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These are notes for a talk given in the PhD-seminar on Local Langlands for GLg in the
summer term 2023 in Essen. The main reference for these notes is [BHO06]. In this talk, we will
introduce two invariants, L-functions and e-factors, associated with representations of GLo(F),
and we will see some properties of them in the non-cuspidal case.

In the following let F' be a valued field, let o be its local ring, and let ¢ be the number of
elements of the residue field. Denote the units of o by Ur. Recall that C2°(F) is the C-algebra
of compactly supported, locally constant functions F© — C. On this, we have defined Haar
measures which are F-translation-invariant measures.

1 Functional Equations for GL(1)

This section is based on [BH06, § 23]. Before introducing L-functions and e-factors in the two-
dimensional case, we will introduce them in the one-dimensional case. Apart from the situation
here being much more explicit, we will also need this case to prove facts over non-cuspidal
representations in the two-dimensional case. We will also see functional equations relating
different L-functions and e-factors.

Let u* be a Haar measure on F*. Let x be a character of F*, let ® € C2°(F), and choose
a prime element w of F. For m € Z, the set w™Up = p™ \ p"™*+! is compact and open.
Therefore for any ® € C°(F), the function ® - I,m, is again locally constant and compactly
supported on F* because it is supported on w"™Ur, which is compact and open in F'*. Thus
P - Iymy, € C°(F*) and we can integrate

= 2n(@0) = [ @(@)x(@)du ()

wmUp

for m € Z. (The function ®y is again locally constant because we have seen in Talk 2 [BHOG,
§ 1.6, Prop.] that every character of F is locally constant.) Because ® -Im,, is identically zero
for m < 0, one can make the following definition:

Definition 1.1. We define the formal Laurent series

Z(®,x, X) =Y zmX™ € C((X)).
mEZ

This assembles into a linear map C°(F) — C((X)); ® — Z(®, x, X). We denote its image by
Z(x) = 2(x, X) :={Z(2,x, X) | @ € CZ(F)}. .

For a € F*, we denote = — ®(a~'z) by a®. Then we have (using that we integrate over a
Haar measure)
Z(a®,x, X) = x(a) X "F D Z(®, x, X),



where the XF(@) comes from the shift induced by multiplication with a~! on the w™Up. This
shows that Z(x) is closed under multiplication by X, X!, and, therefore, Z(x) is a module
over the ring C[X, X ~!] of Laurent polynomials.

This will be useful later because C[X, X !] is a principal ideal domain whose unit group
consists of the monomials aX® with a € C* and b € Z.

We can describe Z(x, X) explicitly:

Proposition 1.2 ([BHO06, § 23.2]). Let x be a character of F'*; then
Z(x. X) = P(X)7'CIX, X '] € C((X)),

where
Py(X) = {1 —x(w)X if x is ?mmmiﬁed,
1 otherwise.

Proof. We first suppose that ®(0) = 0. Thus ®|px lies in CX(F*) and Z(®, x, X) has only
finitely many non-zero coefficients (at some point you're integrating over an area where ® is
constant). That is Z(®, x, X) € C[X, X !]. Furthermore, if ® is the characteristic function of a
sufficiently small neighbourhood of 1 (namely it needs to be small enough for y to be a constant
on it and the intersection with @w™Up should be 0 for m # 0), then Z(®,x, X) is a positive
constant. Thus 1 € Z(x) and

{Z(®,x,X) | ® e CP(F*)}=C[X,X Y.

We can write every element of CS°(F') as the sum of a C-multiple of ®; and an element of
C*(F*), where ®g is the characteristic function of 0. Then, we have by definition and the
substitution rule that

Z(@0, %, X) = ¥ x(=™)X™ /U x(@)dp* (). (%)

m>0

The inner integral evaluates to p*(Ur) if x is unramified, since then x(z) = 1, and to zero oth-
erwise, since an integral over a non-trivial character is zero. (If x(h) # 1, then fUF x(9)dp*(g) =
Ju, x(hg)du*(g) = x(h) - [, x(hg)du*(g), which can only occur if the integral is zero.) Thus

P (Up) 1 Z(®o, x, X) = (1= x(w)X)~" if x is Elnramiﬁed,
0 otherwise.

Because ®q and C°(F*) span C°(F'), we get the desired result. [ |

We now want to see that a version of Z(®,x, X) converges in C such that we get a map
to C. For this we will use the above proposition. Furthermore, we will prove a transformation
formula.

In order to express this formula, we need to introduce the Fourier transform.

Definition 1.3. Fix ¢ € F, ¢ # 1, and a Haar measure y on F. For ® € C°(F), we define
the Fourier transform ® of ® (relative to u and ) by

b(@) = [ @w)(ay)du(y)

for x € F. 2



Note that the integrand in the above definition is locally constant since ® and all characters
are so by Talk 1, and that it is compactly supported because ® is. The Fourier transform has
the following properties:

Proposition 1.4 ([BH06, § 23.1]). (a) For ® € CX(F), the function ® lies in C°(F).

(b) There is a positive real number ¢ = c(1, 1) such that

for all ® € C°(F) and all x € F.

(¢) For a given 1, there is a unique Haar measure iy for which c(¢, py) = 1. This measure
satisfies up(0) = ¢'/% where 1 is the level of 1.

(d) For a € F*, we have piqy = |]a||%uw.

Proof. We proof this result in the same fashion as many other measure theory results are proven:
We consider generators of CS°(F'), for which we can check the statements by hand and then use
the fact that they generate C°(F).

Let [ be the level of 1 (i.e. the smallest [ such that p! C kert). We now consider ®; = Lis
the characteristic function of p’. Now for a € F, the character ay|,; is trivial if and only if
a € p!7 (since ay)(z) = 1p(ax)). The support of (i>j is therefore p/~7. Indeed, we have that 1)
only assumes finitely many values on p/. Let a & p'~7. Then ®(a) = Joi (az)dp(z) = 0, as an

integral over a non-trivial character is zero. For 2 € p!~J, we have
by(a) = [ 1dn(y) = n(p?) = (o) -0

Since | — (I — j) = j, this shows that the assertions (a) and (b) hold for the ®;, where the
constant is z(0)%q~".

In order to get a generating set from these, we need to also consider shifts of the ®;. Therefore
let a € F and let ¥ denote the function = — ®(x — a), where & € C>°(F'). We then have

W) = [ dy-a)slan)duly) = vea) [ Sly-a)ilaly—a)duly) = b(za)d(@) = av(@)(a).

The function a1 is locally constant so W € C°(F) since @ lies there. Calculating the Fourier
transform again (which is essentially the same calculation again), we get

~ A
~

U(z) = D(a+ ).

Therefore the assertions (a) and (b) hold for the shifts of the ®;, with the constant u(0)%g~".
As these generate C2°(F), we get both assertions in general.

For b > 0 note that we have c(1,bu) = b?c(z), u). To achieve c(¢, u) = 1, we must have
1(0)2q~" = 1, which is achievable by scaling. Therefore we get (c). Part (d) follows directly
from solving the above equation. |

The measure p,, is called the self-dual Haar measure on F', relative to 1. Using p, to
compute the Fourier transform

O(z) = /F D(y) v (zy)dpy(y)

gives the Fourier inversion formula

for ® € C°(F) and x € F.



Theorem 1.5 ([BH06, § 23.3]). Let x be a character of F*. There is a unique rational function
c(x, ¥, X) € C(X) such that

1

Z(éuia in) = C(X7w7X)Z((I)7X7 X)

for all ® € C°(F).

Proof. Consider the space A of linear maps \: C°(F) — C(X) satisfying the scaling property
of the Z(®,x, X), i.e

Aa®) = x(a) X " D\(®)
for ® € C°(F) and a € F*. Surely A is a C(X)-vector space and it contains the map Ag: ¢ —
Z(®, x,X), which is non-zero by Proposition 1.2. For ® € C°(F') and a € F*, we get using a
substitution rule for the integral N

a® = [[al| - o

Therefore, the map

A ®— Z(P,x,1/¢X)
is also in A, when one uses that y(a) = x(a~!). Therefore this theorem is a direct consequence
of the following Lemma. |

Lemma 1.6 ([BHO06, § 23.3]). The space A has dimension one over C(X).

Proof. Choose n > 1 such that Ug C kerx. For & > 1, let &, = HUI'? be the characteristic

function of U }‘i We consider the map
A= CX); A= A(Dy).

We will show that this map is injective, which then proves the lemma because C(X) is a principal
ideal domain.

Suppose that A\(®,) = 0. The defining condition on X yields for all k£ > n and all a € Up
that A(a®;) = x(a) X F@X(®;) = A\(®;,) (because a is a unit and thus vg(a) = 0). Therefore
we get

AN®p) = ¢" FAN@,) =0
for k > n using that we can cover U disjointly by Ul’é for k> n. Any ® € C°(F*) is a finite
linear combination of F*-translates of functions ®;. Thus A\(®x) = 0 implies \(®) = 0 for all
® € CX(F*). Therefore the value of A\(®) for ® € C°(F) only depends on ®(0). Therefore
AMa®) = A(®) for all @ € F* and the transformation formula that A satisfies now implies
A(®P) = 0, because otherwise A(®) and A(a®) cannot be the same whenever a ¢ ker y. [ |

We shall now introduce a more traditional notation for the constructions that we’ve seen
above. We set

(P, x,8) =Z(®,x,q "),
L(x,s) = Py(q*) 71,
Y(x, 8, V) =c(x, ¥, q~ 5)-

In particular, we have

((@x5) = [ S| du’ (@)

in the following sense: We cannot necessarily directly integrate ®(z)x(z)||z||* on F* in the
language of Talk 3 because it might not be compactly supported. However (%) shows that this
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integral can be written as a limit of something that converges, absolutely and uniformly in
vertical strips, in some half-plane Re s > sg. It there then represents a rational function in ¢—*
by Proposition 1.2 and therefore possesses an analytic continuation to a meromorphic function
on the whole s-plane, i.e. C with the parameter being s.

The two languages (of Z, P, and ¢; and of (, L, and ) are equivalent, and the relation between
them is transparent. Therefore we will use the two languages interchangeably to facilitate the
more useful one at any time.

In the more classical language, we can write

(1 —x(w)g*)~t if x is unramified,

1 otherwise.

L(x,s) = {

Therefore, the L-function L(y, s) carries no information about x if x is ramified. If x is unrami-
fied, it is completely determined by its L-function.

Corollary 1.7 ([BHO06, § 23.4, Cor. 1]). Let x1 and x2 be unramified characters of F*. The
following are equivalent

(a) the meromorphic functions L(x1,s) and L(x2,s) have a pole in common;

(b) the meromorphic functions L(x1,s) and L(xa2,s) have the same set of poles;

(c) x1 = X2

Proof. We know the structure of L(y,s) as the inverse of 1 — x(w)g™* which in any case de-

termines x(w). Since an unramified character is determined by the image of w, we get the
equivalence. |

We are now going to examine the structure of y(x, s,%) further. This will be helpful (and
necessary) when studying cuspidal representations in the next talk. We define a rational function

e(x, s,¢) € C(g™°) by Les)
X5 S
L(x,1—3s)

e(x, s,1) is called an e-factor. These factors satisfy the following functional equation.

e(x,s,%) = v(x, 5,9)

Corollary 1.8 ([BHO06, § 23.4, Cor. 2|). The function £(x, s, ) satisfies the functional equation

€(X7 S, w)g(yﬁ 1—s, w) = X(_l)
It is of the form

1

206 9) = 270 Pe(x, 2, 0),
for some n(x,v) € Z.
Proof. In the classical language, Theorem 1.5 reads as

C(8,%: 1= 5) = 7(x: 5. 9)¢(P. X, 5). (1)

If we apply this twice, we get

¢(

K>

» X 3) = 7()27 1- 3¢)7<X? S, w><<q)7X7 5)'

Fourier inversion gives ® = (—1)® and therefore the transformation formula yields ¢(®, x, s) =
X(_l)C((I)v X5 3)7 and thus

Y1 =5, 9)7(x, 5,9) = e(1 = 5, ¥)e(x, 5,9) = x(—1),



which is the first formula of this corollary.
To get the second formula, we rewrite (}) in the form

C(cﬁa )27 1- S) C(CI) XS )
L()Zv 1- S) (X? )

where the fraction on either side is lying in C[¢®, ¢™*]. As in the proof of Proposition 1.2, we can
choose ® with ((®,x,s) = L(x,s). Therefore e(x, s,9) € Clg®, ¢~ *]. The functional equation
from the first part of this corollary implies that e(x,s,%) is a unit of C[¢®,¢~*], and hence
equal to a¢g™® for some a € C* and m € Z. This can be rewritten in the way stated in the
corollary. |

e(x; s,9)

Remark. The relation in the previous corollary is generally referred to as Tate’s (local) func-
tional equation. The function e(x, s,) is the Tate local constant of x (relative to ). 4

2 Functional Equation for GL(2)

This section is based on [BH06, § 24]. We now want to generalise the constructions from the
GL(1)-case to GL(2). This leads us to a functional equation and local constant by Godement-
Jacquet. For this, we will first do the constructions in general and state their relations similar
to the relations in the one-dimensional case. Then we will see the proof of these in the case of
non-cuspidal representations. The cuspidal case will be deferred to the next talk.

Let M := Msy(0) C Ma(F) =: A, and let G := GLa(F). Then the space C°(A) is spanned
by characteristic functions of the sets a + p?9 for a € A, j € Z.

Let (7, V) be an irreducible smooth representation of G. The one-dimensional (-function
has three inputs: An element ® € C°(F), a character of F'*, i.e. an irreducible (one-dim)
representation of F'*, and a complex number s € C. To get to the two-dimensional one, we
can replace ® by its two-dimensional analogue ® € C2°(A), and we can keep s. For the irredu-
cible representation (7, V'), we want to pick something which carries more information than the
character of m: We pick the coefficients of m, C'(7), which is the group (see [BH06, § 10.1] for
details)

C’(7r)—{f:G—>C\El(iv)l®vl,...,1v)n®vn)EV@V,/\l,.. M€ K: f(g Z)‘UZ VgeG}

The elements f € C(m) are locally constant in g because 7 is smooth. The z,, in the previous
definition were precisely the integrals over the norm (1/¢)™-part of the units of F' and therefore,
we can now analogously define

((@.f.9) 1= [ @(@)f(@)l|detall"dy (2) (1

where p* is a Haar measure on G. In the following, we will often abbreviate du*(x) with d*z.
The integrand is locally constant and compactly supported on A. We do, however, not know
whether it is also compactly supported on G. (This is probably not the case.) But we can,
as in analysis, approximate the integral by truncations to compact sets and see whether this
converges.

Theorem 2.1 ([BH06, Thm. 1, § 24.2]). Let (7,V) be an irreducible smooth representation of
G.

(a) There exists sy € R such that the integral () converges absolutely and uniformly in vertical
strips in the region Re s > sqg, for all ® and f. The integral represents a rational function
mn q %,



(b) Define .
2(n) = {C(®, £+ 3) | € O2(A), ] € C(m)}.

Then there is a unique polynomial P.(X) € C[X], satisfying Pr(0) =1 and

Z(m) = Pr(q~*)"'Clg®, ¢ "]

Again, we set
L(m,s) = Pr(g™®) .

One can show that this definition is independent of the choice of Haar measure p*.

In order to state the functional equation, we again need a Fourier transform. As in the
one-dimensional case, fix a character ¢ € F, # 1, and set ¥4 = 1 o trace4. We now define
the Fourier transform ® of ® € C2°(A) analogously to the one-dimensional case via

b(@) = [ Svateyduty)

relative to a Haar measure p on A. Exactly as in Proposition 1.4, one can show that & € C*(A)
and that there is a unique Haar measure u$ on A for which the Fourier inversion formula

holds. This is the self-dual Haar measure on A, relative to 1v». We again get the relations
pa (M) =¢* and  pgy = |lal|*u)

where a € F* and [ is the level of .

In the following we will fix a non-trivial character iy € F and denote by d the Fourier
transform of ® € C2°(A) with respect to ¢ and the self-dual Haar measure on A relative to
®. Furthermore, as in the one-dimensional case, we need a dual notion of f € C(m) for a
representation (m,V). For this, we note that g — f(g~!) is in the coefficients for the dual
representation C(#%). The map f — f yields a linear isomorphism C(7) = C(#). With this, we
can state the functional equation.

Theorem 2.2 (Godement-Jacquet functional equation, [BH06, Thm. 2, § 24.2]). Let (w, V)
be an irreducible smooth representation of G. There is a unique rational funciton y(m, s, ) €

C(q™?) such that
C((i))fv g - S) = 7(71-7 Sﬂ/’)ﬁ(q),f, % + 8)
for all ® € C(A), f € C(m).

Corollary 2.3 (Godement-Jacquet local constant, [BHO06, § 24.2]). Define

5(777 S5, 1][)) = ’7(71-’ 57¢)M'

The function e(m, s,1)) satisfies the functional equation
E(ﬂ-a S, 1/1)6(7\%7 1- S, 1/}) = wﬂ'(_l)

Moreover, there exists a € C* and b € Z such that e(m,s,1) = aq®®.



Proof. This is again a rather straightforward computation. The difference to Corollary 1.8 is
that we need to work a bit harder to insert the L-functions into the picture. If we apply Theorem
2.2 twice, we get

(B, £, +5) =201 = 5,0 (w5, 0)C(@, £+ 5).

From the Fourier transform formula, we get ¢(®,f,s) = wx(—1)((®, f,s), which yields the
functional equation for ¢.
For the second part, note that, by definition, we can find ®; € C*(A) and f; € C(w),
t=1,...,r with
4 1
ZC((I)H fi7 s+ 5) = L(”? 8)'
i=1
Now Theorem 2.2 yields

| W

T
L(%71_8)7lz<(@ivfi7 _S) :E(Trvs)w)'
i=1
By definition, the left hand side is in C[¢®, ¢~ ], so e(m, s,¢) € Clg®, ¢~*]. Similarly, (7,1 —s,v)
is in C[¢®,¢~°]. Now the functional equation of ¢ tells us that e(m, s,%) is a unit in C[g®, ¢~*]
and therefore of the desired form. [ |

3 L-functions and e-factors for non-cuspidal irreducible repres-
entations of GLo(F)

This section is based on [BH06, § 26]. We are now going to prove the two theorems from the
last section in the case where our representation is non-cuspidal. We will see a sketch of the

proof in the cuspidal case in the next Talk. In order to do this, we again need some subgroups
of G = GLQ(F)

R I F N (F

We encountered these groups already in Talk 3. B is the standard Borel subgroup of G, N
the unipotend radical of B, T the standard split maximal torus in GG, and Z the centre of
G. Recall that a representation is non-cuspidal if and only if it is a G-composition factor of
Lgx for x = x1 ® x2 a character of T', which is a quotient of B. Furthermore recall that
1Gx = Ind§ x ® 6~1/2 is the normalized smooth induction where §(z) = ||z||. The proof of the
above theorems is closely related to the proof of the following theorem, which is interesting in
its own right and which we will use later to prove the converse theorem. We will therefore see
some parts of its proof as well.

Theorem 3.1 ([BHO06, § 26.1]). Let x = x1 ® x2 be a character of the group T, and let w be a
G-composition factor of Lgx. For any ¢ € F, ¢ #£ 1, we have

L(m,s) = L(x1, ) L(x2, 5),
E(Xa S, 1/}) = E(le S, w)g(X% S, 1/])7

except when m = ¢ - Stq, for an unramified character ¢ of F*. In this exceptional case, we have

Lim,s) = L(@y 5+ 3), <(m5,9) = —e(6,5,%).



The proof of Theorem 2.1 and Theorem 2.2 in the non-cuspidal case works, essentially, by
first proving it in the case where m = Lgx. This representation need not be irreducible, so we
need to adjust some statements such that they also work when this 7 is reducible. We start
with Theorem 2.1 in this case.

Proposition 3.2 ([BH06, § 26.2]). Let x = x1 ® X2 be a character of T, and put (7, V) = §x.

(a) There exists sy € R depending only on x, such that ((®, f,s) converges absolutely and
uniformly in vertical strips, in the region Res > sg.

—S

(b) The integral ((®, f,s) represents a rational function in ¢~° and

Z(mq%) = Z2(x1,4°)Z(x2,0°)-

Sketch of proof. The idea of this proof is to transfer everything back to T' = F* x F'*. For this
let D be the algebra of diagonal matrices in A, i.e. T'= D* and the space C2°(D) is canonically
isomorphic to C°(F)®C®°(F). Let § € V,7 € V, i.e. by definition § and 7 are certain functions
G — C with an induction condition. With this, we can define a coefficient

$(9) = (ronlo)f) = [ r@)b(egydi = [ 7(k)0Chg)k

where di is a positive semi-invariant measure on B \ G. We can rewrite this as above with
K = GL2(0) and dk a good Haar measure on K. With this, we can write

(@, f,5) / / / kLK )7 (k)0 (bK ) dbdk! dk

for a Haar measure db on B. Because the integrad is locally constant, we find a K1 C K open
such that we can rewrite

(@ J.9) = p(E2? S [ @900k (k)| dett]|“ds

»JEK/K].

where k; and k; range independently over K/K; and ®V(z) = ®(k; 'zk;). We can now split up
db = dtdn for Haar measures dt on T' and dn on N, and rewrite a typical summand of the above

sum as
/ % () (1)]| det ¢]]°~

The <I>§Z is a construction from the next lemma, where we reduce functions to D. We get the
convergence of the right hand side from the one-dimensional case. With this, we also get that
C(®, f, 5+ 3) € Z(x1)Z(x2), which also proves Z(r) C Z(x1)Z(x2)-

In order to complete the proof, one still needs to show Z(x1)Z(x2) C Z(n). This can be done
via a lengthy computation, in which you have to compute ®. |

Lemma 3.3 ([BHO06, § 26.2]). Let ® € C>°(A). There exists a unique function &7 € C°(D)

such that
(t) = ||t1H/ ®(tn)dn, where t= (tl 0) cT
N 0 to

The map ® — Pr is a linear surjection C°(A) — CX(D).

Proof. The well-definedness is clear, i.e. the integral converges and the map is linear. The
surjectivity can be shown on characteristic functions. |



After proving an analogue of Theorem 2.1 in the case 7 = 1%y, we will now do the same for
Theorem 2.2.

Proposition 3.4 ([BHO06, § 26.3]). Let x = x1 ® x2 be a character of T and set (7, V) = (§x.
Let ¢ € F, ¢ # 1. There is a unique rational function y(m,s,) € C(¢~*) such that

C(i)afv) ; - S) = ’y(ﬂ',s,w)g(@,f,s + %)’

for all ® € C°(A) and all f € C(w). Moreover,

7(71—7 S, 1/}) = ’Y(le S, ¢)7<X27 S, 1?)

Sketch of proof. As in the previous proposition, we write

(b, f.5) = pl0) 5000k (k= 0) [ @ (e)(e) | dene]*~Har
i,

where @31(37)0@)(/{:]_1:61@) From the following Lemma we get ®jip = @{FZ With this, we get the
desired equation. |

Lemma 3.5 ([BH06, § 26.3]). For ® € C°(A), we have (&) = ®r.
Proof. Straightforward computation after writing ® as a matrix. |

With this, we are done with the case of the theorems where the involved Lg is already
irreducible. In this case, we can also write down the involved L-functions and local constants,
giving a first part of a proof of Theorem 3.1.

Proposition 3.6 ([BHO06, § 26.4]). Let x = x1 ® x2 be a character of T such that m = Lgx 18
irreducible. Then

L(m,s) = L(x1,s)L(x2, 8),
6(7T, S, w) = €(X17 S, 1/})€<X27 S, ¢)

forany¢€ﬁ’,1/)7é1.

Proof. The L-function relation reflects the equality Z(7) = Z(x1)Z(x2) from Proposition 3.2 and
the e-relation comes from the corresponding relation between the 7’s in Proposition 3.4. |

What remains in the proof of Theorem 2.1 and Theorem 2.2 in the non-cuspidal case is to
deduce the case where 7 is a G-composition factor of :3y from the statements that we already
know when Lgx is reducible.

Corollary 3.7 ([BHO06, § 26.5]). Let x = x1®x2 be a character of T and let ™ be a G-composition
factor of 0 = Lgx. We have

V(Wa S, ¢) = ")/(Lg)ﬁ S, 1/}) - 7(X17 S, l/})’Y(XQa S, ¢)
and Pr(t) divides Ps(t) = Py, (t)Py,(t).
Proposition 3.8 ([BH06, § 26.6]). Let m be a composition factor of a representation ngbéﬁlm
and suppose that the character ¢ of F* is not unramified. Then

L(’]T,S) =1, 6(7‘—787'¢) = €(¢73 - éa¢)€(¢7s + %7"/})
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Proposition 3.9 ([BHO06, § 26.7]). Let ¢ be an unramified character of F* and put m = ¢ odet.
Then

L) = L(6,5 — 5) (6,5 + 3)
e, 5,1) = €(y5 — 3, V)e(d, 5+ 5,0,

In particular, if 1 has level one, then

e(podet, s, ¥) = ¢(w) ¢>

for any prime element w of F.

4 The Converse Theorem

This section is based on [BH06, § 27].

Theorem 4.1 (Converse Theorem, [BH06, § 27.1]). Let ¢ € Fp+#1. Let m, m be irreducible,
smooth representations of G = GLo(F'). Suppose that

L(Xﬁlas) - L(XW%S) and 5(X7T1,8,'(/1) :5(X7T2;3,¢),
for all characters x of F*. We then have m1 = mo.

The proof of this theorem can be split up into two parts: The case where both 7w and w9
are cuspidal, and the case where both are non-cuspidal. The reason for this is as follows:

Proposition 4.2. An irreducible smooth representation 7 of G is cuspidal if and only if L(¢m,s) =
1 for all characters ¢ of F'*.

Proof. If 7 is cuspidal, so is ¢ for all ¢ € F. We will see next time [BHO6, § 24.5, Cor.] that
we have L(m,s) =1 for a cuspidal representation.
If 7 is non-cuspidal, i.e. a composition factor of Lgx for some character x = x1 ® x2 of T,

then the representation ¢ is a composition factor of qubx, and ¢ox = dx1 ® dxo. If we choose
¢ = X2—17 we get from Theorem 3.1 that L(¢m,s) # 0 because L(1,s) # 0. ]

This proposition shows that the above theorem has two cases: The case where both 7 and
mo are non-cuspidal, and the case where both are cuspidal. We will see the latter case is the
next talk. In this talk we are only going to sketch a proof of the theorem in the non-cuspidal
case.

For this, we will show that a non-cuspidal representation is determined by the map ¢ +—
L(¢m,s). By the proposition, we can assume that L(m,s) # 1. We will use Theorem 3.1 to
reconstruct 7 from the L(¢m,s). By definition, since 7 is a non-cupsidal representation it is a
G-composition factor of (%(x1 ® x2). By Proposition 1.2, we know L(x, s). Therefore if L(r,s)
has degree two, we know that L(m,s) = L(x1, s)L(x2,s) for two unramified characters x; and
x2 of FX. Now the character 1%(x1 ® x2) is either irreducible (and therefore coincides with
7) or it has twice the same G-composition factor. Therefore this determines 7 in the degree 2
case. (We get these cases because the representaion is irreducible if and only if x1x5 ' # ||=||*'.
In the case where it is reducible, the latter equation shows that the two compositon factors of
1% (x1 ® x2) are isomorphic.)

Therefore, we only have the case where L(7, s) has degree 1 left. In that case Theorem 3.1
shows that L(m,s) = L(x) for some unramified character x of F*. This only happens in two
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instances by Proposition 1.2: Either 7 & xy ® 6 for a ramified character 6 or m = x’ - St where
¥(@) = x(@)l[a][7/2.

We can distinguish these cases as follows: In the former case there is a ramified character ¢
such that L(¢m,s) # 1. In the latter case there is not. To recover @ in the former case, we pick
a ¢ so that L(¢m,s) = L(x',s). Then § = ¢~ 'x’. (You get this by comparing the actions on
both sides.)
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