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Notation

e F non-archimedean local field with ring of integers o and residue field k
e G =GLy(F) D B= N xT where B is the standard Borel, T' the standard torus
and N the unipotent radical of B

Recall

If 0 € Rep(T) then we can inflate it to a representation of B along the quotient map
B — B/N = T which we still call o. Since B\G is compact, the Duality Theorem (see
Talk 3, Thm. 5.6) tells us that

(Ind$ 0)¥ = nd§ (65" ® o)

where dp( <g Z)) = ||la~'b|| is the modular character of B.

The Jacquet module

Construction. Let (m,V) € Rep(G). Define V(N) C V to be the C-subvector space
spanned by the vectors v —7m(n)v, n € N, v € V. Set Vy := V/V(N). This is the unique
maximal quotient of V' on which N acts trivially. It admits an action of B/N = T. The
resulting representation (mwy, Vi) is called the Jacquet module of (m,V). We obtain a
functor

Rep(G) — Rep(T)
(W,V) —> (ﬂ'N,VN)

which is exact and additive.
Proposition 1. Let (7,V) € Rep(G) irreducible. The following are equivalent:
(i) The Jacquet module of (w, V') is non-zero,

i) 7 is equivalent to a subrepresentation of Ind§ x for some character x of T
B



Proof. Let x be a character of T, viewed as a representation of B trivial on N. By
Frobenius reciprocity,
Homg (7, Ind% x) = Homp(r, x).

Since y is trivial on N, any B-homomorphism © — x factors through the map m — mn
(as a map of T-representations), hence

Homg (7, Ind% x) = Homp (7, X).
Thus, if 7 embeds into Ind% x then clearly 7y is non-zero, showing that (i7) implies ().

For the converse, suppose that Vi # 0. If we can show that it admits an irreducible
T-quotient then we are done. Indeed, such a representation is necessarily onedimensional
(cf. Talk 2, Cor. 21), i.e. a character, say x. The quotient map mn — x corresponds to
a nontrivial map = — Indg x by Frobenius reciprocity, which is an embedding since 7
is irreducible.

It remains to construct such a quotient. Let 0 # v € V. Since V is irreducible over G,
its translates 7(g)v, g € G, span V over C. On the other hand, since 7 is smooth, v is
fixed by some compact open subgroup K’ of Ky := GLy(0). As Ky/K' is finite, there
are only finitely many distinct elements 7(k)v, k € Ky, say v1,...,v,. By the Iwasawa
decomposition G = BK (see Talk 3, Prop. 2.1) these vectors generate V over B, hence
their images generate Vi over T, so that Vy is finitely generated as a T-representation.
Let {u1,...,u}, t > 1, be a minimal generating set. By Zorn’s lemma there exists
a T-subspace U C Vi containing ui,...,u;—1 which is maximal for the property that
uy ¢ U. Therefore, U C Vy is a maximal T-subspace, so that Vi /U is irreducible. ]

Definition. An irreducible smooth representation (7, V) of G is called cuspidal if Vi
is zero. Otherwise 7 is called non-cuspidal or to be in the principal series.

Proposition 2. Any non-cuspidal representation of G is admissible.

Proof. Passing to subrepresentations preserves admissibility, hence by Prop. 1 it suffices
to show that if x is a character of T then Indg X is admissible.

Write Ind% x = (£, X) (cf. Talk 2, Construction on p. 8f.) and let K C Ky = GLy(o)
be a compact open subgroup. The space X of K-fixed points in X consists of functions
f : G — C such that

f(bgk) = x(b)f(9) Vbe B,ge G,k e K. (%)

By the Iwasawa decomposition, B\G/K is finite, and on each double coset BgK there
is at most one function (up to scalar) satisfying (x). It follows that XX is finite-
dimensional. O



More Notation

o Let (m,V) € Rep(G) and ¢ a character of F'*. The twist (¢m,V) € Rep(G) of 7
by ¢ is defined via

¢m(g) :== ¢(det g)m(g), g€ G.

e Let ¥ = x1 ® x2 be a character of T and ¢ a character of F'*. The twist ¢ - x of x
by ¢ is the character of T" defined by

¢ X = Px1 @ dxa.

This is compatible with twists of G-representations in the sense that there is a
canonical isomorphism

Ind%(¢ - x) = ¢ Indf x.
e Let 0 € Rep(T). We define
o= Indg(éj;/2 ® o).

This defines a functor Rep(T") — Rep(G) called normalized smooth induction. The
Duality Theorem then reads

(Bo)Y = if(aY).
The following result explains the structure of the Jacquet module of an induced repre-
sentation.

Lemma 3 (Restriction-Induction). Let o € Rep(T'). There is a short exact sequence of
T'-representations
0= oY@z = (Ind§ o)y — o —0

1\ . . .

where w = ((1) 0> is the permutation matriz and o®(t) := o(wtw™1), t € T.

The main result needed for the classification is

Theorem 4 (Irreducibility Criterion). Let x = x1 ® X2 be a character of T. Then

(i) Ind$ x is reducible iff x = ¢ - 17 or ¢ - 551 for some character ¢ of F*.
(i)” (5 is reducible iff x = ¢ - 5;1/2 for some character ¢ of F*.

(ii) Suppose that Ind$ x is reducible. Then
(a) its G-composition length is 2,
(b) one composition factor is one-dimensional, the other is infinite-dimensional,

(c) it admits a one-dimensional G-subrepresentation iff x = ¢ - 1p for some
character ¢ of F'*,



(d) it admits a one-dimensional G-quotient iff x = ¢ - (51_31 for some character ¢
of F*.

Remark. A smooth representation (m,V) of G has a composition series if there is a
chain of G-subspaces
V=VWoVio---DV;=0

such that Vj/Vji; is irreducible for each j. The subquotients V;/V;i; are called the
composition factors, and the composition length of w is the number of factors. It is
independent of the composition series.

We need the following result on homomorphisms between induced representations:
Proposition 5. Let x,& be characters of T. Then

1 if &€= vt
dimc Homg (Ind% x, Ind% €) = if §=xorx"op
0 else.
Proof. By Frobenius reciprocity,
G G ~ G
Homg (Indg x, Indj §) = Homy((Indg x) N, §).
By Restriction-Induction, there is a short exact sequence of T-representations

0— Xw(s;l — (Indg X)N = x — 0.

If x # X“’&gl then this sequence splits and we are done. On the other hand, if x = X“’égl
then Indg x is irreducible by Thm. 4 and we are also done. O

Remark. Prop. 5 gives a counter-example to the converse of Schur’s Lemma for repre-
sentations of locally profinite groups: Endg(Indg 17) is one-dimensional, but Indg 1pis
not irreducible: It admits the trivial G-representation 1s as a one-dimensional subrep-
resentation with embedding 15 — Indg 17 given by the constant functions. This leads
us to

The Steinberg representation

The irreducible G-quotient of Indg 17 is called the Steinberg representation of GG, denoted
Stg, i.e. it is defined by the short exact sequence

0— 1g — Ind4 17 — Stg — 0. (%)
By twisting with a character ¢ of F’* we obtain the special representations ¢ - Stg of G:
0—¢-1g — Ind%(¢-17) — ¢ - Stg — 0.
Taking the smooth dual of (%) we get

0 — St& — Ind% 65" — 16 — 0.



Prop. 4 implies St = Stf. Indeed, there is a nontrivial map Indg 1r — Indg 5,;1. It
must contain 1¢ in its kernel because otherwise Ind% 65" would admit a one-dimensional
subrepresentation which by the Irreducibility Criterion is not the case. Thus we get an
induced map Stg — Indg 5;1. Its image is irreducible, hence contained in St} giving a
nontrivial map Stg — St which is an isomorphism since St} is irreducible.

Theorem 6 (Classification Theorem). The following is a complete list of the isomor-
phism classes of irreducible non-cuspidal representations of G:

(i) the irreducible induced representations Lgx, where x % ¢ - 5;1/2 for any character

¢ of F*,
(ii) the one-dimensional representations ¢ o det, where ¢ is a character of F*,
(iii) the special representations ¢ - Stg, where ¢ is a character of F*.

The classes in this list are all distinct except that, in (i), we have LgX i Lgxw.



