR, showing

that B+
dR is local with maximal ideal ker θdR.

Now let y = lim←−n(yn + ξnBb,+) ∈ ker θdR. Then all yn ∈ ker θ, so for each n ∈ N there

is a y′n ∈ Bb,+ such that yn = ξy′n. Note that y′n is unique modulo ξn−1Bb,+. We have
ξ(y′n+1 − y′n) = yn+1 − yn ∈ ξnBb,+, so y′n+2 − y′n+1 ∈ ξnBb,+ for all n ∈ N. Then the ele-
ment y′ := lim←−n(y′n+1 + ξnBb,+) satisfies y = ξy′ because ξy′n+1 ≡ yn+1 ≡ yn mod ξnBb,+.

This proves that ker θdR = ξB+
dR.

Note that in the above context, for any z := lim←−n(zn + ξnBb,+) ∈ B+
dR that satisfies

y = ξz, we must have ξzn ≡ yn ≡ yn+1 mod ξnBb,+ and hence zn ≡ y′n+1 mod ξnBb,+

by the uniqueness statement. Therefore the decomposition y = ξz is unique. Since B+
dR

is ξ-adically separated by construction, we can repeat this decomposition until we ob-
tain y = ξnu with unique n ∈ N and u ∈ B+

dR \ ker θdR = (B+
dR)×. Since ξ ∈ Bb,+ is not

nilpotent, this proves the statement.
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Note that the valuation topology is very different from the inverse limit topology;
ker θdR ⊂ B+

dR is open with respect to the former, so the induced topology on the residue
field C would be discrete rather than the normal valuation topology.

Remark 3.32. Unlike for B+
cris, B

+
ρ and B+, there is no Frobenius lift for B+

dR because

ϕ : W(O[C)
∼→W(O[C) doesn’t preserve ker θOC . Using 1.15, let w ∈W(O[C)× such that

ξ = [s] + pw is a generator of ker θOC . Then θOC (ϕ(w)) ∈ O×C and hence

θOC (ϕ(ξ)) = (s])p + pθOC (ϕ(w)) 6= 0

since |(s])p| = |p|p < |p| = |pθOC (ϕ(w))|. This is a major defect of B+
dR.

Proposition 3.33. Let ρ = |p| and recall the sets Sρ, Sρp ⊂ Bb,+ from Proposition 3.8.

(i) There exist (unique) continuous homomorphisms of W(O[C)-algebras

Sρp ↪→ A0
cris ↪→ Sρ,

◦
B+
ρp → Acris →

◦
B+
ρ , B+

ρp → B+
cris → B+

ρ .

The composition Sρp ↪→ A0
cris ↪→ Sρ is the canonical inclusion Sρp ↪→ Sρ.

(ii) The maps from (i) make the following diagrams commute:

Acris Acris

◦
B+
ρ

◦
B+
ρp

ϕcris

◦
ϕρ

B+
cris B+

cris

B+
ρ B+

ρp

ϕcris

ϕρ

◦
B+
ρp

◦
B+
ρ

Acris

ιρp,ρ B+
ρp B+

ρ

B+
cris

ιρp,ρ

In particular, we have continuous injections B+
ρp ↪→ B+

cris ↪→ B+
ρ such that ϕcris is

the restriction of ϕρ and B+
ρp ↪→ B+

cris ↪→ B+
ρ is the canonical inclusion B+

ρp ↪→ B+
ρ .

Proof. (i): It suffices to construct Sρp ↪→ A0
cris and A0

cris ↪→ Sρ; the other maps arise
through completeness and localization. Continuity is trivial for them by Proposition 3.8;
uniqueness follows because all maps in question are determined on W(O[C). We define

A0
cris ↪→ Sρ via W(O[C) ↪→ Sρ and the images [s]n

n!
, which lie in Sρ because∣∣∣∣ [s]nn!

∣∣∣∣
ρ

=
ρn

|n!|ρ
=
|pn|ρ
|n!|ρ

=

∣∣∣∣pnn!

∣∣∣∣
ρ

2.10

≤ 1

for all n ∈ N. For Sρp ↪→ A0
cris, identify A0

cris ⊂ Sρ ⊂ Bb,+ and let x ∈ Sρp . Then we have∑∞
i=0 p

i[xi] ∈W(O[C) ⊂ A0
cris. Furthermore, for each n ∈ N, we have p−n[x−n] ∈ Sρp by

the definition of |·|ρp as a maximum; hence

|x−n|[ = ρnp|p−n[x−n]|ρp ≤ ρnp · 1 = ρnp|p−n[snp]|ρp = |snp|[,

which shows x−ns
−np ∈ O[C . Therefore every

p−n[x−n] = [x−ns
−np] · p−n[sp]n = [x−ns

−np] ·
(

(p− 1)!
[sp]

p!

)n
∈ A0

cris,

which proves that x ∈ A0
cris. The resulting homomorphism Sρp → A0

cris is injective be-
cause its composition with A0

cris → Sρ is just the injection Sρp ↪→ Sρ; this can be verified
on W(O[C), where it is trivial.

(ii): It suffices to verify the first and third diagram; the others follow by eliminating
denominators. For the first diagram, this can be done on W(O[C) by Remark 2.19 (iii),
where commutativity follows from the fact that the maps in (i) are W(O[C)-algebra homo-
morphisms and the fact that

◦
ϕρ and ϕcris both restrict to ϕ : Bb,+ ∼→ Bb,+. For the third,

we can verify commutativity on Sρp by continuity and density; this was done in (i).
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Note that the injectivity of the maps Acris ↪→
◦
B+
ρ and B+

cris ↪→ B+
ρ fundamentally relies

on the injectivity of ϕcris. From the inclusions Acris ↪→ B+
cris ↪→ B+

ρ ↪→ B+
dR, we conclude:

Corollary 3.34. There is a canonical continuous inclusion B+
cris ↪→ B+

dR.

Corollary 3.35. Acris and B+
cris are domains.

Corollary 3.36. B+ is the largest subring of B+
cris where ϕcris is bijective.

Proof. If ρ = |p|, then B+ 3.20
=
⋂
n ϕ

n
ρp(B

+
ρp)

3.33
⊂
⋂
n ϕ

n
cris(B

+
cris)

3.33
⊂
⋂
n ϕ

n
ρ(B+

ρ )
3.20
= B+.

3.3 The cyclotomic periods tε and the induced filtration

We continue in the setting of §3.2, but now additionally assume that C contains all pn-th
roots of unity. This is a rather natural assumption in the context of perfectoid fields due
to the Fontaine-Wintenberger theorem and no restriction in practice as we will only end
up considering algebraically closed C in §4 anyway.

In this case there exists a distinguished set of uniformizers tε of B+
dR, the so-called

cyclotomic periods, that can be thought of as a p-adic analogue of 2πi from the classic
complex setting. These elements will allow us to finally define the period ring Bcris and
a family of closely related period rings that are “almost as good” in the sense that they
can be used as a replacement at no loss in many situations. It will turn out in §4 that
the Galois group acts on the cyclotomic periods via the cyclotomic character χ (hence
the name), which will ensure that the naturally occuring representations χn for n ∈ Z are
admissible.

Definition 3.37. We write

U := { lim←−
n∈N0

(εn + pnOC) ∈ O[C | ε0 = 1, ε1 6= 1, εpn+1 = εn}

for the image of compatible systems of primitive pn-th roots of unity in OC under the
bijection in Proposition 1.2 (ii). Given ε ∈ U , we always let εn ∈ OC denote the uniquely
corresponding pn-th primitive root of unity.

Lemma 3.38. Every primitive pn-th root of unity ζpn ∈ C satisfies |ζpn − 1| = |p|
1

pn−1(p−1) .

Proof. Note that ζpn − 1 is a root of the polynomial F (X) =
∑p−1

i=0 (X + 1)ip
n−1 ∈ Z[X],

which is Eisenstein with respect to p because the constant term is equal to p and

p−1∑
i=0

(X + 1)ip
n−1 ≡

p−1∑
i=0

(Xpn−1

+ 1)i mod p,

p−1∑
i=0

(Xpn−1

+ 1)i =

p−1∑
i=0

i∑
j=0

(
i

j

)
Xjpn−1

=

p−1∑
j=0

Xjpn−1

p−1∑
i=j

(
i

j

)
=

p−1∑
j=0

Xjpn−1

(
p

j + 1

)
.

For the last equality, perform a case distinction on the lowest chosen element. All roots

of F (X), in particular ζpn − 1, then have absolute value |p|
1

(p−1)pn−1 by the usual Newton
polygon argument for Eisenstein polynomials.

Proposition 3.39. If ε ∈ U , then |εpn − 1|[ = |p|pn+1/(p−1) for any n ∈ Z. In particular,
ε ∈ 1 + mC[.
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Proof. By a direct calculation,

|εn − 1|[ = | lim
k→∞

(εp
n

k − 1)p
k | = lim

k→∞
k≥n

|εk−n − 1|pk 3.38
= lim

k→∞
k≥n

|p|
pk

pk−n−1(p−1) = |p|pn+1/(p−1).

Definition 3.40. For each ε ∈ U , the corresponding cyclotomic period is

tε := log([ε])
3.21
=

∞∑
i=1

(−1)i+1 ([ε]− 1)i

i
∈ B+.

The following proposition shows that in all rings we consider, the choice of ε ∈ U is
basically irrelevant. We will therefore often write t instead of tε when the ε is not used
elsewhere, notably for localizations A[1

t
] of Zp-algebras A that contain all tε.

Lemma 3.41. For all ε, ε′ ∈ U , there is a unique a ∈ Z×p such that

εa := lim←−
n∈N0

(εa+pnZ
n + pOC) = ε′.

Proof. For all n ∈ N, there is a unique an = an + pnZ with εann = ε′n and gcd(an, p
n) = 1

since εn and ε′n are primitive pn-th roots of unity. The condition (ε′n+1)p = ε′n implies
that pan+1 ≡ an mod pnZ, which is exactly the required condition to glue the an to a
unique a ∈ Zp. Since an ∈ (Z/pnZ)× for all n ∈ N, we have a ∈ Z×p .

Proposition 3.42. If ε ∈ U and a ∈ Z×p , then atε = tεa ∈ B+.

Proof. Write a =
∑∞

i=0 aip
i ∈ Zp and a′n :=

∑n
i=0 aip

i. Then the first n+ 1 components
of εa

′
n are identical to those of εa, so εa = limn ε

a′n by Proposition 1.7. Hence

log([εa]) = log([ lim
n→∞

εa
′
n ]) = lim

n→∞
log([εa

′
n ]) = lim

n→∞
a′n log([ε]) = a log([ε])

by the continuity of log([·]).

Proposition 3.43. Each tε ∈ B+
dR is a uniformizer of B+

dR. In particular, BdR = B+
dR[1

t
].

Proof. [2, 4.4.8] Since θ+
dR is continuous, it suffices to prove [ε]− 1 ∈ ker θ \ (ker θ)2; the

only noteworthy part is [ε]− 1 6∈ (ker θ)2. Use 1.15 (i) to find a w ∈W(O[C)× such that
ξ := [s] + pw = [s] + p[w0] + p2(. . .) generates ker θOC and assume to the contrary that
[ε]− 1 = ξ2x for some x ∈W(O[C). Recall the adapted Witt structure polynomials

P̃1(X0, X1, Y0, Y1) = Xp
0Y

p
1 +Xp

1Y
p

0 + pXp
1Y

p
1 ,

S̃1(X0, X1, Y0, Y1) = Xp
1 + Y p

1 + p−1(Xp
0 + Y p

0 − (X0 + Y0)p),

Ĩ1(X0, X1) = p−1(−Xp
0 − pX

p
1 − (−X0)p) =

{
−Xp

1 if p 6= 2,

−(X2
0 +X2

1 ) if p = 2.

We use these to directly calculate

ξ2 = [s2] + p[2sw0] + p2(. . .),

ξ2

(
∞∑
i=0

pi[xi]

)
= [s2x0] + p[s2x1 + 2sw0x0] + p2(. . .),

[ε]− 1 = [ε− 1] + p(. . .) if p 6= 2,

[ε]− 1 = [ε− 1] + p[0p + Ĩ1(1, 0)p − ε]1/p + p2(. . .)

= [ε− 1] + p[1− ε1/p] + p2(. . .) if p = 2.
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It follows that |ε− 1|[ < |p|p/(p−1) since

|ε− 1|[ = |s2x0|[ ≤ |p|2 < |p|p/(p−1) if p 6= 2,

|ε− 1|[ = |1− ε1/p|p[ = |s2x1|p[ ≤ |p|
4 < |p|p/(p−1) if p = 2;

but this contradicts Proposition 3.39, so [ε]− 1 6∈ (ker θOC )2.

Definition 3.44.

(i) The ring of crystalline periods is the localization Bcris := B+
cris[

1
t
].

(ii) We equip BdR with the filtration of a discretely valued field, i.e. FilnBdR = tnB+
dR

for n ∈ Z. This filtration is exhaustive and separated and clearly turns BdR into a
filtered ring. If R ⊂ BdR is a subring, we equip R with the subspace filtration

FilnR = R ∩ FilnBdR = R ∩ tnB+
dR.

This filtration is likewise separated and exhaustive and turns R into a filtered ring.

(iii) We write B•, B
+
• and ϕ• for any consistent choice of Bcris, B

+
cris and ϕcris, or B+

ρ [1
t
],

B+
ρ and ϕρ with ρ ∈ (0; |p|], where ϕ• : B• → B• also denotes the (injective) exten-

sion of ϕ• : B+
• → B+

• induced by ϕ•(t) = pt. Similarly, we refer to the canonical
extensions of the inclusions ισ,ρ, etc. by the same name ισ,ρ. Note that the maps θρ
cannot extend to B+

ρ [1
t
] because θρ(t) = 0.

Remark 3.45. Let ρ ∈ (0; |p|] and w ∈W(O[C)× such that ξ := [s] + pw generates ker θOC .
We proved in 3.43 that t and ξ are associated in B+

dR; this turns out to be false in B+
ρ .

Since ξ generates ker θρ, there is a u ∈ B+
ρ such that t = ξu. If t and ξ were associated, we

would have u−1 ∈ B+
ρ ; this is impossible since ϕ(ξ) = ptϕρ(u

−1) ∈ ker θdR contradicts the

calculation in Remark 3.32. We do however have u−1 ∈ B+
ρ [1

t
] ∩B+

dR = Fil0B+
ρ [1

t
] since

t ∈ B+
ρ [1

t
]× and u ∈ (B+

dR)×. It surprisingly follows that B+
ρ ⊂ Fil0B+

ρ [1
t
] is strict.

By a simple inclusion argument, one sees that t and ξ are not associated in B+
cris either,

and likewise, if t = ξu for some u ∈ B+
cris ⊂ B+

ρ , we must have u−1 ∈ Fil0Bcris \B+
cris so

that B+
cris ( Fil0Bcris.

We close this chapter with a study of how the filtration interacts with the Frobenius
map. Interestingly, the filtration does not turn out to be ϕ•-stable; since ϕ(ξ) 6∈ ker θ,
we have ϕB(ξ/t) ∈ Fil−1BdR \ Fil0BdR even though ξ/t ∈ Fil0BdR. This should how-
ever be understood as an advantage rather than as a defect because it is what makes
Proposition 3.54 possible.

Proposition 3.46. Let ρ = |p| and ε ∈ U . Then tε ∈
◦
B+
ρp and tp−1

ε ∈ p
◦
B+
ρp; in particular,

tp−1
ε ∈ pAcris and Acris[

1
t
] = Bcris.

Proof. Since |ε− 1|[
3.39
= ρp/(p−1) ≥ ρp, it follows that |[ε]− 1|ρp = ρp/(p−1). Then for each

summand of tε, we have∣∣∣∣(−1)n+1 ([ε]− 1)n

n

∣∣∣∣
ρp

=
ρnp/(p−1)

|n|ρp
≤ ρnp/(p−1)

|n!|ρp
= ρ(n−(p−1)vp(n!))p/(p−1)

2.9

≤ ρp/(p−1).

Therefore |tε|ρp ≤ ρp/(p−1), so tε ∈
◦
B+
ρp

3.33
⊂ Acris and |tp−1

ε |ρp ≤ ρp. By Proposition 3.8, we

thus have tp−1
ε ∈ p

◦
B+
ρp ⊂ pAcris.
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Proposition 3.47. If ε ∈ U , then
⋂
n≥0 ker(θOC ◦ ϕn) = ([ε]− 1)W(O[C).

Proof. [3, 3.1.7] Clearly θOC (ϕn([ε]− 1)) = 1p
n − 1 = 0 for all n ∈ N0. On the other hand,

let w ∈
⋂
n≥0 ker(θOC ◦ ϕn) and set ξ = [ε]−1

[ε1/p]−1
=
∑p−1

i=0 [εi/p] ∈W(O[C). Using 1.14, we see

that ξ generates ker θOC because θ(ξ) = 1−1
ε1−1

= 0 and |ξ0|[ = | ε−1
ε1/p−1

|[
3.39
= |p|

p
p−1
− 1
p−1 = |p|.

Since θOC (ϕ0(w)) = θOC (w) = 0, there is a v(0) ∈W(O[C) with w = v(0)ξ. Assume we
have elements v(0), . . . , v(n) ∈W(O[C) such that w = ϕ−n(v(n))

∏n
i=0 ϕ

−i(ξ). Then a direct
calculation shows

θOC

(
ϕn+1

(
n∏
i=0

ϕ−i(ξ)

))
=

n∏
i=0

p−1∑
i=0

θOC ([ε]ip
n−i

) =
n∏
i=0

p−1∑
i=0

1ip
n−i

= pn+1 6= 0,

so necessarily θOC (ϕ(v(n))) = 0, which means that there is a v(n+1) ∈W(O[C) such that
ϕ(v(n)) = v(n+1)ξ, i.e. w = ϕ−(n+1)(v(n+1))

∏n+1
i=0 ϕ

−i(ξ).

Hence |w0|[ ≤ |p|1+p−1+...+p−n for all n ∈ N0, so |w0|[ ≤ |p|
1

1−p−1 = |p|p/(p−1) = |ε− 1|[.
This means that there is a z ∈ O[C with w0z = ε− 1, so that w − ([ε]− 1)[z] ∈ pW(O[C),
proving that

⋂
n≥0 ker(θOC ◦ ϕn) ⊂ ([ε]− 1)W(O[C) + pW(O[C).

This suffices because as in the proof of 1.14, we can find a0, b0 ∈W(O[C) such that
w = a0([ε]− 1) + pb0, conclude that θOC (ϕn(b0)) = 0 for all n ∈ N0, and hence inductively
construct elements a0, b0, . . . , an, bn ∈W(O[C) such that

w = a0([ε]− 1) + pb0 = . . . = pnbn +
n∑
i=0

ai([ε]− 1)pi

for all n ≥ 0. Consequently w =
∑∞

i=0 ai([ε]− 1)pi ∈ ([ε]− 1)W(O[C), as claimed.

Lemma 3.48. Let ρ = |p|p/(p−1) and ε ∈ U .

(i) Let
∑∞

i=0 biX
i ∈ QJXK be the inverse of

∑∞
i=0

(−1)i

i+1
X i ∈ QJXK×. Then we have

vp(bn) ≥ − n
p−1

for all n ∈ N0.

(ii) The elements tε and [εp]−1
p

are associated in
◦
B+
ρ .

Proof. (i): Note that b0 = 1 and bn = −
∑n−1

i=0 bi
(−1)n−i

n−i+1
for all n ∈ N. We proceed induc-

tively, the case n = 0 being trivial. It suffices to show that vp(n− i+ 1) ≤ n−i
p−1

for all
0 ≤ i < n since then

vp(bn) ≥ min
0≤i<n

vp(bi)− vp(n− i+ 1)
!

≥ min
0≤i<n

− i

p− 1
− n− i
p− 1

= − n

p− 1
.

When n− i < p− 1, the inequality is trivial; for n−i
p−1
≥ 1, Bernoulli’s inequality shows

vp(n− i+ 1) ≤ logp(1 + (n− i))
!

≤ logp((1 + (p− 1))
n−i
p−1 ) =

n− i
p− 1

.

(ii): It suffices to show |[εp]− 1|ρ ≤ ρ
1
p−1 and limn|[εp]− 1|nρρ

− n
p−1 = 0, since then the

series
∑∞

i=0 bi([ε
p]− 1)i converges in

◦
B+
ρ by part (i) and the statement follows from

tε =
p log([ε])

p
=

log([εp])

p
=

[εp]− 1

p
·
∞∑
i=0

(−1)i
([εp]− 1)i

i+ 1
.
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Indeed, |[εp]− 1|ρ ≤ max{|εp − 1|[, ρ}
3.39
= max{ρp, ρ} = ρ ≤ ρ

1
p−1 . Now if p 6= 2, then

lim
n→∞
|[εp]− 1|nρρ

− n
p−1 ≤ lim

n→∞
ρnρ−

n
p−1 = 0.

If on the other hand p = 2, we can show, by the same methods as in the proof of 3.43,
that there is a w ∈W(O[C) with [εp]− 1 = [εp − 1] + p[ε− 1] + p2w, so that

|[εp]− 1|ρ = max{|εp − 1|[, ρ|ε− 1|[, ρ2|w|ρ}
= max{|p|p2/(p−1), ρ|p|p/(p−1), ρ2|w|ρ}
= max{ρ2, ρ2, ρ2|w|ρ} = ρ2,

whence limn|[εp]− 1|nρρ
− n
p−1 = ρ2n−n = 0.

Lemma 3.49. If ρ = |p|p/(p−1) and ε ∈ U , then
◦
B+
ρ = W(O[C) + [ε]−1

p

◦
B+
ρ .

Proof. Write πε := [ε]−1
p

. We first show that Bb,+ ∩
◦
B+
ρ = W(O[C)[πε]. Clearly πε ∈

◦
B+
ρ ,

so that Bb,+ ∩
◦
B+
ρ ⊃W(O[C)[πε]. For x ∈ Bb,+ ∩

◦
B+
ρ \ 0, let n ∈ N0 be minimal such that

xi = 0 for all i < −n. If n = 0, we have x ∈W(O[C) ⊂W(O[C)[πε]. Otherwise, note that
|x−n|[ ≤ ρn = |ε− 1|n[ , so there exists a (unique) un ∈ O[C such that x−n = un(ε− 1)n.

Hence x′ := x− [un]πnε is an element of Bb,+ ∩
◦
B+
ρ with x′i = 0 for all i < −n+ 1; proceed-

ing inductively, we obtain unique u1, . . . , un ∈ O[C such that x−
∑n

i=1[ui]π
i
ε ∈W(O[C).

Now let x ∈
◦
B+
ρ = ̂W(O[C)[πε] and write x =

∑∞
i=0 p

ix(i) for some x(i) ∈W(O[C)[πε].

Then there exist w(i) ∈W(O[C) and y(i) ∈W(O[C)[πε] with x(i) = w(i) + πεy
(i); hence

x =
∞∑
i=0

pix(i) =
∞∑
i=0

pi(w(i) + πεy
(i)) =

∞∑
i=0

piw(i) + πε

∞∑
i=0

piy(i) ∈W(O[C) + πε
◦
B+
ρ .

Proposition 3.50. We have (Fil0B•)
ϕ=1 := {b ∈ Fil0B• |ϕ•(b) = b} = Qp.

Proof. [3, 3.4.4] Inspection of Teichmüller lifts shows (Bb,+)ϕ=1 = Qp. Note that it suffices
to consider the case B+

ρ [1
t
] with ρ = |p|p/(p−1); if x ∈ (Fil0B+

|p|[
1
t
])ϕ=1, then

x = ϕ|p|(x) ∈ (Fil0B+
|p|p [

1
t
])ϕ=1 ⊂ (Fil0B+

ρ [1
t
])ϕ=1 = Qp.

The other cases then follow via inclusion.
Let x ∈ (Fil0B+

ρ [1
t
])ϕ=1 and write x = t−mε y with ε ∈ U , m ∈ N0 and y ∈ B+

ρ \ tεB+
ρ .

Then ϕρ(y) = pmtmε x = pmy. Let k ∈ N0 such that pky ∈
◦
B+
ρ and write pky = w + [ε]−1

p
b

for suitable w ∈W(O[C) and b ∈
◦
B+
ρ using Lemma 3.49. Assume that m > 0. Then

θdR(tmε x) = 0, so

θOC (ϕn(w)) = θOC

(
ϕn
(
pky − [ε]− 1

p
b

))
= θdR(pmn+ky)− p−1θOC (ϕn([ε]− 1))θρ(ϕ

n
ρ(b))

3.47
= θdR(pmn+ky) = pmn+kθdR(tmx)

!
= 0

for all n ∈ N0; by Proposition 3.47, this means that w = ([ε]− 1)v for some v ∈W(O[C).
By Lemma 3.48 (ii), tε divides [εp]− 1 in B+

ρ , so it divides

([εp]− 1)ϕ(v) = ϕ(w) = ϕ

(
pky − [ε]− 1

p
b

)
= pk+my +

[εp]− 1

p
ϕρ(b) ∈ B+

ρ
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as well, which implies that y ∈ tεB+
ρ , contrary to its construction. Hence m = 0.

Let u ∈ (
◦
B+
ρ )× with tεu = [εp]−1

p
, again using Lemma 3.48 (ii). By a simple limit

argument, ϕρ is norm-decreasing on
◦
B+
ρ . Therefore

|pn−1tεϕ
n−1
ρ (uϕρ(b))|ρ

!

≤ ρn−1|tε|ρ
3.12

≤ ρn−1|tε|
log|p|p (ρ)

|p|p
3.46

≤ ρn−1

for all n ∈ N; in particular limn p
n−1tεϕ

n−1
ρ (uϕρ(b)) = 0. This shows

pkx = lim
n→∞

ϕnρ(pkx)

= lim
n→∞

ϕn(w) + ϕn−1
ρ

(
[εp]− 1

p
ϕρ(b)

)
= lim

n→∞
ϕn(w) + ϕn−1

ρ (tεuϕρ(b))

= lim
n→∞

ϕn(w) + pn−1tεϕ
n−1
ρ (uϕρ(b))

!
= lim

n→∞
ϕn(w)

3.6
∈ W(O[C).

Hence x ∈ (Bb,+)ϕ=1 = Qp.

The restriction to Fil0B• is crucial because as we will soon show, the Frobenius
invariants of B• turn out to be much larger. The proof of the results below follows the
general principles of the arguments in [12, §6.2.2, §6.2.3].

Lemma 3.51. Assume that C is algebraically closed. Then for all a, b ∈W(O[C), there
exists a v ∈W(O[C) such that ϕ(v)− av − b = 0.

Proof. Let x(0) = b. Given any x(i) ∈W(O[C), we can always find a vi ∈ O[C such that
[vpi ]− a[vi] = x(i) − px(i+1) for some x(i+1) ∈W(O[C) because C[ is algebraically closed and

thus the monic polynomial Xp − a0X − x(i)
0 = 0 always admits a root vi ∈ O[C . Hence

ϕ

(
∞∑
i=0

pi[vi]

)
− a

∞∑
i=0

pi[vi] =
∞∑
i=0

pi([vpi ]− a[vi]) =
∞∑
i=0

pi(x(i) − px(i+1)) = x(0) = b.

Proposition 3.52. Assume that C is algebraically closed and let ρ = |p|p/(p−1) and r ∈ N.
Then the continuous and Qp-linear map p−rϕρ − id : Filr B+

ρ → B+
ρ is surjective.

Proof. By Qp-linearity, it suffices to find preimages of y ∈
◦
B+
ρ . By continuity, it further-

more suffices to find an x ∈ Filr
◦
B+
ρ with p−rϕρ(x) ∈

◦
B+
ρ and p−rϕρ(x)− x− y ∈ p

◦
B+
ρ

since a preimage is then easily constructed by the usual p-adic approximation argument.

Let πε = [ε]−1
p
∈

◦
B+
ρ , q =

∑p−1
i=0 [εi] ∈W(O[C), and use 1.15 (ii) to find an s ∈ O[C with

|s|[ = |p| such that [s]− p ∈W(O[C) is a generator of ker θOC . Note that ϕ(πε) = πεq,
πε ∈ ker θ and that ϕ−1(q) is a generator of ker θ (cf. proof of 3.47), so that there is a

u ∈W(O[C)× with ϕ−1(q) = ([s]− p)u. Furthermore, we have q ∈ p
◦
B+
ρ since

|q|ρ = |([s]p − p)ϕ(u)|ρ = |[s]p − p|ρ = max{|p|p, ρ} = ρ.

Recall that by Lemma 3.49, we can write any y ∈
◦
B+
ρ as

∑r
i=0 yiπ

i
ε + πr+1

ε y′, with

yi ∈W(O[C) and y′ ∈
◦
B+
ρ . Note that for x := −πr+1

ε y′ ∈ Filr
◦
B+
ρ , we have

p−rϕρ(x)− x− πr+1
ε y′ = πr+1

ε (p−rqr+1ϕρ(−y′) + y′ − y′) ∈ p−rqr+1
◦
B+
ρ ⊂ p

◦
B+
ρ ;
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hence it suffices to find, for each 0 ≤ i ≤ r and yi ∈W(O[C), an xi ∈ Filr
◦
B+
ρ such that

p−rϕρ(xi)− xi − yiπiε ∈ p
◦
B+
ρ + πi+1

ε

◦
B+
ρ .

For any w ∈W(O[C)×, there is a vw ∈W(O[C) with ϕ(w)rϕ(vw)− yi = ϕ−1(q)r−ivw by

Lemma 3.51. For xi,w := vwϕ
−1(q)r−iπiε ∈ Filr

◦
B+
ρ , we then have

p−rϕρ(xi,w)− xi,w − yiπiε = p−rϕ(vw)qr−iϕ(πiε)− vwϕ−1(q)r−iπiε − yiπiε
= πiε(p

−rϕ(vw)qr−iqi − vwϕ−1(q)r−i − yi)
= πiε(p

−rϕ(vw)qr − (ϕ(w)rϕ(vw)− yi)− yi)
= πiεϕ(vw)(p−rqr − ϕ(w)r).

If r = 0, this is zero regardless of choice of w; otherwise, note that this is divisible by

p−1q − ϕ(w) and it suffices to find a w ∈W(O[C)× such that p−1q − ϕ(w) ∈ p
◦
B+
ρ + πε

◦
B+
ρ .

If p = 2, choose w := 1 and note that q = 1 + [ε], so that

p−1q − ϕ(w) =
1 + [ε]

2
− 1 =

[ε]− 1

2
= πε.

If on the other hand p 6= 2, choose w := −u and recall that ϕ−1(q) = ([s]− p)u, so that

p−1q − ϕ(−u) = ϕ(p−1ϕ−1(q) + u) = ϕ(p−1([s]− p)u+ u) =
[sp]

p
ϕ(u).

Then |p−1q − ϕ(−u)|ρ = | [s
p]
p
ϕ(u)|ρ = |p|p−

p
p−1 = |p|

p
p−1

(p−2) ≤ ρ as required.

Corollary 3.53. If C is algebraically closed, then for every ρ ∈ (0; |p|] and r ∈ N, the
map p−rϕρ − id : Filr B+

ρ → B+
ρ is surjective.

Proof. We know that this holds for ρ = |p|p/(p−1) by 3.52. If 0 < σ < ρ, then for any
y ∈ B+

σ ⊂ B+
ρ there exists an x ∈ Filr B+

ρ with p−rϕρ(x)− x = y. Note that ϕρ(x) ∈ B+
ρp ,

so if ρp > σ, we conclude x = p−rϕρ(x)− y ∈ B+
ρp +B+

σ = B+
ρp and can continue like this

until ρp
n ≤ σ for some n ∈ N. But then x = p−rϕρ(x)− y ∈ B+

ρpn
+B+

σ = B+
σ .

Proposition 3.54. If C is algebraically closed, then for each r ∈ Z, there is a short exact
sequence of Qp-vector spaces

0 Qpt
r Filr B• B• 0.

p−rϕ•−id

Proof. Injectivity is trivial. For exactness in the middle, the case r = 0 was the subject
of Proposition 3.50; when r 6= 0, every x ∈ Filr B• with p−rϕ•(x)− x = 0 satisfies

(ϕ• − id)(t−rx) = p−rt−rϕ•(x)− t−rx = t−r(p−rϕ•(x)− x) = 0,

so t−rx ∈ Qp by the exactness part of the case r = 0. It only remains to show surjectivity.
We know that p−sϕρ − id : FilsB+

ρ → B+
ρ is surjective for all s ∈ N and ρ ∈ (0; |p|]

by 3.53. Therefore if y ∈ B+
cris ⊂ B+

ρ , there exists an x ∈ FilsB+
ρ with p−sϕρ(x)− x = y.

Since x = p−sϕρ(x)− y ∈ B+
ρp +B+

cris = B+
cris, the map p−sϕcris − id : FilsB+

cris → B+
cris is

surjective as well. Note that one can similarly derive the statement for B+
ρ from the

statement for B+
cris if one takes e.g. [12, 6.25.2] as a starting point instead of 3.52.

Finally, let y ∈ B•. Then there exists an s ∈ N such that tsy ∈ B+
• and r + s ∈ N, as

well as an x ∈ Filr+sB+
• such that p−(s+r)ϕρ(x)− x = tsy. Hence t−sx ∈ Filr B• satisfies

(p−rϕ• − id)(t−sx) = t−s(p−(r+s)ϕ•(x)− x) = t−stsy = y.
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Theorem 3.55 (Bloch-Katou sequence). If C is algebraically closed, then there is an
exact sequence of Qp-vector spaces

0 Qp Bϕ=1
• BdR/B

+
dR 0,

where the map Bϕ=1
• → BdR/B

+
dR is induced from the inclusion B• ↪→ BdR.

Proof. Injectivity is clear; for exactness in the middle, use 3.54 and apply the snake
lemma to

0 0 0

Qp Fil0B• B• 0

0 Bϕ=1
• B• B•

Bϕ=1
• /Qp B•/(Fil0B•) 0

ϕ•−id

ϕ•−id

to conclude Bϕ=1
• /Qp

∼= B•/(B• ∩B+
dR), where the isomorphism is clearly induced by

Bϕ=1
• ↪→ B•. It now suffices to show that B• → BdR/B

+
dR is surjective. Since

B+
dR = θ−1

dR(θdR(Bb,+)) = ker θdR +Bb,+ ⊂ tB+
dR +B•,

we see inductively that t−nB+
dR ⊂ B+

dR +B• for all n ∈ N, i.e. BdR = B+
dR +B•.
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4 The ring of crystalline periods Bcris

We return to the setting of §1.3. Let K be a p-adic field, i.e. a non-archimedean complete
discretely valued field with perfect residue field k such that charK = 0 and char k = p. We

fix an algebraic closure K and write C = K̂ for its completion, which is again algebraically
closed by Krasner’s lemma. By construction, the field C is perfect and complete, so since
|C| = |K| ⊂ R+

0 is already dense, C is perfectoid. We thus have associated rings Bb,+,
B+
ρ , Bρ, B

+, B, A0
cris, Acris, B

+
cris, Bcris, B

+
dR and BdR as in §3.3 and keep the notation B•

from 3.44.
Denote the residue field of OK by k. This is an algebraic closure of k and the residue

field of the completed maximal unramified extension K̂ur ⊂ C, which is another p-adic
field that induces the same C and whose absolute Galois group Gal(K̂ur) is canonically
isomorphic to the inertia group I of G := Gal(K).

If we write K0 := W(k)[1
p
] for the maximal unramified subfield of K, then K/K0 is

a finite and totally ramified extension. This is well-known if K/Qp is finite, but works
in the general p-adic field setting too, see e.g. the remark following [2, 4.2.3]. Writing
e := [K : K0], we have K = K0(π) for some π ∈ OK that is the root of a monic Eisenstein
polynomial

∑e
i=0 aiX

i over OK0 = W(k), i.e. ae = 1, ai ∈ pW(k) for all 0 ≤ i < e and
a0 6∈ p2W(k).

Remark 4.1. The group G = Gal(K) acts on the following rings:

Acts on Induced from Induced by

C K completion
C[ C functoriality of ·[ and localization

Bb,+ O[C Witt vector functor and localization
B+
ρ Bb,+ |·|ρ-isometric action on Bb,+

B+ B+
ρ G-equivariance of ισ,ρ

BdR Bb,+ Proposition 1.3 (iii) and localization
Acris, B

+
cris W(O[C) |g.[s]|[ = |[g.s]|[ = |p|

B• B+
• g.tε = log([εχ(g)]) = χ(g)tε

It is easy to see that the various θ•, ϕ•, and all inclusions between the rings above
are G-equivariant since this can either be checked on W(O[C) or follows from Proposi-
tion 1.3 (iii). Since g.tnB+

dR = χ(g)ntnB+
dR ⊂ tnB+

dR, the G-action is compatible with the
filtration on B•.

Proposition 4.2. OC is a W(k)-algebra; O[C is a k-algebra; W(O[C) is a W(k)-algebra.
Every Gauß norm |·|ρ restricts to the p-adic absolute value normalized to |p| = ρ on
W(k) ⊂W(O[C).

Proof. Recall that k is the residue field of the completed maximal unramified extension
K̂ur

0 ⊂ C of K0. Since K̂ur
0 is a p-adic field, there is an inclusion W(k) = OK̂ur

0
↪→ OC .

The other two algebra structures arise through the tilting and Witt functors. The final
remark follows from k× ⊂ (O[C)×.

4.1 B+
ρ [1t ] and Bcris as equivalent period rings

Before we can apply the theory of period rings to B+
ρ [1

t
] and Bcris, we need to show

that these rings are (Qp, G)-regular. Unlike in the Hodge-Tate or de Rham cases, this is
significantly more technical to establish.
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Lemma 4.3. Let ρ = |p| and extend the Gauß norm |·|ρ to FracB+
ρ by multiplicativity.

For x =
∑e−1

i=0 π
ixi ∈ K ⊗K0 FracB+

ρ =
⊕e−1

i=0 π
i FracB+

ρ , let

|x|⊗ := max
0≤i<e

ρi/e|xi|ρ.

Then |·|⊗ is an absolute value. More precisely, we show:

(i) |·|⊗ is a submultiplicative FracB+
ρ -norm.

(ii) |·|⊗ is multiplicative on the subring
⊕e−1

i=0 π
iW(O[C) ⊂

⊕e−1
i=0 π

i FracB+
ρ .

(iii) |·|⊗ is multiplicative on K⊗K0 FracB+
ρ . In particular, K⊗K0 FracB+

ρ is a domain.

Proof. (i): That |·|⊗ is a FracB+
ρ -norm is clear from the definition since |·|ρ is an absolute

value on FracB+
ρ and addition is componentwise. If x =

∑e−1
i=0 π

ixi ∈
⊕e−1

i=0 π
i FracB+

ρ ,
then

|πx|⊗ =

∣∣∣∣∣
e−1∑
i=1

πixi−1 +
e−1∑
i=0

πiaixe−1

∣∣∣∣∣
⊗

= max{|a0xe−1|ρ, max
1≤i<e

ρi/e|xi−1 + aixe−1|ρ}.

Since all ai ∈ pW(k) and a0 6∈ p2W(k), Remark 4.2 implies that |a0|ρ = ρ and |ai|ρ ≤ ρ
for all 0 ≤ i < e. Hence

|a0xe−1|ρ = ρ|xe−1|ρ = |π|⊗ρ(e−1)/e|xe−1|ρ
≤ |π|⊗|x|⊗,

ρi/e|xi−1 + aixe−1|ρ ≤ max{ρi/e|xi−1|ρ, ρi/e|aixe−1|ρ}
≤ |π|⊗max{ρ(i−1)/e|xi−1|ρ, ρi/eρ(e−1)/e|xe−1|ρ}
≤ |π|⊗|x|⊗,

proving |πx|⊗ ≤ |π|⊗|x|⊗. The strict triangle inequality then shows

|xy|⊗ ≤ max
0≤i<e

|xπiyi|⊗ ≤ max
0≤i<e

|x|⊗ρi/e|yi|ρ = |x|⊗|y|⊗

for all x =
∑e−1

i=0 π
ixi, y =

∑e−1
i=0 π

iyi ∈
⊕e−1

i=0 π
i FracB+

ρ .

(ii): Let xi =
∑∞

j=0 p
j[x

(j)
i ], yi =

∑∞
j=0 p

j[y
(j)
i ] ∈W(O[C) for all 0 ≤ i < e and set

x =
∑e−1

i=0 π
ixi, y =

∑e−1
i=0 π

iyi. Without loss of generality, let x, y 6= 0. Choose the unique
pair

(jx, ix) ∈ {(j, i) ∈ N0 × {0, . . . , e− 1} | |x|⊗ = ρi/eρj|x(j)
i |ρ}

that minimizes ejx+ ix and set x′ =
∑e−1

i=0 π
i
∑

j∈N0,ej+i≥ejx+ix
pj[x

(j)
i ]. Since the condition

ej + i ≥ ejx + ix is equivalent to j ≥ jx + d ix−i
e
e, we can explicitly calculate

|x− x′|⊗
!

=
∣∣ e−1∑
i=0

πi
∑
j∈N0

ej+i<ejx+ix

pj[x
(j)
i ]
∣∣
⊗ < |π

ixpjx [x
(jx)
ix

]|⊗ = |x|⊗.

Define iy, jy, y
′ analogously. Like in Proposition 3.4,

|xy − x′y′|⊗ = |(x− x′)y − x′(y′ − y)|⊗
≤ max{|(x− x′)y|⊗, |x′(y′ − y)|⊗}
(i)

≤ max{|x− x′|⊗|y|⊗, |x′|⊗|y′ − y|⊗}
< |x|⊗|y|⊗.
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It now suffices to show |πix+iypjx+jy [x
(jx)
ix
y

(jy)
iy

]|⊗ ≤ |x′y′|⊗ since then

|xy − x′y′|⊗ < |x|⊗|y|⊗ = |πix+iypjx+jy [x
(jx)
ix
y

(jy)
iy

]|⊗ ≤ |x′y′|⊗,

which implies |xy|⊗ ≤ |x|⊗|y|⊗ ≤ |x′y′|⊗ = |xy|⊗.
For z =

∑e−1
i=0 π

izi ∈
⊕e−1

i=0 π
iW(O[C), define `(z) = min0≤i<e(i+ evp(zi)) ∈ Z ∪ {∞}.

Then the series representation in W(O[C) implies the following for all z, z′ and 0 ≤ i < e:

`(pz) = `(z) + e, `(z + z′) ≥ min{`(z), `(z′)}, `(zi) + i ≥ `(z).

Furthermore, `(πz) ≥ `(z) + 1 since

`(πz) = `(
e−1∑
i=1

πizi−1 +
e−1∑
i=0

πiaize−1) ≥ min{`(
e−1∑
i=1

πizi−1), `(
e−1∑
i=0

πiaize−1)},

`(
e−1∑
i=0

πiaize−1) ≥ `(
e−1∑
i=0

πipze−1) = `(pze−1) = `(ze−1) + e ≥ `(z) + 1,

`(
e−1∑
i=1

πizi−1) ≥ `(z) + 1.

Now note that whenever ej + i < `(z) and a ∈ O[C , we have

|z + πipj[a]|⊗ ≥ |πi(zi + pj[a])|⊗ = ρi/e|zi + pj[a]|⊗
!

= ρi/e|pj[a]|⊗ = |πipj[a]|⊗.

Hence setting x′′ = x′ − πixpjx [x(jx)
ix

] and y′′ = y′ − πiypjy [y(jy)
iy

], we have

`(x′y′ − πix+iypjx+jy [x
(jx)
ix
y

(jy)
iy

]) = `(πixpjxy′′ + πiypjyx′′ + x′′y′′)

≥ min{eix + jx + `(y′′), eiy + jy + `(x′′), `(x′′y′′)}
> e(ix + iy) + jx + jy,

which implies |xy|⊗ = |x′y′|⊗ ≥ |πix+iypjx+jy [x
(jx)
ix
y

(jy)
iy

]|⊗ = |x|⊗|y|⊗.
(iii): Since |·|⊗ is a norm, eliminating denominators reduces the statement from⊕e−1
i=0 π

i FracB+
ρ to

⊕e−1
i=0 π

iB+
ρ . By part (i), multiplication is continuous with respect

to |·|⊗; from the definition of |·|⊗ it readily follows that componentwise convergence im-
plies convergence with respect to |·|⊗, which further reduces the result from

⊕e−1
i=0 π

iB+
ρ

to
⊕e−1

i=0 π
iBb,+. Eliminating denominators again finally reduces to part (ii).

Remark 4.4. Lemma 4.3 (ii) and the multiplicativity part of Proposition 3.4 are instances
of the same general theorem regarding the ramified Witt vectors OK ⊗W(k) W(O[C), which
explains why their proofs are so similar. Ramified Witt vectors can be constructed in
essentially the same way the normal Witt vectors are, using the uniformizer π instead
of p and pe-th powers instead of p-th powers. Over perfect coefficient rings they admit
a unique series representation

∑∞
i=0 π

i[xi] and one obtains Gauß norms and the results
of §3.1 in a completely analogous way. The norm |·|⊗ above is then the normal Gauß

norm |·|ρ, although one should note that our x
(j)
i is merely associated, not equal to xej+i.

This approach is chosen in [6], but it is difficult to fit into our conventional treat-
ment without developing ramified Witt vectors in full detail because the Witt structure
polynomials Sn, Pn, In, which the proof of Proposition 3.4 relies on, differ in the ramified
case.

49



Proposition 4.5. The map K ⊗K0 B• → BdR is injective and G-equivariant. Equipping

K ⊗K0 B• with the subspace filtration, we obtain gr(K ⊗K0 B•)
∼= grBdR

1.27∼= BHT on the
level of graded rings.

Proof. The map K ⊗K0 B• → BdR factors into K ⊗K0 B• ↪→ K ⊗K0 FracB+
ρ → BdR, so it

suffices to prove that K ⊗K0 FracB+
ρ → BdR is injective. But K ⊗K0 FracB+

ρ is a domain
by Lemma 4.3, and since it is also a finite-dimensional FracB+

ρ -algebra, this means it is
a field. Hence K ⊗K0 FracB+

ρ → BdR is a field homomorphism and necessarily injective.
The map is equivariant because FracB+

ρ ↪→ BdR is equivariant.
The composition Filn(K ⊗K0 B•) ↪→ tnB+

dR � tnB+
dR/t

n+1B+
dR
∼= C(χn) is surjective

since θdR(Bb,+) = C, and thus induces an isomorphism

grn(K ⊗K0 B•) = Filn(K ⊗K0 B•)/Filn+1(K ⊗K0 B•)
∼→ tnB+

dR/t
n+1B+

dR = grnBdR.

Proposition 4.6. We have (FracB•)
G = BG

• = K0, and every b ∈ B• \ 0 such that Qpb
is G-stable is a unit in B•. In particular, B• is (Qp, G)-regular.

Proof. [2, 9.1.6] The injection K ⊗K0 B• ↪→ BdR from Proposition 4.5 shows that

dimK0 B
G
• = dimK K ⊗K0 B

G
• ≤ dimK(K ⊗K0 B•)

G
!

≤ dimK B
G
dR

1.26
= 1.

But BG
• contains at the very least the G-invariant canonical copy of K0 ⊂ B+[1

t
] ⊂ B•, so

BG
• = K0. The equality (FracB•)

G = K0 follows after localization of K ⊗K0 B• ↪→ BdR

by a similar argument; note that BdR is a field and thus contains FracB•.
Let b ∈ B• \ 0 such that G.Qpb ⊂ Qpb. We will show that b is algebraic over K̂ur;

then b is algebraic over K̂ur
0 as well. Since L := K̂ur

0 (b) ⊂ B• is a finite extension of a

p-adic field, it is itself a p-adic field with L̂ = C. Since k is already algebraically closed,
the maximal unramified subfield of L is L0 := K̂ur

0 . Applying 4.5 for the p-adic field L

instead of K, we obtain an injection L⊗L0 L ↪→ L⊗L0 B•
4.5
↪→ BdR, which implies that

L⊗L0 L is a domain and hence a field. Therefore x⊗ 1− 1⊗ x ∈ ker(L⊗L0 L→ L) is
zero for all x ∈ L, which means L = L0, i.e. b ∈ L× = L×0 ⊂ B×• .

Since tε ∈ B×• and g.tε = χ(g)tε ∈ Qptε for all ε ∈ U , we may multiply with a suit-
able power of tε and assume without loss of generality that b ∈ B+

dR \ ker θdR. Since by
assumption G.Q×p b ⊂ Q×p b, there is a character η : G→ Q×p such that g.b = η(g)b for all

g ∈ G. The residue class b ∈ C× of b spans a G-stable line Qpb ⊂ C whose corresponding
character is also η because the quotient map θdR : B+

dR � C is G-equivariant. Since b ∈ C
is invertible, there is an isomorphism of topological groups Q×p b ∼= Q×p , which shows that
η : G→ Q×p is a continuous group homomorphism; hence it is Z×p -valued and all its powers
are subject to Theorem 1.23.

Let I ⊂ G be the inertia subgroup. Then we can use

b ∈ C(η−1)G = {x ∈ C | g.x = η(g)x for all g ∈ G} 6= 0

to conclude that the group η−1(I) is finite, so there exists a finite Galois extension M/K̂ur

such that J := Gal(M) ⊂ Gal(K̂ur) ∼= I lies in the kernel of η−1. But M is a p-adic

field with M̂ = C, so Theorem 1.23 as applied to M shows that b ∈ C(η−1)J = CJ = M ;

notably, b ∈ C is algebraic over K̂ur, and by Hensel’s Lemma, it admits a unique lift
β ∈ B+

dR which is algebraic over K̂ur ⊂ B+
dR. We claim that b = β.
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First note that G acts on β via η as well: Since there exists an x ∈ B+
dR such that

β = b+ tx, we have

η(g)−1 · g.β = η(g)−1 · g.(b+ tx) = b+ η(g)−1χ(g)t · (g.x).

In particular, since η(g)−1 · g.β is algebraic over K̂ur and the Hensel lift is G-equivariant

(cf. proof of 1.25), the element η(g)−1 · g.β is another Hensel lift of b over K̂ur, hence
equal to β. In other words, g.β = η(g)β.

Assume that b 6= β. Then there is a minimal r ∈ N0 with b− β ∈ Filr BdR. As we
have just seen, Qp · (b− β) is G-stable and again has η as its associated character. Now

reduce modulo Filr+1 BdR to obtain a non-trivial Qp-line in Filr BdR/Filr+1BdR
1.27
= C(χr)

where G acts via χrη. Again we have C((χrη)−1)I 6= 0 because

b− β ∈ C((χrη)−1)I = {x ∈ C | g.x = χr(g)η(g)x for all g ∈ G} 6= 0.

Since K̂ur is a p-adic field with completed algebraic closure C and Galois group I, χ−rη−1

has finite image by Theorem 1.23. This is only possible if r = 0 because otherwise η−1(I)
is finite and χ−r(I) isn’t. But r = 0 contradicts θdR(b− β) = b− b = 0; it follows that

b = β, so that b is algebraic over K̂ur as claimed.

Corollary 4.7. We obtain functors Dcris and Dρ from Repcont
Qp (G) to the category VecfK0

of finite-dimensional K0-vector spaces. They are faithful, exact and commute with tensor
products and duals.

It turns out that in terms of admissibility, the choice of B• does not matter.

Proposition 4.8. Let V ∈ Repcont
Qp (G). Then the following properties are equivalent:

(i) V is Bcris-admissible.

(ii) V is B+
ρ [1

t
]-admissible for some ρ ∈ (0; |p|].

(iii) V is B+
ρ [1

t
]-admissible for all ρ ∈ (0; |p|].

We call a representation V satisfying these properties crystalline and denote the full
subcategory of crystalline representations of G by Repcris

Qp (G). The functors Dρ and Dcris

are naturally isomorphic as functors Repcris
Qp (G)→ VecK0.

Proof. (ii)⇐⇒ (iii): Admissibility is a matter of K0-dimensions. For all 0 < σ ≤ ρ ≤ |p|,
the K0-linear inclusion ισ,ρ ⊗ idV : (B+

σ [1
t
]⊗Qp V )G ↪→ (B+

ρ [1
t
]⊗Qp V )G shows that B+

σ [1
t
]-

admissible implies B+
ρ [1

t
]-admissible. On the other hand, ϕρ : B+

ρ [1
t
] ↪→ B+

ρp [
1
t
] is injective,

so we have an injective homomorphism of abelian groups

ϕρ ⊗ idV : (B+
ρ [1

t
]⊗Qp V )G ↪→ (B+

ρp [
1
t
]⊗Qp V )G.

This is not K0-linear, but if V is B+
ρ [1

t
]-admissible and v1, . . . , vn ∈ (B+

ρ [1
t
]⊗Qp V )G is

a K0-basis, then the images (ϕρ ⊗ idV )(vi) are still K0-linearly independent because
ϕ : K0

∼→ K0 is bijective and hence for all λi ∈ K0,

(ϕρ ⊗ idV )

(
n∑
i=1

ϕ−1(λi)vi

)
=

n∑
i=1

λi(ϕρ ⊗ idV )(vi) = 0
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implies λi = 0 for all 1 ≤ i ≤ n. Therefore B+
ρ [1

t
]-admissible implies B+

ρp [
1
t
]-admissible.

Combining these two results yields the equivalence.
(i) ⇐⇒ (iii): Apply analogous arguments to the inclusions B+

ρp [
1
t
] ↪→ Bcris ↪→ B+

ρ [1
t
]

from Proposition 3.33.
The final assertion follows from the trivial observation that the maps ισ,ρ ⊗ idV ,

(B|p|p ↪→ Bcris)⊗ idV and (Bcris ↪→ B|p|)⊗ idV are natural in V .

We will similarly write D• when the exact choice of functor doesn’t matter. As is
usual for period ring functors, D• takes values in a more structured category.

Definition 4.9. A filtered φ-module over K is an isocrystal D over K0 such that the
base change DK := K ⊗K0 D is a filtered K-vector space. In other words, we have a
triple (D,φD,Fil•) where D is a K0-vector space, φD : D

∼→ D is an automorphism of
abelian groups such that φD(k.d) = ϕ(k).φD(d) for all k ∈ K0 and d ∈ D (φD is Frobenius-
semilinear), and Fil• is a decreasing, separated and exhaustive filtration on DK .

A homomorphism of filtered φ-modules over K is a K0-linear map f : D → D′ such
that f(φD(d)) = φD′(f(d)) holds for all d ∈ D and fK : DK → D′K is a homomorphism
of filtered K-vector spaces. f is called strict if the extension fK : DK → D′K is strict,
i.e. satisfies f−1

K (FilnD′K) = FilnDK for all n ∈ Z.
Filtered φ-modules over K form a category which we denote by MFφK , with an obvious

forgetful functor MFφK → MFK to the category of filtered K-vector spaces.

Lemma 4.10. If φ : D → D′ is an injective Frobenius-semilinear map between K0-vector
spaces with dimK0 D = dimK0 D

′ <∞, then φ is bijective.

Proof. Since ϕ : K0
∼→ K0 is an automorphism, the image of φ is a K0-linear subspace

of D′. Hence it suffices to show that images of linearly independent elements remain
linearly independent, which follows by the exact same argument as in the proof of 4.8.
In fact, the map ϕρ ⊗ id we considered there was Frobenius-semilinear.

Remark 4.11. Like MFK , the category MFφK is additive and admits kernels and cokernels,
given by the vector space ker f (respectively coker(f)) with the induced Frobenius (which
is bijective by 4.10) and the subspace (resp. quotient) filtration on the base change. It
similarly fails to be abelian solely because the inverse of a bijective homomorphism need
not respect the filtration after base change. This problem again does not exist for strict
homomorphisms and we can nevertheless define a notion of exactness as in MFK by saying
that a sequence of filtered φ-modules

0→ D′ → D → D′′ → 0

is exact if the underlying sequence of vector spaces is exact and the sequence

0→ D′K → DK → D′′K → 0

is exact in MFK , i.e. exact after applying any Filn or equivalently inducing the subspace
filtration on D′K and the quotient filtration on D′′K .

We also have a notion of tensor products and duals in MFφK . The tensor product
of D,D′ ∈ MFφK is given by the vector space D ⊗K0 D

′, the Frobenius-semilinear map
φD⊗D′ := φD ⊗ φD′ , and the filtration

Filn(D ⊗K0 D
′)K = Filn(DK ⊗K D′K) :=

∑
i+j=n

FiliDK ⊗ Filj D′K .
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The dual is given by the vector space HomK0(D,K0), the Frobenius-semilinear map
φD∗ := (f 7→ ϕ−1 ◦ f ◦ φD), and the usual dual filtration

Filn(HomK0(D,K0))K = Filn HomK(DK , K) := {f : DK → K | Fil1−nDK ⊂ ker f}.

We record the following basic result on filtered vector spaces for later use.

Lemma 4.12. Let V,W ∈ FilK and V ′ ⊂ V a subspace with the subspace filtration.

(i) If f : V
∼→ W is an isomorphism in FilK, then the restriction f|V ′ : V ′

∼→ f(V ′) is
an isomorphism in FilK as well.

(ii) If dimKW <∞, then V ′ ⊗K W carries the subspace filtration relative to V ⊗K W .

Proof. (i): Write W ′ := f(V ′) and let iV : V ′ ↪→ V and iW : W ′ ↪→ W be the canonical
inclusions. Then we have iW ◦ f|V ′ = f ◦ iV , so

f|V ′(Filn V ′) = i−1
W (iW (f|V ′(Filn V ′))) = i−1

W (f(iV (Filn V ′))) ⊂ i−1
W (FilnW ) = FilnW ′,

f−1
|V ′(FilnW ′) = f−1

|V ′(i
−1
W (FilnW )) = i−1

V (f−1(FilnW )) = i−1
V (Filn V ) = Filn V ′.

(ii): Let ι : V ′ ↪→ V be the inclusion. Since W is finite-dimensional, there exists a
basis w1, . . . , wn ∈ W of W such that {w1, . . . , wn} ∩ FilkW is a basis of FilkW for all
k ∈ Z. For each 1 ≤ j ≤ n, let ij := max{k ∈ Z |wj ∈ FilkW}. Since ι⊗ idW is injective,

(ι⊗ idW )−1(Filk(V ⊗K W )) = (ι⊗ idW )−1

(
n∑
j=1

(Filk−ij V ⊗K Filij W )

)

=
n∑
j=1

(ι⊗ idW )−1

(
j⊕
l=1

(Filk−ij V ⊗K Kwj)

)

!
=

n∑
j=1

j⊕
l=1

(ι⊗ idW )−1(Filk−ij V ⊗K Kwj)

=
n∑
j=1

j⊕
l=1

Filk−ij V ′ ⊗Kwj

= Filk(V ′ ⊗W ).

Proposition 4.13. Let V,W ∈ Repcont
Qp (G) and let f : V → W be a homomorphism of

p-adic representations.

(i) D•(V ) = (B• ⊗Qp V )G is a filtered φ-module when equipped with φ = ϕ• ⊗ idV and
the subspace filtration relative to

K ⊗K0 (B• ⊗Qp V )G ⊂ (K ⊗K0 B• ⊗Qp V )G
4.5
↪→ (BdR ⊗Qp V )G = DdR(V ).

D•(f) = idB• ⊗Qpf is furthermore a homomorphism of filtered φ-modules over K.

(ii) After restriction to Repcris
Qp , the natural isomorphisms between Dcris and all Dρ of

functors Repcris
Qp → VecfK0

from Proposition 4.8 are also natural isomorphisms of

functors Repcris
Qp → MFφK.
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Proof. (i): ϕ• is G-equivariant, so φ indeed restricts to an injective Frobenius-semilinear
map D•(V )→ D•(V ), which is bijective by 4.10. D•(f) is compatible with φ because
φ ◦D•(f) = (ϕ• ⊗ f) = D•(f) ◦ φ; compatibility with filtrations follows from the fact
that D•(f)K and DdR(f) are both restrictions of idK ⊗ idB• ⊗f .

(ii): We need to show that the inverses of the components of the natural isomorphism
(which are base changes of the canonical inclusions) commute with φ and respect filtra-
tions after tensoring with K. Compatibility with φ readily follows from 3.19 and 3.33 (ii).
Compatibility with the filtrations follows from the fact that the base changes of the
canonical inclusions induce the subspace filtration, are therefore strict, and hence are
isomorphisms if and only if they are bijective.

Corollary 4.14. For all V ∈ Repcris
Qp (G), there is an isomorphism of filtered K-vector

spaces K ⊗K0 D•(V ) ∼= DdR(V ) which is functorial in V . In particular, crystalline rep-
resentations are de Rham and K ⊗K0 D•(·) ∼= DdR as functors Repcris

Qp (G)→ FilK.

Proof. The map K ⊗K0 D•(V ) ↪→ DdR(V ) is clearly functorial in V and a strict homo-
morphism of filtered modules over K since it induces the filtration on K ⊗K0 D•(V ).
Therefore it suffices to verify

dimQp V = dimK0 D•(V )

= dimK(K ⊗K0 D•(V ))

≤ dimK(K ⊗K0 B• ⊗Qp V )G

≤ dimK(BdR ⊗Qp V )G

= dimK DdR(V )

≤ dimQp V.

Corollary 4.15. The functor D• : Repcris
Qp (G)→ MFφK is exact and commutes with duals

and tensor products.

Proof. Combine 4.7, 4.14 and 1.28.

4.2 Properties of crystalline representations

We close with an overview of assorted results on crystalline representations, largely based
on [2, §8, §9.3]. Having established that our notions agree with the customary ones, we
do not prove all of these properties in detail and refer to the literature instead.

Proposition 4.16. A representation V ∈ Repcont
Qp (Gal(K)) is crystalline if and only if it

is crystalline as a representation of Gal(K̂ur).

Proof. Denote the D• functors for K and K̂ur by DK
• and DK̂ur

• respectively. Since

K̂ur
0 ⊗K0 D

K
• (V )→ DK̂ur

• (V ) is easily seen to be compatible with the Frobenius, it suffices

to see that its base change is an isomorphism of filtered K̂ur-vector spaces. This is proven
in a similar way to the de Rham case (see e.g. [2, 6.3.8] and [2, 2.4.6]), by reducing to
the fact that finite-dimensional K0-subspaces of B+

• obtain their natural K0-vector space
topology as the subspace topology. Since we may choose B+

• = B+
ρ for some ρ ∈ (0; |p|],

this follows from the fact that |·|ρ induces the p-adic topology on K0.

54



The analogue of 4.16 for BdR holds for arbitrary (notably ramified) finite extensions
L/K as well, by reducing to the Galois case and applying the classic Galois descent
isomorphism L⊗K DK

dR(V ) = L⊗K DL
dR(V )Gal(L/K) ∼= DL

dR(V ). This argument does not
extend to the crystalline case and indeed being crystalline need not be checkable after
under such extensions, as we will see in 4.19.

Proposition 4.17. A representation V ∈ Repcont
Qp (G) is unramified if and only if it is

crystalline and potentially unramified.

Proof. An unramified representation is trivially potentially unramified and by 4.16 it
is crystalline. On the other hand, let V be crystalline and let L/K be a finite Galois
extension such that V is unramified as a representation of Gal(L). By 4.16, we may

assume that k is algebraically closed, so that B
Gal(L)
• = L0 = K0; then

DK
• (V ) = DL

• (V )Gal(L/K)

1.20
⊂ (BGal(L)

• ⊗Qp V )Gal(L/K)

!
= (K0 ⊗Qp V )Gal(L/K)

= K0 ⊗Qp V
Gal(L/K),

so a dimension comparison shows V = V Gal(L/K). But then the action of the inertia group
of Gal(K) must factor through the inertia group of Gal(L), i.e. V is unramified.

Corollary 4.18. A one-dimensional continuous representation ρ : G→ Q×p is crystalline
with Hodge-Tate weight n ∈ Z if and only if ρχn is unramified.

Proof. Every χ−n is crystalline since tn ∈ D•(χ−n) ∼= {x ∈ B• | g.x = χ(g)n · x}. After
multiplying with χn, it suffices to show that ρ is crystalline with Hodge-Tate weight 0 if
and only if ρ is unramified; but this follows from 4.17 and Theorem 1.23.

In particular, no finitely ramified character corresponds to a crystalline representation.
However, since the de Rham property is insensitive to finite extension, finitely ramified
characters correspond to de Rham representations, showing that the converse of 4.14 does
not hold. We can also now illustrate how being crystalline cannot be checked on finite
ramified extensions.

Example 4.19. Let L/K be a finite and ramified Galois extension. Then the group
ring Qp[Gal(L/K)] is a representation V ∈ Repcont

Qp (G). The induced representation for
Gal(L) is trivial (notably unramified and crystalline), so V is potentially unramified; but
by Proposition 4.17, V can only be crystalline if it is unramified, which is clearly false.

A major defect of the functors DHT and DdR was that they are faithful, but not full,
making it difficult to find a simple description of the categories RepHT

Qp (G) and RepdR
Qp (G).

This situation is remarkably different for the functor Dcris.

Proposition 4.20. The functor D• : Repcris
Qp (G)→ MFφK is fully faithful. The pseudoin-

verse on its essential image is V• : MFφK → ModQp[G] with

V•(D) := (B• ⊗K0 D)ϕ=1 ∩ Fil0(B• ⊗K0 D)K ,

V•(f : D → D′) := (idB• ⊗K0f)|V•(D),

where (B• ⊗K0 D)ϕ=1 := {x ∈ B• ⊗K0 D | (ϕ• ⊗ φD)(x) = x}.
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Proof. The ring B• is a filtered φ-module over K via ϕ• and the subspace filtration for
B• ⊗K0 K ⊂ BdR, so the above definition makes sense. Recall that for all V ∈ Repcris

Qp (G)
there is a functorial isomorphism αV : B• ⊗K0 D•(V )

∼→ B• ⊗Qp V of B•-semilinear rep-

resentations by the general theory of period rings and note that B• ⊗Qp V ∈ MFφK via

ϕ• ⊗ idV and Filn(K ⊗K0 B•)⊗Qp V . We claim that αV is an isomorphism in MFφK , so
that there is a natural isomorphism

V•(D•(V ))
!∼= (Fil0B•)

ϕ=1 ⊗Qp V
3.50
= Qp ⊗Qp V

∼= V.

For b ∈ B• and v =
∑n

i=1 bi ⊗ vi ∈ (B• ⊗ V )G ⊂ B• ⊗ V , we indeed have

(ϕ• ⊗ idV )(αV (b⊗ v)) = (ϕ• ⊗ idV )

(
n∑
i=1

bbi ⊗ vi

)
=

n∑
i=1

ϕ•(b)ϕ•(bi)⊗ vi,

αV ((ϕ• ⊗ φD•(V ))(ϕ•(b)⊗ v) = αV

(
ϕ•(b)⊗

n∑
i=1

ϕ•(bi)⊗ vi

)
= ϕ•(b)

n∑
i=1

ϕ•(bi)⊗ vi.

We write B•,K := B• ⊗K0 K. By 4.12 (ii), B•,K ⊗Qp V carries the subspace filtration with
respect to BdR ⊗Qp V and (B• ⊗K0 D•(V ))K ∼= B•,K ⊗K DdR(V ) carries the subspace fil-
tration with respect to BdR ⊗K DdR(V ). That αV,K : B•,K ⊗K DdR(V )

∼→ B•,K ⊗Qp V is
an isomorphism in FilK therefore follows from 4.12 (i) and the fact that αV,K is the
restriction of the filtered isomorphism αV,dR : BdR ⊗K DdR(V )

∼→ BdR ⊗Qp V from 1.29.

Let V, V ′ ∈ Repcris
Qp (G), D := D•(V ), D′ := D•(V

′) ∈ MFφK , and f : D → D′ a homo-

morphism in MFφK . Denote by αV , αV ′ the crystalline comparison isomorphisms and let

f ′ = αV ′ ◦ f ◦ α−1
V : B• ⊗K0 V → B• ⊗K0 V

′.

By unwinding definitions, one sees that f ′ is a base change of a homomorphism V → V ′;
applying V• then results in the original map f .

One might therefore hope to explicitly describe the essential image of D• to obtain an
equivalence of categories. This is in fact possible; the idea is that the generally unrelated
Frobenius and filtration should satisfy some kind of compatibility condition.

Definition 4.21. Let D ∈ MFφK , dimK0 D = d <∞ and detD :=
∧dD ∈ MFφK .

(i) The Hodge number ofD 6= 0 is tH(D) := max{i ∈ Z | Fili(detD)K 6= 0}. ForD = 0,
we set tH(D) = 0.

(ii) The Newton number of D 6= 0 is the uniquely determined valuation vp(λ), where

λ ∈ K0 is such that φdetD(x) := (∧dφD)(x)
!

= λx for some x ∈ detD \ 0. For D = 0,
we set tN(D) = 0.

(iii) We call D ∈ MFφK weakly admissible if tH(D) = tN(D) and tH(D′) ≤ tN(D′) for all
subobjects D′ ∈ MFφK of D.

Note that tH and tN are really attached to the underlying filtered K-vector space
and K0-isocrystal respectively. Both numbers are well-defined; on the one hand we
have Fildn(detD)K = 0 for any n ∈ Z with FilnDK = 0, and on the other hand we have
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ϕ(µ)/µ ∈W(k)× ⊂ K0 for all µ ∈ K×0 , so that φdetD(µx) = ϕ(µ)φdetD(x) = λϕ(µ)
µ
µx still

gives the same Newton number vp(λ
ϕ(µ)
µ

) = vp(λ).
Another commonly used definition of Hodge and Newton numbers makes use of the

Dieudonné-Manin classification (cf. [5]), which states that any K0-isocrystal D decom-
poses into a direct sum D =

⊕
α∈QDα, where each Dα is pure of slope α, i.e. admits a

Zp-lattice M ⊂ Dα such that p−sφrDα(M) = M and α = s
r
, where gcd(s, r) = 1 and r > 0.

Equivalently, D̂α := K̂ur
0 ⊗K0 Dα with the filtration Filn D̂K̂ur := FilnDK ⊗K K̂ur and

the Frobenius map φD ⊗ idK̂ur
0

is isomorphic to a direct sum of finitely many copies of

the K̂ur
0 -isocrystal ∆α :=

⊕r−1
i=0 K̂

ur
0 · F i, whose Frobenius is

φ∆α

(
r−1∑
i=0

aiF
i

)
= ϕ(ar−1)psF 0 +

r−1∑
i=1

ϕ(ai−1)F i.

It is easily seen that dimK̂ur
0

∆α = r and tN(∆α) = s.

Proposition 4.22. For all D ∈ MFφK with dimK0 D <∞, we have tH(D) = tH(D̂) and

tN(D) = tN(D̂).

Proof. Since d̂etD ∼= det D̂, this reduces to the one-dimensional case, which is trivial.

Proposition 4.23. Let D ∈ MFφK be finite-dimensional.

(i) tH(D) =
∑

i∈Z i · dimK(FiliDK/Fili+1 DK).

(ii) tN(D) =
∑

α∈Q α · dimK0 Dα =
∑

α∈Q α · dimK̂ur
0
D̂α.

Proof. The case D = 0 is trivial, so assume D 6= 0.
(i): Clearly tH(D) = tH(detD) = max{

∑d
j=1 ij | Fili1 DK ∧ . . . ∧ Filid DK 6= 0}. Note

that Fili1 DK ∧ . . . ∧ Filid DK 6= 0 if and only if all Filij DK 6= 0 and there exists a linearly
independent choice of vectors vj ∈ Filij DK . The choice of ij and vj that realizes the
maximum must necessarily satisfy vj ∈ Filij DK \ Filij+1DK , which implies the formula.

(ii): By 4.22, we can consider tN(D̂) instead. Note that the canonical isomorphism

det(
⊕m

i=1 ∆αi)
∼=
⊗m

i=1 det ∆αi is compatible with the Frobenius. If λ1, . . . , λm ∈ K̂ur
0 are

such that φdet ∆αi
= (v 7→ λiv), then ⊗mi=1φdet ∆αi

= (v 7→ (
∏m

i=1 λi)v). Hence it suffices to
consider the case D = ∆α for some α = s

r
∈ Q with gcd(s, r) = 1 and r > 0, which indeed

satisfies tN(∆α) = s = s
r
· dimK̂ur

0
∆α by our previous remarks.

The main result is now the following theorem due to Colmez and Fontaine.

Theorem 4.24. For each D ∈ MFφK, the following properties are equivalent:

(i) D is admissible, i.e. there is a V ∈ Repcris
Qp (G) such that D ∼= Dcris(V ).

(ii) D is weakly admissible, i.e. dimK0 D <∞, tH(D) = tN(D) and tH(D′) ≤ tN(D′)
for all subobjects D′ < D.

In particular, if we denote the full subcategory of weakly admissible filtered φ-modules
by MFφ,wadm

K , the functor D• : Repcris
Qp (G)→ MFφ,wadm

K is an equivalence of categories and
its pseudoinverse is the functor V• from 4.20.
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Proof ((i) =⇒ (ii)). [2, 9.3.4] By 4.16, V is crystalline as a representation of Gal(K̂ur);

by 4.22, Hodge and Newton numbers can be computed on D̂. Since all subobjects of D
give rise to subobjects of D̂ after base change, it suffices to consider the case where k is
algebraically closed.

By unwinding definitions, one derives from 4.15 that D• and exterior powers com-
mute. Since k is algebraically closed, all unramified characters of G are trivial, so
by 4.18, detD•(V ) ∼= D•(detV ) ∼= D•(Qp(χ

n)) ∼= K0t
−n for some n ∈ Z; therefore we

have tH(D•(V )) = tN(D•(V )) = −n.
Let D′ < D be a subobject in MFφK and d := dimK0 D

′. Note that taking exterior
powers preserves subobject relations between filtered φ-modules, the crystalline prop-
erty on representations, and commutes with D•. Since we are only interested in tH(D′)
and tN(D′) at this point, we may therefore consider detD′ <

∧dD = D•(
∧d V ) instead,

i.e. assume that dimK0 D
′ = 1.

Let v1, . . . vn ∈ V be a Qp-basis of V and let e′ ∈ D′ be a K0-basis of D′, so that
φD′(e

′) = λe′ for some λ ∈ K×0 . Then e′ =
∑n

i=1 bi ⊗ vi ∈ D•(V ) for some bi ∈ B•; since∑n
i=1 λbi ⊗ vi = φD′(e

′), we see that ϕ(bi) = λbi for all 1 ≤ i ≤ n.
Let s := tH(D′). Since e′ ∈ FilsD′ \ Fils+1D′, we have bi ∈ FilsB• \ Fils+1B• for

some 1 ≤ i ≤ n. Assume that s > vp(λ), contrary to the theorem. Then bi ∈ Filvp(λ) B•,
so t−vp(λ)b ∈ Fil1B• and ϕ•(t

−vp(λ)bi) = ut−vp(λ)bi for some u ∈W(k)×. Since k is alge-
braically closed, we have u = ϕ(u′)/u′ for some u′ ∈W(k)× (see e.g. [2, 9.3.3]). But then

t−vp(λ)bi/u
′ ∈ Fil1B• ∩Bϕ=1

•
3.50
= Fil1B• ∩Qp = 0, which contradicts bi 6∈ Fils+1B•.

Note that in view of the theorem, more recent texts often use the latter condition as
the definition of admissibility. The direction (ii) =⇒ (i) is significantly more difficult and
admits a variety of proofs, all of them complicated. See [3, 4.3.11] for pointers to the
various approaches. The original proof in [4] proceeds by showing that there is always
a filtration for the underlying isocrystal of D that results in an admissible object, and
then stepwise adjusts this filtration in a way that preserves admissibility, until one finally
obtains the filtration on D. An important lemma in this proof is [2, 9.3.9], which notably
uses the sequence from 3.55.

As a corollary of Theorem 4.24, we obtain that the category MFφ,wadm
K is stable under

tensor products. Due to the complicated structure of subobjects of a tensor product, this
would be very difficult to show elementarily.

We end this section with a collection of common results on weakly admissible filtered
φ-modules that we use in §4.3. Beware that while these properties may seem like trivial
consequences of 4.24, many of them are actually required for reduction steps.

Proposition 4.25. Let D,D′, D′′ ∈ MFφK be finite-dimensional.

(i) If 0→ D′ → D → D′′ → 0 is exact in MFφK, then tH(D) = tH(D′) + tH(D′′).

(ii) If D,D′ ∈ MFφK, then tH(D ⊗D′) = dimK0 D
′ · tH(D) + dimK0 D · tH(D′).

(iii) If D ∈ MFφK, then tH(D∨) = −tH(D).

Completely analogous statements hold for tN .

Proposition 4.26. Homomorphisms in MFφ,wadm
K are strict. All kernels and cokernels

exist in MFφ,wadm
K and agree with their counterparts in MFφK. In particular, MFφ,wadm

K is
an abelian category.
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Proposition 4.27. D ∈ MFφK is weakly admissible if and only if D̂ ∈ MFφ
K̂ur

is weakly
admissible.

Proposition 4.28. Let D ∈ MFφ,wadm
K and let (Di)i∈I be a family of weakly admissible

subobjects of D. Then
⋂
i∈I Di ∈ MFφK is also weakly admissible.

Proposition 4.29. Let 0→ D′ → D → D′′ → 0 be a short exact sequence in MFφK. If
two of D,D′, D′′ are weakly admissible, then so is the third.

Proposition 4.30. Let D,D′ ∈ MFφK with dimK0 D, dimK0 D
′ <∞ and let f : D → D′

be a bijective homomorphism in MFφK.

(i) We have tN(D) = tN(D′) and tH(D) ≤ tH(D′).

(ii) f is an isomorphism in MFφK if and only if tH(D) = tH(D′).

4.3 Applications to p-divisible groups

Finally, let us discuss a result of Fontaine from [11, §6] that was a historical motivation
for the concept of crystalline representations: A connection between two classifications
of p-divisible groups over OK . For a classic introduction to p-divisible groups, see [15]; a
detailed treatment can be found in [8]; for a general overview with some further historical
background, see e.g. [2, §7.2, §7.3].

We denote the category of p-divisible groups over a ring R by BTR and the category
of p-divisible groups over a ring R up to isogeny by BTisog

R . We consider a p-divisible
group Γ over R an inductive family of finite flat commutative group schemes (Γn)n∈N0

over R and denote its height by ht Γ.

Remark 4.31. The p-divisible groups Γ over OK can be classified in two major ways.

• On the one hand, there is the Tate module T (Γ) := lim←−n Γn(K) ∈ ModZp[G], where

the inverse limit is taken over the maps jn such that Γn+1
jn→ Γn → Γn+1 is the

multiplication by p. The Tate module is free of rank ht Γ and carries the profinite
topology; its formation is functorial in Γ ∈ BTOK , yielding a fully faithful functor
from BTOK to the category of finitely generated Zp-modules with continuous G-
action, see [15, p. 181, Corollary 1]. Note that T (Γ) only depends on the generic
fiber Γ×OK K. Passing to the isogeny viewpoint, we also obtain a fully faithful
functor

T ′ := T (·)⊗Zp Qp : BTisog
OK → Repcont

Qp (G).

• On the other hand, we can pass to the special fiber Γ×OK k and study the con-
travariant Dieudonné functor M : BTk → ModWff

Dk , an exact anti-equivalence be-
tween the categories of p-divisible groups over k and the left modules over the
(non-commutative) Dieudonné ring Dk which are free of finite rank over W(k). It
is exact and commutes with base changes to perfect extensions l/k.

Passing to isogenies again, M′(Γ) := M(Γ×OK k)⊗W(k) K0 is a K0-isocrystal by
Lemma 4.10. Furthermore, the base change M′(Γ)K admits a distinguished sub-
space LΓ, which is the canonical image of the cotangent space t∗Γ(K), giving M′(Γ)
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the structure of a filtered φ-module over K via

FilnM′(Γ)K =


M′(Γ)K if n < 1,

LΓ if n = 1,

0 if n > 1.

Note that this MFφK-structure can be equivalently described in terms of the pair
(LΓ,M′(Γ)) and morphisms M′(Γ)→M′(Γ′) that map LΓ into LΓ′ ; this is done in
older sources such as the one we cite. This gives rise to a fully faithful functor

M′ := M(· ×OK k)⊗W(k) K0 : BTisog
OK → MFφK .

Given these two approaches to the classification of p-divisible groups over OK , a
natural question to ask is whether there exists a functor D : Repcont

Qp (G)→ MFφK such
that D ◦ T ′ ∼= M′. In Theorem 4.37, we will see that this functor is Dcris.

Lemma 4.32. If Γ ∈ BTOK , then M′(Γ) ∈ MFφK is weakly admissible.

Proof. The case where k is algebraically closed is proven in [14, 1.4]. For the general

case, note that M′ commutes with base change to K̂ur and use 4.27.

Lemma 4.33. Let 0→ D′ → D → D′′ → 0 be a short exact sequence in MFφ,wadm
K . The

following propositions are equivalent:

(i) D lies in the essential image of M′.

(ii) D′ and D′′ lie in the essential image of M′.

In particular, if this is the case, there exist Γ,Γ′,Γ′′ ∈ BTisog
OK such that the sequence

0→ Γ′′ → Γ→ Γ′ → 0 is exact and M′(Γ) = D, M′(Γ′) = D′, M′(Γ′′) = D′′.

Proof. Again, the case where k is algebraically closed is proven in [14, 1.8]. The general

case follows from the fact that M′ commutes with base change to K̂ur.

Lemma 4.34. If D ⊂ B+ is a finite-dimensional ϕB-stable K0-subspace, equipped with
the structure of a filtered φ-module over K via the subspace filtration with respect to
DK ⊂ B+ ⊗K0 K ⊂ BdR, then tH(D) ≤ tN(D).

Proof. [11, 6.5] Assume to the contrary that tH(D) > tN(D) = r, let e ∈ FiltH(D) detD
be a basis element of detD such that ϕ(e) = pre. For each f ∈ HomMFφK

(detD,B+), we

then have ϕB(f(e)) = f(φdetD(e)) = f(pre) = prf(e). Since f(e) ∈ FiltH(D)B+, we have

hence t−rf(e) ∈ (FiltH(D)−r B+)ϕ=1 ⊂ (Fil1B•)
ϕ=1 3.54

= 0, so f = 0.
Let n = dimK0 D. The above result in particular applies to the map fg1 ∧ . . . ∧ fgn ,

where g1, . . . , gn ∈ G and fgi(d) = gi.d. Hence for any K0-basis d1, . . . , dn ∈ D, we have
det(gi.dj)i,j = 0. By a standard result (proven e.g. in [11, 6.7]), it follows that d1, . . . , dn
are BG

dR-linearly (i.e. K-linearly) independent over BdR; this contradicts 4.5.

Definition 4.35. The space of Witt bivectors over O[C is the Qp-subspace

BW (O[C) := {
∑
i∈Z

pi[xi] = lim
n→∞

∞∑
i=−n

pi[xi] ∈ B+ | lim sup
i→∞

|x−i|1/p
i

[ < 1} ⊂ B+.
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These series really converge in B+ since with q := lim supi→∞ |x−i|
1/pi

[ < 1, we have

lim
i→∞
|p−i[x−i]|ρ = lim

i→∞
ρ−i|x−i|[ ≤ lim

i→∞
ρ−iqp

i

= 0

for all ρ ∈ (0; 1). Beware that it is non-trivial that BW (O[C) is a Qp-subspace since it is
unknown whether general elements of B+ admit representations of the form

∑
i∈Z p

i[xi],
whether such representations are unique, and whether they are stable under sums and
products. However, the above convergence conditions together with 3.3 result in the
following formula:∑

i∈Z

pi[xi] +
∑
i∈Z

pi[yi] =
∑
i∈Z

pi[ lim
n→∞

S̃n(xi−n, . . . , xi, yi−n, . . . , yi)
1/pn ]

Clearly BW (O[C) is stable under ϕB. Equipping BW (O[C)⊗K0 K ⊂ BdR with the
subspace filtration, we see that BW (O[C) is an infinite-dimensional filtered φ-module
over K. Unwinding definitions reveals that the ring BW (O[C) above is simply the
ring BW(Res(OC)) from [8, p. 228] and similarly θdR|BW (O[C) : BW (O[C)→ C is simply

the map bwOC : BW(O[C)→ C. See also [6, §1.10.2] for a treatment more in line with
our approach. We can therefore make use of the following lemma:

Lemma 4.36. There is a natural isomorphism of functors BTOK → Repcont
Qp (G)

T ′(·) ∼= HomMFφK
(M′(·), BW (O[C)).

Proof. This is a rewording of [8, Théorème 1, p. 232] with S = OC .

We are now able to prove the main result, which is Theorem 6.2 from [11].

Theorem 4.37. There is a natural isomorphism of contravariant functors BTOK → MFφK

M′
!∼= D•(T

′(·)∨) = HomQp[G](T
′(·), B•).

Proof. [11, 6.2] Let Γ ∈ BTOK and functorially identify T ′(Γ) = HomMFφK
(M′(Γk), BW )

using 4.36. We are looking for a functorial isomorphism

ηΓ : M′(Γ)→ HomQp[G](HomMFφK
(M′(Γ), BW ), B•) = D•(T

′(Γ)∨);

since BW ⊂ B+ ⊂ B•, the obvious choice is ηΓ(m) := (f 7→ f(m)), which is clearly Qp-
linear and equivariant. For functoriality, let α : Γ→ Γ′ be a homomorphism of p-divisible
groups and note that for all m′ ∈M′(Γ′), we indeed have

(HomQp[G](HomMFφK
(M′(α), BW ), B•) ◦ ηΓ′)(m

′)

= (HomQp[G](HomMFφK
(M′(α), BW ), B•))((f

′ 7→ f ′(m′)))

= (f ′ 7→ f ′(m′)) ◦ HomMFφK
(M′(α), BW )

= (f ′ 7→ f ′(m′)) ◦ (f 7→ f ◦M′(α))

= (f 7→ f(M′(α)(m′)))

= (ηΓ ◦M′(α))(m′).
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We claim that D•(T
′(Γ)∨) is also weakly admissible and that ηΓ is injective. In that case,

ηΓ is strict by 4.26 and

dimK0 D•(T
′(Γ)∨) ≤ dimQp T

′(Γ) = ht Γ = dimK0 M′(Γ)
!

≤ dimK0 D•(T
′(Γ)∨)

shows that T ′(Γ) is crystalline and ηΓ is an isomorphism
Consider ker ηΓ =

⋂
v∈T ′(Γ) ker(v : M′(Γ)→ BW ) ∈ MFφK , via the identification from

Lemma 4.36 and the fact that φB ◦ v = v ◦ φM′(Γ). Every v ∈ T ′(Γ) (trivially) gives rise

to a short exact sequence 0→ ker v →M′(Γ)→ coim v → 0 in MFφK . Note that

tH(coim v)
4.30

≤ tH(im v)
4.34

≤ tN(im v)
4.30
= tN(coim v), (∗)

so since M′(Γ) is weakly admissible by 4.32 and ker v <M′(Γ), we have

tN(ker v)
4.25
= tN(M′(Γ))− tN(coim v)
!

= tH(M′(Γ))− tN(coim v)
(∗)
≤ tH(M′(Γ))− tH(coim v)

4.25
= tH(ker v)
!

≤ tN(ker v),

so ker v is weakly admissible as well. Hence 4.28 shows that ker ηΓ ∈ MFφ,wadm
K and 4.29

implies that coim ηΓ ∈ MFφ,wadm
K .

Now 4.33 applies to the sequence 0→ ker ηΓ →M′(Γ)→ coim ηΓ → 0, which is there-
fore the image under M′ of an exact sequence 0→ Γ′′ → Γ→ Γ′ → 0 in BTisog

OK . But since
T ′(Γ′′) ∼= T ′(Γ), it follows that Γ′ = 0, hence ker ηΓ = 0.

In particular, we see that for any Γ ∈ BTOK , the representation T (Γ)⊗Zp Qp is crys-
talline. However, not all crystalline representations arise as the Tate module of some
p-divisible group. The Hodge-Tate weights of representations that arise in this way must
always lie in {0, 1} by [15, p. 180]. By a conjecture of Fontaine, later proven by Kisin
in [13, Theorem 0.3], the converse holds as well.
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Hiermit erkläre ich an Eides statt, dass ich die vorliegende Masterarbeit unter Betreuung
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