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Introduction

Given a finite extension of Q,, or more generally a p-adic field K, we would like to
study its absolute Galois group G' through the latter’s continuous Q,-representations.
The category of these representations is however prohibitively large - in a sense because
the topologies of @, and K are too compatible. Fontaine’s formalism of period rings
lets us single out interesting full subcategories of Q,-representations and relates them to
categories of certain semi-linear objects whose properties mirror those of a “nice” ring
with a G-action.

A particularly important period ring is the ring of crystalline periods Be.s, which
defines the category of crystalline representations. The properties of B, are rather
arduous to prove, often requiring elaborate technical arguments which treatments of B
usually omit as a result. Notably, the important property that the Frobenius of B is
injective does not appear to have a full proof anywhere in the literature, as for example
previously noted in [2, Theorem 9.1.8]. The main goal of this thesis is to treat these
aspects in full detail.

Familiarity with the theory of p-adic representations is not strictly required if one
takes the results collected in §1.3 “on faith”, although it will obviously be useful. We
review the important tilting construction and its adjunction to the Witt vector functor
in detail in §1.1 and §1.2.

In §2, we construct the rings A and Bctis (which give rise to By via localization)
and investigate their algebraic properties. While we do not construct A using the more
general method from [9, §2.2], we establish that our construction is equivalent in §2.3.

In §3, we relate the ring Bl to the so-called Gauf norms which feature promi-
nently in the construction of the Fargues-Fontaine curve. The Gaufl norms give rise
to a family of rings B} and B™, constructed in §3.1, that formalize what used to be
ad hoc topological arguments in older texts. In §3.2, this will result in an embedding
Bj, C Bl C Bf C Byy that lets us reduce many properties of Bes to properties of Bar
or B;’. We also study the natural filtration on B, via the cyclotomic periods in §£,
leading to a slightly simpler calculation of the Frobenius fixed points of Bes.

In the final chapter §4, we return to the original situation from representation theory
and establish how the formalism of period rings applies to Bes. It turns out that for the
purposes of the period ring formalism, one can replace B, with the slightly nicer B;’
at no loss. We finish with an overview of various results on crystalline representations
in §4.2 and an application to p-divisible groups which was the historical motivation for
the development of B in §4.3.

This thesis is based on a seminar on p-adic Galois representations and a lecture on
the Fargues-Fontaine curve, both held by Prof. Dr. Jan Kohlhaase during the winter
semesters of 2020/2021 and 2019/2020 respectively. I would like to thank him especially;

his thoroughness has been an inspiration.



1 Preliminaries

We fix a prime p throughout the entire text. Rings and algebras are always commutative.
Recall that every ring homomorphism between p-adically separated and complete rings is
automatically continuous with respect to the p-adic topology. We will often write lim,, z,,
and I'&Hj x; instead of lim,,_,o 2, and l'gljeNO x; for the sake of brevity when this is not

ambiguous. Group actions are written g.z unless specified otherwise. We mark parts of

equations by an ! like in a Zbh=cto highlight where a nearby assumption applies.

1.1 The Witt-tilting adjunction

We recall the adjunction between Witt vectors and tilting, whose counit plays a central
role throughout this text. The reader is assumed to be familiar with the p-typical Witt
vectors; knowledge of ramified Witt vectors is not necessary because we avoid those
entirely. Recall that if A is a perfect F,-algebra, then every Witt vector w € W(A) can
be written uniquely as > p‘[w;], where [-] : A — W(A) is the Teichmiiller lift and all
w; € A. This differs from the commonly found representation w = 32, p/[w? | whose
behavior is explicitly given by the structure polynomials S,,, Py, I, but since w? = w}, one
easily obtains the adapted formulae I,,(wg, w?, ..., wE" )P ", etc. for our representation.

Definition 1.1. Let R be a ring. The tilt of R is the inverse limit ring
R’ = lim R/pR = {(7;)jen, € (R/pR)"™ |, =T, for all j € No},
J€Ng
whose elements we write as @j 7; with 7; € R/pR. R’ is perfect because p"-th roots
are given by (l&n] 7P = 1'£1j Tjin. Clearly, R” 2 (R/pR)’. We obtain a functor -’
from the category of rings to the category of perfect F,-algebras by sending each ring
homomorphism f : R — S to the map

£ (tim vy + pR)) = im (£(r;) + pS).
J€No J€No
Proposition 1.2. Let B be a p-adically separated and complete ring.

(i) There is a unique multiplicative map £ B — B that yields the canonical projection
(@j b — by) : B> — B/pB when composed with B — B/pB. It is given by

(lim (b; + pB))* = lim 1}’

P —oo J
(ii) If R(B) := {(bY) en, € BYo | (b)Y =D} then - : B* — B factors through the
multiplicative bijection
B’ = R(B)

lim (59 4+ pB) e (B9) e,

J€Ng

b= lim (b; +pB) = (lim 7',); = (B9,

jEN, k—o0

(iii) If B is an F,-algebra, then R(B) is a ring under componentwise operations and all
three maps above are ring homomorphisms. If B is perfect, then -f: B> 5 B is a
ring isomorphism.



Proof. (i): - is well-defined because a = b mod pB implies a*" = " mod p"*'B for
all a,b € B. This also shows why - is unique and given by the above formula: Every
b= @j(bj +pB) € B’ satisfies (b*)'/?" = (b'/?")¢ = b, mod pB by multiplicativity, so
we must have b* = " mod p"*'B for all n € N.

(ii): That the two maps are inverses is verified directly. The factorization is obvious.

(iii): The set R(B) is an inverse limit of rings under ring homomorphisms in this case,
hence itself a ring. That the three maps are ring homomorphisms is immediate. If B is
perfect, the projection onto the zeroth component R(B) — B is a ring isomorphism, so

¥ factors into B> = R(B) = B. O
Proposition 1.3. Let B be a p-adically separated and complete ring and consider

0 : W(B’) - B

O <ipl[wz]> = ipiwf.

(i) Op is the only ring homomorphism W(B”) — B which reduces to the projection
(lgr_nj b; > by) : B® — B/pB modulo p.

(ii) If the Frobenius on B/pB is surjective, then so is 0p.

(iii) If a group G acts on B wvia ring homomorphisms, then Op is equivariant for the
functorially induced action on W(B’) and the action on B.

Proof. (i): By Proposition 1.2, any homomorphism with these properties must map [b]
to b for any b € B°. Since W(Bb) and B are p-adically separated and complete, the
formula for 5 follows immediately from continuity. It is however very difficult to verify
directly that this formula results in a ring homomorphism; instead, decompose 6z into
three ring homomorphisms

W(B’) % lim W, (B/pB) % lim B/p"B = B,
fn neN

where W, (B/pB) denotes the ring of truncated Witt vectors of length n, whose elements

we will write as (bg,...,b,_1) := (bo,...,b,_1,0,...) + V*(W(B/pB)) here, and
fn: Wy (B/pB) — W, (B/pB)
Fa((Bo, .-, 00)) = (bg, ..., b0 )

is the reduced Frobenius map. Note that there may not be a representation Y ., p[z;]
since B/pB need not be perfect, necessitating this argument using classic Witt vector
components. The three homomorphisms are

In

a(w) = lim (W(l'gl bj = bn)(w) + V”(W(B/pB))> :

neN

W (l‘gﬂvé") +pB,... o, +pB>) = lim(®, (v5”, ..., 0, 0) + " B),
fn

((im(b, + p"B)) = lim b,

neN



where ®,, is the n-th Witt polynomial. o and ¢ are easily seen to be well-defined ring
homomorphisms; the argument for ¢ is slightly more involved but fundamentally relies
on the facts that the n-th ghost component W(B) — B is a ring homomorphism and
that varying any component of b € B"*! by an element of pB changes ®,,(by, .. .,b,) by
an element of p"B. See chapter 5 of [17], in particular Proposition 5.3, for the full details
of this construction in German. The additional assumptions made there are not used to
show that these maps are ring homomorphisms.

(ii): Let b € B and set ey :=b. Given e; € B for any i € Ny, we can construct an
x; € B® with e; — :cf € pB by taking the zeroth component of z; to be e; + pB and then
inductively taking preimages under the surjective Frobenius on B/pB. Letting ¢;,1 € B
such that e; — xf = pe;+1, we can inductively continue this construction, obtaining

m m m
b—0p (Zlﬂ%]) =e—» pai=ple =) pal=. . =p"en, €p™'B
i=0 i=0 i1

for all m € N, so that 05(> 2, p'lx;]) = b.

(iii): The functorial action on W(B)is g. >0 p'lw;] = > oo p'lg-wi]. Since the action
of G on B must be p-adically continuous, its action on B’ commutes with -f. The
statement then follows immediately from the formula. O

Proposition 1.4. The Witt vector functor W from the category of perfect F,-algebras
to the category of p-adically separated and complete rings is left adjoint to the tilting
functor . If A is a perfect F,-algebra and B is a p-adically separated and complete ring,
then the counit is the map Op : W(Bb) — B from Proposition 1.3 and the unit is the map

Na:A— VV(A)b
na(a) = lim ([a"/"] + pW(A)).

keNy
Therefore, the bijection between Hom-sets can be described explicitly as follows:
Hom(W(A), B) < Hom(A, B)

f’—>fbo77A
050 W(g) < g.

Proof. The final remark on Hom-sets is a simple category theoretical fact, so we just have
to show idwa) = Oway 0 W(na) and idps = (0p)" 0 np»:

Ow (a) (W(m) (Zpi[az])> = Ow(a)

1=0 kENO
o
= E pz [(IZ],
=0



(05) (s (lim (b; + pB))) = (0 (Jim ([1jm (b5 + pB)] + pW(B"))

J€Ng keNg j€eNy

= lim (0p([}im (bj+, + pB)]) + pB)

keNy J€No
= lim ((Lim (b;4 + pB))* + pB)
keNp j€Ng

= lim (b + pB). O
keNg

1.2 Tilts of perfectoid fields

The tilting construction as applied to the ring of integers of so-called perfectoid fields will
be central throughout this text. We recall the necessary facts about this situation.

Definition 1.5. A non-archimedean field (C,|-|) with residue field of characteristic p is
perfectoid if:

(i) C is complete with respect to |-|.
(ii) The set |C| C [0;00) is dense.
(iii) The Frobenius on O¢/pO¢ is surjective.
Proposition 1.6. If C is a perfectoid field, then |x|, := |2¥| is an absolute value on O%.

Proof. ||, is multiplicative because -# is multiplicative. If z € OZ, satisfies 2% = 0, then
under the bijection in Proposition 1.2 (i), « corresponds to a compatible system of p"-th
100tS (T )nen, € R such that 0 = lim,, 27" = zy. But since O¢ is a domain, there is only
one such system, viz. the one that corresponds to x = 0. For the strict triangle inequality,
note that for a = @k(ak +pO¢), b= l&lk(bk +pO¢) € O, we have

ja+ by = Jim oy + " < max{ Jim [af|, T [V} = max{]a}, [0},

using that we already know that limk|aik| and limk|bik| exist. O

Proposition 1.7. Let n € N and x = r&lj,(ﬁ:'j +pOc) € OL.  Then z; € pO¢ for all

0<j<nif and only if |z, < [p[P" "

Proof. It suffices to prove the case n = 1 because the others follow by repeatedly taking
p-th roots. If 2y € pO¢, then xzf =129=0 mod pO¢ for all j € Ny, so |w§-’]] < |p| and
2], = |2 = limj|:c§]| < |p|. On the other hand, if |z|, < [p]|, then ]1:?7| p| for all but
finitely many j € Ny since |-| is non-archimedean and hence {y € O¢ | |y| < |p|} is closed.
But if j € Ny is such that |{E§j| < |p|, then [E?j € pO¢, s0 xy = [L’?j =0 mod pOc¢. O

Remark 1.8. Since O% admits an absolute value, it is an integral domain; its fraction
field is denoted by C” and also called the tilt of C. This is not the functor T := -* applied
to C! There is however very little ambiguity in practice:

o If charC' = 0, then 7'(C) := R(C/pC) = R(0) = 0, so the functorial construction
is completely uninteresting.
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e If char C' = p, the Frobenius on O¢/pOc = O¢ is a surjective ring homomorphism
whose kernel consists of nilpotent elements, therefore is trivial as O is a domain.
Hence O¢ is perfect and so is C', which means that C' = R(C) = T(C) by 1.2 (iii).
Similarly, C* = Frac(R(O¢/pO¢)) = Frac O¢ = C, so the two constructions agree.

e The case char C' ¢ {0, p} is impossible since C' has a residue field of characteristic p.

Proposition 1.9 (O = Og). If C is a perfectoid field and C° = Frac O%, then ||,
extends to C° and the ring of integers of C” is OF,.

Proof. The extension of an absolute value to a fraction field is standard. If a € C°
and b € (C°)* with |a/b|, <1, then for all n € Ny, we have |a!/P"/bY/P"|, < 1, hence
(a*?")#/(b"/P")? € Oc. The latter form a compatible system of p"-th roots in O¢, so the
bijection in Proposition 1.2 (ii) gives an element 1’&1],((69/1"J )4/ (bYP)E 4+ pOc) € OF whose
product with b = I'Lrnj((blﬁj)ti +pO¢) is a. Hence a/b € O2,. On the other hand, for every

r = @j(xj +pOc) € O we have |z;] <1 for all j € Ny and thus |z], = limj\x§j| <1,
so z € Ocp. O

Lemma 1.10. If C is a perfectoid field, then |C°|, = |C|.

Proof. Tt suffices to prove |O%], = |O¢|. First let # € O¢ such that |p| < |z| < 1 and
use the surjectivity of the Frobenius on O¢/pOc¢ to inductively construct an element

Y= Tglj(yj +pO¢) € O with yy = x. Then yéﬂ =y =2 mod pOc¢, so that we have
lyf — x| = limj|y§ﬂ — x| <|p| < |z|. Hence |y|, = |(y* — x) + x| = |x| by the strict triangle
inequality.

Now let z € O¢ such that |z| < |p|. By the previous Hait and the density of |C,
there exists a y € 0% such that |y?|, < |p| < |yl,- Then |p| < |z|/|y*|, < 1, so there is a
z € O with |z|, = |z|/|y?|,- Hence |z| = |2y?],. O

Lemma 1.11. If C is a perfectoid field, then C° is complete.

Proof. We showed in Remark 1.8 that C" = C if char C' = p. Otherwise, it suffices to
prove that 0% is complete. Let (1,),en be a Cauchy sequence in O,. Then for each
k € N, there is an n € N such that |z, — .|, < [p|”" " for all i € N. By Proposition 1.7,

this means that the first £ components of x,,x,.1,... agree, so the sequence converges
componentwise. One easily checks that the resulting sequence is a limit with respect
to Hb ]

Theorem 1.12.
(i) If C is a perfectoid field, then so is C”.
(ii) If C is algebraically closed, then so is C”.

Proof. (i): This follows from Lemma 1.11, Lemma 1.10, and the fact that O is perfect.
(ii): The case char C' > 0 is trivial. For char C' = 0, see e.g. [6, 2.1.11] or [2, 4.3.5]. [

Proposition 1.13. If s € O, such that |s|, = |p|, then O /s0% = O¢ /pO¢.

4
Proof. The projection 0% — O¢ — O /pOc onto the zeroth component is a ring homo-
morphism and surjective by 1.5 (iii). Its kernel consists of all x € 02, such that 2* € pOc,
i.e. all ¥ € O with |z|, < |p| = |s|,, which are precisely the multiples of s. O

8
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Proposition 1.14. If C is a perfectoid field and & = Y ;o p'[&i] € kerbo,, then the
following are equivalent:

(i) ker o, = EW(O2).

(ii) [€ol> = [Pl
(iii) |&], = 1.
Proof. (i) = (ii): Since & € kerfp,, we have |&}| = |—Z;’i1pzﬁf| < |p|. Let s € O,

such that |s|, = [p|, using Proposition 1.10. Since fp,, is surjective, there is an element
w € W(OY) such that [s] — pw € kerfp, = EW(OL), so let z = > p'z] € W(OL)
such that [s] — pw = £z. Then |p| = |s|, = |S020ls < | 0ls < |pl, so [ o]y = |p]-

(i) = (iii): Since & € kerfo,, we have [p||¢}| = [—& — 3%, pi€l| = || = |p| by
the strict triangle inequality and |&;], < 1. Hence |&], = 1.

(iii) = (i): Let @ = 332 pilz;] € ker o, Since [p€f| = |p| > [p?| > |22, €|, we
have [€5] = |32, €| = |pl > 2272, p€}| and hence

o0
2o = Jab = ‘—zpz‘xa

=1

&+ vie| = I€h] = leobs,

1=2

< Ip| = |-p€i| =

which implies zy = &z for some z € OF by Proposition 1.9. Hence x — [z]¢ € pW(O%),
ie. kerfp, C EW(O%) + pW(O%).

This suffices because when x = & + bop € ker 0p,, for some ay, by € W(Obc), we must
have 0o (bop) = bo.(bo)p = 0, so by € kerfp,, since O¢ is a domain. Inductively, we
obtain elements a;, b; € W(O%) such that

n
x = ao€ + bop = aof + arép +bip® = ... = p"by + Zaigpi
i=0

for all n € N; then z = £ Y°° p'a; since W(O2,) is p-adically separated and complete. [J
Proposition 1.15. Let C' be a perfectoid field.

(i) For every s € O with |s|, = |p|, there is a w € W(OL)* such that ker o, is
generated by [s] + pw.

(ii) If C is algebraically closed, there is an s € O with |s|, = |p| such that ker Op,, is
generated by [s] — p.

Proof. (i): Since |0o.(—[s])| = 0o ([s])] = |s*| = |s], = |p|, we have 0([s]) € pOc. By
Proposition 1.3 (i), fo is surjective, so there is a w = > 0% p'lw;] € W(OL) with
fo. ([s] + pw) = 0. Proposition 1.14 then implies |wo, = 1, which means w € W(Op)*.
(ii): Since C is algebraically closed, we can inductively find compatible p"-th roots
s, € O¢ of p € O, which defines an s = @],(Sj +pO¢) € O with st = lim,, s2" = p.

Then o, ([s] —p) =p —p =0, so [s] — pis a generator of ker §p, by Proposition 1.14. [J



1.3 Period rings and p-adic representations

We quickly recall the basic ideas behind the theory of period rings and some of its
applications to p-adic representations. For a more detailed overview, see [3, §1]; for a
general treatment of the subject, see [2], in particular §5. The starting point is the
following type of field.

Definition 1.16. A p-adic field is a non-archimedean complete discretely valued field K
of characteristic 0 with perfect residue field k of characteristic p. We usually fix the

completion C' = Cx = K of a fixed algebraic closure K of K as well.

For the remainder of the chapter, we fix such a p-adic field K and C' = Cg. The
field C is algebraically closed by Krasner’s lemma. We also fix an algebraic closure k
of k. The absolute Galois group of K is denoted G := Gal(K); its action extends to C
by continuity.

The most obvious examples of p-adic fields are the finite extensions of QQ,,, which are
precisely those p-adic fields whose residue field is finite rather than perfect. However,
whenever K is a p-adic field, so is the completion of its maximal unramified extension
Kur C C, with residue field an algebraic closure of k, C= = Cf, and its absolute Galois

group Gal(l/(a ) is canor i lly isomorphic to the inertia group of Gal(K). Hence this

more general definition lets us pass to the inertia group within the same formalism.

We want to study the unwieldy category Reprfp“t(G) of continuous Q,-representations

of G by singling out suitable full subcategories that contain interesting representations,
such as those that arise naturally in geometry. In analogy to how one relates Repgp“t(G)
to a category of étale (®,T")-modules by producing many invariants (see e.g. [12, Theo-
rem 4.4.2]), we use the following formalism due to Fontaine [10, §1].

Definition 1.17. Let B be a ring containing Q,, with a G-action by ring automorphisms.
B is called (Q,, G)-regular if the following properties hold:

(i) B is a domain.
(ii) BY = (Frac B)“. In particular, BY is a field.
(iii) Every b € B\ 0 with G.b C Q,b is a unit.
Definition 1.18. If B is (Q,, G)-regular, we define the functor
Dp(V) = (B ©q, V), Dp(f:V = W) =idp®q,f
cont

from Repg), (G) to the category of B%vector spaces Vecgo.

Definition 1.19. If B is (Q,, G)-regular, a B-semilinear representation is a B-module W
with a G-action such that g.(w + w') = g.w + g.w' and g.(b- w) = ¢g.b- g.w for all b € B,
w,w € W.

Definition 1.20. Let B be (Q,, G)-regular. A continuous Q,-representation V' is called
B-admussible if the following equivalent properties hold:

(i) dimge Dp(V) = dimg, V.

(ii) B®g, V = Bime, V' a5 B-semilinear representations, with the componentwise ac-
tion on the right.

(iii) The canonical comparison homomorphism ay : B ®@pe Dp(V) = B ®q, V of B-
semilinear representations is an isomorphism.

10
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Note that dimpe Dp(V') < dimg, V' is always true and OBgg,V is always at least in-
jective. Property 1.17 (iii) is crucial to establish the equivalence of the three properties
above and ensures that admissibility is well-behaved, see e.g. [3, 1.4.4] and [2, 5.2.1].
Notably, the full subcategory Repgp(G) of B-admissible representations is stable under
subobjects, quotients, tensor products and duals. Often, the functor Dg takes values in
a more refined category than Vecge.

Theorem 1.21. If B is (Q,, G)-regular, then the functor Dp : RepSp(G) — Vecga is
exact, faithful, and commutes with tensor products and duals.

Proof. See [2, 5.2.1]. O

Fields are trivially (Q,, G)-regular, but they usually don’t make for good period rings.
For instance, the K-admissible representations are exactly the discrete representations
(see [12, 3.51]), i.e. those representations that factor through some Gal(L/K) for a finite
Galois extension L/K, which is clearly too restrictive. The C-admissible representations
are exactly the potentially unramified representations (see [12, -.55]), i.e. those repre-
sentations that become unramified after restriction to some Gal(L/K) for a finite Galois
extension L/K. While an improvement, this still excludes the non-trivial powers of the
cyclotomic character x, which arise rather naturally and ought to be admissible.

Definition 1.22. If : G — C* is a character, we write C'(n) for the field C' with the
twisted G-action g x ¢ :=n(g) - (g.¢).

Theorem 1.23 (Ax-Tate-Sen). If n : G — O is a continuous character such that
n(G) is either finite or contains Z) as an open subgroup, then the continuous cohomology
satisfies

0 ifn(l) is infinite,
1 ifn(l) is finite,

cont

dimsc H0, (G, Cn)) = dimc i (G, C 1)) = {

where I < G is the inertia subgroup of G. In particular, C¢ = K.
Proof. The proof of this theorem is rather involved; it is the subject of [2, §14]. n

Note that the conditions of Theorem 1.23 are satisfied for all continuous n: G — Z;'.

Definition 1.24. The ring of Hodge-Tate periods is the ring Byr := @,,., C(x") with
componentwise addition and G-action and the multiplication induced from the C-module
structure and C(x™) ®¢ C(x") = C(x™*"). A Bur-admissible representation is called a
Hodge-Tate representation.

The ring Byt is (Q,, G)-regular with By = K (see e.g. [2, 5.1.2]) and already an im-
provement since dimg Dyr(x™) = dimg (X" ®g, Bur)® = dimg (P, C(x)) =241 The
corresponding functor Dyt takes values in the category of graded vector spaces and we
call those i € Z with dimg gr® Dur(V) > 0 the Hodge-Tate weights of V. Taking the
dimension itself as the multiplicity of ¢, the Hodge-Tate representations are then those
representations V' whose weights with multiplicity add up to dimg, V. For example, the
one-dimensional representation x" : G — Q' has the unique Hodge-Tate weight —n.

Although the ring Byt ends up being a useful tool to study other period rings by
reducing their properties to properties of Byr, its own notion of admissibility is unsat-
isfactory. Not only is the category of Hodge-Tate representations still extremely large,

11
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it also turns out that Dyt is not full as a functor to the category of graded vector
spaces. Furthermore, if L/K is a finite Galois extension, then a V' € Repg™(G) will be
Hodge-Tate if and only if its restriction to Gal(L) is. Since this is true even when L/K
is ramified, the Hodge-Tate property is very imprecise. A more detailed treatment of
Hodge-Tate representations that proves all these results can be found in [2, §2].

A refinement of Byt that will be very useful to us is the field of de Rham periods Bar
(giving rise to de Rham representations), which we will explicitly construct in a slightly
more general setting in 3.30. The ring Bgg is the fraction field of a discretely valued
and topological ring BJ, although it is very important that the topology does not come
from the valuation. This equips Bqr with a natural G-stable filtration, so that the
corresponding functor Dgr takes values in the category of filtered K-vector spaces Filg
via

Fil* Dgr (V) := (Fil" Bar ®q, V') N Dar(V).

Note that we always assume filtered vector spaces to be equipped with a separated and
exhaustive filtration. For more detail on filtered vector spaces, we refer to [2, §6.2]; we
will also recall some basic definitions in Remark 4.11.

We will rely on the following results in §4 without giving a proof ourselves; see e.g. [2,
§4.4, §6]. Note that there is no circularity and no logical gap since our construction of Byr
does not require these statements and §4 is in the same concrete setting as this chapter
and the cited literature.

Proposition 1.25. There is a unique G-equivariant embedding K — Bix under which K
obtains its usual valuation topology as the subspace topology.

Proposition 1.26. Byr is (Q,, G)-reqular with B% = K.

Proposition 1.27. We have gr Bar = Bur and gr Dar(V) = Dyr(V) for any de Rham
representation V. In particular, de Rham representations are Hodge-Tate.

Proposition 1.28. Dyp : Rep%;:(G) — Filg is an ezact functor that commutes with ten-
sor products and duals.

Proposition 1.29. For every V € Rep&:(G), the de Rham comparison isomorphism
avar : Bar @k Dar(V) = Bar ®q, V is an isomorphism in Filyk, where Byr ®q, V' car-
ries the filtration Fil" Byr ®q, V.

Proposition 1.30. For any V € Repy"(G) and any field extension L/K such that
L C C is discretely valued, the map L @ D5 (V) — DIR(V) is an isomorphism in Fily.
In particular, V is de Rham as a representation of G if and only if it is de Rham as a
representation of Gal(L) C G.
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2 The construction of A

For each perfectoid field C' of mixed characteristic, there is a ring A5, satisfying a certain
universal property (2.35), that gives rise to the ring of crystalline periods via localization
(3.46). In the literature (e.g. [12, 6.1] and [2, §9.1]), one also commonly finds Ag;s defined
as the p-adic completion of the ring that arises by adjoining all & € W(O%) [%] to W(O2),
where £ is a generator of ker 6o, ; that this really results in Ag.s is however only clear
with the non-trivial result that A.;s is p-torsion-free. ‘

While every a € Aes admits a representation >~ ai% with a; € W(0O%) such that
lim; a; = 0, such representations are unfortunately not unique. This makes it cumbersome
to prove various properties of A..;s, and as a result such proofs tend to be sketched or
omitted. For example, the Frobenius endomorphism of A is injective (2.20), but no
proof of this fact seems to exist in the literature (cf. [2, 9.1.8]).

In §2.1, we construct A5 as an explicit quotient, prove its basic algebraic properties,
and construct its Frobenius endomorphism, which we prove to be injective. In §2.3 we
prove that our construction is equivalent to the more customary definitions found in
[12, 6.1] and [9, §2.2]. The latter requires some notions from the theory of divided power
structures which we quickly review in §2.2. Note that only §2.1 is logically required for
the later chapters.

2.1 The ring A.is(S/sS) and its properties

Throughout this section, we fix a perfect domain and F,-algebra S and a non-zero s € S.
The case to keep in mind is the ring of integers OZ, of the tilt of a perfectoid field C
of mixed characteristic and an element s € O} with |s|, = |p|, but our constructions
work in this slightly more general setting, sometimes under the additional assumption
that ),~, s"S = 0.

Remark 2.1. Recall that if R is a Z-torsion-free ring and x € nR for some n € N, then
there exists a unique element whose product with n is x. We suggestively denote this
element by £ and note that the expected identities

rT Yy xy x xm T y _rm—+yn

n m nm’ n  nm’ n m nm
hold for all n,m € N, z € nR and y € mR. If m,n € N and z € R such that ™ € m!R
and z" € n!R, then

m B mtn B (m+ n)!xm—&-n B Mxm-i-n (m-‘rn)mm-i-n

i — — _mn! — n
m! n! mlnl  mlnl(m+n)! (m +n)! (m+n)!’
so if 2" € nlR for all n € N, we have £ . L% = (™" 2™ for all m,n € Ny.
n!  ml n J (m+n)!

Definition 2.2.
(i) The divided power polynomial algebra over W(S) is the W(S)-subalgebra

WS)(X) == (e aifr [ n € No,a; € W(S)} < WS)[F]IX].
(ii) The divided power series algebra over W(S) is the W(.S)-subalgebra
W(S)(X) = {20 [a; € W(S), lim; a; = 0} < W(S)[2][X].

1
p

We will usually write X instead of % to preserve vertical space. Note that X* = 1 X1,
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Remark 2.3. From Remark 2.1 we obtain the formula XM X[ = (m;")X [0l which

shows that W(.S)(X) really is a subalgebra. For W(S){X), first note that in W(.S) [%} 1X7,
(o) (S08) =5 oo 55 (55 ()
=0 =0 i=0 j=0 i—0 \j=0

Now assume that lim; a;, = lim; b; = 0. Then for each k£ € N there are m,n € N such that
ai,b; € pPW(S) for all i > m and j > n. If i > m + n, we have (;.)ajbi_j € p*W(S) for
all 0 < j <14 as either a; € p"W(S) (when j > m) or b;,_; € p*W(S) (when j < m and
hence i — j > n). Therefore lim; 3 ()ajbi—; = 0, which proves that W(S) (X)) is also

J=0\j
a W(S)-subalgebra.
Remark 2.4. There is a unique homomorphism of W(.S)-algebras

W(9)[ Xy, X, ...
T2 s )
(XX = (7)) Xiws)
that maps the class of X; to X[, This is in fact an isomorphism: The map that sends
YorgaiX [ to the class of > i@ X; is easily seen to be an inverse. We thus obtain a
convenient characterization of ring homomorphisms out of W(S)(X).

Proposition 2.5. W(S){(X)) is the p-adic completion of W(S)(X).

Proof. Let f: WW)Q — W(S){(X)) be the map

kn 00
f (1& (Z ol X + p"W(S) <X>)> =3 (lim o) X1,
TLEN n—oo

i=0 =0
where we set al™ =0 when i > k,. f is well-defined since equivalent choices of (a!™),
differ only by a null sequence. Furthermore, one easily sees that f is a ring homomorphism
through unwinding definitions and standard properties of limits.

If Y a; X1 € W(S)(X)), then for each n € N there is a k, € N with a; € p"W(S)
for all i > k,,. Hence f(@n(zfgo a; X + prW(S)(X))) = Y%, a; X! which shows that
f is surjective.

On the other hand, if l'gln(Zfio agn)X[i] + p"W(S)(X)) € ker f, then lim,, agn) = 0 for
all n € Ny. Hence for all i € Ny and n € N, there is a k;,, > n such that alm) e p"W(S);

but then a!” = af;k"’”) =0 mod p"W(S) for all i € Ny and n € N, so f is injective. [

Definition 2.6. Let [s] be the Teichmiiller lift of s. Then we define the W(S)-algebras
Ais(S/58) = W(S)HX) /(XM ~ [s]),  Acis(S/58) 1= W(S){X) /(X ~[s]),
Biio(9/5S) 1= Aeis(5/59)[3].

Remark 2.7. The notation S/sS should be understood formally for our purposes, but
isn’t arbitrary. In [9, §2.2], Fontaine constructs a functor that assigns to each p-adically
separated and complete ring B that is semiperfect (has a surjective Frobenius on B/pB)
a certain ring Agis(B). The ring S/sS is indeed semiperfect because S is perfect; it is
p-adically separated and complete since pS = 0. Note that these are also the preconditions
of Proposition 1.3 (ii) because the map 6z plays an important role in this construction.
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When constructing the ring A for a perfectoid field C' of mixed characteristic, one
uses AcriS(O(;). Since Auis(Oc) = Awis(Oc/pOc) by [9, 2.2.3 b] and O¢ /pO¢ = 02, /O,
for any s € O with |s|, = |p| by Proposition 1.13, we are indeed looking for the ring

CHS(OC / sOP ¢) as our notation suggests. We prove in Theorem 2. 2.35 that the functorial
definition agrees with ours in this situation, but will not otherwise concern ourselves with
the functorial point of view.

The notation A%, (S/sS) does not appear anywhere in [9] and is merely an analogy
to Aeis- It cannot be functorial in S/sS since S/sS = 0 whenever s € S*.

Remark 2.8. The choice of generator of sS is irrelevant. If s’ = su with u € S*, the
W (S)-algebra automorphism Yy, : W(S){X) = W(S)(X) with x,(X") = [u]" X" and
inverse Y, 1 maps (X! —[s']) to [u](X™ — [s]). We therefore have

e a canonical isomorphism A2, (S/sS) = S/s'S), induced directly from x,;

CI‘lS( CI'lS(

e a canonical isomorphism A.;is(S/sS) = Aeis(S/s'S), induced from the extension
of x, to an automorphism of W(.S){(X)) by continuity;

e and a canonical isomorphism B}, (S5/sS) =

Cris

S/s'S), obtained by localization.

CI'IS(

It may seem strange that we quotient out X — [s] since in the perfectoid field case,
[s] € W(O%) can never generate ker fo,., but Proposition 2.11 shows that working with [s]
makes no difference.

Lemma 2.9. Ifn € N has the p-adic expansion n = Zé:o a;p' with0 < a; < p anda; # 0,

then
NPt
vp(n!) —Zaip_ T

Proof. By Legendre’s formula (which is proven by a simple counting argument), we have

S(n!) ;Z{ J:iiaip”—zzazp”—z@zzlﬂ Z p_1

7=1 7j=1 1=j3 =1 j5=1

Lemma 2.10. For each n € N, we have 1;—7; € pZy- In particular, if R is a Zy)-algebra,
then % € pR for every n € N.

Proof. Let Zézo a;p* with 0 < a; < p and a; # 0 be the p-adic expansion of n. Then

Z a;p' =n = v,(p"). O
Proposition 2.11. For allw € W(S), there is a unique automorphism of W(S)-algebras
Tw : W(S)(X) = W(S)X) with 1,(XM) = (an#w)n. It induces isomorphisms
WESX) o WEX)
(XM =[s]) (X = ([s] = pw))’

)

WS)(X) o WIS)(X)
~ X0 = (5] - pw))

S/sS) =

CI‘lS (

Acris(S/SS)

(X0 —Ts])
of W(S)-algebras that identify the classes of X,
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Proof. Uniqueness is clear. (X[l]n#w)n is really an element of W(.S)(X) because

W4 pw)r & Wi (po)n—i e i

By Remarks 2.4 and 2.1, the images 7,,(X™) indeed induce an endomorphism 7,, which is
an automorphism because its inverse is 7_,,. Since 7,,(X — [s]) = (X — ([s] — pw)), we
obtain the isomorphism for A%, (S5/sS). By continuity, 7, extends to an automorphism

of W(S){(X)) which yields the isomorphism for A.(S/sS). O

Lemma 2.12. If £ € W(S) such that £ = [s] mod pW(S), then &w € nW(S) implies
w € nW(S) for alln € N and w € W(S).

Proof. All prime numbers except p are units in W(.S), so it suffices to consider n = p*.

If £ =1, this follows immediately from the facts that p € W(S) is a prime element and
¢ ZpW(S). For k > 1, use the case k = 1 to write w = pw’ for some w’ € W(S). Then
w = Epuw' € p"W(S), so &w' € p"'W(S). The lemma then follows by induction. ]

Proposition 2.13. For each k € N and R € {W(S)(X), W(S){(X)}, we have
(XM = [shRN PR = pH(XM — [s])R.

S/sS) and Acis(S/sS) are Z-torsion-free.

In particular, A% (

Proof. The inclusion D is trivial. Identify W(S)(X) C W(S){(X)) and let Y, a; X[,
>, d: X € R such that

f:pk@z‘Xm = ( Zd X1 = Z idi—1 — di[s])X[i]a
i=0

=0

where we set d_; = 0. Whenever d;_; € p*W(S) for some i > 0, the comparison of coeffi-
cients p*a; = id;_1 — d;[s] € p*W(S) shows —d;[s] € p*W(S), which implies d; € p"W(S)
by Lemma 2.12. It thus follows inductively that all d; € p*W(.S), proving the statement.

The note on Z-torsion follows from the fact that all prime numbers other than p are
already units in W(S) and hence in A%, (S/sS) and Aqis(S/sS). O

cris

Remark 2.14. In both Auis(S/sS) and A%, (S/sS9), [s]" is the image of n! X[ € W(S)(X)

cris
under the projection and hence divisible by n!. In the notation of Remark 2.1, we have

[S] € A%. (5/sS) and [s]n € Auis(S/sS) for all n € Ny. Similarly, both rings contain &
for all £ € W(9) Wlthf [s] mod pW(S).
Proposition 2.15. A.(S5/sS) is the p-adic completion of A%, (S/sS).
Proof. We have an exact sequence of Z-modules
(X1 [g) 0
0—= WIENX) —  W(S)X) — A, (S/sS) — 0. (%)

Since AY;(S/sS) is Z-flat by 2.13 and W@X} = W(S){(X) by 2.5, the sequence

cris

(XU —s)
(%

0 = W(S){(X) W(S)(X) — A% (S/58) — (%)

cris
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obtained by completion is also exact (cf. part (iii) of [16, 0315]). We obtain an iso-

—

morphism AY. (5/sS) = Auis(S/sS) of Z-modules. But since all Z-modules and homo-

cris

morphisms in (%) are rings and ring homomorphisms, so are all Z-modules and homo-

—

morphisms in (xx). Consequently A%, (S/sS) = Auis(S/sS) is also a ring isomorphism.
[l

We can now characterize equality in Agis(S5/s5) and A%, (S/sS). Note that the

cris

argument in the proof of Proposition 2.13 is an instance of this.

Proposition 2.16. Let { € W(S) such that { = [s] mod pW(S). Every a € Auis(S/sS)
can be written (in many ways) as a p-adically convergent series a =y .-, aii—;, where
a; € W(S) for alli € Ny and lim; a; = 0 € W(S). Furthermore, a = 0 if and only if there

exist d; € W(S) for all i € Ny such that

lim dz =0¢€ W(S), apg = —dog, a; = Z'dl',l — dlf for all i € N.

1—00

Proof. a is the image of some Y >° ;X! € W(S){(X)) under the canonical projection
T W(S) (X)) = Auis(S/sS) from 2.11, which is p-adically continuous and thus satisfies

a=T (ZO aiX[i]> = ;aﬂr(Xm) = ;ai%.

Clearly a = 0 if and only if > a; X[ € ker, which is to say that there is some
d=3"",d; X" € W(S){X) such that

Z a; X1 = (X - g)d = Z(idz‘—1 — di§) X —dpé.
i=0 i=1
The statement follows by comparing coefficients. O]

Proposition 2.17. Let £ € W(S) such that £ = [s] mod pW(S). Every a € A2 (S/sS)

can be written (in many ways) as’y ., ai%, wheren € N and a; € W(S) for all0 < i < n.
We have a = 0 if and only if there exist d; € W(S) for all i € Ny such that d; = 0 for all
but finitely many i € Ng and

ag = —dof, a; = id;_1 — dlf forall0 < < n, id;_1 = dzg for all i > n.

Proof. This is proven completely analogously to Proposition 2.16. O

Proposition 2.18. Consider the canonical maps W(S) <% A% (S/sS) 5 Auis(S/s9).

(i) ¢o is injective.
(i) ¢y is injective if and only if L := 11 o 1y is injective.
(i) ¢ ds injective if and only if (1,5, s"S = 0.

Proof. (i): Let w = Y ;2 p'[w;] € W(S) such that to(w) = 0, i.e. that there are d; € W(S)
such that w = —dy[s], id;—1 = d;[s] for alli > 0, and d; = 0 for all but finitely many ¢ € Np.
Since A%, (S/sS) is Z-torsion-free, id;_; = d;[s] shows that d; _; = 0 whenever d; = 0 for

some i > 0; but that inductively means dy = 0, hence w = —dy[s] = 0.
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(ii): If ¢1 is injective, then so is « = 11 049 by part (i). On the other hand, assume
that ¢ is injective and let a =) ja; [Z.] € kerv;. Then nla € W(S) C A%, (S/sS) and
t(nla) =0, so nla = 0. But A%, (5/s9) is Z-torsion-free, so a = 0.
(iii): We identify W(S) € W(Frac S). Since the Teichmiiller lift for W(S) is the only
multiplicative section of W(S) — S, the lift for W(FracS) restricts to the lift for W(5)
and we can unambiguously denote both by [].

Let w = Y2, p'[w;] € kert. Then by Proposition 2.16 there are d; € W(S) such that

lim d; = 0 € W(S), w = —dyls], id;—1 = d;[s] for all i € N.

1—00
It inductively follows that —w[s™'|" ™! = d; € W(S) for all i € Ny. In particular, we have
w[s™"] € W(S)[%] for all n € N, so that for each n € N there exists a k,, € Ny such that

ZPHkn w;s " € W(S) N W(FracS).

Due to the uniqueness of the Teichmiiller expansion in W(Frac S) and its compatibility
with W(S), we see that w;s™ € S, i.e. w; € s, for all i,n € Ny.

If ,>; s™S =0, this means w; = 0 for all ¢ € Ny, i.e. w =0. On the other hand,
if 2. €(N),5;5"5\0, then all zs7™ € S and the elements d; := —[zs~(TD]il € W(S) for
i € Ny show that [z] € ker: by Proposition 2.16. O

Remark 2.19 (Hom-set characterization). Let & € W(SS) such that £ = [s] mod pW(S).

(i) By Remark 2.4 and Proposition 2.11, ring homomorphisms A2;,(S/sS) — R corre-
spond to pairs (f, (7;)ien), where e f:W(S ) — R is a ring homomorphism and the
r; € R form a sequence with r; = f (f) and r;r; = (’+ )nﬂ for all 7,5 € N. Of course
(S/sS).

the r; correspond to the images of 5 c A,

cris

(ii) If (5, 8"S =0, then the ring homomorphisms Aeis(S/sS) — B with p-adically
separated and complete B correspond to ring homomorphisms A%, (S/sS) — B by
Proposition 2.18 and hence pairs (f, (bi)ien) as in (i). If (5, s"S # 0, one can still
induce every ring homomorphism Ag;(S/sS) — B this way, but distinct pairs need
not induce distinct homomorphisms.

(iii) If B is p-adically separated and complete as well as Z-torsion-free, then any ring
homomorphism f : W(S) — B admits at most one extension f’: Agis(S/sS) — B
since n!f'(51) = f/(nl&) = f/(€") = f(€)" uniquely determines all f'(£;). Such an
extension exists if and only if f(£)" € n!B for all n € N since the compatibility
condition of (i) is automatically satisfied due to Remark 2.1.

Theorem 2.20.

(i) There is a unique ring homomorphism Qs : Aqis(S/8S) — Awis(S/sS) satisfying
Oeris(A2..(S/88)) C A%. (S/sS) that extends the Frobenius ¢ : W(S) = W(S).

(i) Yeris © Aeris(S/85) = Aeis(S/89) is injective.
S/sS). We

(iii) The localization of peuis at p is an injective endomorphism of BL. (

likewise denote it by QYeris-
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Proof. (i): By Remark 2.19, it suffices to show ¢([s])" € n!A%. (5/sS). Indeed we have

o(ls])" = [ = (np) L2

(np)!

(ii): Let a = > "2, ;i LS Auis(S/sS) such that

il
Spcrls Z 90 CL]

By 2.16, this means that there are Witt vectors g; € W(.S) such that for all i € N,

e (n ) CI‘lS(S/SS> C n: A(C)I'IS<S/SS)'

0 if 1 & pZ
o(aisp) o i€l

1—00

lim g; =0 € W(S), ¢(a0) = —gols], igi-1— gils] = {

If we set g_1 := 0, we have, for all j € Ny and 0 < r < p,

: : (jp)!
Gip+rls] = (P + 1) gip+ -1y, 9iwls] = (P)gjp—1 — 790(%)- (%)
This gives us the following implications for all j € Ny and 0 < r < p:

jp+r—1)! (*) j 7" T
Gip+r—1) € LEEEW(S) = g;,0[s) € LEEW(S) 22 gy, € LEDW(S),

j —1)! (), j !
Giprp-1) € PHETEW(S) = gy ls] € GREW(S) 22 gy € FREW(S).

Since trivially gg € (Op) W(S), we inductively get g;p+p—1) € (”H(J—,))W(S) for all j € Ny,
which lets us deﬁne

_ j!gjp'i‘(P—l)
(jp+ (p—1)!

e W(S), d; == o~ (c;) € W(S).

Then . | . |
cjls]? = 3ip+-015" ) Jipre-[5]" 0 ) Jlgspls]
] - g

Gp+ -1 Gp+@-=2)" (Up)
for all j € Ny; hence —dy[s] = o~ (—co[s]?) = ¢~ (—go[s]) = ap and

jdi—y — dyfs] = ¢ (jej1 — ¢ls]?)

. (j(j —Dlgip1 Jlgip [S])

(jp —1)! (Jp)!
_ (j!(jp Jjp—1 — gjp[81)>
(Jp)!
8 jlo(a )(JP) o
= @~ <—(jp)! ) = a; ()

for all 7 € N. Tt now only remains to show lim; d; = 0, since the sequence (d;);en, then
satisfies the conditions of 2.16 and shows that a = 0.

We have shown in (xx) that dp,;[s] = (m + j)dmtj—1 — amy; for all j,m € N, so we
inductively get d,,;[s] € (%dm,amﬂ, e Q) < W(S) for all j,m € N. Now let
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k € N be arbitrary and choose n € N large enough so that agn_1)4; € pFW(S) for all
j € N and vp(n—l)) =v,(p") =n > k. Then

. n__ )1
d(p”fl)+j [S]] < ((p(pnii_)%) dp"—b Apny . - aap”-i-j—l) - pkw(s)

for all j € N, i.e. dyn_1)1; € p"W(S) for all j € N by Lemma 2.12, showing lim; d; = 0.
(iii): Since @eris(p) = p € B (S/sS)*, this is a consequence of Proposition 2.13. [

We close with a negative result that illustrates one of the reasons the ring Aes(S/sS)
is not very pleasant to deal with. This is essentially Exercise 9.4.1 in [2].

Lemma 2.21. There is an isomorphism of W(S)-algebras

W(S)[Yo, Y1, . . ]

(Y} = ¢;Yj455 € No)’

W(S)(X) =

where ¢; = P (p!) P € pZy).

Proof. Let I := (Yjp —¢;Yj41;7 € Np). First note that we really have ¢; € pZ,) because

i+1 1 i+1
Y P

p—1 p—1
Define a W(S)-algebra homomorphism f’: W(S)[Yp, Y3,...] = W(S)(X) via the images
f'(Y;) :== XP] which satisfies f’ (Y/ —¢;Yj11) = 0 and thus induces a homomorphism

f: W( Yo, Y1, ... /T = W(S)(X) ‘that we claim to be bijective. Let n € N have the
p-adic expansion n = 22:0 a;p'; set ny = Zf:o a;p' for 0 < k <1l and n_; := 0. Then

v (Pt = = pup(p'!) = vp((')P).

l

l ) —1 N\ g z')az N -1
X = T xlaw'] [ 7 — (XW) @Z '
g Ng—1 H (a;p")! \ni—1

1=0

This proves that f is surjective because v, <ﬂ( i )_1> 1

(aip*)! \n;—1

0

i—1

ai-pi_l (Z 'p]—l Zagpj_l pi_l)zo.

p—1 P p—1

Let =7 sar [, Y:"" € ker f'. After adding appropriate elements of I, we may
assume ey ; < p for all k,i. Set ey := Z;io ekipi € Ny. After combining summands, we
may assume that all e; are distinct. But then

0=f(z)=f (i ay ﬁYzEk> = iakaX[ek]
k=0 =0 k=0

for non-zero 2, € Zg,) C W(S) and pairwise distinct Xlerl 5o all @, = 0, i.e. z = 0. Since
we added elements of I in the reduction step, we have shown x € I, so f is injective. [

Proposition 2.22. Let ()., s"S = 0. Neither Auis(S/sS) nor A% (S/sS) is noetherian.

cris
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Proof. Since [s]P € pA2;.(S/sS), Lemma 2.21 shows that
W(S)[Yo, Y1, - - ]
(p, Yo — [s], Y] — ¢;Yju1;5 € No)
W(S)[Yo, Y1, - - ]
(p7YE) - [S]vy;‘p;j € NU)
W)Y, .
(p,[sP,Y];j € N)
(S/sPS)[1, . . ]
(YFjeN) -

Ao (5/55) [pALi(S/sS) =

cris

~

We must have s € S* because ),~, S = 0. Therefore S/sPS # 0, so the ring above is

not noetherian. But if either A.(S/s9) or A%, (S/sS) was noetherian, so would be all

cris
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their quotients, in particular A.s(S/sS)/pAais(S/sS) = A2 (S/sS)/pA%..(S/sS). O

cris

2.2 Notes on divided power structures

The theory of divided power structures is usually intended to work around Z-torsion. In
the Z-torsion-free case it is almost trivial; we effectively used it throughout §2.1 already.
We will however have to consider general rings for Definition 2.32 and Theorem 2.35,

necessitating this short excursion into the general theory. A classic reference is [1, §3];
09PD and 07H7 of [16] might also be of interest.

Definition 2.23. Let R be a ring and I < R an ideal. A divided power structure on I
(in R) is a family v = (7;)ien of maps ~; : [ — [ satisfying the following properties. We
write yo(x) := 1.

(i) Forall z € I, y(x) = =.
(ii) For allz € I, r € R and i € Ny, v;(rz) = riv;(x).
(iii) For all z,y € I and i € Ny, v;(z +y) = Z;:O ¥ ()7 (y).
(iv) For all z € I and 4, j € Ny, v;(x)v,(z) = (ZZT—]],)'%JFJ(QC) = (itj)fyi+j(x).
(v) Forall x € I and i,j € Ny, 7i(y;(2)) = Cijvij(x), where Cy ; = (if)!/(i!(5!)') € Z.
We also call (R, I,v) a divided power algebra or (I,7) a divided power ideal.
If (R,1,7) and (S, J,0) are divided power algebras, a ring homomorphism f: R — S

is a divided power homomorphism if f(I) C J and 6;(f(z)) = f(yi(z)) for all i € N
and x € [.

Note that C;; € Z since it is the number of ways to partition a set of ¢j elements
into ¢ sets of j elements. In older texts like [1], one also finds the terms PD-structure
and PD-morphism, based on the French puissances divisées. The composition of two
divided power homomorphisms is clearly itself a divided power homomorphism, so divided
power algebras with divided power homomorphisms form a category.

Example 2.24. It follows inductively from properties (i) and (iv) that nly,(x) = 2™ for
alln € Nand x € I, so if R is a Q-algebra, every ideal admits exactly one divided power
structure, given by y,(z) = £7, from whose properties (i)-(v) are derived in the first place.
In this case, the theory is completely trivial.
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Proposition 2.25. Let R be a Z-torsion-free ring. If v and d are divided power structures
on ideals I < R and J < R respectively, then ~,(x) = §,(x) for alln € N and x € I N J.
In particular, there i1s at most one divided power structure on any given ideal.

Proof. Note that nly,(x) = 2™ = nlé,(x) for x € I N J and cancel n!. O

Therefore we are only concerned with existence in the Z-torsion-free case. The next
proposition saves us from a laborious verification of all five properties.

Proposition 2.26. If R is a Z-torsion-free ring and I < R is an ideal, then the following
are equivalent:

(i) I admits a divided power structure.
(ii) For allx € I and all n € N, we have 2™ € n!l.
(iii) There is a generating set S of I such that ™ € n!l for all x € S and n € N.

Proof. The implications (i) = (ii) = (iii) are trivial and don’t even require that R
is Z-torsion-free. For (ili) = (ii), it suffices to show that (z + y)” € n!R for all n € N
whenever 2", y" € n!R for all n € N. Indeed,

n—i n 7 n—i

(x+y)" = i (ZL) zy = i (?) Z‘j % - Zn!%(ri’_ i € -

i=0 i=0 =0

(i) = (i) follows by taking v,(z) to be £-. To verify that this is a divided power
structure, multiply the equations in 2.23 (i)-(v) by 1!, 4!, (i!)?,i!4! or 45! respectively and
note that doing so produces an equivalence because R is Z-torsion-free. O

Fzample 2.27. The ideal pZ, < 7Z, admits a unique divided power structure because
p" € nlpZ, C n!Z, by Lemma 2.10.

Proposition 2.28. If (A,aA,~) with a € A is a divided power algebra and f: A — B
is a ring homomorphism, then 0,(f(a)b) :=b"f(vn(a)) for b € B is the unique divided
power structure on f(a)B < B that makes f a divided power homomorphism.

Proof. Uniqueness is clear by 2.23 (ii). ¢, is well-defined because whenever b,/ € B
satisfy f(a)b = f(a)b/, we have

FOn(@NB = FOul@)(#) = Fu(@) " — () = ()b — ) 3 @)=~ =0

since f(y,(a)) € f(aA) C f(a)B is amultiple of f(a). We verify the five properties of 2.23
directly. (i) and (ii) are obvious. For (iii), let b,0’ € B and n € N and note that

Zéi(bf(a) (U f( Zb@ )" f(vila)yn—i(a))

=0

= Z ( )b@ (1) f(n(a))

= (b + )" f((a))
= 0n((b+ ) f(a))
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since (iv) already holds for . Similarly for any b € B and i, j € Ny,

0i(bf(a))d;(bf(a)) = b7 f(vi(a)y;(a)

= bi+jf ((Z —i._j>72+] )

_ ( : J)bmwf(a))
_ ( jf) 5145 (bf ().

For each n € N, let a,, € A such that v,(a) = aya, i.e. 0,(f(a)) = f(y.(a)) = f(an)f(a).
Then d}a;a = C;ja;;a for all 4, j € Ny by 2.23 (v), so

:(0;(£(@)8)) 2 195,(5;(f(a))) = b76:(f(a;) F @) = b7 f(a})6:( f(a)
= b f(a;) f(a:) f(a) = b7Ci;f (aij) f(a) = Ci;03;(f(a)b). O

Corollary 2.29. FEvery p-adically separated and complete ring B admits a unique divided
power structure v on pB such that each v,(p) € pB is the image of Z—? € pZ, inside B.

Proposition 2.30. If (A, 1,7) and (B, J,0) are two divided power algebras, f: A — B
s a ring homomorphism, and S is a generating set of I, then f is a divided power
homomorphism if and only if f(I) C J and f(vy.(s)) = 6.(f(s)) for allm € N and s € S.

Proof. The condition is trivially necessary. Let x1,zo € I such that f(v,(z;)) = 9,(f(z;))
for all n € N and i € {1,2}. It then suffices to show that for all a;,a; € A and n € N, we
also have f(yn(ai1z1 + asx2)) = 6p(f(a171 + agxs)):

fm(army + azzs)) = Z f(ilarz1)) f(yn—i(azza))

= Z @) f(vilx) fad™) f(yn—i(22))

— Z 0i(f(a121))0n—i(f(agzs))

= (5n(f(a1:151 + ClQ[BQ)). Il

2.3 Alternative constructions of A

We investigate how our construction of A compares to two more common alternatives.
Throughout this section, we fix a perfectoid field of mixed characteristic (C, |-|) and apply
the constructions of §2.1 to S := Oy, and some fixed s € S such that |s|, = |p|. Since O,
is the ring of integers of the valued field C°, all such s are associated and the rings
AL =AY (O )50%), Auis = Acis(O%/ s(’)bc) and Bt = Bl (0% /s0%) are uniquely
determined up to canonical isomorphism. Note also that our occasional extra assumption
N,>; s"O% = 0 holds. We additionally fix a ¢ € W(O%) with € = [s] mod pW(O%,) which

generates ker 0o ; this is guaranteed to exist by Proposition 1.15.
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The first alternative construction we consider is the one given in [12, Definition 6.1],
where Ags is defined as the p-adic completion of W(O"C)[% | n e NJ.

Theorem 2.31. There is a unique isomorphism of W(O%)-algebras
A A {Z 0 € WO n € No, 0, € WIOL)} < W(OR)[1].

Proof. A is Z-torsion-free, so it suffices to show that the W(O%)-algebra homomorphism
m: W(OL)(X) - A with 7(XM) = & satisfies kerm C (XY —¢) (surjectivity and the
other inclusion are trivial). Let a = ZZ a; X" € ker 7. If n = 0, then clearly a = ao = 0.

Otherwise, let d,,, := > ™ (m”}r'z amﬂfl Lew(oy )[1] for all 0 <m < n.

We claim that all d,, € W(O%). In fact it suffices to show d,,& € W(O.,) because if
p"d,, € W(O) for some n € Ny, then (p"d,,)¢ = p™(dm€) € p"W(O%). Lemma 2.12 then
implies p"d,, € p"W(0O%), hence d,,, € W(O%).

For m = 0, we indeed have

n i1
ag = —[s] Zai% = —&dy € W(Op)
i=1 '

and thus dy € W(O%). Now note that

n—m | 4 |
dm€ + am = Lam—i—igl + ﬁamgm_m
— (m+1i)! m!
n—m m! Z
- . m—l—ié—
=0 (’ITL + Z)‘
—(m—-1)
(m — 1)' i—1
=m A(m—1)44
; (m—1)+i) " D+
= mdp,—1

for all 0 < m < n, so inductively d,,& € W(O%) and consequently d,, € W(O%). Now by
construction, we have

n

a = ZCLZXM + ag = Z(Zdz_l — dzg) — gdo X[I] Zd X[Z] D
i=1

=1

Finally, we show that our construction of A results in the universal p-adic formal
divided power thickening of O¢ and therefore agrees with the more general universal
construction in [9, §2.1].

Definition 2.32. Let R be a ring. A p-adic formal divided power thickening of R is a
p-adically separated and complete ring B together with a surjective ring homomorphism
p: B — R and a divided power structure § on ker p such that 9,,(b) = v,(b) for all n € N
and b € ker p N pB, where 7 is the natural divided power structure on pB from 2.29.

Lemma 2.33. If (B, p,0) is a p-adic formal divided power thickening of a ring R, then
0’ B* = R’ is an isomorphism.
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Proof. The key observation is that if k € ker p, then k7 = plé,(k) € pB.

For injectivity, note that if @j(bj + B/pB) € ker p’, then there are k; € ker p with
bj = k; mod pB for all j € Ny, which shows b; =b7,, =k7,; =0 mod pB.

For surjectivity, let r = 1'&1], (r; + R/pR) € R’. Since p is surjective, there exist ele-
ments b; € B such that p(b;) = r;41 for all j € Ng. These elements necessarily satisfy
P 1) =779 =1i01 = p(b;) mod pR, so b, =b; +k; mod pB for some k; € ker p.
Hence (0%,,)? = b + k} = V) mod pB. But then b := I&mJ(b:;7 + pB) € B’ satisfies

p'(0) = lim (p(b) + pR) = Lim (r},, +pR) = lim (r; + pR) = . H

j€Np j€Np J€Ng

Proposition 2.34. 0o extends to a unique ring homomorphism Ouis @ Aeris = Oc. Its
kernel admits divided powers, turning (Aeis, Ocris) into a p-adic formal divided power thick-
ening of O¢.

Proof. Since 0o, is already surjective, so are all its extensions. The compatibility between
divided power structures follows from 2.25 and 2.13. Note that

Ooc([s)"| _ 1(s)"] _ Is"h _

n! in!|  |n!|

Ve

b
n!

<1,

so we have 0o, ([s])" € n!O¢c. By Remark 2.19 (iii), this suffices to construct the unique
extension Ogis : Aais = Oc as O¢ is Z-torsion-free and p-adically separated and complete.

Since O is Z-torsion-free, all & >+ € Agis lie in ker 0. To construct the divided power
structure on ker 6., first note the following;:

o If w=<¢v e kerbp, with some v € W(OE), then w™ = £"" = n!v”% € nlker 0.

e For alli n E N, we have (f)” = EZ%B

— from Definition 2. 23

.A) =n! Cm 1 € nlker 0., where Cy, ; is the

1nteger
o If z € ker O, then (pz)" = n!%x" € n!ker 0.

Now write any = € ker fis as © = ag + > i, a;s > i P it 4 , , where all a; € W(0O%)

such that lim; a; = 0, and m € N such that a; € pW(O%) for all i > m. Then z is a finite
sum of elements of the three types discussed above, so the existence of the divided power
structure follows from 2.26 (iii). O

Theorem 2.35 (Universality). If (B, p,d) is a p-adic formal divided power thickening
of O¢, then there is a unique divided power ring homomorphism

(62 (AcriSa ker chisa '7) — (B7 ker £ 6)
such that 0. = p o .

Proof. The map p o — : Hom(W(0O%), B) — Hom(W(O%), O¢) factors into the bijections
(cf. 1.4, 2.33) between homomorphism sets of Z,-algebras (equivalently, rings)

05oW(-) (P") Lo —Pono,,
Hom(W(0O%),B) & Hom(0%,B’) = Hom(0%,05) S Hom(W(O%),00)
bo”obc pro— 0ogoW (=)
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because for each homomorphism f : W(0%) — B, we have
14
Boo o W(p" o [ o1, ) = Bog o W((po f) o1 ) = po f.

Hence there is a unique homomorphism o/ : W(0%) — B with p o o/ = bo, = ecris‘w(obc )-

We define o : Aeis — B via the images (%) := 6, (a’(€)), which satisfy the compatibility
conditions of Remark 2.19 (i) because of 2.23 (i) and 2.23 (iv). By continuity and the

. n
construction of o/, we can check 6. = p o a on all elements %:

, (a <%)) (e = M)  pla'©)) _bee(®) _, (%> |

n! n! n!

It only remains to show that o commutes with the divided power structures. By
construction we have a/(7,,(€)) = 0, (a(&)) for all n € N, so by the decomposition into sums
from the proof of 2.34 and Proposition 2.30, it suffices to check compatibility on p ker 0,;s.
But if « € ker 0.5, then a(v,(pr)) = « (%x”) = ’;—Ta(x)” = du(pa(x)) = 6, (a(px)). O
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3 The rings of Gaufl norm completions and B,

If C is a perfectoid field of mixed characteristic, the ring B}, := Bf, (0% /sO%) can

be considered a subring of the field of de Rham periods Bgr (cf. §1.3 and 3.30). This
embedding is conveniently studied through completions of W(Obc)[%] with respect to
Gauf$ norms, which play an important role in the construction of the Fargues-Fontaine
curve and can often be used as a replacement for BY,.. An overview of how these rings fit
into the general theory can be found in the beginning of [7]; a detailed and more general
treatment can be found in [6, §1].

Our approach is not fundamentally different from the classical one. Many of our
arguments in §3.2 and §3.3 can be found in their original, more ad hoc form in [11, §4].
Another overview of this approach to Bf,, C Bqr via Gau norms can be found in [3,
§3]; note however that Caruso fixes a logarithmic valuation, so that his B:[ corresponds
to our B for p = |p|*. Furthermore, Caruso’s B, and Fontaine’s B, in [11] do not

correspond to Fontaine’s B, in [6], but instead B [1], which is the notation we will use.

3.1 Bounded Laurent series in mixed characteristic

Throughout this section, we fix a perfectoid field F' of characteristic p > 0 with absolute
value |-|, which notably means that F is perfect. The case to keep in mind is F = C” for
a perfectoid field C' of mixed characteristic.
Definition 3.1. We write B** := W(OF)[%]

Note that every x € B>t can be written as x = Y., p'[z;], where all z; € Op are
uniquely determined by x and almost all x; = 0 for ¢ < 0. Therefore, whenever some
x € B%* is given, we will simply write z; for these coefficients when this is unambiguous.

The + in B%* refers to the fact that the Newton polygon of each x € B (the
convex hull of all (i, —log,(|z;|)) € R* and the “points at infinity” (0,00) and (co,0))
lies above the z-axis. For x € B®T, this simply corresponds to |x;| < 1, but for the other
rings we construct its definition and meaning become less elementary. Like its classical
counterpart, the Newton polygon contains divisibility information; we will only use it
indirectly through the function 1, from Proposition 3.10, to which it is related via the
Legendre transform. See [6, §1.5, §1.6.3] for details.

The b in B”* is to be understood as “bounded” since B”* is a subring of the ring
B :={z =3, p'[r:] € W(F)[J]] sup;|z;| < oo}, which can be thought of as a mixed
characteristic analogue of the ring of bounded formal Laurent series, in p instead of
a formal variable. The rings we construct in this section can be similarly considered rings
of functions. We do not need this point of view, but will shortly sketch it here since it
motivates various constructions and terminology.

A w e W(Op) is primitive of degree 1 when wy # 0 and w; € Op. For each such
element, one has a projection W(Op) - W(Op)/wW(OF). The ring W(Op)/wW (OF)
admits the absolute value |z + wW(Op)|, = inf.cw(o,) Sup;ey, | (* + wz);| and therefore
is a domain; it turns out to be the ring of integers of a perfectoid field C of characteristic
zero with an isometric isomorphism C* 22 F' and |p|, = |wg|. Under this isomorphism,
the projection is identified with o, and its localization 6 : B** — C' can be considered
an evaluation homomorphism at a point of magnitude |p|,,. For more details, see [6, §2.2].

The analogy between B> and Laurent series makes the following definition natural.
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Definition 3.2. Let p € (0;1) and « = >, p'[z;] € B>*. The p-Gauff norm of x is
], == sup p'la].
i€z

Note that this supremum is actually a maximum since x; = 0 for almost all 7 < 0 and
lim; p’|z;| < lim; p* = 0. This also shows that the maximum is attained for only finitely
many ¢ € Z if x # 0; we will develop bounds on possible i in Proposition 3.10. We already
called ||, a norm, but this is non-trivial and requires a technical argument.

Lemma 3.3. For each n € Ny, the Witt structure polynomial
So= S, (Xo, XP, . XP" Yo, YE, Y)Y € I X, .., X, Yy, Y]
adapted to the representation ;- p'[x;] is homogeneous of degree p™.

Proof. The case n = 0 is trivial. Let ®,, be the m-th Witt polynomial and note that

D, (Xo, X7, .., XET) =3 p'X? " is always a homogeneous polynomial of degree p™

Let all S; for i < n+ 1 be homogeneous polynomials of degree p’. Then the polynormal
®, (S, S, ..., 8 =" ZSP "' is homogeneous of degree p"**. Now note that

n+1(5’0; Ce 7‘§’n+1)
n+1
7L+1(X07 X% o Xﬁ—i—l ) + (I)n+1(Yb7 }/1p7 o Y?f—&-l )

PS4+ @, (SE,.. ., S =D
-

by the defining property of 5,1, which shows that §n+1 is a sum of homogeneous poly-
nomials of degree p"*! as claimed. O]
Proposition 3.4. |-|, is a non-archimedean absolute value on B".

Proof. First note that if |z|, = sup, p'|z;| = 0, then all |z;| =0, i.e. 2 =0. It suffices
to show the triangle inequality and multiplicativity on W(Op) C B®" because for all
x,y € B4, there is an m € N such that p™z, p™y € W(Op); since it is clear from the
definition of |-|, that |p"z|, = p"|z|, for all n € Z, we then have

!
lz+yl,=p "™+ 0"yl, < p” " max{|p™z|,, [P"y|,} = max{|z|,, yl,},

[2yly = o> "™yl = o7 "™l = 12yl
Hence let z,y € W(Op). The strict triangle inequality follows from

—1

"CE + y|P = SLHOD Pi’Si(.TO,.CE]f, ce 7'7:?27 Yo, - - - >yfl)p
1=

3_3_ . .

< lzjl, p'ly;

< igig&%@ 250, 'y}

. o

< SZ-‘;ES?%{M%" P’ y;l}

= max{sup ,Oi\l'¢|, sup Pi|3/z"}
i>0 120

= max{|z|,, |y|,}.
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For multiplicativity, assume without loss of generality that z,y, zy # 0 since B> is
a domain and let n € N be large enough such that [p|?*" < |z,, [yl,, |zy|,. Then we have

Ty=y i1 Z;:o [z;y;—;] mod p""*W(OF), so the strict triangle inequality implies

Zp Z TilYi— ]

Finally, let i,,4, € Z be minimal such that |z|, = p™|z;,| and |y|, = p"|y;,|, and let
o =300 el v =20, Plyd. Then a'y' =377, | p'lw] for some w; € W(OF),
where notably w;,4;, = x;,y;,. Hence |z],|y|, = p™ |z, y;,| < |2'y'|,. By construction,
|z —2'|, < |z|, and |y — ¥/|, < |y|,, which shows

2yl = < max o' max | lyi| < (max p i) (max p'lyil) < [a],lyl,-

0<i<n 0<5<4 0<i<n

o

vy —2'y|, = [(& = 2" )y =2y = y)l,
< max{|(z — 2yl |2'(y" =)}
< max{|z — 2'l,lyl,, [2'],ly" — yl,}
< |zlplylo = 12Y],-
Therefore |z|,|y|, < |2'y'|, = |zy|, as well by the strict triangle inequality. O

Remark 3.5. Since |z| =1 for all z € F)X C O, the Gaul norms restrict to the p-adic
absolute value on Q, = W(Fp)[%] C B"*, normalized to |p| = p. The topology on W(Opr)

induced by [-|, is however not the p-adic topology but the coarser weak topology, which
arises as the product topology from the identification

Zp w;] w;)i) : W(Op) S H(’)F,

i=0
where each Op is given its usual valuation topology. Contrast this with how the p-adic

topology arises by equipping O with the discrete topology instead. Clearly, W(Op) is
Hausdorff and complete with respect to the weak topology.

Proposition 3.6. If p € (0;1), then |-|, induces the weak topology on W(Op).
Proof. Note that for all x € W(Op) and n € Ny, the function f,, : W(Or) - Op with

fl‘,n(y) = Sn(l‘(], A 73:5],”7 y07 AR 7y£n>1/pn

is continuous with respect to the weak topology on W(Op) because S, is a polynomial.
In particular, translation is a homeomorphism with respect to both topologies on W(Or)
and it suffices to consider neighborhoods of zero.

Let U ={y € W(Op) | |y|, < €} for some € > 0. Then there is an n € Ny such that
ep™™ > 1, so that

{y € W(Op) | |lyi| <ep ™ forall 0 <i <n} = {y € W(Op) | |yi| < ep™ for all i >0}
={y € W(Or) [y, <}

is a weakly open neighborhood of zero contained in U.
On the other hand, if V = {y € W(OpF) | |y;| < ¢; for all 0 <i < n} for some n € Ny
and &g, ...,&, > 0, then for € := min{eg,e1p7 1, ..., e,p "} the set

{y e W(Op) | yl, <e} ={y € W(Or) | |yi| <ep™ for all i > 0}
C{y € W(Op) | |ys| <ep for all 0 <i < n}

is a |-|,-neighborhood of zero contained in V. O
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In particular, we see that all Gaufl norms on W(O?,) are equivalent and that W(O%)
is complete with respect to them. This situation is very different from the one for B®*,
where completion and varying the Gaufl norm are important tools.

Definition 3.7. Let p € (0;1).
(i) We write B} for the completion of B*" with respect to |-|,. The absolute value ||,
extends to an absolute value on B which we likewise denote by ||,
(ii) The ring of power-bounded elements of B is B} := {x € B} [|z], < 1}.

The ring B: too has an interpretation as a ring of functions, specifically those that
converge on the closed annulus with radius between p and 1. We can make this more
precise using Proposition 3.25. For the ring é:{, the following compatibility statement
regarding the p-adic and |-], topologies holds.

Proposition 3.8. Let p € (0;1).
(i) We have p”é;r ={z e é: | x|, < p"} for alln € Ny. In particular, the p-adic and
|-|,-norm topologies coincide on B;, which is thus p-adically separated and complete.
(ii) The ring ng is the p-adic completion of S, := B>t N é:j
(iii) The natural homomorphism éj[%] — BF is an isomorphism.
Proof. (i): If x € ng and n € Ny, then |p"z|, = |p"|,|z], < p". On the other hand, if
x € B:j satisfies |z|, < p", then |p™"z|, <1, s0 p™"x € B; and x = p"(p~"x) € p’”l%’;r.
(ii): Let z € B} and 2™ € B** such that 2 = lim,, 2. Since ||, is non-archimedean,
either z = 0 and ||, < 1 for almost all n € N, or |2(™|, = |z| < 1 for almost all n € N;
either way 2™ € S, for almost all n € N, so S, C B} is dense. The result now follows

immediately from (i) since éj C B is closed.

(iii): The homomorphism is injective because we localized the injective é; — Bf. It
is surjective because any x € B,j can be written as p~"(p"x) for some n € N such that

phx € é; ]
Lemma 3.9. If 0 < 0 < p < 1, then |z|, < |z|¥8*) for all x € B+,
Proof. Write © = )", _, p'[z;] and let n € Z such that ||, = p"|z,|. Then
|z, = p"|an| = Unloga(p)|$n| < Unlogg(p)|xn|loga(p) — (0n|xn|)loga(p) < |x|gﬁga(p)’
where the first inequality uses |z,| <1 and 0 < log,(p) < 1. O
Proposition 3.10. For b € B*"\ 0, let ¢, : (0;00) — R be ,(t) = log,(|b|,~).
(1) ¥y is convex (hence continuous) and piecewise affine linear with integral slopes.

(ii) Lett € (0;00). Then

B . £ h) — aby(t - »
an(t) = lim PR 0D i 2 = ),
h<0

10 = fi
h>0

= max{i € Z||b],-« = p~"|z|}.
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Proof. Let 0 < r < s and consider the restriction of ¥, to [r;s]. Writec =p™ <p™" =p
and set C' = m1n{|b|log" ?) ,|bl,} (log,, not log,!). Then for all ¢ € [r; s],

log, (p) )
bl = o= > [blo ™" = [bl, if b, > 1,
” bl if [b], < 1,

i.e. b, > C > 0. Therefore, if n € N is large enough so that p™ < C and b; = 0 for
all i < —n, we have, for all t € [r; s],

Zp

1=—n

= max (log,(|b;|) — it). (*)

—n<i<n

= log,

p— t

(i): By elementary analysis, being convex and piecewise affine linear with integral
slopes is stable under finite maxima and can be checked on compact subintervals of (0; 00),
so this follows directly from (x) since each log,(|b;|) — it is of this form.

(ii): Let 0 < r <t < s and choose an n € N as before so that () holds. Since all
(t" = log,(|bs]) — it’) are continuous, there is a 6 > 0 such that for all h € (—d;9),

y(t + h) = max{log,(|b;|) —i(t +h)| —n <i<n}

= max{log,([b) — it +h) | —n < i < n, Gy(t) = log,(|bi]) — it}

= max{log, (|b;[) —i(t+h)| —n <i<n, [bl- =p~"|b;]}

< max{log,(|b:]) —i(t + ) |i € Z, [bl,-+ = p~"|b;]}
< max{log,(|b;|) —i(t + h) |i € Z}

= p(t + h).
Since {log,(|b;]) — it |i € Z, |b|,~+ = p~*|bs|} is a singleton set, it follows that
Golt + 1) — pft)  mas{log, (1) — it + 1) — (log, (b)) = it)|i € Z, by = p*Ibl}
h h
max{ih|i € Z, |b],- = p~"|b;|}
h
B {min (i € Z||bly—r = p~tilzs|} it h <0,

max{i € Z||b|,~+ = p~"|z;|} i h>0
for all h € (=6;9) \ 0. O
Corollary 3.11. For all b € B\ 0, the function (p — |b|,) : (0;1) — R is continuous.

Proof. The function factors into the continuous functions exp, o ¢, o (—log,). O

If 0 <o <p<1, the composition (B>, |-,) 4 (B*,]-|,) = B} is continuous by
Lemma 3.9 and extends to a continuous ring homomorphism ¢, , : B — B. Since i,
simply maps lim,, z,, € B} with z,, € B>* to lim,, z,, € B, the maps (,,, form a directed
system. They turn out to be injective, but this is surprisingly non-trivial.

Lemma 3.12. If 0 < 0 < p < 1, then |t,,(z)|, < |2|28“) for all z € B} .

Proof. Write x = lim,, x,, € BY, where all z,, € B»". By the continuity of ¢, ,,
li 3<“q' li log, (p) log,, (p)
|L07p($)|p = nggo|xn|p > ngrolo|xn|a = |z, . U
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Lemma 3.13. Let 0 <o <7 <p<1, Ai=log,,,(7/p) € (0;1), and x € Bf. Then

o ()] < |3 lea ()1

Proof. For b € B®*_ this is a multiplicative rewording of the convexity statement in 3.10,
although it can also be proven directly by a straightforward manipulation. We obtain
the lemma by taking limits as in 3.12. [

Proposition 3.14. If0 <o < p <1, then 15, : Bf — B} is injective.

Proof. Assume to the contrary that there is an = € B} \ 0 such that ¢, ,(z) = 0. Then
ltor ()| < Oforall T € (a p] by Lemma 3.13. For each ¢ € (0;1), thereis ay € B** such
that |z — y|, < min{e'°%) |z|,} (and notably, ||, = |y|,) since B>+ C B} is dense and
x # 0. Furthermore there is a 7 € (03 p) such that ||y|, — |y|,;| < e by continuity (3.11),
and hence |y|, < |lylo — |y|-| + |y|- < €+ |y|r. Therefore, using |z — y|, < 1,

g T — — + 1 a( ) ; lo (p)
s g 13 + 13 + LO’ s T xr — 08, (7 T )
| | |y| < |y| | 7’7'( y)| < E | yl < g + | y| 8o < 28

Note how Proposition 3.14 requires convexity, continuity and Lemma 3.12, which is
completely specific to Gaufl norms. In general, maps induced from the identity in this
manner need not be injective. The following result shows that the choice of p does matter.

Proposition 3.15. The map 5, : Bf < B} is not surjective when 0 < o < p < 1.

Proof. Call Cauchy /null sequences with respect to |-|, p-Cauchy/p-null for short. Since F
is perfectoid, there is an € Op with ¢ < |z| < p; then the sequence (p~"[z]|"), is p-null
but not o-null because

: —n n| __ 1: —1 n __ : —-n n I O —1 n __

Tim [p™"[z]"], = lim (p~"|z[)" =0, Tim [p="[z]*|o = lim (07" |2])" = oo.
Therefore the sequence ,, := Y . p~'[z'] € B*" is p-Cauchy but not o-Cauchy. Now
recall the construction of the completion as classes of Cauchy sequences. If the class of
(Zn)n in B was in t4,(B7), there would be a p-null sequence (e,), in B»* such that
(, + en)n is o-Cauchy; but by Proposition 3.14, p-null and o-Cauchy together imply
o-null; so it absurdly follows that (z,,), is o-Cauchy. O

Definition 3.16. We write BT := 1'&110@<1 B;r, where the transition maps of the inverse
limit are the maps 4, : By — B/ for each pair 0 <o < p < 1.

Due to Proposition 3.14, we may identify the various BJr as subrings of each other
and view Bt as the intersection of all B+ which gives it an interpretation as functions

that converge on the unit disk. The ring BJr can frequently be substituted for B, and
tends to have nicer properties.

Remark 3.17. The natural choice of topology on B is the inverse limit topology, i.e. the
coarsest topology such that all inclusions ¢, : BT — B[‘f are continuous. Equivalently,
one uses BT = lér_n - Bfr/n and equips BT with the coarsest topology such that all

Bt 3 B, & B
for n = [1/p]. This shows that the topology of BT is metrizable via

L1 1/'np

/n
B+/ for n > 2 are continuous, since B+ &% BJr factors into BT —

T =ylim
dlz,y) :=sup2"—F——
( y> nZI; 1+‘x_y‘1/n
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(the restriction of the product metric for Bt = I'&Hn> ) B;r/n), SO a sequence converges
in Bt if and only if its image in every B1 In (or equivalently, in every B;“) converges. It

follows immediately that B* is the completion of B»* with respect to this metric.

Proposition 3.18. {z € BT ||z|, <1 forall0 < p < 1} = ﬂ0<p< = W(Op).

Proof. Clearly W(Or) C ), éj On the other hand, let x € Bt \ 0 with |z|, <1 for all
p € (0;1) andlet 2, 2® . ¢ BbF \ 0 be a sequence that converges to x with respect to
all GauB norms. Set y™ = > p'[x 2] € W(OF). We claim that lim,|z™ — y™|, =0
for all p, which implies that z is a |-|,-limit of elements of W(Op) and hence itself
in W(Op) by Remark 3.5 and Proposition 3.6.

Let p,e € (0;1). Since lim, ™ = z in B, there is an n € N with |20, = |z, <1
for all j > n. Hence |x(])|( p)" <1 forall j >n and i € Z, which in particular means

|z — D], —sup|x‘7)|p <supe ‘=c¢. O
1<0

Proposition 3.19. Let p € (0;1) and p : B®" = B»* the Frobenius automorphism.

(i) There exists a unique continuous isomorphism ¢, : BJr BJr that restricts to .

(ii) ¢, restricts to a continuous isomorphism ¢, : BJr = BJr
(ili) If0<o <p <1, then v, = ¢, 0 lyp.

Proof. (i): Uniqueness follows from the density of B** C B}. If x € B"*, then

()] = sup p™|z]” = sup(p'lx],)” = [}, (+)
i€z i€z
so p maps Cauchy sequences relative to |-} (i.e. |-|,) to Cauchy sequences relative to || .
Hence ¢ extends to a continuous homomorphism ¢, : B: — B;p. This is in fact an
isomorphism: ¢! similarly extends to a continuous homomorphism B;; — B;“, SO since
either composition of the two is continuous and the identity on the dense subset B>*, it
is itself the identity.
(ii): Note that (x) still holds after taking limits and that every = € B:j can be written
as a limit of elements of B;“ N B»* by Proposition 3.8.
(iii): This follows immediately from continuity. O

Corollary 3.20. For any p € (0;1), the ring B =(),5, Bpp = Nuso ¥y (B)) is the
largest subring of B;f where p, is bijective. The restriction of ¢, to Bt is continuous
and denoted by ¢p.

Proposition 3.21. Let mp = {z € Op||z| < 1}. For all x € 1 + mp, the series

o0

tog () = 3 (-1 1=

- 2
=1

converges in BT. The resulting map log([-]) : 1 + mp — B™ is a continuous group homo-
morphism with respect to the additive structure on BT.
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Proof. Let p € (0;1) and w € W(Op) such that [z] — 1 = [x — 1] + pw. Then
[z] = 1], < max{|z — 1|, |pwl,} < max{|z —1], p} <L

The series converges in B, because if A := log,(|[x] — 1],) € (0;00), then

Ji |10

— lim p/\n—vp(n) < lim p)\n—logp(n) —0.
n—00 n—00

Since [] : Op — W(Op) is an isometry for |-|, and satisfies [xy] = [z][y] for all z,y € Op,
one obtains a continuous group homomorphism 1 + mp — B} for every p € (0;1) through
the same formal arguments as for the ordinary logarithm. These homomorphisms are
evidently compatible with the inclusions ¢, , for o < p, so we obtain a continuous group
homomorphism log([-]) : 1 + mp — B™. O

Proposition 3.22. Ifx € 1 + mp, then pp(log([z])) = plog([z]).

Proof. Since g is continuous, we have
0 ,
1)

onllog(a]) = 3 (- L=

- 7
=1

= log([2"]) = plog([]). O

Remark 3.23. One can in fact prove that every b € BT with ¢p(b) = pb is of the form
b = log([z]) for some z € 1 + mp, see [6, 4.4.7].

< BT. < B

3.2 The chain of inclusions B; o ol

ol = Bin

Throughout this section, we fix a perfectoid field C' of mixed characteristic. Then F := C”
is perfectoid of characteristic p by Theorem 1.12 (i), so we have the rings B>*, By, éj, BT
from §3.1. Furthermore, we fix an arbitrary s € 0% with |s|, = |p| and obtain the rings
Acris = Awis(0/s0%) and BY, = Bt (0},/sO%) from 2.6. Note that ) -, s"O% =0
by simple absolute value considerations, so all conditional results of §2.1 apply.

Our goal is to realize Bl as an intermediate ring between BG; » and BIZ . and to
embed it into the field of de Rham periods Bar, which will be an important tool for our
representation-theoretic arguments in §4.

Definition 3.24. We write 6 : B>+ — C for the localization of 6o, : W(O%) — O¢ at p.

Since B”* is a domain and C = OC[%], the map 6 is surjective. As explained in the
beginning of §3.1, the map 6 can be thought of as an evaluation homomorphism. It is
central for all constructions in this chapter.

Proposition 3.25. For all p € (0;|pl|], there is a continuous and surjective ring homo-
morphism 0, : Bf — C which restricts to 0. It satisfies |0,(x)| < ||, for all x € B} if
and only if p = |p|.

Proof. We first show |0(x)| < |z|, for x € B*" and p = |p|. The case x € ker 6 is trivial;
otherwise choose n € N such that p™ < |6(x)| and x; = 0 for all i < —n. Since |z;|, <1
for all i € Z and p = |p|, we have

P AR

€7 —n<i<n

. ! .
16(x)| = = < sup p|'lf] < sup p'lzil, = [al,.
1€

—n<i<n
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Norm-decreasing maps are uniformly continuous; since 6 is already surjective, so is the
unique continuous extension 6,. The norm inequality for 6, follows from the one for 6 by
taking limits. For p < |p|, take 6, := 0}, o ¢,,|,|, which is clearly surjective and continuous.
It isn’t norm-decreasing because |0(p)| = |p| > p = [p|,- O

This too can be considered an evaluation homomorphism, which makes more precise
how B is a ring of functions that converge on the annulus with radius between p and 1.
Given an f € B} for some o € (0;1), one “evaluates” f at a primitive element of de-
gree 1 corresponding to a perfectoid field C' of mixed characteristic with p = |p| > o via
0,(f) = 0,(ts,(f)) € C, which is indeed lim,, 0(f,) € C for f, € B> with f = lim,, f,.

The map ¢ cannot extend to B} when p > |p| because lim,[p~"(s*)"| = 1 even though
lim,, [p~"[s]"|, = 0. The restriction to (0;|p|] is therefore fundamental and the reason
why B is called BX by some authors.

Ip| max

Proposition 3.26. If p € (0; |p|], then ker 6, is the topological closure of ker 6 in B} . In
particular, whenever ker @ = EB" for some £ € B"*, then ker 6, = B as well.

Proof. Let x = lim, "™ € kerf, C B , where (™ € B*t. Since 0, is continuous we

have lim,, 8(z™) = 6,(z) = 0 and may pass to a subsequence such that (z™) € p"O¢
holds for all n € N. Now let

Uy = Zpi[xgn)] e B, Zp n—H e W( OC)
i<n
for each n € N. Then by construction, ™ = v, + p"w,, so that
0(vn) = 0(z™) — P00 (w,) € p"O¢.

Since o, is surjective, there is a u, € W(0O%) such that 0(v,) = p"0o.(u,). Setting
y™ = v, — p"u, € ker6, we then have

[ =y, = [P wn + P unly = [P"]pwn + unl, < "

This shows that lim,, y™ = x, so ker 0, lies in the closure of ker 0; the other inclusion is
trivial since ker, = 6, "({0}) is closed.
Finally, if ker § = ¢BYT for some ¢ € B%*, there are 2™ € B%* such that y™ = £2(")

for each n € N. These form a Cauchy sequence since |2 — ()|, = [¢] |y™ — y™)|, for
all n,n’ € N; hence z = £lim,, 2" € §BS. ]

Proposition 3.27. If p € (0;|p|] and & € B** is a generator of kerd, then for each
n € N, the map B**/€"B*" — Bf /¢" B induced by B"* < B} is an isomorphism.

Proof. The equality
B 0,1(C) = 6,1(6,(B") = B 4 ker, " B 4 (B}

inductively extends to B = B"* +¢"B} for n > 1, showing surjectivity.
Injectivity also follows by induction over n. The base case is kerf, N B»* = ker 6,
which was the subject of 3.26. Then "B} N B C kerf, N B"" = ker6 = £¢B"* shows

! ind.
€"Bf N B C &"Bf NEBM = (¢ By 0 BY) (¢ BN = ¢ B

for all n > 1. Note that £"B} NEB™T = £(€"7' B N B"") uses that B/ is a domain. [
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Lemma 3.28. If £ € W(O%) is a generator of ker o, then

—t if t < —log,(Ipl),
log,(|pl) ift > —log,(|p|)-

for all t € (0;00), where ¢ is the function from Proposition 3.10. In particular,

d* (= log,(|pl)) — d™e(—log,(Ipl)) =
Proof. Proposition 1.14 implies ||, = |p| and |& ], = 1, so that

log,([¢],~1) = sup (log,,([&:]s) — t2)

— max{log, (6ol). log,(1€11) = ¢, sup (log, (I&],) = t9)}

be(t) = log, (I€],+) = { ‘|

= max{log,(|pl), —¢, sup (log,(|&ls) — i)}

= max{log,(|p|), —t}

)t ift < —logp(\p|),

for all t € (0; 00) since all |§;], < 1. The remark on derivatives follows immediately. [
Proposition 3.29. If p € (0; |p|], then B} is ker 0,-adically separated.

Proof. We first consider the case p = [p|. Let & € W(O%) be a generator of ker 6, (hence
of ker6,) and f € ,5,&"B; \ 0. Since B** C B} is dense, there is an f’ € B"" with

3.10
\f = f'l, <|flp- Let A = —log,(p) and N = d"p(X) —d™p(N) € Ny. By assumption
there exists a g € B \ 0 such that f = &Ng, for which there is again a ¢’ € B>T such
that |g — ¢'|, < |g|,. Therefore

€ — Fl, =15 — g) + (F = )], < max{IE¥ (g = Q)lps 1f = FLo} < 1Flo = 1F'],
so since ||, is continuous in p (3.11), we have ¥y = theny = Npe + 1) near A. Hence
N =d"p(A) —d ¢p(N)
= N(d e(A) = d veN) +d* oy (A) = d vy ()
N - d Ty (V) — d (),
which shows d*¢y(\) —d~ 9 ()\) = 0. By Proposition 3.10 (ii), this means that there is
a unique m € Z with |g'|, = p™|g, |5, 50 9" = p" (g}l < 1¢']; s0

60"~ 5" lg D 2 19— (gl < 1g'), = ™[9]l = ™) = 16 ).
This shows |0(¢')| = |0(p™]g.,])|, and thus

10,(g — g)!<lg Jo < lglp = 19'l, = 10@™ g = 0(g")],

whence we finally conclude

! m m
16,(9)] = 10(g)] = 10" [gm])| = P |gmls = 19"l = l9l,-
But since g # 0, this means g & ker 6,, which absurdly implies f ¢ fN“B:j.
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In the general case, let o € (0; |p|]. Then we have an injection

+ + +n+ b+nb+ + /en p+
Bf < B %%B /€" B! %B /¢n B %B /&"BY O

This result isn’t too surprising; it essentially states that “functions” f € B with
zeros of infinite order vanish, just like in the classical situation.

Definition 3.30. Let p € (0; |p]].
(i) The field of de Rham periods is the fraction field (cf. 3.31) Byg := Frac By, where

+ 1 b+ n'&g'%l : + n
Big = lim B /(ker §)" = lngp/(kerﬁp).

neN neN

The ring BJ, is equipped with the inverse limit topology relative to the quotient
topologies 1nduced by the norm |-|,. The choice of p or B"* vs. Bl is irrelevant
since B"" /(ker §)" = B}t /(ker6,)" is a homeomorphism by deﬁmt10n The map
BJr — Bl is contmuous by definition and injective by Proposition 3.29.

(ii) We write 6gg : Biz — C for the composition Bi; — B*T/(ker ) % C, or equiv-

alently, B3, — B /(ker6,) % & for any p € (0;|p|]. This map is by definition
continuous and open.

Proposition 3.31. Bl is a complete discrete valuation ring with residue field C' and
mazimal ideal ker Oqr. Every generator ¢ € W(O2,) of ker Oo. is a uniformizer of Big.

Proof. [17, 5.10] Since C' = B»" /ker 0 = BJ,/ ker O is a field, it follows that ker f4g is
maximal and £ € B%" is a prime element. The maximal ideals of B** /£" B%* correspond
to maximal ideals of B** that contain £"; the only such ideal is ¢ B»*, so all B>+ /¢nBb+
are local with maximal ideal £ B% +/§"Bb +

Let z = 1&1 (zn + E"B") € Biy \ kerOgr. Then z; ¢ B by definition of O4r,
hence z,, & BT, ie. x, +§an+ € (B>t /¢nBYT)* ) for all n € N. For each n € N,
let «/, € B®* such that 2,2/, =1 mod £"B"»*. Then

(T — T T Tt = Ty 1T Tt — Ty Tt = Ty — Tppr =0 mod "B,

it follows that 2., — 2}, € &"B>" because z,,, tp41 € BT, € € BYT is a prime element,
and B®* is a domain (cf proof of 2.12). Hence lim (z;, + f"Bb+) =z! € Bjy, showing
that B‘FR is local with maximal ideal ker 4.

Now let y = l#n(y +&nBYT) € ker gr. Then all y,, € ker 6§, so for each n € N there
is a y/, € B>" such that y, = y/,. Note that ¢/, is unique modulo £"~1B%*. We have
Wi — Y) = Ynt1 — Yn € E"BPT, 50 Yo — Yy € E"BYT for all n € N. Then the ele-
ment ¢ := l'&ln(ygﬂ + " BYT) satisfies y = £y because £y, 1 = Yny1 =y, mod "B
This proves that ker fqr = {Big.

Note that in the above context, for any z := @n(zn + £"BYT) € B, that satisfies
y = £z, we must have £z, =y, = ypy1 mod "B and hence z, = Y41 mod Bt
by the uniqueness statement. Therefore the decomposition y = £z is unique. Since By
is &-adically separated by construction, we can repeat this decomposition until we ob-
tain y = £"u with unique n € N and u € B, \ kergr = (Bjz)*. Since & € B>" is not
nilpotent, this proves the statement. O
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Note that the valuation topology is very different from the inverse limit topology;
ker fqr C By is open with respect to the former, so the induced topology on the residue
field C' would be discrete rather than the normal valuation topology.

Remark 3.32. Unlike for B, B} and B¥, there is no Frobenius lift for By because

¢ : W(0%) = W(0O%) doesn't preserve ker .. Using 1.15, let w € W(O%)* such that
¢ = [s] + pw is a generator of ker fp,.. Then 0o, (¢(w)) € OF and hence

Ooc(9(€)) = (5P + pho. (p(w)) # 0
since |(s*)?] = [p|P < |p| = [pbo, (p(w))]. This is a major defect of Biy.
Proposition 3.33. Let p = |p| and recall the sets S,,S,» C B*" from Proposition 3.8.

1) There exist (unique) continuous homomorphisms of W(O%)-algebras
(i) q D ¢)-alg
Sy — A = S, B, = Aais — B, B, — Bl — B

0

The composition Sy — Acys — S, is the canonical inclusion Sy — S,.

(ii) The maps from (i) make the following diagrams commute:

L
oP PP

Pcris Pcris o o >
Acris D Acris B:;is Ry B:;is BJ; eL_’p> BTt B;; <l B;r

N L

54 P >+ + #r + +
Bﬂ - BPp BP - Bpp Acris BZ;
+ .
ois < By such that pes is
— B:{ 1s the canonical inclusion B;} — B;r.

In particular, we have continuous injections B;p — B
the restriction of ¢, and B;} — B

cris
Proof. (i): Tt suffices to construct S, — A% and A2, < S,; the other maps arise

through completeness and localization. Continuity is trivial for them by Proposition 3.8;
uniqueness follows because all maps in question are determined on W(Obc) We define

Ay = S, via W(OL) = S, and the images %, which lie in S, because
n n V0 V0 m
S| _ || e
n! nll, |nl], nl|, ~

for all n € N. For S,» — A%, identify A%, C S, C B*" and let x € S,». Then we have

cris? cris

2o p'r] € W(OL) C A%,.. Furthermore, for each n € N, we have p~"[z_,] € Sp» by

cris*

the definition of |-|,» as a maximum; hence
|x—n||7 = pnp|p_n[$—n]|pp <p?-1= pnplp_n[snp”pp = |8np|ba

which shows z_,s™" € O%. Therefore every

p M rn] = 2™ p TS = [r s ((p - 1)!%>n € Acis:

0 . . . .
ois 18 injective be-

— S, is just the injection S,» — S,; this can be verified

which proves that @ € A%,.. The resulting homomorphism S,, — A
cause its composition with A%,
on W(O%), where it is trivial.
(ii): It suffices to verify the first and third diagram; the others follow by eliminating
denominators. For the first diagram, this can be done on W(OZ) by Remark 2.19 (iii),
where commutativity follows from the fact that the maps in (i) are W(O,)-algebra homo-
morphisms and the fact that ¢, and e both restrict to ¢ : B>T = B»*. For the third,

we can verify commutativity on S,» by continuity and density; this was done in (i). O
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Note that the injectivity of the maps Agys — éJ’ and B B;F fundamentally relies

cris

on the injectivity of ¢¢.s. From the inclusions Acms — Bjns — BJr — B(TR, we conclude:

Corollary 3.34. There is a canonical continuous inclusion B, — Biy.

Cris

Corollary 3.35. A, and B:;ls are domains.

Corollary 3.36. B™ is the largest subring of Bl.. where p.is s bijective.

cris

3.33 . 3.20
P’l"OOf pr—‘pl then B+ ﬂ SOpP<B;;’) - mnsocris(B+ ) C ﬂ 90,0( ) = B : L

Cris

3.3 The cyclotomic periods ¢. and the induced filtration

We continue in the setting of §3.2, but now additionally assume that C' contains all p™-th
roots of unity. This is a rather natural assumption in the context of perfectoid fields due
to the Fontaine-Wintenberger theorem and no restriction in practice as we will only end
up considering algebraically closed C' in §4 anyway.

In this case there exists a distinguished set of uniformizers ¢. of Bj;, the so-called
cyclotomic periods, that can be thought of as a p-adic analogue of 27i from the classic
complex setting. These elements will allow us to finally define the period ring B, and
a family of closely related period rings that are “almost as good” in the sense that they
can be used as a replacement at no loss in many situations. It will turn out in §4 that
the Galois group acts on the cyclotomic periods via the cyclotomic character y (hence
the name), which will ensure that the naturally occuring representations x" for n € Z are
admissible.

Definition 3.37. We write

U= {lim (e, +p"Oc) € Op|eo =1, e1 # 1, enyy = e}

n€Ng

for the image of compatible systems of primitive p™-th roots of unity in Oy under the
bijection in Proposition 1.2 (ii). Given ¢ € U, we always let €,, € O¢ denote the uniquely
corresponding p™-th primitive root of unity.

i
Lemma 3.38. Every primitive p™-th root of unity (n € C' satisfies |(pn — 1| = |p|P" Te-D.

Proof. Note that (,» — 1 is a root of the polynomial F(X) = S""" /(X + 1)*"" € Z[X],
which is Eisenstein with respect to p because the constant term is equal to p and

p—1 p—1

Z(X + )7 =3 (X" +1)" mod p,

i=0 i=0
p—1 i p—1 p—1 ,. p—1
Sy = Sy (e =S S () =S (1)
=0 i=0 j=0 j=0 = M j=0 J+l

For the last equality, perform a case distinction on the lowest chosen element. All roots

1
of F(X), in particular (,» — 1, then have absolute value |p|®-02""T by the usual Newton
polygon argument for Eisenstein polynomials. O]

Proposition 3.39. Ifc € U, then |e¥" — 1|, = [p|”"" /@Y for any n € Z. In particular,
cel—+ Mew .
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Proof. By a direct calculation,

k

e — 1], = | lim (7" — 17| = lim [ex_p — 1" %2 lim [p|7= 100 = [pp" /@D, O
k—o0 k—o0 k—o0
k>n k>n

Definition 3.40. For each ¢ € U, the corresponding cyclotomic period is
1
~ log((e wz = pe

The following proposition shows that in all rings we consider, the choice of € € U is
basically irrelevant. We will therefore often write ¢ instead of t. when the ¢ is not used
elsewhere, notably for localizations A[%] of Z,-algebras A that contain all ..

Lemma 3.41. For all ¢,&' € U, there is a unique a € Z) such that

L(aerZ_i_pOC)_g

n€Ng

Proof. For all n € N, there is a unique @, = a,, + p"Z with £ = ¢/ and ged(a,,p”) =1
since ¢, and ¢/, are primitive p"-th roots of unity. The condltlon (€n41)P = €, implies
that pa,;1 = a, mod p"Z, which is exactly the required condition to glue the @, to a
unique a € Z,. Since @, € (Z/p"Z)* for all n € N, we have a € Z,. O

Proposition 3.42. Ife € U and a € Z}, then al. = t.. € BT.

Proof. Write a = Y ooy a;p' € Z,, and al, := Z?:o, a;p*. Then the first n + 1 components
of % are identical to those of €%, so €* = lim,, ¢*» by Proposition 1.7. Hence

log([£%]) = log([ lim €%]) = lim log([e®"]) = lim ’, log([¢]) = alog([¢])
n—00 n—00 n—oo
by the continuity of log(][-]). O
Proposition 3.43. Eacht. € Bi; is a uniformizer of Biz. In particular, Bar = BJR[%].

Proof. [2, 4.4.8] Since 07 is continuous, it suffices to prove [¢] — 1 € ker 8\ (ker §)?; the
only noteworthy part is [¢] — 1 & (ker #)2. Use 1.15 (i) to find a w € W(OZ)* such that
€ :=[s] + pw = [s] + p[wo] + p*(...) generates kerfp, and assume to the contrary that
[e] — 1 = &%z for some # € W(O,). Recall the adapted Witt structure polynomials
Pl(X07 X17 }/07 }/1) = Xg}/lp + le%p _'_lep}/lpv
S1(Xo, X1, Y0, Y1) = X + ¥F + p (XF + Y] — (Xo + Y)"),
- —-XP if p#£2
(X0, X1) =p ' (= X0 — pXT — (—Xo)P) = ! ’

We use these to directly calculate

& = [s*] + p[2swo] + P*(...),

(Zp :EZ) [s%x0] + p[s®x1 + 2swozo] + P2(. . .),

el—1=[e—=1]+p(...) if p £ 2,
[e] —1=[e— 1] +p[0P + L,(1,0) —e]"? + p*(..)
=le—1+pl—e?+p*(...) if p=2.
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It follows that |e¢ — 1], < |p[?/?*~Y since

le = 1)y = |s”wols < [p|* < [pf?/*~Y if p # 2,
e =1 = [1 = 7} = |21 [} < [p|* < [p|”/ "7V if p=2;
but this contradicts Proposition 3.39, so [e] — 1 & (ker 6. )% O

Definition 3.44.

(i) The ring of crystalline periods is the localization Beis := B [1)-

Cris

(ii) We equip Bgr with the filtration of a discretely valued field, i.e. Fil" Bgr = t"Bj;
for n € Z. This filtration is exhaustive and separated and clearly turns Bggr into a
filtered ring. If R C Bggr is a subring, we equip R with the subspace filtration

Fil"R = RNFil" Bqg = RNt"B};.
This filtration is likewise separated and exhaustive and turns R into a filtered ring.

(iii) We write B,, Bf and ¢, for any consistent choice of B, Bcrls and Qes, OF Bj[%],
B and ¢, with p € (0;|p[], where ¢, : B, — B, also denotes the (injective) exten-
sion of ¢, : B} — B} induced by ¢4(t) = pt. Similarly, we refer to the canonical
extensions of the inclusions ¢, ,, etc. by the same name ¢, ,. Note that the maps 6,
cannot extend to B[] because 6,(t) = 0.

Remark 3.45. Let p € (0; |p|] and w € W(O2)* such that & := [s] + pw generates ker fp,..
We proved in 3.43 that ¢ and £ are associated in Bj; this turns out to be false in BJr
Since £ generates ker 0,, there is a u € B/}“ such that t = £u. If t and & were associated, we
would have u~! € B}; thls is impossible since ¢(§) = pt@p( ~1) € ker O4r contradicts the
calculation in Remark 3.32. We do however have u™ € BF[1] N B, = Fil’ B [1] since
te Bf[1]* and u € (Bi)*. Tt surprisingly follows that By C Fil° B (4] is strict.

By a simple inclusion argument, one sees that ¢ and & are not associated in B, either,

and likewise, if ¢ = &u for some u € B, C Bf, we must have u™' € Fil° Bess \ B
that B, C Fﬂo Beis.-

Cris -+

cris

We close this chapter with a study of how the filtration interacts with the Frobenius
map. Interestingly, the filtration does not turn out to be @,-stable; since () ¢ ker 6,
we have ¢p(£/t) € Fil ™' By \ Fil° Byg even though ¢/t € Fil° Bgg. This should how-
ever be understood as an advantage rather than as a defect because it is what makes
Proposition 3.54 possible.

Proposition 3.46. Let p = |p| ande € U. Thent. € B+ and t2= € pB,
tp ! € pAcrls and ACI‘IS[ ] = Bcrls

vs in particular,

Proof. Since |e — 1, A3 p/(e=1) > pp it follows that |[e] = 1|» = p?/®=Y. Then for each
summand of t., we have
_ 1) np/(p—1) np/(p—1) 2.9
(_1)n+1([€] nrl _p <P — =D/ (1) 2 o/ (0-1),

n pp_ Nl T nl e

o 333
Therefore |t.|» < PP~ g0 t. € B;; C Aeis and |27, < pP. By Proposition 3.8, we
thus have 2! € pé;} C pAcis.- O
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Proposition 3.47. Ife € U, then (5, ker(6o. o ¢™) = ([g] — HW(0%).

Proof. [3,3.1.7] Clearly 0o, (¢™([e] — 1)) = 17" — 1 = 0 for all n € Ny. On the other hand,

let w € (,>0 ker(fo,, © ") and set § = [E[f/]ail = P[] € W(OL). Using 1 14 we see

that & generates ker 6, because 0(&) = 511:11 =0 and |, = [ o7~ 1|b |p|p e = |p|.

Since o, (¢°(w)) = o, (w) = 0, there is a v(© € W(02) with w = v(©¢. Assume we
have elements v(¥, ... 0™ € W(OL) such that w = ™" (v™) [T, o *(€). Then a direct
calculation shows

n n p—1 n p—1
0 . (@n—’—l (H 90_1(5)>> H QOC H 1 pi :pn+1 7& 07
=0 i=0 i=0 i=0 i=
so necessarily fo..(¢(v™)) = 0, which means that there is a v("*) € W(O,) such that
p(v™) =0 E fe w = o D (D) TG o7 (€).
1 —n 1
Hence |wol, < [p|**? +++77" for all n € Ny, so |wgl, < |p|T=+ T = [p|/®~V) = | — 1],.
This means that there is a z € O, with wpz = € — 1, so that w — ([g] — 1)[z] € pW(O%),
proving that 0,5, ker(fo.. 0 ¢") C ([e] = HYW(Oy) + pW(Op,).
This suffices because as in the proof of 1.14, we can find ag, by € W(OZ) such that
w = ag([e] — 1) + pbo, conclude that 0o (¢™(by)) = 0 for all n € Ny, and hence inductively

construct elements ag, by, . . . , an, b, € W(O2%) such that
w=aoll]~ 1) pbo= .. = b+ 3 anl(e] —
i=0
for all n > 0. Consequently w = > a;([e] — 1)p* € ([e] — 1)W(O%), as claimed. O

Lemma 3.48. Let p = [p[P/®*~ Y and e € U.

(i) Let >0 ObXZ € Q[X] be the inverse of > ;2
vp(bn) > —-L= for all n € Ny.

Z+1 L Xi e Q[X]*. Then we have

pfl

(ii) The elements t. and [EP]T_l are associated in l%*.

Proof. (i): Note that by = 1 and b, = — >/ b EL"" for all n € N. We proceed induc-

* n—i+1
tively, the case n =0 being trivial. It suffices to show that v,(n —i+1) < ;_{

0 <7 < n since then

! 1 n—1 n
> i > min — _ S ,
Up(bn) oglzl<nn Up(bi) —vp(n—i+1) > 0%.1?” =1 p—1 p—1

n— ’L

When n — ¢ < p — 1, the inequality is trivial; for > 1, Bernoulli’s inequality shows

n—1
p—1

vp(n — i +1) < log,(1+ (n — 1)) < log, (1 + (p— 1)) =

(ii): It suffices to show |[eP] — 1], < pp%l and lim, |[eP] — 1|prp%1 = 0, since then the

series > 2 bi([eP] — 1)" converges in ]_%;“ by part (i) and the statement follows from

te =

plog(le]) _ log([e]) _ [ =1 <~ _;y([E1 = 1)
= == > (-1 :

p p g i+ 1
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Indeed, |[e?] — 1|, < max{|e? — 1],, p} 2 max{pP, p} =p < pz%l. Now if p # 2, then

lim |[e”] — 1[2p" 7T < lim p"p 71 =0.
n— 00 n—00

If on the other hand p = 2, we can show, by the same methods as in the proof of 3.43,
that there is a w € W(O%) with [e?] — 1 = [¢? — 1] + p[e — 1] + p*w, so that

|[€7] — 1], = max{|e? — 1]y, ple —1],, p*|w],}
2 —_ —
= max{|p[? /(p 1)7 p|p|p/(p 1)7 p2|w|p}
= max{p?, p?, p’lw|,} = p*,
whence lim,, |[e?] — 1|gp_ﬁ = pn — (), 0

Lemma 3.49. If p = |p|”/®=V) and e € U, then B;r =W(O%) + [‘E]T_lé;r.

Proof. Write 7, := [E];l. We first show that B®t N éj = W(O%)[r.]. Clearly . € é;,
so that BT N é;r > W(0%)[r.]. For z € B** N éj \ 0, let n € Ny be minimal such that
x; =0 for all i < —n. If n = 0, we have x € W(O2,) C W(O2)[r.]. Otherwise, note that
|2_ply < p" = |e — 1|, so there exists a (unique) u, € O such that z_, = u,(s — 1)".
Hence 7’ := & — [u,|7™ is an element of B»* N B: with 2} = 0 for all i < —n + 1; proceed-
ing inductively, we ¢b#ain unique uy, ..., u, € O% such that z — > [u;]7t € W(OL).
Now let = € éj = W@m] and write z =Y oo p'z® for some () € W(OL)[r.].
Then there exist w® € W(0O%) and y@ € W(O%)[r.] with 20 = w® + 7_y®: hence

T = Zpix(i) = Zpi(w(i) + ﬂey(i)) = Zpiw(i) + 7. Zpiy(i) € W(Obc) + WEB:. O]
i=0 i=0 i=0 i=0
Proposition 3.50. We have (Fil° B,)¢=! := {b € Fil’ B, | p.(b) = b} = Q,.
Proof. [3, 3.4.4] Inspection of Teichmiiller lifts shows (B*)#=! = Q,. Note that it suffices

to consider the case B [1] with p = [p[P/®~Y; if z € (Fil° By [§)7~", then

z = @ (z) € (Fil” B}

[p|?

1 — :10 1 =1 __
[}~ C (R B [:])7! = Q.
The other cases then follow via inclusion.
Let x € (Fil° Bf[1])#=" and write © = ¢-™y with e € U, m € Ny and y € B} \ t.B}.
Then ¢,(y) = p™t™x = p™y. Let k € Ny such that pFy € B;r and write p*y = w + [E]T_lb

for suitable w € W(O%) and b € B;r using Lemma 3.49. Assume that m > 0. Then
Gar (t7'2) = 0, so

.. (¢" () = fo, (so" (p’“y - ”T_lb))
= ar(p™ ) — p 00, (¢"([F] — 1))0,(L (b))
Lhur (" Fy) = pH Oan (1) £ 0

for all n € Ny; by Proposition 3.47, this means that w = ([¢] — 1)v for some v € W(O%).
By Lemma 3.48 (ii), t. divides [¢’] — 1 in B}, so it divides

(1] — Dplv) = plw) = ¢ (p’fy - [er— 1b) — ey 4 [gp]p‘ Loo(b) € BY
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as well, which implies that y € t. B , contrary to its construction. Hence m = 0.
Let u € (B:;)X with t.u = HTI, again using Lemma 3.48 (ii). By a simple limit

o
argument, ¢, is norm-decreasing on B;’. Therefore

n— ! _ 3..12 lo p) 346
p lta(pp (ug&,,(b))|p <p" 1|t€|p < p 1|t |\ Trplp‘p < p!
for all n € N; in particular lim,, p" 't~ (up,(b)) = 0. This shows
pfr = lim gpz(pkx)
n—oo

= lim ¢"(w) +¢o! <[€p]p_ 1s0p(b))

n—oo
= lim ¢"(w) + ¢ (tzup, (b))
= lim ¢"(w) +p" Mgy (i, (b))

L lim o (w) € W(OL).

n—oo
Hence z € (BbT)?»=! = Q,. O

The restriction to Fil° B, is crucial because as we will soon show, the Frobenius
invariants of B, turn out to be much larger. The proof of the results below follows the
general principles of the arguments in [12, §6.2.2, §6.2.3].

Lemma 3.51. Assume that C is algebraically closed. Then for all a,b € W(O%), there
erists a v € W(Obc) such that ¢(v) —av —b=0.

Proof. Let 29 =b. Given any 29 € W(0O%), we can always find a v; € O, such that

[0F] — alv;] = a:'( ) — pz*D for some 1) € W(OL,) because C” is algebraically closed and

(2
thus the monic polynomial X? — agX — 1:(()’) = 0 always admits a root v; € 0%. Hence

w(Zpi[vi]>—aZpi[vi]:Zp"([v — alvi)) Zp O _ pgtDy = 2O —p O

Proposition 3.52. Assume that C is algebraically closed and let p = |p|P/®=Y) andr € N,
Then the continuous and Q,-linear map p~"¢, — id : Fil" B;r — B;“ 1S surjective.

Proof. By Q,-linearity, it suffices to find preimages of y € E’Ij By continuity, it further-
more suffices to find an z € Fil" éj with p~"¢,(z) € é;“ and p~p,(r) —r—y € péj
since a preimage is then easily constructed by the usual p-adic approximation argument.

Let 7. = [6] L e BJr €] € W(02), and use 1.15 (ii) to find an s € OF, with
|s|, = |p| such that [s ] pE W(Oc) is a generator of kerfp,. Note that ¢(r.) = m.q,
T. € ker 0 and that ¢7'(¢) is a generator of ker @ (cf. proof of 3.47), so that there is a

u € W(Op)* with ¢~ *(¢) = ([s] — p)u. Furthermore, we have ¢ € pB/ since
lalp, = [([s]” = p)e(u)], = |[s]” — pl, = max{[p[*, p} = p.

Recall that by Lemma 3.49, we can write any y € BJr as Y i oyl + mi Ty, with
y; € W(OL) and 3/ € B;“. Note that for  : ity e Fil’ BJr we have

p—rspp( ) —r— 7Tr+1yl — 7TT+1(p_TqT+190p(—y/) + y/ o y/) c p_qu—HB;_ C pB;_7
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hence it suffices to find, for each 0 <i <r and y; € W(O%), an z; € Fil” B;r such that
p (i) — 1 — yimt € péj + 7T§+1é;_.

For any w € W(O%)*, there is a v,, € W(O% ) with p(w)"o(vy) — yi = ©~1(q)" vy by
Lemma 3.51. For z;,, := v, '(¢)""'n’ € Fil" BJr we then have

P p(Tiw) — Tiw — YiTL = p""so(vw)q’”"sO( D — v (q) 'L — yimt
T (P o) T = vue T (@) — i)
T (P o(vw)d" = (P(w) @(vw) = yi) — i)
= Wsso(vw)(p "q" — p(w)").

If » =0, this is zero regardless of choice of w; otherwise, note that this is divisible by
p'q — ¢(w) and it suffices to find a w € W(Op,)* such that p~'q — ¢(w) € pB} + 7. B .
If p =2, choose w := 1 and note that ¢ = 1 + [¢], so that

Pl —plw) = —1=
If on the other hand p # 2, choose w := —u and recall that p~*(q) = ([s] — p)u, so that

[s"]

plg—o(—u) = e(p o (q) + u) = op~ ' ([s] — p)u+u) = “—p(u).

Then [p~'q — ¢(—u)l, = [Elp(u)], = pl"" 7T = |p|77#™ < p as required. O

Corollary 3.53. If C is algebraically closed, then for every p € (0;|p|] and r € N, the
map p~ "¢, —id : Fil" B: — B;r 18 surjective.

Proof. We know that this holds for p = [p|?/®~ by 3.52. If 0 <o < p, then for any
y € B} C B} there exists an « € Fil" B} with p~"¢,(z) — x = y. Note that ¢,(z) € By,
so if p? > o, we conclude x = p~"p,(z) —y € B, + B = B, and can continue like this
until p?" < o for some n € N. But then x = p~ gop( )—yGB:n + Bl = B. O

Proposition 3.54. If C s algebraically closed, then for each r € Z, there is a short exact
sequence of Q,-vector spaces

0 — Q,t" —— Fil' B,”—23'B, —— 0.

Proof. Injectivity is trivial. For exactness in the middle, the case r = 0 was the subject
of Proposition 3.50; when r # 0, every z € Fil" B, with p~"p.(z) — z = 0 satisfies

(o —id) (T @) = p™ "t " pa(x) — 7w =" (p " pu(x) — 1) =0,

sot™"z € Q, by the exactness part of the case r = 0. It only remains to show surjectivity.
We know that p~p, —id : Fil* Bf — B is surjective for all s € N and p € (0; [p]]
by 3.53. Therefore if y € Bcrls C BY, there exists an x € Fil* B} with p~*¢,(z) —r = y.
Since © = p~Sp,(x) —y € Bjp + Bjrls = B}, the map p_SSOmS id: Fil* BY., — Bl is
surjective as well. Note that one can similarly derive the statement for B;r from the
statement for Bl if one takes e.g. [12, 6.25.2] as a starting point instead of 3.52.

Finally, let y € B,. Then there exists an s € N such that t*y € B} and r + s € N, as
well as an z € Fil"** B such that p~ ¢ty (z) — 2 = t°y. Hence t~*z € Fil" B, satisfies

(" e —id)(t7°x) =t (p" " pu(x) — 1) =ty = . O
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Theorem 3.55 (Bloch-Katou sequence). If C' is algebraically closed, then there is an
exact sequence of Qp-vector spaces

0 > Q, » Bf=' —— Byr/Bir —— 0,

where the map B! — BdR/B:{R 15 induced from the inclusion By — Bgg.

Proof. Injectivity is clear; for exactness in the middle, use 3.54 and apply the snake
lemma to

0 0 0
Q—— Fil B, 7, B, s 0

0 — Bg—l S 1;. LN é.

B‘f:\{ /Q, B./ (in10 B,) 0

to conclude Bf='/Q, = B,/(B. N Big), where the isomorphism is clearly induced by
B#=! — B,. It now suffices to show that B, — Bar/Bjy is surjective. Since

Bix = 073 (0ar(B"")) = ker O4g + B*" C tBj; + B.,

we see inductively that t "Bj; C Bjz + B. for all n € N, i.e. Byr = B + B.. O
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4 The ring of crystalline periods B

We return to the setting of §1.3. Let K be a p-adic field, i.e. a non-archimedean complete
discretely valued field with perfect residueAﬁeld k such that char K = 0 and char k = p. We

fix an algebraic closure K and write C' = K for its completion, which is again algebraically
closed by Krasner’s lemma. By construction, the field C'is perfect and complete, so since
|C| = |K| C R{ is already dense, C is perfectoid. We thus have associated rings B*,
Bf, B,, BY, B, A),, Acxis, Blis» Beris, Bi and Bgg as in §3.3 and keep the notation B,
from 3.44.

Denote the residue field of Oz by k. This is an algebraic closure of k and the residue
field of the completed maximal unramified extension Ku ¢ C, which_is another p-adic
field that induces the same C' and whose absolute Galois group Gal(/K") is canonically
isomorphic to the inertia group I of G := Gal(K).

If we write Ky := W(/{;)[%] for the mazimal unramified subfield of K, then K/Kj is
a finite and totally ramified extension. This is well-known if K/Q, is finite, but works
in the general p-adic field setting too, see e.g. the remark following [2, 4.2.3]. Writing
e:=[K : K|, we have K = Ky() for some m € Ok that is the root of a monic Eisenstein
polynomial > 7 ;a; X" over Ok, = W(k), i.e. a. =1, a; € pW(k) for all 0 <i < e and
ao & p*W(k).

Remark 4.1. The group G = Gal(K) acts on the following rings:

Acts on | Induced from | Induced by
C K completion
ok C functoriality of -* and localization
B+ Oy, Witt vector functor and localization
By Bt || -isometric action on BT
Bt B G-equivariance of ¢,,,
Bar BbF Proposition 1.3 (iii) and localization
Acrisa B:;"is W(ObC') |g[s]|b - |[9% = |p|
B, B g.te = log([eX9]) = x(g)t.

It is easy to see that the various 6,, @,, and all inclusions between the rings above
are G-equivariant since this can either be checked on W(O2) or follows from Proposi-
tion 1.3 (iil). Since ¢.t"Bji = x(9)"t"Bjr C t" By, the G-action is compatible with the
filtration on B,.

Proposition 4.2. O¢ is a W(k)-algebra; O% is a k-algebra; W(O%) is a W(k)-algebra.
Every Gauff norm ||, restricts to the p-adic absolute value normalized to |p| =p on

W(k) c W(O2).

Proof. Recall that k is the residue field of the completed maximal unramified extension
Ky C C of Ky. Since K" is a p-adic field, there is an inclusion W(k) = (’)I/(O;r — Oc.
The other two algebra structures arise through the tilting and Witt functors. The final

remark follows from k* C (O%)*. O

4.1 B;F[%] and B as equivalent period rings
Before we can apply the theory of period rings to Bj[%] and Bys, we need to show
that these rings are (Q,, G)-regular. Unlike in the Hodge-Tate or de Rham cases, this is

significantly more technical to establish.

47



Lemma 4.3. Let p = |p| and extend the Gauff norm ||, to Frac B} by multiplicativity.
Forx =Y ") n'z; € K ®, Frac Bf = ¢, = Frac By, let

— i/e
|$L® ggii/) |$Ap

Then |-|g is an absolute value. More precisely, we show:

(i) |l is a submultiplicative Frac B -norm.
(il) |-|g is multiplicative on the subring @ W (0%) C @, =’ Frac B
(i) |-|e is multiplicative on K ®, Frac Bf. In particular, K @, Frac B} is a domain.

Proof. (i): That || is a Frac B -norm is clear from the deﬁnition since ||, is an absolute

value on Frac B) and addition is componentwise. If z = ZZ T € @Z o ™ Frac B,
then

e—1 e—1
[T2|g = Zﬂ'ixifl + Z Taire | = max{|agTe—1l,, IH<1?<>§ Pi/6|37z>1 + a;Te1]p}-
i=1 i=0 ® =

Since all a; € pW(k) and ag € p*W(k), Remark 4.2 implies that |ao|, = p and |a;|, < p
for all 0 < ¢ < e. Hence

e— l/qxe ﬂp

|aoTe—1]p = plTe-i], = [7]ep"
< [lsl7le,
P i1 + aiwet], < max{p"*|vi 1]y, p%|aize-1],}
< |mle max{p" |z, 4, pepl TV e ]}
< I7lgl]e,
proving |mz|g < |7|g|z|g. The strict triangle inequality then shows

[zyle < max|er’ Yile < gﬂaXIJfI@p”elyzlp 2|o|yle

for all = 307, wlay, y = Zf Ty € @5, 7 Frac Bt
(ii): Let x; = Z;X’Opj[ N, v = Z;O:Opj[yi(j)] € W(Oy) for all 0 < i < e and set
T = Zf;é X,y =y 01 wly;. Without loss of generality, let x, y # 0. Choose the unique
pair
(or i) € {(7.9) € No x {0, e = 1} | falo = p"*p/]a”), }
that minimizes ej, +1i, and set 2/ = >7_ 7 Z]€N0,6j+z>e]z+zz Pl (j)] Since the condition

Qg —1

ej +1 > ejy + iy is equivalent to j > j, + [*=="], we can explicitly calculate

twwwwz SNTPEDY, < 17 E)le = uls.

= J€Ng
e]+2<ejz+zz

Define i, j,, 3" analogously. Like in Proposition 3.4,

lzy — 2"y |o = |(z —2")y — 2'(¥ — y)|s
< max{|(z — 2")ylg, |’ (v — y)|a}
(i)
< max{\x - x/’®‘y’®> ’$I|®\?Jl - y!®}

< |z|g|y|e-
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It now suffices to show |ri=topleTiv [y §jz)yij>]y < |2'y'| since then

|7T¢z+iypjz+yy [z (J=) (Jy)] |

lzy — 2y |e < |2lelyle = Ty Y e < 7'y |,

which implies |37%|®S |x|®|y\? < |2'y']e = |zyle-
For 2 =Y 7" w2 € @5, ®W(OL), define £(z) = ming<i<.(i + evy(2;)) € Z U {o0}.
Then the series representation in W(O,) implies the following for all 2,2’ and 0 < i < e:

Upz) =L(2) +e, Uz +2") > min{l(z),£(")}, 0(z) +1i>L(z2).

Furthermore, ¢(7wz) > ¢(z) + 1 since

Umz) =L g iz 1—1—5 Tz 1) > min{/( E Tz 1) g T % 1)
e—1 e—1

E(Z T % 1) > Z(Z T'pze 1) = U(pze_1) = U(2e1) +€ > 0(2) + 1
=0 i=0

e—1
i=1
Now note that whenever ej + i < {(z) and a € O, we have

|2+ 7' [alle 2 |7 (i + P[a])|o = 07|z + lalle = /P [alle = 7' [a]e-

Hence setting z” = 2’ — W’Zp“[ I ] and ¢y’ =y — 7r’yp7y[ ] we have

g(x/y/ . 7Tim+iypjz+]y[ Ez )yz(jy ]) — g(ﬂ_izpjzy// + Wi”pjy:v" + x//y//)
> min{ei, + j. + 0(y"), ei, + 7, + 0(z"), ((z"y")}
> e(ig +1y) + Jo + Jys
which implies [yl = [2'y/]o > [rp 9 [27y ]| = |o]o|yle
(iii): Since |-|g is a Jorm, eliminating denominators reduces the statement from
@f;é 7' Frac B} to @;_, 7T1B+ By part (i), multiplication is continuous with respect
to ||g; from the definition of | | it readily follows that componentwise convergence im-
plies convergence with respect to |-|g, which further reduces the result from @;_, FZB;_

to @z‘:o 7' B®T. Eliminating denominators again finally reduces to part (ii). O

Remark 4.4. Lemma 4.3 (ii) and the multiplicativity part of Proposition 3.4 are instances
of the same general theorem regarding the ramified Witt vectors O Qw ) W(0?2,), which
explains why their proofs are so similar. Ramified Witt vectors can be constructed in
essentially the same way the normal Witt vectors are, using the uniformizer 7 instead
of p and p®-th powers instead of p-th powers. Over perfect coefficient rings they admit
a unique series representation » ;- 7'[x;] and one obtains GauB norms and the results
of §3.1 in a completely analogous way. The norm |-|g above is then the normal Gaufl
norm |-|,, although one should note that our xgj ) is merely associated, not equal to x;;.

This approach is chosen in [6], but it is difficult to fit into our conventional treat-
ment without developing ramified Witt vectors in full detail because the Witt structure
polynomials S,,, P, I,,, which the proof of Proposition 3.4 relies on, differ in the ramified
case.
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Proposition 4.5. The map K ®k, Be — Bar is injective and G-equivariant. Equipping

127
K ®k, Bs with the subspace filtration, we obtain gr(K Q, Bs) = gr Baqr = Bur on the
level of graded rings.

Proof. The map K ®g, Be — Bgr factors into K ®g, Be — K ®, Frac Bl‘f — Bygr, so it
suffices to prove that K ®g, Frac BJr — Bgg 1s injective. But K ®g, Frac BJr is a domain
by Lemma 4.3, and since it is also a finite-dimensional Frac BJr algebra, thls means it is
a field. Hence K ®g, Frac BJr — Bgr is a field homomorph1sm and necessarily injective.
The map is equivariant because Frac BJr — Bgr is equivariant.

The composition Fil"(K ®, B,) N t"Biy — "B /" Bz = C(x") is surjective
since fqr(B>*) = C, and thus induces an isomorphism

ar"(K ®, B) = Fil'(K @, B.)/ Fil""' (K @k, Bs) = t"Biy, /t"T' B, = et Bar. O

Proposition 4.6. We have (Frac B,)% = BY = Ky, and every b € B, \ 0 such that Q,b
is G-stable is a unit in B,. In particular, Be is (Q,, G)-regular.

Proof. [2, 9.1.6] The injection K ®g, B, < Bqr from Proposition 4.5 shows that

!
dimg, By = dimg K ®k, BY < dimg (K Rk, Be )¢ < dimg B(?R‘Lfﬁ 1.
But B¢ contains at the very least the G-invariant canonical copy of Ko C B[7] C B, so
BY = K,. The equality (Frac B, ) = K| follows after localization of K ®g, Be — Bar

by a similar argument; note that Bgr is a field and thus contains Frac B,.
Let b € B, \ 0 such that G.Q,b C Qyb. We will show that b is algebraic over Kuw ur,

then b is algebraic over K(‘)“ as well. Since L := K, “r(b) C B, is a finite extension of a

p-adic field, it is itself a p-adic field with L C. Since k is already algebraically closed,
the maximal unramified subfield of L is Ly := K o Applymg 4.5 for the p-adic field L

instead of K, we obtain an injection L ®r, L — L ®p, B, = Bgr, which implies that
L ®p, L is a domain and hence a field. Therefore 1 ® 1 —1® x € ker(L ®p, L — L) is
zero for all # € L, which means L = Lo, i.e. b€ L* = L} C BY.

Since t. € BY and g.t. = x(g)t. € Qpt. for all € € U, we may multiply with a suit-
able power of ¢, and assume without loss of generality that b € BJ; \ ker f4r. Since by
assumption G.Q,;b C Q,b, there is a character n: G — Q. such that g.b = n(g)b for all
g € G. The residue class b € C* of b spans a G-stable line Q,b C C whose corresponding
character is also n because the quotient map far : Biz — C'is G—equivariant Since b € C
is invertible, there is an isomorphism of topological groups Q;I_) = Q,, which shows that
n: G — Q) isa continuous group homomorphism; hence it is Z-valued and all its powers
are subject to Theorem 1.23.

Let I C G be the inertia subgroup. Then we can use

beCin ™Y ={zecC|gx=n(g)rforal geG}#0

to conclude that the group n~!([I) is finite, so there exists a finite Galois extension M/ Ku
such that J := Gal(M) C Gal(K™) = [ lies in the kernel of n~!. But M is a p-adic

field with M = C, so Theorem 1.23 as applied to M shows that b € C(n~!)’ = C’ =

notably, b € C is algebraic over K", and by Hensel’s Lemma, it admits a unique lift
B € Bl which is algebraic over K™ C Bj;. We claim that b = 3.
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First note that G acts on 3 via n as well: Since there exists an = € Bjj; such that
B = b+ tx, we have

n(g) " g.8=n(9)"" - g.(b+tx) =b+n(9)"'x(9)t - (9.7).

In particular, since 7(g)~! - g.3 is algebraic over K" and the Hensel lift is G-equivariant
(cf. proof of 1.25), the element n(g)~' - ¢g.3 is another Hensel lift of b over K, hence
equal to 8. In other words, g.6 = n(g)5.

Assume that b # 3. Then there is a minimal r € Ny with b — 8 € Fil" Bqr. As we
have just seen, Q, - (b — /) is G-stable and again has 1 as its associated character. Now
reduce modulo Fil"*! Byg to obtain a non-trivial Qp-line in Fil" Byg/ Fil"*! Byr LI o (x")
where G acts via x"n. Again we have C'((x"n)~!)! # 0 because

b—pBeC((xXn) ™) ={zeClgz=x"(g)n(g)x for all g € G} # 0.

Since K is a p-adic field with completed algebraic closure C' and Galois group I, x 75!
has finite image by Theorem 1.23. This is only possible if r = 0 because otherwise ' (I)
is finite and x~"(I) isn’t. But r = 0 contradicts fqr(b — ) = b — b = 0; it follows that
b = [, so that b is algebraic over KU as claimed. O

Corollary 4.7. We obtain functors Des and D, from Repr?pnt(G) to the category Vec};O
of finite-dimensional Ky-vector spaces. They are faithful, exact and commute with tensor
products and duals.

It turns out that in terms of admissibility, the choice of B, does not matter.

cont

Proposition 4.8. Let V' € Repg), (G). Then the following properties are equivalent:
(i) V' is Beis-admissible.
(i) V is Bf[{]-admissible for some p € (0; |p]].

(ili) V is BF[7]-admissible for all p € (0;|p]].

We call a representation V' satisfying these properties crystalline and denote the full
subcategory of crystalline representations of G by Reprf;S(G). The functors D, and Dy

are naturally isomorphic as functors Reprf;S(G) — Veck, .

Proof. (ii) <= (iii): Admissibility is a matter of Ky-dimensions. For all 0 < o < p < |p|,
the Ko-linear inclusion t,,, ® idy : (BF[1] ®g, V)¢ < (B3] ®g, V)¢ shows that B} [{]-
admissible implies B/} [1]-admissible. On the other hand, ¢, : Bf[}] < B[] is injective,
so we have an injective homomorphism of abelian groups

o ®idy : (B [}] ®g, V)¢ = (Byli] ®q, V)°.

This is not Ko-linear, but if V' is Bf[}]-admissible and vy,..., v, € (BF[}] ®q, V)¢ is
a Ky-basis, then the images (p, ®idy)(v;) are still Ky-linearly independent because
¢ : Ky = K is bijective and hence for all \; € K,



implies \; = 0 for all 1 <i <n. Therefore Bf[}]-admissible implies B, [}]-admissible.
Combining these two results yields the equivalence.

(i) <= (iii): Apply analogous arguments to the inclusions B, [1] < Bais — B/ (1]
from Proposition 3.33.

The final assertion follows from the trivial observation that the maps ¢, , ® idy,
(Bjpjp = Beris) @ idy and (Beis < Bjp|) ® idy are natural in V. H

We will similarly write D, when the exact choice of functor doesn’t matter. As is
usual for period ring functors, D, takes values in a more structured category.

Definition 4.9. A filtered ¢-module over K is an isocrystal D over K, such that the
base change Dk := K ®, D is a filtered K-vector space. In other words, we have a
triple (D, ¢p, Fil*) where D is a Ky-vector space, ¢p : D = D is an automorphism of
abelian groups such that ¢p(k.d) = p(k).¢p(d) forallk € Kyand d € D (¢p is Frobenius-
semilinear), and Fil* is a decreasing, separated and exhaustive filtration on Dp.

A homomorphism of filtered ¢-modules over K is a Ky-linear map f : D — D’ such
that f(¢p(d)) = ¢p(f(d)) holds for all d € D and fx : D — D is a homomorphism
of filtered K-vector spaces. f is called strict if the extension fx : Dx — D) is strict,
i.e. satisfies fi'(Fil" D)) = Fil" D for all n € Z.

Filtered ¢-modules over K form a category which we denote by MF}Z, with an obvious
forgetful functor MF?( — MF g to the category of filtered K-vector spaces.

Lemma 4.10. If ¢ : D — D’ is an injective Frobenius-semilinear map between Kq-vector
spaces with dimg, D = dimg, D' < oo, then ¢ is bijective.

Proof. Since ¢ : Ky — K, is an automorphism, the image of ¢ is a Ky-linear subspace
of D'. Hence it suffices to show that images of linearly independent elements remain
linearly independent, which follows by the exact same argument as in the proof of 4.8.
In fact, the map ¢, ® id we considered there was Frobenius-semilinear. O]

Remark 4.11. Like MF g, the category MF}’; is additive and admits kernels and cokernels,
given by the vector space ker f (respectively coker(f)) with the induced Frobenius (which
is bijective by 4.10) and the subspace (resp. quotient) filtration on the base change. It
similarly fails to be abelian solely because the inverse of a bijective homomorphism need
not respect the filtration after base change. This problem again does not exist for strict
homomorphisms and we can nevertheless define a notion of exactness as in MF i by saying
that a sequence of filtered ¢p-modules

0—-D —-D—D"—0
is exact if the underlying sequence of vector spaces is exact and the sequence
0— D)y = Dg — Di—0

is exact in MF g, i.e. exact after applying any Fil" or equivalently inducing the subspace
filtration on D) and the quotient filtration on D..

We also have a notion of tensor products and duals in MF?} The tensor product
of D,D' € MF?} is given by the vector space D ®g, D', the Frobenius-semilinear map
Opep ‘= ¢p ® ¢pr, and the filtration

Fil"(D @k, D)k = Fil*(Dx ®x D) == »  Fil' D @ Fi¥’ Di.

i+j=n
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The dual is given by the vector space Homg, (D, Ky), the Frobenius-semilinear map
¢p- = (f—~ ¢ 1o fogp), and the usual dual filtration

Fil"(Homg, (D, Ko))x = Fil" Homg (Dg, K) := {f : Dx — K | Fil'"" Dg C ker f}.
We record the following basic result on filtered vector spaces for later use.
Lemma 4.12. Let V,W € Filg and V' CV a subspace with the subspace filtration.

(i) If f: V S W is an isomorphism in Filg, then the restriction fyy : V' = f(V') is
an isomorphism in Filg as well.

(il) Ifdimg W < oo, then V' @ W carries the subspace filtration relative to V & W.

Proof. (i): Write W' := f(V') and let iy : V' — V and iy : W’ — W be the canonical
inclusions. Then we have iy o fjy» = foiy, so

fy (B V') = iy (i (fro (B V7)) = i) (f (v (FIL" V7)) C i) (Fi" W) = Fil" W,
S ET W) = fA i W) = iy (f7 (FI W) = iy (Fil" V) = Fil" V.

(ii): Let ¢: V' < V be the inclusion. Since W is finite-dimensional, there exists a
basis wy, ..., w, € W of W such that {wy,...,w,} NFil* W is a basis of Fil* W for all
k € Z. Foreach 1 < j <mn,leti; := max{k € Z|w; € Fil* W}. Since ¢ ® idyy is injective,

(1 @idy ) HFIH(V @k W) = (¢ @ idy) (i(Fﬂkid V @5 Fil¥ W))

J=1

=it (éww V o Kw»)

=1

_Z@ (1 @ idy) Y (Fil* 9 V @k Kw;)

7j=1 I=1

= zn: é Fil" ™ V' @ Kuw,

j=1 I=1

=Fil* (V' @ W). O

Proposition 4.13. Let V,W € Repcont(G) and let f:V — W be a homomorphism of
p-adic representations.

(i) Duo(V) = (Ba ®q, V) is a filtered ¢p-module when equipped with ¢ = e ® idy and
the subspace filtration relative to

K ®k, (Bs ®q, V)¢ C (K ®k, B. ®q, V)© = (Bar ®q, V)9 = Dar(V).
D,(f) = idp, ®q, f is furthermore a homomorphism of filtered ¢-modules over K.

(ii) After restriction to RepCrls the natural isomorphisms between D.s and all D, of
functors RepcrIS — VecKO from Proposition 4.8 are also natural isomorphisms of

; i
functors Repg;S — MF%.
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Proof. (1): e is G-equivariant, so ¢ indeed restricts to an injective Frobenius-semilinear
map De(V) = D.(V), which is bijective by 4.10. D,(f) is compatible with ¢ because
¢ 0 Do(f) = (pe @ f) = Do(f) 0 ¢; compatibility with filtrations follows from the fact
that De(f)x and Dgr(f) are both restrictions of idx ® idp, ®f.

(ii): We need to show that the inverses of the components of the natural isomorphism
(which are base changes of the canonical inclusions) commute with ¢ and respect filtra-
tions after tensoring with /. Compatibility with ¢ readily follows from 3.19 and 3.33 (ii).
Compatibility with the filtrations follows from the fact that the base changes of the
canonical inclusions induce the subspace filtration, are therefore strict, and hence are
isomorphisms if and only if they are bijective. m

Corollary 4.14. For all V € Reprf;s(G), there is an isomorphism of filtered K -vector
spaces K @, Do(V') = Dar (V) which is functorial in V. In particular, crystalline rep-
resentations are de Rham and K @, De(-) = Dar as functors Repg*(G) — Filk.

Proof. The map K ®p, Do(V') < Dgr(V') is clearly functorial in V' and a strict homo-
morphism of filtered modules over K since it induces the filtration on K ®j, De(V).
Therefore it suffices to verify

dimg, V' = dimg, D(V)
= dimg (K Qf, De(V))
< dimg (K ®p, B. ®q, V)
< dimg (Bqr ®q, V)¢
= dimg Dgr(V)
< dimg, V. O

Corollary 4.15. The functor D, : Reprf;S(G) — MF?{ 15 exact and commutes with duals
and tensor products.

Proof. Combine 4.7, 4.14 and 1.28. O]

4.2 Properties of crystalline representations

We close with an overview of assorted results on crystalline representations, largely based
on [2, §8, §9.3]. Having established that our notions agree with the customary ones, we
do not prove all of these properties in detail and refer to the literature instead.

Proposition 4.16. A representation V € Repa)pnt(Gal(K)) is crystalline if and only if it

is crystalline as a representation of Gal(f/(?r).

Proof. Denote the D, functors for K and Ku by DX and DE"™ respectively. Since
K @k, DX(V) = DE™ (V) is easily seen to be compatible with the Frobenius, it suffices
to see that its base change is an isomorphism of filtered K'_vector spaces. This is proven
in a similar way to the de Rham case (see e.g. [2, 6.3.8] and [2, 2.4.6]), by reducing to
the fact that finite-dimensional Ky-subspaces of B} obtain their natural Ky-vector space
topology as the subspace topology. Since we may choose B = B} for some p € (0; |p]],
this follows from the fact that |-|, induces the p-adic topology on K. O
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The analogue of 4.16 for Byr holds for arbitrary (notably ramified) finite extensions
L/K as well, by reducing to the Galois case and applying the classic Galois descent
isomorphism L ®@x DX (V) = L @ D5 (V)G E/K) = DL (V). This argument does not
extend to the crystalline case and indeed being crystalline need not be checkable after
under such extensions, as we will see in 4.19.

cont

Proposition 4.17. A representation V' € Repg), (GQ) is unramified if and only if it is
crystalline and potentially unramified.

Proof. An unramified representation is trivially potentially unramified and by 4.16 it
is crystalline. On the other hand, let V' be crystalline and let L/K be a finite Galois
extension such that V' is unramified as a representation of Gal(L). By 4.16, we may

assume that k is algebraically closed, so that B&) — Ly = Ky; then

DE(V) = DEY)eI/8)
120
c (B.Gal(L) ®Qp V)Gal(L/K)

L (Ko ®q V)Gal(L/K)
_ KO ®Q VGal(L/K)
p )

so a dimension comparison shows V = VGl(L/K) Byt then the action of the inertia group
of Gal(K') must factor through the inertia group of Gal(L), i.e. V' is unramified. O

Corollary 4.18. A one-dimensional continuous representation p : G — Q' is crystalline
with Hodge-Tate weight n € Z if and only if px" is unramified.

Proof. Every x™" is crystalline since t" € Dy(x™") = {x € By | g.x = x(9)" - x}. After
multiplying with x", it suffices to show that p is crystalline with Hodge-Tate weight 0 if
and only if p is unramified; but this follows from 4.17 and Theorem 1.23. O]

In particular, no finitely ramified character corresponds to a crystalline representation.
However, since the de Rham property is insensitive to finite extension, finitely ramified
characters correspond to de Rham representations, showing that the converse of 4.14 does
not hold. We can also now illustrate how being crystalline cannot be checked on finite
ramified extensions.

Ezample 4.19. Let L/K be a finite and ramified Galois extension. Then the group
ring Q,[Gal(L/K)] is a representation V € Rep?Qf’;t(G). The induced representation for
Gal(L) is trivial (notably unramified and crystalline), so V' is potentially unramified; but
by Proposition 4.17, V' can only be crystalline if it is unramified, which is clearly false.

A major defect of the functors Dyt and Dgr was that they are faithful, but not full,
making it difficult to find a simple description of the categories Repg;r(G) and Repgj(G).
This situation is remarkably different for the functor Ds.

Proposition 4.20. The functor D, : Reprf;S(G) — MFY. is fully faithful. The pseudoin-
verse on its essential image is V, : MF%. — Modg, (g with

Vo(D) := (B, @k, D)*~' NFil°(B, ®x, D)k,
Vo(f 2 D = D) := (idp, ®x0f) vy

where (By @, D)= := {z € By @k, D | (e ® ¢p)(x) = z}.
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Proof. The ring B, is a filtered ¢-module over K via ¢, and the subspace filtration for
B, ®k, K C Bqgr, so the above definition makes sense. Recall that for all V' € RepC“S(G)
there is a functorial isomorphism ay : B, @, De(V) = B, ®q, V of B, _semilinear rep-

resentations by the general theory of period rings and note that B, ®g, V € MF via

e ®idy and Fil"(K ®g, B,) ®g, V. We claim that ay is an isomorphism in MF K
that there is a natural isomorphism

!
Va(Do(V)) = (Fil° B,)*~ @g, V2 Q, ©g, V 2 V.

Forbe Byandv =73 " ,b;Q@v; € (B, ® V)¢ c B, ® V, we indeed have
(e @idy)(ay (b ®v)) = (pe ®idy) (Z bb; @ vl> Z ©o(b)e(b;) @ vs,

av (100 ® bpuy )(90-(5)@)“):@\/( ®Z¢. @v,>:¢. th. ) & v

We write B, i 1= Be @, K. By 4.12 (ii), Bs xk ®q, V carries the subspace filtration with
respect to Bar ®q, V and (Be @k, De(V))x = Be x @k Dar (V) carries the subspace fil-
tration with respect to Bqr ®x Dar(V). That ay.x : Bex @ Dar(V) = Be x Rq, V is
an isomorphism in Filg therefore follows from 4.12 (i) and the fact that ayx is the
restriction of the filtered isomorphism ay g : Bar @k Dar(V) = Bar ®g, V from 1.29.
Let V,V' € RepC“S(G), D := D,(V),D":= D,(V') € MF%,, and f : D — D’ a homo-

morphism in MF?} Denote by ay, ay- the crystalline comparison isomorphisms and let
f'=ayofoay' : By®K, V — By @, V'

By unwinding definitions, one sees that f’ is a base change of a homomorphism V' — V’;
applying V, then results in the original map f. ]

One might therefore hope to explicitly describe the essential image of D, to obtain an
equivalence of categories. This is in fact possible; the idea is that the generally unrelated
Frobenius and filtration should satisfy some kind of compatibility condition.

Definition 4.21. Let D € MF}., dimg, D = d < oo and det D := A" D € MF%..

(i) The Hodge number of D # 0is t(D) := max{i € Z| Fil'(det D) # 0}. For D = 0,
we set ty(D) = 0.

(ii) The Newton number of D # 0 is the uniquely determined valuation v,()\), where

\ € Ky is such that ¢ge p(7) 1= (App)(z) = Az for some z € det D \ 0. For D =0,
we set ty (D) = 0.

(iii) We call D € MF}. weakly admissible if t;(D) = ty(D) and ty (D) < ty(D') for all
subobjects D' € MF%, of D.

Note that ty and ty are really attached to the underlying filtered K-vector space
and Ky-isocrystal respectively. Both numbers are well-defined; on the one hand we
have Fil*"(det D)x = 0 for any n € Z with Fil” Dg = 0, and on the other hand we have
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() /1 € W(k)* C Ko for all p € K, s0 that dae p(1r) = (1) dact p(2) = ALy still

gives the same Newton number vp()\#) = v,(A).

Another commonly used definition of Hodge and Newton numbers makes use of the
Dieudonné-Manin classification (cf. [5]), which states that any Ky-isocrystal D decom-
poses into a direct sum D = @ae(@ D, where each D, is pure of slope «, i.e. admits a
Zy-lattice M C D, such that p=°¢}, (M) = M and a = ?, where ged(s,r) = 1 and r > 0.

Equivalently, D, := Ki* ®x, Do with the filtration Fil* D = := Fil” Dx ® K™ and
the Frobenius map ¢p ® idz= is isomorphic to a direct sum of finitely many copies of

0
the Kj"-isocrystal A, := @;:01 Ky - ', whose Frobenius is

r—1 r—1
A, (Z aiFZ) = p(a,_1)p°F° + Z p(ai—1)F".
1=0 1=1

It is easily seen that dim@ A, =rand ty(A,) = s.

Proposition 4.22. For all D € MF$, with dimg, D < oo, we have ty(D) = ty(D) and
tn(D) =ty (D).

Proof. Since det D = det 13, this reduces to the one-dimensional case, which is trivial. [
Proposition 4.23. Let D € MF?{ be finite-dimensional.
(i) tu(D) =3,y - dimg (Fil' D/ Fil'™' D).

(i) tn(D) = Y peq @ - dimp, Do = Ycq @ - dimz Do

Proof. The case D = 0 is trivial, so assume D # 0.

(i): Clearly t(D) = ty(det D) = max{} 7 i;| Fil" Dx A ... AFil" Dy # 0}. Note
that Fil"* D A ... AFil"d Dy # 0 if and only if all Fil9 Dy # 0 and there exists a linearly
independent choice of vectors v; € Fil% Dg. The choice of i; and v; that realizes the
maximum must necessarily satisfy v; € Fil'" Dg \ Fil“* Dg, which implies the formula.

(ii): By 4.22, we can consider ¢ ~(D) instead. Note that the canonical isomorphism
det (D", Au,) = Qi det A, is compatible with the Frobenius. If Aj,... A, € K are
such that @gera,, = (v = \v), then @™ Pget Ao, = (v = ([TZ,; M\i)v). Hence it suffices to
consider the case D = A, for some a = 2 € Q with ged(s,r) = 1 and r > 0, which indeed
satisfies ty(Aq) = s = - dim K A, by our previous remarks. O

The main result is now the following theorem due to Colmez and Fontaine.
Theorem 4.24. For each D € MF}’&(, the following properties are equivalent:
(i) D is admissible, i.e. there is a V € Reprfis(G) such that D = Ds(V).

(ii) D is weakly admissible, i.e. dimg, D < oo, tg(D) =ty(D) and ty(D') < ty(D')
for all subobjects D' < D.

In particular, if we denote the full subcategory of weakly admissible filtered ¢-modules
by MF2™™ the functor D, : Repg,’(G) — MF2™ s an equivalence of categories and
its pseudoinverse is the functor Vo from 4.20.
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Proof ((i) = (ii)). 2, 9.3.4] By 4.16, V is crystalline as a representation of Gal(l/(;r);
by 4.22, Hodge and Newton numbers can be computed on D. Since all subobjects of D
give rise to subobjects of D after base change, it suffices to consider the case where k is
algebraically closed.

By unwinding definitions, one derives from 4.15 that D, and exterior powers com-

mute. Since k is algebraically closed, all unramified characters of G are trivial, so
by 4.18, det Do(V) = Dq(det V) = Do(Q,(x")) = Kot™" for some n € Z; therefore we
have ty(Do(V)) = ty(Do(V)) = —n.

Let D' < D be a subobject in MF}. and d := dimg, D’. Note that taking exterior
powers preserves subobject relations between filtered ¢-modules, the crystalline prop-
erty on representations, and commutes with D,. Since we are only interested in ¢z (D’)
and ty(D') at this point, we may therefore consider det D' < A D = Dy(\? V) instead,
i.e. assume that dimg, D' = 1.

Let vy,...v, € V be a Qp-basis of V and let ¢ € D' be a Ky-basis of D', so that
épr(e') = Ae’ for some A € K. Then ¢’ =Y " | b; ® v; € Do(V) for some b; € B,; since
Yo Ab; @ v; = ¢pr(€'), we see that p(b;) = Ab; for all 1 <i < n.

Let s:=ty(D'). Since ¢ € Fil* D'\ Fil*'' D', we have b; € Fil* B, \ Fil*t! B, for
some 1 <7 <n. Assume that s > v,()), contrary to the theorem. Then b; € FilrW B.,
so t7*Wp € Fil' B, and ,(t~"*WMb;) = ut~**Mb; for some u € W(k)*. Since k is alge-
braically closed, we have u = p(u’)/u’ for some v’ € W(k)* (see e.g. [2, 9.3.3]). But then
t=MWp, /u’ € Fil' B, N B&=1 *2* Fil' B, N Q, = 0, which contradicts b; ¢ Fil**' B,. O

Note that in view of the theorem, more recent texts often use the latter condition as
the definition of admissibility. The direction (ii) == (i) is significantly more difficult and
admits a variety of proofs, all of them complicated. See [3, 4.3.11] for pointers to the
various approaches. The original proof in [4] proceeds by showing that there is always
a filtration for the underlying isocrystal of D that results in an admissible object, and
then stepwise adjusts this filtration in a way that preserves admissibility, until one finally
obtains the filtration on D. An important lemma in this proof is 2, 9.3.9], which notably
uses the sequence from 3.55.

As a corollary of Theorem 4.24, we obtain that the category MF%"*™ is stable under
tensor products. Due to the complicated structure of subob jects of a tensor product, this
would be very difficult to show elementarily.

We end this section with a collection of common results on weakly admissible filtered
¢-modules that we use in §4.3. Beware that while these properties may seem like trivial
consequences of 4.24, many of them are actually required for reduction steps.

Proposition 4.25. Let D, D', D" € MF% be finite-dimensional.

(i) If0 = D' — D — D" — 0 is exact in MF., then ty(D) = ty(D') + ty(D").
(i) If D, D’ € MFY,, then ty(D ® D') = dimg, D' - ty(D) + dimg, D - ty(D').
(iii) If D € MF%, then ty(DV) = —ty(D).

Completely analogous statements hold for ty.

Proposition 4.26. Homomorphisms in MFﬁgwadm are strict. All kernels and cokernels
exist in MF}’;’W&dm and agree with their counterparts in MF% In particular, MF(féwadm is
an abelian category.
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Proposition 4.27. D € MFf( 15 weakly admissible if and only if De MF%} 15 weakly
admissible.

Proposition 4.28. Let D € MF2™ ™ and let (D;)ie; be a family of weakly admissible
subobjects of D. Then (,c; D; € MF% 15 also weakly admissible.

Proposition 4.29. Let 0 — D' — D — D" — 0 be a short exact sequence in MF(;S< If
two of D, D', D" are weakly admissible, then so is the third.

Proposition 4.30. Let D, D’ € MF% with dimg, D, dimg, D' < oo and let f : D — D'
be a bijective homomorphism in MF. .

(i) We have ty(D) =ty(D') and tg(D) < ty(D').

(i) f is an isomorphism in MF%. if and only if ty(D) = ty(D').

4.3 Applications to p-divisible groups

Finally, let us discuss a result of Fontaine from [11, §6] that was a historical motivation
for the concept of crystalline representations: A connection between two classifications
of p-divisible groups over O. For a classic introduction to p-divisible groups, see [15]; a
detailed treatment can be found in [8]; for a general overview with some further historical
background, see e.g. [2, §7.2, §7.3].

We denote the category of p-divisible groups over a ring R by BT and the category
of p-divisible groups over a ring R up to isogeny by BT3;®. We consider a p-divisible
group I" over R an inductive family of finite flat commutative group schemes (I'),),en,
over R and denote its height by ht I'.

Remark 4.31. The p-divisible groups I' over Ok can be classified in two major ways.

e On the one hand, there is the Tate module T(T') := Hm ['(K) € Modg, g, where

the inverse limit is taken over the maps j, such that ', nr,— [,y1 is the
multiplication by p. The Tate module is free of rank ht [' and carries the profinite
topology; its formation is functorial in I' € BT, , yielding a fully faithful functor
from BTo, to the category of finitely generated Z,-modules with continuous G-
action, see [15, p. 181, Corollary 1]. Note that T(I") only depends on the generic
fiber I' xp, K. Passing to the isogeny viewpoint, we also obtain a fully faithful
functor

T':=T(-) ®z, Q, : BT5* — Repg™(G).

e On the other hand, we can pass to the special fiber I' X, k and study the con-
travariant Dieudonné functor M : BT}, — Mod%vf, an exact anti-equivalence be-
tween the categories of p-divisible groups over k£ and the left modules over the
(non-commutative) Dieudonné ring Dy which are free of finite rank over W(k). It
is exact and commutes with base changes to perfect extensions [/k.

Passing to isogenies again, M'(I") := M(I" x o, k) @w) Ko is a Ky-isocrystal by
Lemma 4.10. Furthermore, the base change M/(I")x admits a distinguished sub-
space Lr, which is the canonical image of the cotangent space t}.(K), giving M/(T")
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the structure of a filtered ¢-module over K via

Fil" M/(P)K =< Lr ifn=1,
0 if n>1.

Note that this MF%—structure can be equivalently described in terms of the pair
(Lr,M/(T")) and morphisms M/(T") — M/(I") that map Lr into Lpv; this is done in
older sources such as the one we cite. This gives rise to a fully faithful functor

M’ = M(: xo, k) @wa Ko : BT — MF..

Given these two approaches to the classification of p-divisible groups over Ok, a
cont

natural question to ask is whether there exists a functor D : Repg " (G) — MF. such
that D oT" = M'. In Theorem 4.37, we will see that this functor is D,s.

Lemma 4.32. IfT' € BTo,., then M'(I') € MF$,. is weakly admissible.

Proof. The case where k is algebraically closed is proven in [14, 1.4]. For the general
case, note that M’ commutes with base change to K" and use 4.27. O]

Lemma 4.33. Let 0 — D' — D — D" — 0 be a short ezact sequence in MES™™ . The
following propositions are equivalent:

(i) D lies in the essential image of M.
(ii) D’ and D" lie in the essential image of M.

In particular, if this is the case, there exist ') T, T" € BTigng such that the sequence
0—=I"—=T—=1I"—0 is ezact and M'(I') = D, M/(I"") = D', M/(I"") = D".

Proof. Again, the case where k is algebraically closed is proven in [14, 1.8]. The general
case follows from the fact that M’ commutes with base change to K. O

Lemma 4.34. If D C B" is a finite-dimensional pp-stable Ky-subspace, equipped with
the structure of a filtered ¢p-module over K wvia the subspace filtration with respect to
Dy C Bt ®g, K C Bqgr, then ty(D) < tyx(D).

Proof. [11, 6.5] Assume to the contrary that ¢ty (D) > ty(D) =r, let e € Fil'*® det D
be a basis element of det D such that ¢(e) = p"e. For each f € HomMF%(det D,B7), we
then have pp(f(e)) = f(bacn(€)) = f(p'e) = p" f(e). Since f(e) € Fil'"®) B+ we have
hence ¢ f(e) € (Fil"" ()= B+)#=1 c (Fil' B,)*=! 210, so f = 0.

Let n = dimg, D. The above result in particular applies to the map fo, A... A fg,.,
where ¢1,...,9, € G and f,,(d) = g;.d. Hence for any Ky-basis dy,...,d, € D, we have
det(g;.d;);; = 0. By a standard result (proven e.g. in [11, 6.7]), it follows that ds,...,d,
are B{y-linearly (i.e. K-linearly) independent over Byg; this contradicts 4.5. O

Definition 4.35. The space of Witt bivectors over O is the Q,-subspace

BW(0p) = {Zpl[xz} = T}g{)lo Z p'lwi] € BY| lim sup |$—i|;/pi <1} cB".

N i—00
€L i=—n
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These series really converge in B* since with ¢ := limsup,_, |9U—z|; 7" <1, we have
lim ‘p_i [x—i”p = lim P_i|flf_i’b < lim p_"qpi =0
1—00 71— 00

1—>00

for all p € (0;1). Beware that it is non-trivial that BW (0%) is a Q,-subspace since it is
unknown whether general elements of BT admit representations of the form ", _, p[z;],
whether such representations are unique, and whether they are stable under sums and
products. However, the above convergence conditions together with 3.3 result in the
following formula:

iy il =S i lim S (2 - 1/
> Pl + Y ol = Y P lim Sy @i Yy 90) ]
1€EZ 1€EZ 1EZ

Clearly BW (0O%) is stable under ¢p. Equipping BW(0%) ®k, K C Bgr with the
subspace filtration, we see that BW(OZ) is an infinite-dimensional filtered ¢-module
over K. Unwinding definitions reveals that the ring BW(O?) above is simply the
ring BW(Res(Oc)) from [8, p. 228] and similarly Oar (o) : BW(0O%) — C is simply
the map bwo, : BW(O%) — C. See also [6, §1.10.2] for a treatment more in line with
our approach. We can therefore make use of the following lemma:

Lemma 4.36. There is a natural isomorphism of functors BTp, — Repa’pm(G)
T'(-) = Homygs (M'(+), BW (O))-

Proof. This is a rewording of [8, Théoreme 1, p. 232] with S = O¢. O
We are now able to prove the main result, which is Theorem 6.2 from [11].

Theorem 4.37. There is a natural isomorphism of contravariant functors BTp, — MF%
!
M, =~ D.(T’()v) = HOII]QP[G] (T/(), B.)

Proof. [11, 6.2] Let I' € BT, and functorially identify 7"(I") = Hom,,.. (M'(I'y), BW)
K
using 4.36. We are looking for a functorial isomorphism

nr : M'(T') — Homg, j¢;(Hom,pe (M'(T'), BW), B,) = D(T"(T)");

¢
MF%,

since BW C B* C B,, the obvious choice is nr(m) := (f — f(m)), which is clearly Q,-
linear and equivariant. For functoriality, let o : I' — I be a homomorphism of p-divisible
groups and note that for all m’ € M'(I"), we indeed have

(Home[G](HomMF?{ (M'(«), BW), B,) o n ) (m)

— (Homg,(c)(Homy g (M'(a), BIV), B)(F' > /(')
— (!> /()) o Homyyge (M (), BIV)

= (f'= f(m) o (f = foM())

= (f = f(M'(a)(m)))

= (nr o M'(a))(m’).
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We claim that De(7"(I")") is also weakly admissible and that nr is injective. In that case,
nr is strict by 4.26 and

dimp, Do(T'(I")") < dimg, 7(I") = ht I = dimy, M'(I') < dimg, D.(T"(I")")

shows that T"(I") is crystalline and nr is an isomorphism

Consider kernr = (),epr ker(v : M'(I') — BW) € MFY., via the identification from
Lemma 4.36 and the fact that ¢pov =vo ¢y (). Every v € T'(') (trivially) gives rise
to a short exact sequence 0 — kerv — M/(I') — coimv — 0 in MF%.. Note that

tg(coimv) < tgy(imv) < ty(imv) =" ty(coimwv), (%)

so since M'(I") is weakly admissible by 4.32 and kerv < M'(I"), we have

tN(kew)%tN(M'(r)) — tx(coimv)

=ty(M'(T")) — ty(coimv)
< tg(M'(T")) — tg(coimv)

so ker v is weakly admissible as well. Hence 4.28 shows that kernr € Mngwadm and 4.29
implies that coimnp € MF¥™,

Now 4.33 applies to the sequence 0 — ker np — M'(I") — coimnr — 0, which is there-
fore the image under M of an exact sequence 0 - I - T' - IV — 0 in BTE‘;{g. But since
T'(I") = T'(I"), it follows that I'' = 0, hence ker nr = 0. O

In particular, we see that for any I' € BT, the representation T(I') ®z, Q, is crys-
talline. However, not all crystalline representations arise as the Tate module of some
p-divisible group. The Hodge-Tate weights of representations that arise in this way must
always lie in {0,1} by [15, p. 180]. By a conjecture of Fontaine, later proven by Kisin
in [13, Theorem 0.3], the converse holds as well.
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