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Notation

In this thesis we will make use of the following standard notation

• N, Z, Q, R, C will denote respectevely natural, integer, rational, real, complex
numbers.

• For a rational prime p, Qp denotes the field of p-adic numbers and Zp the ring
of p-adic integers.

• GL2(R)+ denotes the group of invertible 2 × 2 matrices with real entries and
positive determinant.

• SL2(Z) is the usual modular group (2 × 2 matrices with integral coefficients
and determinant 1).

• For N ∈ Z, N > 0 we define

Γ(N) ∶= {(
a b
c d

) ∈ SL2(Z) ∣ a ≡ d ≡ 1 mod (N), c ≡ b ≡ 0 mod (N)}

Γ1(N) ∶= {(
a b
c d

) ∈ SL2(Z) ∣ a ≡ d ≡ 1 mod (N), c ≡ 0 mod (N)}

Γ0(N) ∶= {(
a b
c d

) ∈ SL2(Z) ∣ c ≡ 0 mod (N)}

• H ∶= {z ∈ C ∣ Im(z) > 0}.
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Introduction

In this thesis we want to give a systematic introduction to the so-called Hida theory
of p-adic modular forms.

It is worth mentioning that the first attempt to organize modular forms in fam-
ilies where the Fourier coefficients vary p-adically continuously in the weight is due
to J.P. Serre, in his celebrated paper [17], where a first possible definition of p-adic
modular form is given. Almost at the same time N. Katz was developing his theory
of geometric modular forms.

It was H. Hida in the 80’s who, after a careful analysis of the corresponding
Hecke algebras, proved that modular forms lived in families for varying weight and
level under the so-called ordinarity assumption. The pivotal papers for Hida theory
are [10] and [11].

Following Hida’s work, A. Wiles introduced the so-called Λ-adic forms in [23] in
the more general framework of Hilbert modular forms. He was able to reprove the
analogues of Hida’s results using this tool.

In the last 30 years many further developments and generalizations took place
in this theory. Let us just mention the construction of the so-called Eigencurve by
R. Coleman and B. Mazur.

This thesis is essentially divided into two parts.
In the first part (consisting of the first four chapters) our main reference is [9],

chapter 7. Here Hida gives a more down-to-earth description of his theory using
Wiles’ language of Λ-adic forms. We tried to expand Hida’s proofs and examples.
The main technical difference with our reference is the introduction of a tame level
N throughout our exposition, which is thus slightly more general.

In chapter 4 we give explicit examples of Λ-adic forms. In particular CM Λ-adic
forms are paid a particular attention.

In the second part (chapter 5 and the relative appendix) we follow mostly M.
Emerton’s article [7], where he reproves Hida’s horizontal control theorem in the
context of homology of modular curves. The aim was again to fully understand
Emerton’s techniques and to expand the proofs given in the paper.

We should finally make clear that nothing is this thesis is new. We decided to
give an exposition based on our understanding of our references. Our hope is that
this account on Hida theory might be useful for interested math students in the
future.
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Chapter 1

Hida families as Lambda-adic
forms

In this chapter we develop the theory of classical and p-adic modular forms (for
the latter ones we follow Serre’s and Hida’s approach) and, after a quick review of
basic concepts in p-adic analysis, we give a definition of Hida family using the so
called Λ-adic modular forms (introduced by Wiles in the more general framework of
Hilbert modular forms, see for instance [23]).

1.1 Modular forms
If Γ denotes the group Γ(N), Γ1(N) or Γ0(N), then Γ has finite index in SL2(Z).
For the moment let Γ denote in general a congruence subgroup of SL2(Z), i.e. a
subgroup containing Γ(N) for some N ≥ 1.

Let k ≥ 1 be an integer. Recall that a modular form of weight k and level Γ is a
holomorphic function f ∶H → C satisfying the following conditions

(a) f(γτ) = (cτ + d)kf(τ) for every τ ∈ H and every γ = ( a bc d ) ∈ Γ, where γτ = aτ+b
cτ+d

(b) f is holomorphic at the cusps (cf. [5] pagg 16-17 for the detailed explanation
of this condition)

A modular form of weight k and level Γ is called a cusp form if it vanishes at the
cusps (again cf. [5] pagg 16-17).

We denote by Mk(Γ) (resp. Sk(Γ)) the C-vector spaces of modular (resp. cusp)
forms of weight k and level Γ. One can prove that these spaces are finite dimensional
and even exhibit precise dimension formulas, which heavily depend on the study of
the geometry of the so-called modular curve Γ/H and of its canonical compactifica-
tion (cf. chapter 3 of [5] for this).

We define the so called k-slash operators. For a matrix γ = ( a bc d ) ∈ GL2(R)+ and
a function f ∶H → C we define

(f ∣kγ)(τ) ∶= (det(γ))k−1(cτ + d)−kf(γτ). (1.1)
This defines an action of GL2(R)+ on the C-vector space of functions f ∶H → C.

In particular condition (a) above is clearly equivalent to
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(a’) f ∣kγ = f for every γ ∈ Γ

The assigment ( a bc d )↦ d mod (N) defines a (multiplicative) group isomorphism
Γ0(N)/Γ1(N) ≅ (Z/NZ)× for every N ≥ 1. This means that the group (Z/NZ)×

acts on Mk(Γ1(N)) and Sk(Γ1(N)) via the k-slash operator. By standard results in
representation theory this yields a decomposition of Mk(Γ1(N)) (and similarly for
cusp forms) into

Mk(Γ1(N)) =⊕
χ
Mk(Γ0(N), χ)

where χ runs over Dirichlet characters defined modulo N and

Mk(Γ0(N), χ) ∶= {f ∈Mk(Γ1(N)) ∣ f ∣kγ = χ(d)f for every γ = ( a bc d ) ∈ Γ0(N)}

Define Sk(Γ0(N), χ) in the obvious way and notice that if χ(−1) ≠ (−1)k, then
Mk(Γ0(N), χ) = 0 = Sk(Γ0(N), χ)

Let f ∶H → C be a holomorphic function with f(τ +1) = f(τ) for all τ ∈ H. Since
H/Z ≅D = {z ∈ C× ∣ ∣z∣ < 1} via τ ↦ q = exp(2πiτ), we may regard f as a function of
q undefined at q = 0↔ τ = i∞. Then the Laurent expansion of f gives

f(τ) =∑
n

a(n, f)qn =∑
n

a(n, f) exp(2πinτ) (1.2)

This is also called the Fourier expansion (or q-expansion) of f at ∞.
Now assume f ∈ Mk(Γ) for Γ = Γ1(N) or Γ = Γ0(N). In this case the matrix

T ∶= ( 1 1
0 1 ) belongs to Γ and equation (a’) above reads f(τ + 1) = f(τ), so that f has

a Fourier expansion at the cusp ∞. In particular f holomorphic at ∞ means that
a(n, f) = 0 for n < 0 and f vanishing at ∞ means that a(n, f) = 0 for n ≤ 0.

For a subring R ⊆ C we define the R-module

Mk(Γ1(N),R) ∶= {f ∈Mk(Γ1(N)) ∣ a(n, f) ∈ R for every n ≥ 0}

Similarly we define the R-modules Sk(Γ1(N),R),Mk(Γ0(N), χ,R), Sk(Γ0(N), χ,R),
viewed as submodules of R[[q]].

The following is a standard result in the integrality theory of modular forms

Proposition 1.1.1. For all positive integers N and k, the space Mk(Γ1(N)) (resp.
Sk(Γ1(N))) has a basis in Mk(Γ1(N),Z) (resp. Sk(Γ1(N),Z))). For every Dirichlet
character χ defined modulo N , the space Mk(Γ0(N), χ) (resp. Sk(Γ0(N), χ))) has
a basis in Mk(Γ0(N), χ,Z[χ]) (resp. Sk(Γ0(N), χ,Z[χ]))

Proof. See [4] corollary 12.3.12. We are sweeping under the rug the discussion
concerning Katz’s geometric approach to modular forms. Here Z[χ] denotes the
smallest subring of C containing the values of χ.

Corollary 1.1.2. (a) For every subring A ⊆ C the natural map

Mk(Γ1(N),A)⊗A C→Mk(Γ1(N))

is an isomorphism of C vector spaces (and similarly for cusp forms)
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(b) For every subring A ⊆ C containing Z[χ] the natural map

Mk(Γ0(N), χ,A)⊗A C→Mk(Γ0(N), χ)

is an isomorphism of C vector spaces (and similarly for cusp forms)

Let p be a rational prime. We fix once and for all in this thesis an algebraic
closure Q̄p of Qp and an embedding Q̄ ↪ Q̄p for an algebraic closure Q̄ of Q. All
algebraic extensions of Qp will be considered as subfields of Q̄p. On Qp normalize
the absolute value so that ∣p∣ = 1

p and extend it to Q̄p in the unique possible way.
The previous results lead us to the following definition (which somehow depends

on the choice of the embedding of Q̄ inside Q̄p).

Definition 1.1.3. Let k ≥ 1 be an integer and consider a Dirichlet character χ
defined modulo N . Let A be a subring of Q̄p. Then we can define the space of
classical p-adic modular forms with coefficients in A and level N as

Mk(Γ1(N),A) ∶=Mk(Γ1(N),Z)⊗Z A

and similarly for cusp forms.
If A contains Z[χ], then we can define the space of classical p-adic modular forms

with coefficients in A of level N and character χ as

Mk(Γ0(N), χ,A) ∶=Mk(Γ0(N), χ,Z[χ])⊗Z[χ] A

Similarly we define the corresponding cuspidal subspace.

1.2 Hecke operators on modular forms
In this section we define Hecke operators on modular forms. Let Γ = Γ0(N) for some
N ≥ 1 and fix a Dirichlet character χ modulo N . One can prove that for α ∈ GL2(Q)+

the orbit space Γ/ΓαΓ is a finite disjoint union of left cosets, say ΓαΓ = ⊔`j=1 Γαj
(cf. [5] lemma 5.1.2) and that setting, for f ∈Mk(Γ0(N), χ),

f ∣[ΓαΓ] =
`

∑
j=1
f ∣kαj

defines a linear operator on Mk(Γ0(N), χ), only depending on the double coset ΓαΓ.

Among these operators there are some special ones.

Lemma 1.2.1. If p is a rational prime we have

Γ(
1 0
0 p

)Γ =

⎧⎪⎪
⎨
⎪⎪⎩

Γ( p 0
0 1 )⊔ (⊔

p−1
j=0 Γ( 1 j

0 p )) if p ∤ N
⊔
p−1
j=0 Γ( 1 j

0 p ) if p ∣ N

Proof. See [5] proposition 5.2.1
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We let T (p) to be the operator corresponding to Γ( 1 0
0 p )Γ. The following propo-

sition describes the action of the T (p) operator on Fourier coefficients

Proposition 1.2.2. Let f ∈Mk(Γ0(N), χ) with a Fourier expansion

f(τ) =
+∞
∑
n=0

a(n, f)qn

Then f ∣T (p) ∈Mk(Γ0(N), χ) with a Fourier expansion given by

(f ∣T (p))(τ) =
+∞
∑
n=0

a(n, f ∣T (p))qn

where

a(n, f ∣T (p)) =

⎧⎪⎪
⎨
⎪⎪⎩

a(np, f) + χ(p)pk−1a(n/p, f) if p ∤ N
a(np, f) if p ∣ N

Here a(m,f) = 0 if m ∉ Z≥0. Moreover if p, q are distinct primes we have that
T (p)T (q) = T (q)T (p).

Proof. See [5] propositions 5.2.1 and 5.2.4

Now we want to define an operator T (n) for every n ∈ Z≥1. We let T (1) be the
identity map. For prime powers, define for r ≥ 2 inductively

T (pr) =

⎧⎪⎪
⎨
⎪⎪⎩

T (pr−1)T (p) − pk−1χ(p)T (pr−2) if p ∤ N
T (pr−1)T (p) if p ∣ N

Then one inductively proves that for distinct primes p and q we have T (pr)T (qs) =
T (qs)T (pr). This allows us to extend the definition of T (n) multiplicatively as

T (n) =∏
j

T (p
rj
j ) if n =∏

j

p
rj
j

so that all the T (n) commute and we have

T (mn) = T (n)T (m) = T (m)T (n) if gcd(m,n) = 1

Since the action of Hecke operators T (p) for p a prime differs depending of the fact
that p divides N or not, we will often denote by U(p) the Hecke operator T (p) when
p ∣ N . It follows by our definitions that U(pr) = U(p)r for r ≥ 0.

Proposition 1.2.3. Let f ∈Mk(Γ0(N), χ) with a Fourier expansion

f(τ) =
+∞
∑
n=0

a(n, f)qn

and let n be a positive integer. Then f ∣T (n) ∈Mk(Γ0(N), χ) with a Fourier expan-
sion given by

a(m,f ∣T (n)) = ∑
d∣gcd(m,n)

χ(d)dk−1a(mn/d2, d) (1.3)

where we set χ(d) = 0 if gcd(d,N) ≠ 1.
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Proof. This follows directly from the description of the action of the T (p) operators
on Fourier coefficients for p a prime. See [5] proposition 5.3.1.

As an immediate consequence of the above proposition we get that the spaces
Mk(Γ0(N), χ,Z[χ]) and Sk(Γ0(N), χ,Z[χ]) are preserved by the action of the Hecke
operators T (n) for all n ≥ 1.

It is more generally possible to define Hecke operators T (n) on Mk(Γ1(N)) in an
analogous way. In this case it is no longer obvious that Mk(Γ1(N),Z) is preserved
by the action of these Hecke operators and one has to appeal again to Katz’s theory
of geometric modular forms (cf. [4] proposition 12.4.1).

Now we want to define Hecke algebras.

Definition 1.2.4. For a subring A of C or of Q̄p containing Z[χ], we denote by
Hk(Γ0(N), χ,A) (resp. h(Γ0(N), χ,A)) the A-subalgebra of EndA(Mk(Γ0(N), χ,A)
(resp. of EndA(Sk(Γ0(N), χ,A)) generated by the Hecke operators {T (n)}n≥1. We
will call this rings Hecke algebras.

Remark 1.2.1. Notice that since T (1) = Id and all the T (n) commute, we have that
Hk(Γ0(N), χ,A) and h(Γ0(N), χ,A) are commutative A-algebras with unit.

It is clear that, essentially by definition, we have

Hk(Γ0(N), χ,A) = Hk(Γ0(N), χ,Z[χ])⊗Z[χ] A

and
hk(Γ0(N), χ,A) = hk(Γ0(N), χ,Z[χ])⊗Z[χ] A

We need now a definition

Definition 1.2.5. Let A be a subring of C or of Q̄p with Z[χ] ⊆ A and let K be
the quotient field of A. We define

mk(Γ0(N), χ,A) ∶= {f ∈Mk(Γ0(N), χ,K) ∣ a(n, f) ∈ A for all n ≥ 1}

Notice that for A as above we have a pairing

Hk(Γ0(N), χ,A) ×mk(Γ0(N), χ,A)→ A (1.4)

given by (H,f) = a(1,H(f)) for all H ∈ Hk(Γ0(N), χ,A) and f ∈mk(Γ0(N), χ,A).
Clearly there is also a cuspidal version of this pairing.

Proposition 1.2.6. The above pairing (1.4) is perfect and induces isomorphisms of
A-modules

HomA(Hk(Γ0(N), χ,A),A) ≅mk(Γ0(N), χ,A)

HomA(hk(Γ0(N), χ,A),A) ≅ Sk(Γ0(N), χ,A)

HomA(mk(Γ0(N), χ,A),A) ≅ Hk(Γ0(N), χ,A)

HomA(Sk(Γ0(N), χ,A),A) ≅ hk(Γ0(N), χ,A)

Proof. See [9] corollary 5.4.1.
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1.3 Some results in p-adic analysis
This section develops the necessary tools in p-adic analysis without proofs. The
contents are mainly based on chapter 5 of [19].

For a rational prime p > 0 we set

q =

⎧⎪⎪
⎨
⎪⎪⎩

4 if p = 2
p if p odd

(1.5)

We have the following classical description for the units of Zp, namely

Lemma 1.3.1. Let p be a prime p > 0, then there is a decomposition Z×
p = µ × Γ

induced by the splitting exact sequence

1 Γ Z×
p (Z/qZ)× 1

ω

where Γ = 1+ qZp, µ is the maximal torsion subgroup of Z×
p (µ = {±1} if p = 2 and µ

given by the p − 1-th roots of unity if p is odd) and ω is the Teichmüller character

Proof. The fact that µ is the maximal torsion subgroup of Z×
p is an easy application

of Hensel’s lemma. For the Teichmüller lift (when p is odd) cf. [16] proposition
II.4.8.

In what follows we will often see ω as the composition

Z×
p ↠ (Z/qZ)×

ω
Ð→ Z×

p

Consider again the fixed algebraic closure Q̄p of Qp. It is well-known that Q̄p

is not complete, so that sometimes it is useful to work with its p-adic completion,
usually denoted by Cp. We have the following crucial fact.

Proposition 1.3.2. Cp is algebraically closed.

Proof. See [19] prop 5.2.

Now we introduce the p-adic exponential and the p-adic logarithm. Set formally

exp(X) =
+∞

∑
n=0

Xn

n! (1.6)

One can check that

Lemma 1.3.3. The above series converges for {x ∈ Cp ∣ ∣x∣ < p−1/(p−1)}

Proof. See [19] pag. 49.
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The p-adic logarithm is defined again via a formal power series

logp(X + 1) =
+∞
∑
n=1

(−1)nXn

n
(1.7)

It is easy to check that in this case one has convergence for {x ∈ Cp ∣ ∣x∣ < 1}.
The properties of exponential and logarithm comes formal properties of the cor-

responding power series, so that they still holds over Cp when exponential and
logarithm make sense.

Actually for the logarithm one has

Proposition 1.3.4. There exists a unique extension of logp to all of C×
p such that

logp(p) = 0 and logp(xy) = logp(x) + logp(y) for all x, y ∈ C×
p

Proof. See [19] prop. 5.4. We just remark here that the crucial point in the proof is
the fact that one has a decomposition C×

p = p
Q × V ×U1 where V is the group of all

roots of unity of order prime to p in C×
p and U1 = {x ∈ Cp ∣ ∣x − 1∣ < 1}.

Remark 1.3.1. One can check that log(exp(x)) = x and exp(logp(1+x)) = 1+x hold
whenever we have ∣x∣ < p−1/(p−1).

Now let a ∈ Z×
p and set ⟨a⟩ ∶= ω(a)−1a, so that ⟨a⟩ ≡ 1 modulo q. One can easily

see that logp(a) = logp(⟨a⟩). Thus it makes sense to define for suitable x ∈ Cp

⟨a⟩x ∶= exp(x logp(a)) = exp(x logp(⟨a⟩) (1.8)

Remark 1.3.2. Since ∣ logp(a)∣ ≤ ∣q∣ = 1/q, we see that the above assignment makes
sense whenever ∣x∣ < qp−1/(p−1). By the above remark we have that ⟨a⟩1 = ⟨a⟩. If for
p odd n ≡ 0 mod p − 1 (for p = 2 the condition is n ≡ 0 mod 2), then ⟨a⟩n = an.
Remark 1.3.3. If a ∈ Γ = 1 + qZp and u is a topological generator of Γ, then a = us(a)

where s(a) ∶= logp(a)
logp(u)

, due to remark 1.3.1.

Now we need more general p-adic analytic functions. We introduce the general-
ized binomial coefficient

(
X

n
) ∶=

X(X − 1)⋯(X − n + 1)
n!

If p(X) ∈ Qp(X) is any polynomial, one can easily check that the function
x ↦ p(x) is continuous on Zp. Since moreover N is dense in Zp and the (m

n
) ∈ N for

all m ∈ N, we conclude that (x
n
) ∈ Zp for every x ∈ Zp.

A classical result due to Mahler says that one can use binomial coefficients to
interpolate continuous functions f ∶Zp → Qp. More precisely

Theorem 1.3.5. Any continuous function f ∶Zp → Qp can be written uniquely in
the form

f(X) =
+∞
∑
n=0

an(
X

n
) with an → 0 for n→ +∞ (1.9)

Proof. See theorem 3.2.1 in [9].
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Example 1.3.6. Not surprisingly one can write

⟨a⟩x = (1 + ⟨a⟩ − 1)x =
+∞
∑
n=0

(
x

n
)(⟨a⟩ − 1)n

and check that the right hand side converges for ∣x∣ < qp−1/(p−1). This agrees with
remark 1.3.2. In particular we have convergence for ∣x∣ < 1.

Finally recall the definitions of Bernoulli numbers and Bernoulli polynomials.
Classical Bernoulli numbers are defined in terms of a generating function

t

et − 1 =
+∞
∑
n=0

Bn
tn

n! (1.10)

Given a primitive Dirichlet character modulo N we define generalized Bernoulli
numbers via

N

∑
a=1

χ(a)teat

eNt − 1 =
+∞
∑
n=0

Bn,χ
tn

et − 1 (1.11)

Now we are ready to construct the p-adic L-functions that we need.
Let χ be a primitive Dirichlet character modulo N . View χ as taking values

in Cp via the embedding Q̄ ↪ Q̄p. It is clear that ω∶Z×
p → Cp is a p-adic Dirichlet

character of conductor q and order ϕ(q). It makes sense to consider products of
characters of the form χωr for some r ∈ Z in this setting.

We have the following

Theorem 1.3.7. Let χ be a primitive Dirichlet character modulo N and let F be
such that N ∣ F and q ∣ F . Then there is a p-adic meromorphic (and analytic if
χ ≠ 1) function Lp(s,χ) on {s ∈ Cp ∣ ∣s∣ < qp−1/(p−1)} such that

Lp(1−k,χ) = −(1−χω−k(p)pk−1)
Bk,χω−k

k
= (1−χω−k(p)pk−1)L(1−k,χω−k) k ≥ 1

(1.12)
If χ = 1 then Lp(s,1) is analytic expect for a pole at s = 1 with residue 1 − 1/p.

In fact one has the explicit description

Lp(s,χ) =
1

F (s − 1)

n

∑
a=1
p∤a

χ(a)⟨a⟩1−s
+∞

∑
j=0

(
1 − s
j

)Bj (
F

a
)
j

(1.13)

Proof. See [19] theorem 5.11.

The above function is usually called Kubota-Leopoldt p-adic L-function. We are
not interested in developing the theory leading to the proof of the results of the
above theorem but we need to mention that there is another construction of this
function due to Iwasawa.

Definition 1.3.8. Let χ be a Dirichlet character. We say that χ is of type Γ if it
factors through Γ = 1 + qZp. Let u = 1 + q and set

Hχ(X) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

χ(u)(1 +X) − 1 if χ is of type Γ
1 otherwise
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Theorem 1.3.9. In the above setting, there is a unique power series Gχ(X) ∈
Zp[χ][[X]] such that

Lp(1 − s,χ) =
Gχ(us − 1)
Hχ(us − 1) (1.14)

More over if ρ is a character of type Γ, then it also holds

Gχρ(X) = Gχ(ρ(u)(1 +X) − 1) (1.15)

1.4 p-adic modular forms à la Serre
In this section we briefly introduce Serre’s point of view on p-adic modular forms,
as it was first described in [17]. We fix an odd prime p and we let vp denote the
p-adic valuation on Qp, normalized in such a way that vp(p) = 1. If we have a formal
power series

f =
+∞
∑
n=0

anq
n ∈ Qp[[q]]

we set
vp(f) ∶= inf

n≥0
vp(an)

If vp(f) ≥m > 0 for some m ∈ Z, we write f ≡ 0 mod pm.

Definition 1.4.1. If (fj)j≥1 is a sequence of elements in Qp[q]] we say that

lim
j→+∞

fj = f ∈ Qp[[q]]

if the coefficients of fj tend uniformly to those of f , i.e. if

lim
j→+∞

vp(f − fj) = +∞

Let m ∈ Z, m ≥ 1 and set

Xm = (Z/pmZ)× ≅ Z/pm−1Z ×Z/(p − 1)Z

For m → +∞ the Xm form a projective system of abelian groups and we have
that

X = lim
←Ð
m

Xm = Zp ×Z/(p − 1)Z

where obviously Zp denotes the ring of p-adic integers.
There is a canonical injective homomorphism Z↪X and one can easily see that

the image of Z inside X is dense for the p-adic topology on X.
One can also see the elements of X as p-adic characters of Z×

p . More precisely,
if Vp = Homcont(Z×

p ,Z×
p), then Z ↪ Vp via the assignment k ↦ (x ↦ xk) and one can

extend this inclusion to a continuous homomorphisms ε∶X → Vp (if Vp is considered
with the topology of uniform convergence). One can check that ε is actually an
isomorphim.
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We can make things more explicit as follows. One writes k ∈X as k = (s, u) with
s ∈ Zp and u ∈ Z/(p − 1)Z. If v ∈ Z×

p is written as v = ω(v)⟨v⟩ (as in the previous
section), then we have that

vk ∶= ε(k)(v) = ω(v)u⟨v⟩s

We say that an element k ∈X is even if (−1)k = 1.

Definition 1.4.2. A p-adic modular form (à la Serre) is a formal power series

f =
+∞
∑
n=0

anq
n ∈ Qp[[q]]

such that there is a sequence (fj)j≥1 of modular forms fj ∈ Mkj(SL2(Z),Q) such
that

lim
j→+∞

fj = f

There is a well-defined notion of weight for such p-adic modular forms, given by
the following

Proposition 1.4.3. Let f be a p-adic modular form, f ≠ 0 and let (fj)j≥1 be a
sequence with fj ∈Mkj(SL2(Z),Q) such that fj → f for j → +∞. Then ∃k ∈X such
that kj → k for j → +∞. Such k depends on f , but not on the choice of the sequence
(fj).

Proof. This is théorème 2 in [17].

If we allow f = 0 to be a p-adic modular form of weight k ∈ X for any k ∈ X,
we then immediately see that p-adic modular forms of a fixed weight k ∈ X form a
Qp-vector space.

If f is a p-adic modular form, one can prove that vp(f) ≠ −∞, i.e. pNf ∈ Zp[[q]]
for some N .

We have the following interesting result

Theorem 1.4.4. Let (f (j))j≥1 be a sequence of p-adic modular forms of weight
k(j) ∈X. Write

f (j) =
+∞
∑
n=0

a
(j)
n qn

and assume that

(i) a
(j)
n for n ≥ 1 converge uniformly to an ∈ Qp

(ii) the weights k(j) converge in X to a limit k ≠ 0

Then the a(j)0 have a limit a0 ∈ Qp and the series

f =
+∞
∑
n=0

anq
n

is a p-adic modular form of weight k.
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Proof. This is corollaire 2 in [17].

We are now going to apply the above discussion to the case of Eisenstein series.
Basically the above result will give us the chance of reconstructing the p-adic zeta
function of Kubota-Leopoldt.

Recall that the classical family of Eisenstein series of level SL2(Z) and variable
weight k ≥ 4 even has q-expansion

Ek(z) =
ζ(1 − k)

2 +
+∞
∑
n=1

σk−1(n)q
n (1.16)

where σm(n) ∶= ∑d∣n d
m. It is well-known that Ek(z) ∈Mk(SL2(Z)).

Now for k ∈X define
σ
(p)
k (n) =∑

d∣n
p∤d

dk

One can easily check that if (kj)j≥1 is a sequence of integers such that kj → k ∈ X
for the p-adic topology and kj → +∞ in the Archimedean sense, then

σkj(n)→ σ
(p)
k (n)

uniformly in n ≥ 1. As a corollary of theorem 1.4.4 we immediately get:

Corollary 1.4.5. For k ≠ 0, k ∈X even, there is p-adic modular form

E
(p)
k =

ζ(p)(1 − k)
2 +

+∞
∑
n=1

σ
(p)
k (n)qn

where ζ(p)(1 − k) = limj→+∞ ζ(1 − kj).

We have thus defined a function ζ(p) on the odd elements of X ∖ {0}. Theorem
1.4.4 also shows that this function is continuous and we claim that it is indeed
essentially the same as Kubota-Leopoldt p-adic zeta function.

For (s, u) ∈X = Zp ×Z/(p − 1)Z define

ζ ′(s, u) = Lp(s,ω
1−u)

where Lp is the Kubota-Leopoldt p-adic L-function defined in the previous section.
We know that ζ ′ is continuous and that

ζ ′(1 − k) = (1 − pk−1)ζ(1 − k) if k ∈ 2Z, k ≥ 2

Now if k ∈ 2X, k ≠ 0 and if (kj)j≥1 is a sequence of integers such that kj → k
p-adically and kj → +∞ in the Archimedean sense, we get

ζ ′(1 − k) = lim
j→+∞

ζ ′(1 − kj) = lim
j→+∞

(1 − pkj−1)ζ(1 − kj) = lim
j→+∞

ζ(1 − kj) = ζ(p)(1 − k)

which shows that ζ(p) = ζ ′.
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1.5 Λ-adic forms
Now fix a prime p and a positive integer N prime to p. As before set

q =

⎧⎪⎪
⎨
⎪⎪⎩

4 if p = 2
p if p odd

This notation is quite standard. No confusion with the q used for the q-expansion
should arise hopefully.

Let χ be a Dirichlet character modulo Nq (considered as taking values in Q̄p).
Let u = 1 + q ∈ Γ = 1 + qZp be a fixed topological generator of Γ.

As before assume that F /Qp a finite extension with Z[χ] ⊆ F and let OF denote
the corresponding integer ring. We set ΛF = OF [[X]] for the usual Iwasawa algebra.
Let ω denote the p-adic Teichmüller character as in the above section.

In this section we will introduce Λ-adic forms of level N and character χ. For
this we will need first some results about the structure of the ring ΛF = OF [[X]].

1.5.1 The structure of the Iwasawa algebra
Fix π ∈ OF a uniformizer and let mF = (π) denote the maximal ideal of the discrete
valuation ring OF . A polynomial p(X) ∈ OF [X] is called distinguished if it takes
the form

p(X) =Xn + an−1X
n−1 + ⋅ ⋅ ⋅ + a0 with π ∣ ai for i = 0, . . . , n − 1

A classical result concerning ΛF is the so-called Weierstraß preparation theorem.

Proposition 1.5.1. Let f(X) = ∑
+∞
i=0 aiX

i ∈ ΛF and assume that for some n it holds
that ai ∈ mF for i = 0, . . . , n− 1 and an ∉ mF . Then f(X) may be uniquely written as
f(X) = p(X)u(X) with u(X) ∈ ΛF is a unit and p(X) is a distinguished polynomial
of degree n. More generally any nonzero element f(X) ∈ ΛF can be written uniquely
as f(X) = πrp(X)u(X) for some r ≥ 0 and u(X), p(X) as before.

Proof. See [19] theorem 7.3.

An important consequence of this fact is that a non-zero power series f(X) ∈ ΛF

has only finitely many zeroes in the disk {x ∈ Cp ∣ ∣x∣ < 1}.

The following lemma summarizes the algebraic properties of the ring ΛF =
OF [[X]].

Lemma 1.5.2. ΛF is a Noetherian local ring of Krull dimension 2. It is a UFD.
Its maximal ideal is m = (π,T ). All other prime ideals have height 1. They are (π)
and (p(X)) where p(X) ∈ OF [[X]] is an irreducible and distinguished polynomial.

Proof. See [19] proposition 13.9.
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Finally it is important to recall that the ring ΛF can be realized as the topological
group ring OF [[Γ]] as follows. Let Γr = Γpr for r ≥ 0 denote the unique closed
subgroup of Γ of index pr. It is clear that Γ/Γr is cyclic of order pr so that there is
a natural isomorphism

OF [Γ/Γr] ≅ OF [X]/((1 +X)p
r

− 1)

for all r ≥ 0, given by sending the fixed topological generator u = 1 + q mod (Γr) to
1 +X mod ((1 +X)p

r
− 1).

If r ≥ s one has a commutative diagram with obvious arrows

OF [Γ/Γr] OF [X]/((1 +X)p
r
− 1)

OF [Γ/Γs] OF [X]/((1 +X)p
s
− 1)

∼

∼

One defines OF [[Γ]] = lim
←Ð
OF [Γ/Γr], viewed as a topological ring with the profinite

topology. Taking inverse limits on the above diagram one finds an isomorphism of
topological rings

OF [[Γ]] ≅ OF [[X]] = ΛF

uniquely determined by the assignment u↦ 1+X. For the proof of this fact cf. [19],
theorem 7.1.

1.5.2 Specializations
An element ϕ ∈ HomOF−alg(ΛF , Q̄p) is called a specialization. Notice that when p > 2,
under the isomorphism given above, there is a natural bijection between continuous
group homomorphisms α∶Γ → Q̄×

p and OF -algebra homomorphisms ϕ∶OF → Q̄p. In
particular such an α is uniquely determined by the image of a topological generator
u = 1 + p of Γ, which must be a principal unit in a finite extension of Qp inside Q̄p.
The corresponding ϕ is obtained setting ϕ(f(X)) = f(α(u) − 1) for f ∈ ΛF .

Note that the kernel of a specialization ϕ is necessarily a height one prime ideal
Pϕ of ΛF generated by an irreducible distinguished polynomial. We will also refer
to such prime ideals as specializations.

Definition 1.5.3. A specialization ϕ∶ΛF → Q̄p is called arithmetic if it is uniquely
determined by a continuous group homomorphism α∶Γ → Q̄×

p such that α(γ) =

ε(γ)γk for a finite order character ε∶Γ → Q̄×
p and some k ≥ 1. We denote by ϕk,ε

such a specialization. If k ≥ 2 we say that this specialization is classical. We denote
by Pk,ε the corresponding prime ideal of ΛF .

We have that ϕk,ε(X) = ε(u)uk − 1, so that we can see ϕk,ε as the evaluation of
power series at X = ε(u)uk − 1.

If p > 2 we let r = rε ∈ Z≥0 be such that ε has exact order pr, i.e. it factors
optimally through Γ/Γr where Γr ∶= 1 + pr+1Zp. It is easy to see that to define such
an ε it is enough to fix a primitive pr-th root of unit in ζr ∈ Qp

× and set ε(u) = ζr.
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Notice also that since Γ/Γr ≅ Z/prZ in the obvious way, it is possible to view ε
as a Dirichlet character modulo pr+1 via the decomposition

(Z/pr+1Z)× ≅ (Z/pZ)× × (Z/prZ)

and defining a suitable Dirichlet character as trivial on the first component and
given by ε on the second component.

If p = 2 one has to ask r ≥ 1 and fix a 2r−1-th root of unit in order to carry out
the analogous construction for arithmetic and classical specializations.

Let now L be a finite field extension of Frac(ΛF ) and let I be the normalization
of ΛF inside L. By Noetherianity, we know that I is a finite flat ΛF -algebra.

Definition 1.5.4. We say that an OF -algebra homomorphism ϕ∶I → Q̄p is an
arithmetic (resp. classical) specialization if ϕ∣ΛF is an arithmetic (resp. classical)
specialization.

Notice that in the above setting if P ⊆ ΛF is a prime ideal, there is always a
prime ideal P ⊆ I such that P ∩ΛF = P (from the usual going-up theorem), so that
we can extend specializations to I.

If ϕ∶I → Q̄p is a specialization and F = ∑
+∞
n=0 a(n,F)qn ∈ I[[q]] then we write

ϕ(F) for the series

ϕ(F) =
+∞
∑
n=0

ϕ(a(n,F))qn ∈ Q̄p[[q]]

1.5.3 Λ-adic forms
We are now ready to define ΛF -adic forms.

Definition 1.5.5. A formal q-expansion F = F(X; q) ∈ ΛF [[q]] is called a ΛF -adic
form (of tame character χ and level N) if for almost all classical specializations ϕk,ε
it holds that

ϕk,ε(F) ∈Mk(Γ0(Nqp
rε), εχω−k,OF [ε])

A ΛF -adic form F(X; q) is called a cusp form if

ϕk,ε(F) ∈ Sk(Γ0(Nqp
rε), εχω−k,OF [ε])

for all but finitely many classical specializations ϕk,ε.

We write M(N,χ,ΛF ) (resp. S(N,χ,ΛF )) for the space of ΛF -adic modular
forms (resp. ΛF -adic cusp forms). It is immediate to check that M(N,χ,ΛF ) and
S(N,χ,ΛF ) have a natural structure of ΛF -module.

These modules (or rather their corresponding Hecke algebras) will be the main
object of study in this thesis.

We have the following useful fact

Proposition 1.5.6. With the above notation and assuming that the character ε
takes values in O×

F , for any f ∈Mk(Γ0(Nqpr(ε)), εχω−k,OF ), there exists a ΛF -adic
form F ∈M(N,χ,ΛF ) such that ϕk,ε(F) = f . A similar result holds for cusp forms.
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Proof. We will need to consider the Λ-adic Eisenstein series which will be constructed
in theorem 4.1.2. Since in that theorem the construction is given for p an odd prime,
we will prove the proposition under the same assumption. With the notation of that
theorem we let E = E1/A0,1(X) (so that E(0; q) = 1) and then we set

Ek,ε(X) = E(ε(u)−1u−k(1 +X) − 1) ∈ ΛF [[q]]

Then F ∶= f ⋅ Ek,ε ∈ ΛF [[q]] satisfies ϕk,ε(F) = fE(0; q) = f and one checks that for
all l ≥ k and all finite order characters λ∶Γ→ Q̄×

p it holds

ϕl,λ(F) ∈Ml(Γ0(Np
r(λ)+1), λχω−l,OF [λ])

We now show how to extend to Λ-adic forms the definition of Hecke operators
that we saw in section 1.2. Given F ∈M(N,χ,ΛF ) with q-expansion

F(X; q) =
+∞
∑
n=0

a(n,F)qn

we let F ∣T (n) denote the q-expansion in ΛF [[q]] with coefficients given by

a(m,F ∣T (n)) = ∑
d∣gcd(m,n),gcd(d,Np)=1

χ(d)Ad ⋅ a(mn/d
2,F) (1.17)

where for every a ∈ Z×
p we set

Aa = Aa(X) =
1
a

+∞
∑
n=0

(
s(⟨a⟩)

n
)Xn ∈ Λ = Zp[[X]]

with the notation of remark 1.3.3.

Lemma 1.5.7. Hecke operators defined by equation (1.17) are well defined, i.e.
for F ∈M(N,χ,ΛF ), it holds that F ∣T (n) ∈M(N,χ,ΛF ) (and similarly for cusp
forms). More precisely, if ϕk,ε is a classical specialization such that ϕk,ε(F) ∈
Mk(Γ0(Nqprε), εχω−k,OF [ε]), then ϕk,ε(F ∣T (n)) = (ϕk,ε(F))∣T (n).

Proof. By the proof of theorem 4.1.2 (with the same notation) we get for every
d ≥ 1 it holds Ad(ε(u)uk − 1) = ε(d)dk−1ω−k(d). This means that evaluating at
X = ε(u)uk −1 formula (1.17) reduces to formula (1.3) for the character εχω−k. The
assertion now follows.

Hence we have well defined ΛF -linear operators defined on M(N,χ,ΛF ) and
S(N,χ,ΛF ).

Now we are going to take coefficients in extensions of ΛF . In particular let I be
again the normalization of ΛF in a finite extension of Frac(ΛF ). We will need to
consider such extensions to construct Hida families of CM forms in the sequel.
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Definition 1.5.8. We say that a formal q-expansion F ∈ I[[q]] is called an I-adic
form (of tame character χ and level N) if for almost all classical specialization
Φ∶I → Q̄p (extending ϕk,ε for some k ≥ 2 and finite order character ε∶Γ → Q̄×

p) it
holds

Φ(F) ∈Mk(Γ0(Nqp
rε , εχω−k, Q̄p)

Analogously one defines I-adic cusp forms.

We denote byM(N,χ,I) (resp. S(N,χ,I)) the I-modules of I-adic forms (resp.
I-adic cusp forms).

It is clear that the action of Hecke operators on this I-modules is again given by
equation (1.17).
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Chapter 2

The ordinary part

This chapter is dedicated to the detailed exposition of the so-called control theorems
for ordinary Λ-adic forms. To avoid technicalities and to simplify the notation, we
assume that p is an odd prime number in this chapter (and if necessary we even ask
p ≥ 5).

2.1 The ordinary projector
As in the previous chapters F denotes a finite extension of Qp with ring of integers
OF . The maximal ideal in OF will be denoted by mF and the residue field is
F = OF /mF .

Let us start with a result from commutative algebra.
Lemma 2.1.1. Let A be a commutative OF -algebra free of finite rank over OF .
Then for any x ∈ A the limit limn→+∞ xn! exists in A for the mF -adic topology and
gives an idempotent of A.

Proof. By the Wedderburn Principal Theorem (cf. [3] theorem 72.19), any finite
dimensional algebra over a perfect field decomposes as the direct sum (as a vector
space) of its nilpotent radical and a semisimple subalgebra. Now A ∶= A/mFA is
such an algebra over F, so that given x ∈ A, its class x ∈ A can be written as x = s+n
for some nilpotent element n and some semi-simple element s of A. If npk = 0, then

(s + n)p
k

= sp
k

+ np
k

= sp
k

is semisimple in A. Hence for a sufficiently large integer b we know that (s + n)b =
sb = e is an idempotent in A (A/mFA is a finite ring). By Hensel’s lemma we can lift
such an idempotent to an idempotent e of A, which is easily seen to coincide with
the limit

lim
n→+∞

xn!

Let again χ∶ (Z/Npr+1Z)× → O×
F be a Dirichlet character (where N is prime to p).

In the Hecke algebra Hk(Γ0(Npr+1), χ,OF ) (resp. hk(Γ0(Npr+1), χ,OF )) we have
the operator T (p) = U(p) and thanks to the above lemma we can define

e ∶= lim
n→+∞

U(p)n!
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The operator e defined above is called Hida ordinary projector.
Remark 2.1.1. If f is an eigenform of Up with eigenvalue λ ∈ Q̄p, it is easy to check
that

f ∣e =

⎧⎪⎪
⎨
⎪⎪⎩

f if ∣λ∣ = 1
0 if ∣λ∣ < 1

Definition 2.1.2. We say that a modular form f ∈ Mk(Γ0(Npr+1), χ,OF ) is p-
ordinary if f ∣e = f . We define the ordinary part of the Hecke algebras and the
spaces of modular forms by

Hordk (Γ0(Np
r+1), χ,OF ) = eHk(Γ0(Np

r+1), χ,OF )

hordk (Γ0(Np
r+1), χ,OF ) = ehk(Γ0(Np

r+1), χ,OF )

M ord
k (Γ0(Np

r+1), χ,OF ) =Mk(Γ0(Np
r+1), χ,OF )∣e

mord
k (Γ0(Np

r+1), χ,OF ) =mk(Γ0(Np
r+1), χ,OF )∣e

Sordk (Γ0(Np
r+1), χ,OF ) = Sk(Γ0(Np

r+1), χ,OF )∣e

It is clear that we can define the ordinary projector and the ordinary parts of
Hecke algebras and spaces of modular forms also for level Γ1(Npr+1) where N is
prime to p.
Remark 2.1.2. Since e is an idempotent we get a decomposition

Hk(Γ0(Np
r+1, χ,OF ) = H

ord
k (Γ0(Np

r+1, χ,OF ) × (1 − e)Hk(Γ0(Np
r+1, χ,OF )

and one can verify that Hordk (Γ0(Npr+1, χ,OF ) is the largest algebra direct sum-
mand on which the image of U(p) is a unit, while (1− e)Hk(Γ0(Npr+1, χ,OF ) is the
complementary direct summand such that U(p) is topologically nilpotent.

Lemma 2.1.3. The pairing (1.4) restricts to ordinary parts and induces, for all
k ≥ 1, isomorphisms

HomOF (Hordk (Γ0(Np
r+1), χ,OF ),OF ) ≅m

ord
k (Γ0(Np

r+1), χ,OF )

HomOF (hordk (Γ0(Np
r+1), χ,OF ),OF ) ≅ S

ord
k (Γ0(Np

r+1), χ,OF )

HomOF (mord
k (Γ0(Np

r+1), χ,OF ),OF ) ≅ H
ord
k (Γ0(Np

r+1), χ,OF )

HomOF (Sordk (Γ0(Np
r+1), χ,OF ),OF ) ≅ hordk (Γ0(Np

r+1), χ,OF )

Proof. For H ∈ Hk(Γ0(Npr+1), χ,OF ) and f ∈mk(Γ0(Npr+1), χ,OF ) it holds

(H,f ∣e) = a(1, f ∣eH)) = (eH, f)

and similarly in the cuspidal case. This proves the assertion.

We want to define an idempotent on the spaces of ΛF -adic forms in a suitable
way.

Assume now that χ is a Dirichlet character modulo Np (with N prime to p as
usual) and with values in O×

F .
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For every k ≥ 2 we let Mk(N,χ,ΛF ) denote the submodule of ΛF -adic forms
given by the forms F ∈M(N,χ,ΛF ) such that

ϕj,ε(F) ∈Mk(Γ0(Np
r(ε)+1), εχω−j,OF [ε])

for all classical specializations with j ≥ k.
It is clear that by definition we have

M(N,χ,ΛF ) = ⋃
k≥2
Mk(N,χ,ΛF ) ⊆ ΛF [[q]]

We are ready to prove the following

Theorem 2.1.4. There exists a unique idempotent e ∈ EndΛF (M(N,χ,ΛF )) com-
muting with T (n) for all n ≥ 1 and such that

e(ϕk,ε(F)) = ϕk,ε(e(F))

for all F ∈M(N,χ,ΛF ) and meaningful specializations.

Proof. We claim that for every k ≥ 2 the map

Mk(N,χ,ΛF )→ ∏
j≥k,ε

Mj(Γ0(Np
r(ε)+1, εχω−j,OF [ε])

induced by specializations is injective. Indeed assume ϕj,ε0(F) = 0 for all j ≥ k
(where ε0 is the trivial character of Γ). Writing

F =
+∞
∑
n=0

a(n,F)qn

it would follow that X + 1 − uj divides a(n,F) for all j ≥ k. But ΛF is a unique
factorization domain, so that necessarily a(n,F) = 0 for all n ≥ 0 and F = 0.

Since the above map is injective, the U(p) operator onMk(N,χ,ΛF ) is induced
by the product operator of U(p) on each Mj(Γ0(Npr(ε)+1, εχω−j,OF [ε]), since we
verified that

U(p)(ϕj,ε(F)) = ϕj,ε(U(p)(F))

Now the limit limn→+∞U(p)n! exists in Mj(Γ0(Npr(ε)+1, εχω−j,OF [ε]). Such an op-
erator gives an operator on the product ∏j≥k,εMj(Γ0(Npr(ε)+1, εχω−j,OF [ε]) which
preserves the image of Mk(N,χ,ΛF ). We thus have a well defined idempotent ek
on Mk(N,χ,ΛF ) which satisfies the requirements.

It is now easy to see that such idempotents ek define an idempotent e on
M(N,χ,ΛF ) given by F ∣e ∶= F ∣ek if F ∈Mk(N,χ,ΛF ) for some k ≥ 2.

Definition 2.1.5. (i) We define Mord(N,χ,ΛF ) = M(N,χ,ΛF )∣e (and analo-
gously Sord(N,χ,ΛF ) = S(N,χ,ΛF )∣e) and we call them the space of ordinary
ΛF -adic modular forms (resp. cusp forms).
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(ii) We define Hord(N,χ,ΛF ) (respectively hord(N,χ,ΛF )) by the subalgebra of
EndΛF (M

ord(N,χ,ΛF )) (resp. EndΛF (S
ord(N,χ,ΛF )) generated by all Hecke

operators T (n) for n ≥ 1 over ΛF . We call it the universal ordinary Hecke
algebra of level N and character χ (resp. the universal cuspidal ordinary
Hecke algebra of level N and character χ).

Notice that by the above theorem we might also define Mord(N,χ,ΛF ) (resp.
Sord(N,χ,ΛF )) as the subspace of M(N,χ,ΛF ) (resp. S(N,χ,ΛF )) given by those
ΛF -adic forms for which almost every classical specialization is ordinary.

2.2 Vertical control theorem
In this section we state and prove the most important results concerning ΛF -adic
forms.

Theorem 2.2.1. With the usual notation (χ is again a Dirichlet character modulo
Np here), we have that for all k ≥ 2 it holds

RankOFM ord
k (Γ0(Np), χω

−k,OF ) = RankOFM ord
2 (Γ0(Np), χω

−2,OF )

and
RankOFSordk (Γ0(Np), χω

−k,OF ) = RankOFSord2 (Γ0(Np), χω
−2,OF )

Proof. The proof of this result is postponed to chapter 3, theorem 3.3.3.

The proof of the following result is due to Wiles.

Theorem 2.2.2. The ΛF -modules Mord(N,χ,ΛF ) and Sord(N,χ,ΛF ) are ΛF -free
of finite rank.

Proof. We just prove the assertion for M ∶=Mord(N,χ,ΛF ) because the proof for
cusp forms is identical. Ley M be a finitely generated free ΛF -submodule ofM with
basis {F1, . . . ,F`}. Write

Fj =
+∞
∑
n=0

a(n,Fj)q
n

Then there is a sequence of integers 0 ≤ n1 < ⋅ ⋅ ⋅ < n` such that D = det(A) ≠ 0 for
the `×` matrix A = [a(ni,Fj)]i,j with coefficients in ΛF . By Weierstraß preparation
theorem (cf. proposition 1.5.1) a non-zero power series in ΛF has only finitely many
zeroes in the unit disk {x ∈ Cp ∣ ∣x∣ < 1}. There exists an integer k ≫ 2 such that
D(uk − 1) ≠ 0 and

fj ∶= ϕk,ε0(Fj) ∈M
ord
k (Γ0(Np), χω

−k,OF )

for all j = 1, . . . , `. In particular this implies that {f1, . . . , f`} are OF -linearly inde-
pendent. We write ϕk = ϕk,ε0 and Pk = Pk,ε0 in the sequel.

By the previous theorem we know that the rank of M ord
k (Γ0(Np), χω−k,OF ) is

bounded independently of k ≥ 2 (cf. also corollary 3.3.2). This means that ` is
bounded independently of the choice of M , and we can thus assume that ` is the
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maximal possible rank of ΛF -free submodules of M. Hence it is clear that any
F ∈M can be written as

F =
`

∑
j=1
αjFj

for suitable αj ∈ Frac(ΛF ). These elements αj are the solution of the linear system
Ax = a(F) where the matrix A was described before and

a(F) = (a(n1,F), . . . , a(n`,F))t

Multiplying on the left by the cofactor matrix of A, one easily finds that Dαj ∈ ΛF

for all j = 1, . . . , `, where D = det(A) as above.
This shows that DM ⊆M . SinceM (being a submodule of ΛF [[q]]) torsion-free

and ΛF is Noetherian, we deduce immediately thatM must be a finitely generated
ΛF -module.

Now we show thatM is actually a free ΛF -module. Since it is finitely generated,
choose {Φ1, . . . ,Φm} a set of generators of M. For k ≫ 2 we have that

ϕk(Φj) ∈M
ord
k (Γ0(Np), χω

−k,OF )

for all j = 1, . . .m. Then given F ∈M we have that ϕk(F) is a linear combination
of ϕk(Φj), and hence

ϕk(F) ∈M ord
k (Γ0(Np), χω

−k,OF )

If ϕk(F) = 0, then a(n,F)/(X + 1 − uk) ∈ ΛF for all n ≥ 0 and we have F ′ =
F/(X + 1−uk) ∈M. In any case ϕk(F ′) ∈M ord

k (Γ0(Np), χω−k,OF ) by what we saw
above, so F = (X + 1 − uk)F ′. This means that we have an exact sequence

0→ PkM→M→M ord
k (Γ0(Np), χω

−k,OF )→ 0

Now pick {f1, . . . , fr} an OF -basis of M ord
k (Γ0(Np), χω−k,OF ). By the above exact

sequence we can find {F1, . . . ,Fr} in M such that ϕk(Fj) = fj for all j = 1, . . . , r.
We claim that {F1, . . . ,Fr} is a ΛF -basis of M.

Assume ∑r
j=1 bjFj = 0 for bj ∈ ΛF .

Then ∑r
j=1ϕk(bj)fj = 0, so that bj = (X +1−uk)b′j with b′j ∈ ΛF for all j = 1, . . . , r.

We thus get an equation ∑r
j=1 b

′
jFj = 0. Repeating the process, we find that any

power of X + 1 − uk divides bj, so bj = 0 for all j = 1, . . . , r and {F1, . . . ,Fr} are
ΛF -linearly independent.

We claim that {F1, . . . ,Fr} also generateM. Indeed let M be the ΛF submodule
of M generated by {F1, . . . ,Fr} and let F ∈M. Then we can find a linear combi-
nation G0 of {F1, . . . ,Fr} such that F −G0 ∈ PkM. Then (F −G0)/(X + 1−uk) ∈M.
Repeating the argument we find G1 such that (F − G0)/(X + 1 − uk) − G1 ∈ PkM.
Continuing in this way, we get a sequence G0,G1, . . . , of elements of M such that

F ≡
j

∑
i=0

(X + 1 − uk)iGi mod P j
k

for all j ≥ 0. Now write
Gi = α1,iF1 + ⋅ ⋅ ⋅ + αr,iFr
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for suitable αn,j ∈ ΛF . Then by the completeness of ΛF , we can take limits

αn ∶= lim
j→+∞

(
j

∑
i=0
αn,j(X + 1 − uk)j) ∈ lim

←Ð
ΛF /P

j
kΛF = ΛF

for n = 1, . . . , r.
Let G ∶= α1F1 + ⋅ ⋅ ⋅ +αrFr ∈M , so that F −G ∈M is divisible by (X + 1−uk)i for

all i ≥ 1, which implies G = F .
We conclude that M =M and that M =Mord(N,χ,ΛF ) is ΛF -free.

Corollary 2.2.3 (Vertical control theorem). In the above setting, if k ≥ 2 we have
isomorphisms

Mord(N,χ,ΛF )/PkM
ord(N,χ,ΛF ) ≅M

ord
k (Γ0(Np), χω

−k,OF )

Sord(N,χ,ΛF )/PkS
ord(N,χ,ΛF ) ≅ S

ord
k (Γ0(Np), χω

−k,OF )

induced by the specializations ϕk.

Proof. This follows immediately from the proof of the above theorem.

2.3 Duality
We now define a pairing

⟨−,−⟩∶Hord(N,χ,ΛF ) ×M
ord(N,χ,ΛF )→ ΛF

given by ⟨H,F⟩ ∶= a(1,F ∣H).

Define also

mord(N,χ,ΛF ) = {F ∈Mord(N,χ,ΛF )⊗ΛF Frac(ΛF ) ∣ a(n,F) ∈ ΛF for all n ≥ 1}

The main result of this section is the following:

Theorem 2.3.1. The above pairing induces isomorphisms of ΛF -modules:

(i)
HomΛF (Hord(N,χ,ΛF ),ΛF ) ≅ mord(N,χ,ΛF )

HomΛF (mord(N,χ,ΛF ),ΛF ) ≅ Hord(N,χ,ΛF )

(ii)
HomΛF (hord(N,χ,ΛF ),ΛF ) ≅ S

ord(N,χ,ΛF )

HomΛF (S
ord(N,χ,ΛF ),ΛF ) ≅ hord(N,χ,ΛF )

In particular Hord(N,χ,ΛF ) and hord(N,χ,ΛF ) are free of finite rank over ΛF .
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Proof. Since (i) and (ii) are proven essentially in the same way, we just prove (ii).
Write K = Frac(ΛF ). To ease the notation let also S(ΛF ) = Sord(N,χ,ΛF ) and

h(ΛF ) = hord(N,χ,ΛF ).
Set also S(K) = S(ΛF )⊗ΛF K and h(K) = h(ΛF )⊗ΛF K.
By theorem 2.2.2 we know that S(ΛF ) is free of finite rank over ΛF , so that

dimK(S(K)) = rankΛF (S(ΛF )) < +∞

which implies
dimK(h(K)) < +∞

Notice that if we prove that the induced pairing

⟨−,−⟩∶h(K) × S(K)→ K

is non-degenerate, then we get isomorphisms

HomK(h(K),K) ≅ S(K)

and
HomK(S(K),K) ≅ h(K)

induced by the pairing (because we are working over a field).
So let H ∈ h(K) and assume that ⟨H,F⟩ = 0 for all F ∈ S(K). Then

an(F ∣H) = a1(F ∣HT (n)) = a1(F ∣T (n)H) = ⟨H,F ∣T (n)⟩ = 0

for all n ≥ 1. This immediately implies that F ∣H = 0 (since F is cuspidal by
assumption). Since F is arbitrary we deduce that H = 0.

Fix now F ∈ S(K) and assume that ⟨H,F⟩ = 0 for all H ∈ h(K). Then in
particular for all n ≥ 1 we have

an(F) = a1(F ∣T (n)) = ⟨T (n),F⟩ = 0

so that F = 0 again. This proves that the scalar extension to K of our pairing is
non-degenerate.

Now we try to work over ΛF . Arguing as above it is easy to see that the ΛF -
module homomorphism

S(ΛF )→ HomΛF (h(ΛF ),ΛF ), F ↦ (H ↦ ⟨H,F⟩)

is injective.
Now given ϕ ∈ HomΛF (h(ΛF ),ΛF ) it is immediate to extend it to a

ϕ̃ ∈ HomK(h(K),K)

(just set ϕ̃(H) = ϕ(H) for every H ∈ h(ΛF ) and extend K-linearly).
By what was proven above, there is F ∈ S(K) such that

ϕ̃(H) = ⟨H,F⟩
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for every H ∈ h(K). In particular

an(F) = a1(F ∣T (n)) = ⟨Tn,F⟩ = ϕ̃(T (n)) = ϕ(T (n)) ∈ ΛF

for all n ≥ 1, so that indeed F ∈ S(ΛF ) as we wished to prove.

Finally we have to prove that the ΛF -module homomorphism

h(ΛF )
α
Ð→ HomΛF (S(ΛF ),ΛF ), H ↦ (F ↦ ⟨H,F⟩)

is an isomorphism. Again injectivity follows arguing as we did while working over
K. For surjectivity we have to work a bit more in this case.

Since from now on we will just work over ΛF , we simplify the notation setting
h = h(ΛF ) and S = S(ΛF ). For a ΛF -module M we will write M∗ to denote its
ΛF -dual, i.e.

M∗ = HomΛF (M,ΛF )

In particular we have proven that S ≅ h∗ via our pairing.
We can thus interpret α as the canonical morphism

h→ h∗∗ = HomΛF (h∗,ΛF ), H ↦ (ϕ↦ ϕ(H))

and we know that it is injective. Since h∗∗ is free of finite rank over ΛF , we deduce
that h is torsion-free as ΛF module. In particular for any height one prime ideal ℘
of ΛF we get that the localization h℘ is free of finite rank over (ΛF )℘ (which is a
discrete valuation ring).

Let N = Coker(α). Since localization is exact and free modules are reflexive
(canonically isomorphic to their double dual), we immediately deduce that for any
height one prime ideal ℘ of ΛF it holds that N℘ = 0, i.e. N is a so-called pseudo-null
ΛF -module. It is well-known (cf. [14], remark 4 page 269) that pseudo-null ΛF

modules are finite, so that our N is finite.
Since h∗∗ is ΛF -free, then h∗∗∗ ≅ S. Thus we have the following chain of isomor-

phims for k ≥ 2.

HomOF (h∗∗/Pkh∗∗,OF ) ≅ S/PkS ≅ S
ord
k (Γ0(Np), χω

−k,OF ) ≅

≅ HomOF (hordk (Γ0(Np), χω
−k,OF ),OF )

where Pk = (X + 1 − (1 + p)k) as usual.
The first isomorphisms follows from the fact that h∗∗ is free over ΛF . The

second isomorphism is the control theorem 2.2.3. Finally the third isomorphism is
the duality of lemma 2.1.3.

Tensoring the exact sequence

0→ h→ h∗∗ →N→ 0

with OF = ΛF /PkΛF we obtain an exact sequence

Tor1
ΛF (N,OF )→ h/Pkh→ h∗∗/Pkh∗∗ →N/PkN
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Notice that tensoring with N the exact sequence

0→ ΛF

⋅(X+1−(1+p)k)
ÐÐÐÐÐÐÐ→ ΛF → OF → 0

we get that Tor1
ΛF (N,OF )↪N, so that Tor1

ΛF (N,OF ) is itself a finite ΛF -module.
Thus we have another exact sequence

0↦ hordk (Γ0(Np), χω
−k,OF )→ h∗∗/Pkh∗∗ →N/PkN→ 0

Indeed the image of h/Pkh inside the OF -free algebra h∗∗/Pkh∗∗ is generated by the
Hecke operators T (n) for n ≥ 1. Taking OF -duals (again we use lemma 2.1.3) in the
above exact sequence we find

0→ HomOF (h∗∗/Pkh∗∗,OF )→ Sordk (Γ0(Np), χω
−k,OF )→ Ext1

OF (N/PkN,OF )→ 0

and since OF is a discrete valuation ring and N/PkN is a torsion module, we have
that

Ext1
OF (N/PkN,OF ) ≅ N/PkN

At the same time it is easy to see that the arrow

HomOF (h∗∗/Pkh∗∗,OF )→ Sordk (Γ0(Np), χω
−k,OF )

is the isomorphism that was proven above, so that

0 = Ext1
OF (N/PkN,OF ) ≅ N/PkN

Now we can apply Nakayama’s lemma to conclude that N = 0, showing that h ≅
HomΛF (S,ΛF ) as we wished to prove.

The interpolation property for the Hecke algebras is now immediate.

Corollary 2.3.2. In the above setting, for all k ≥ 2 there are isomorphisms of
OF -algebras, sending T (n) to T (n) for all n ≥ 1:

Hord(N,χ,ΛF )/PkHord(N,χ,ΛF ) ≅ H
ord
k (Γ0(Np), χω

−k,OF )

hord(N,χ,ΛF )/Pkhord(N,χ,ΛF ) ≅ hordk (Γ0(Np), χω
−k,OF )
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Chapter 3

Cohomological tools

3.1 Eichler-Shimura isomorphism
In this section we introduce the cohomological tools which are needed for the proofs
of the structure theorems in Hida theory and we state without proof the classical
Eichler-Shimura isomorphism.

Let Γ be a group, let R be a commutative unitary ring and let M be any left
R[Γ]-module. Then we define group cohomology of M with coefficients in R in the
usual way as

H i(Γ,M) = ExtiR[Γ](R,M) (3.1)
The functors (H i(Γ,−))n ≥ 0 form a universal cohomological δ-functor in the sense
of [20], pages 30-32. We will use freely the properties of δ-functors in what follows
to get long exact sequences in cohomology and induced morphisms in cohomology.
A standard reference for this facts is again [20], chapters 1,2, 3 and 6.

Practically, we also adopt the explicit description of H i(Γ,M) in terms of the
standard Bar resolution of inhomogeneous cochains (i.e. the usual description in
terms of cocycles and coboundaries, cf. [20] section 6.5).

This means that we will consider for i ≥ 0

Ci(Γ,M) = {f ∶Γi →M ∣ f function}

(where we set C0(Γ,M) =M) with differentials

∂i∶Ci(Γ,M)→ Ci+1(Γ,M)

given by ∂0m(γ) = (γ − 1)m for m ∈M and γ ∈ Γ and by

∂if(γ1, . . . γi+1) =

= γ1f(γ2, . . . , γi+1) + (
i

∑
j=1

(−1)jf(γ1, . . . , γjγj+1, . . . , γi+1)) + (−1)i+1f(γ1, . . . , γi)

for i ≥ 1, f ∈ Ci(Γ,M) and γ1, . . . γi+1 ∈ Γ.
As usual one can identify H i(Γ,M) = Zi(Γ,M)/Bi(Γ,M) where

Zi(Γ,M) ∶= Ker(∂i) Bi(Γ,M) ∶= Im(∂i−1)

are respectively the submodules of i-cocycles and i-coboundaries.
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Lemma 3.1.1. The following holds:

(i)
H0(Γ,M) =MΓ = {x ∈M ∣ γx = x for all γ ∈ Γ} ≅ HomR[Γ](R,M)

(ii) If Γ acts trivially on M then H1(Γ,M) = Hom(Γ,M) = Hom(ΓAb,M)

Proof. This is an easy exercise.

In particular this means that H i(Γ,−) compute also the right derived functors
of the functor M ↦MΓ (which is easily seen to be left-exact).

Given a group homomorphism ϕ∶Γ1 → Γ2, there is an induced natural transfor-
mation H0(Γ2,−) → H0(Γ1,−). By universality, this implies that we have the so
called restriction morphisms

Resn∶Hn(Γ2,M)→Hn(Γ1,M)

functorially in M for every R[Γ2]-module M . One can easily see that at the level
of inhomogeneous cochains these morphisms are essentially given by the precompo-
sition with ϕ.

Assume now that Γ1 ≤ Γ2 is a subgroup of finite index. Then the norm

NΓ2/Γ1(−) =
n

∑
j=1
γj ⋅ (−)

where {γ1, . . . , γh} is a system of representatives of Γ2/Γ1 gives a natural transfor-
mation H0(Γ1,−) → H0(Γ2,−) where (−) is an R[Γ2]-module. By universality we
obtain the so-called corestriction maps

Coresn∶Hn(Γ1,−)→Hn(Γ2,−)

Again one can find a suitable description of this morphisms in terms of inhomoge-
neous cochains.

Lemma 3.1.2. In the above setting we have that Coresn ○Resn equals the multipli-
cation by [Γ2 ∶ Γ1] for all n ≥ 0.

Proof. This is clear for n = 0 and it follows then for all n ≥ 1 by universality.

We want to apply the machinery of group cohomology in the following setting.
Let X be a compact Riemann surface and let S a finite set of points in X. Let
Y = X ∖ S and we let Γ to be the fundamental group of Y with respect to a fixed
base point y ∈ Y .

More specifically we will consider the case where Γ is a torsion-free congruence
subgroup of SL2(Z), X is the compactification of the modular curve Y (Γ) = Γ/H
and S is the set of cusps for Γ.

For every s ∈ S let Γs = {γ ∈ Γ ∣ γ(s) = s} be the stabilizer of s in Γ.
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Definition 3.1.3. We define the parabolic cohomology group H1
P (Γ,M) as the

kernel of the map
φP ∶H

1(Γ,M)→⊕
s∈S

H1(Γs,M)

where φP is induced by the restrictions Ress∶H1(Γ,M)→H1(Γs,M)

One can verify that in terms of cocycles and coboundaries we have an identifi-
cation

H1
P (Γ,M) = Z1

P (Γ,M)/B1(Γ,M)

where
Z1
P (Γ,M) = {f ∈ Z1(Γ,M) ∣ f(π) ∈ (π − 1)M for all π ∈ P}

and P is the set of all Γ-conjugates of πs for s ∈ S where πs is (the class of) a loop
around s.

Again let R be a commutative ring with identity and let Vn(R) be the space of
homogeneous polynomials of degree n with two indeterminates X and Y . We let
the semigroup Mat2(Z)≠0 ∶= Mat2(Z) ∩GL2(Q) act on Vn(R) by

( a bc d ) ⋅ P (X,Y ) ∶= P ((X,Y )( a bc d )) = P (aX + cY, bX + dY )

Let now χ∶ (Z/NZ)× → R× be a Dirichlet character. We denote by Rχ the R[Γ0(N)]-
module which is defined to be R with the action of Γ0(N) given by

( a bc d ).r = χ(d)r

for ( a bc d ) ∈ Γ0(N) and r ∈ R. One can readily check the setting

(f ⊗ r).( a bc d ) ∶= (f ∣k( a bc d ))⊗ ( a bc d ).r

makes Mk(Γ1(N))⊗C Cχ into a right Γ0(N)-module and actually that

Mk(Γ0(N), χ) = (Mk(Γ1(N))⊗C Cχ)(Z/NZ)×

and similarly for cusp forms.
Finally let V χ

n (R) ∶= Vn(R)⊗R Rχ with the diagonal Γ0(N) action.
We are interested in computing group cohomology for the modules Vn(R). For

higher degrees we have the following important general result:
Proposition 3.1.4. Let Γ be a torsion-free congruence subgroup of SL2(Z) and let
M be any Γ-module. Then H2(Γ,M) = 0

Proof. See proposition 6.1.1 in [9].

Now let Γ be a congruence subgroup of SL2(Z). Fix z0, z1 ∈ H and for f ∈Mk(Γ)
with k ≥ 2 and g, h ∈ SL2(Z) define

If(gz0, hz0) ∶= ∫
hz0

gz0
f(z)(Xz + Y )k−2dz ∈ Vk−2(C)

and
If̄(gz0, hz0) ∶= ∫

hz0

gz0
f(z)(Xz̄ + Y )k−2dz̄ ∈ Vk−2(C)

We have the following crucial theorem
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Theorem 3.1.5 (Eichler-Shimura isomorphism). Let k ≥ 2 and Γ a congruence
subgroup of SL2(Z), and fix z0, z1 ∈ H. Then the map

Mk(Γ)⊕ Sk(Γ)→H1(Γ, Vk−2(C))

(f, ḡ)↦ (γ ↦ If(z0, γz0) + Iḡ(z1, γz1))

is a well-defined isomorphism of C-vector spaces (called Eichler-Shimura map), not
depending on the choice of z0, z1. Moreover the above map restricts to an isomor-
phism

Sk(Γ)⊕ Sk(Γ)→H1
P (Γ, Vk−2(C))

Proof. See [22] proposition 6.2.3 and theorem 6.4.1

One can then easily get some corollaries from the above result

Corollary 3.1.6. Let N ≥ 1, k ≥ 2 and χ∶ (Z/NZ)× → C× be a Dirichlet character.
Then the Eichler-Shimura map gives isomorphisms

Mk(Γ0(N), χ)⊕ Sk(Γ0(N), χ) ≅H1(Γ0(N), V χ
k−2(C))

and
Sk(Γ0(N), χ)⊕ Sk(Γ0(N), χ) ≅H1

P (Γ0(N), V χ
k−2(C))

Proof. See [22] corollary 7.4.1.

Corollary 3.1.7. For Γ = Γ1(N) the map

Sk(Γ,C)→H1
P (Γ, Vk−2(R))

f ↦ (γ ↦ Re(If(z0, γz0)))

is an isomorphism and a similar result holds in presence of a Dirichlet character.

Proof. See [22] corollary 7.4.2.

3.2 Hecke operators on cohomology groups
For a positive integer N define

∆n
1(N) ∶= {α = ( a bc d ) ∈M2(Z) ∣ a ≡ 1 mod (N), c ≡ 0 mod (N),detα = n}

and let
∆ ∶= ∆1(N) ∶= ⋃

n≥1
∆n

1(N)

From now on Γ ∶= Γ1(N).
For all α ∈ Γ, set Γα ∶= Γ ∩ α−1Γα and Γα ∶= Γ ∩ αΓα−1. It is easy to see that

[Γ ∶ Γα] and [Γ ∶ Γα] are finite in this case.
For a matrix α = ( a bc d ) ∈M2(Z) ∩GL2(Q) set

αι = ( d −b
−c a ) = det(α) ⋅ α−1
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Definition 3.2.1. Let α ∈ ∆ and let V be a left R[Γ]-module for some commutative
ring R, such that the Γ-action extends to a semi-group action by the semi-group
consisting of all αι for α ∈ ∆. The Hecke operator τα acting on group cohomology is
the composition

τα∶H
1(Γ, V )

Res
ÐÐ→H1(Γα, V )

conjα
ÐÐÐ→H1(Γα, V )

Cores
ÐÐÐ→H1(Γ, V )

where for a cocycle c ∈H1(Γα, V ) we set

conjα(c)(gα) ∶= α
ι ⋅ c(αgαα

−1)

One can check via some computations that τα restricts to an operator on the
parabolic subspace.

One has the following explicit description of τα.

Proposition 3.2.2. Let α ∈ ∆ and suppose that ΓαΓ = ⊔ni=1 Γδi. Then the Hecke
operator τα acts on H1(Γ, V ) and H1

P (Γ, V ) sending c ∈H1(Γ, V ) to τα(c), which is
the class of the cocycle satisfying

(τα(c))(g) =
n

∑
i=1
διi ⋅ c(δigδ

−1
σg(i))

for all g ∈ Γ, where σg(i) is the index such that δigδ−1
σg(i) ∈ Γ.

Proof. See [22] proposition 7.3.2.

More generally one can extend the definition of the Hecke operators τα on higher
cohomology groups as follows (cf [12], pagg. 114-116). Assume again that ΓαΓ =

⊔ni=1 Γδi. Given a q-cocycle c (viewed as a function c∶Γq →M) we set

(τα(c))(g1, . . . , gq) =
n

∑
i=1
διi ⋅ c(ξi(g1), ξi(g1)(g2), . . . , ξi(g1g2⋯gq−1)(gq))

where for all i = 1, . . . n and for all g ∈ Γ we set

δig = ξi(g)αi(g)

One can check that this induces a well-defined R-linear map on cohomology groups.

For a positive integer n, the Hecke operator Tn is defined as ∑α τα where the sum
runs through a set of representatives of the double coset in the quotient Γ/∆n/Γ. In
particular if p is a prime number we have that Tp = ταp where αp = ( 1 0

0 p ).

In particular given a Γ-module V which is invariant under the action of αιp, it is
possible to define and apply the T (p) operator on H i(Γ,M). This will happen in
the sequel.
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3.3 The proof of theorem 2.2.1
We start with the following crucial result.

Theorem 3.3.1 (Cf. theorem 7.2.2 in [9]). Let p ≥ 3 be a prime number and N
be an integer prime to p. Then the integer rankZp(S

ord
k (Γ1(Npr+1),Zp)) is bounded

independently of k if k ≥ 2 and r ≥ 0.

Proof. Write Γ = Γ1(Npr+1). Let L be the intersection between the image of
H1(Γ, Vk−2(Z)) in H1(Γ, Vk−2(R)) with H1

P (Γ, Vk−2(R)).
Then L ⊗Z R = H1

P (Γ, Vk−2(R)) and hk(Γ,Z) is by definition a commutative
subalgebra of EndZ(L) which is free of finite rank over Z. Let now Lp = L⊗Z Zp, so
that hk(Γ,Zp) = hk(Γ,Z)⊗ZZp is a subalgebra of EndZp(Lp). It is possible to attach
to the operator U(p) = T (p) ∈ hk(Γ,Zp) an idempotent e, as described in lemma
2.1.1, so that it makes sense to consider hordk (Γ,Zp) as a subalgebra of EndZp(L

ord
p )

where Lordp = Lp∣e
Since

rankZp(S
ord
k (Γ,Zp)) = rankZp(h

ord
k (Γ,Zp))

by duality, in order to prove our thesis it is enough to prove that rankZp(L
ord
p ) is

bounded independently on k.
Let L′ denote the image of H1(Γ, Vk−2(Z)) in H1(Γ, Vk−2(R)). Note that L/pL =

Lp/pLp and that L/pL injects into L′/pL′, which is by definition a surjective image
of H1(Γ, Vk−2(Z))⊗Z Z/pZ.

Now set n = k − 2. We have an exact sequence of Γ-modules (where Fp = Z/pZ)

0→ Vn(Z)
p
Ð→ Vn(Z)→ Vn(Fp)→ 0

yielding a long exact sequence in cohomology

⋅ ⋅ ⋅→H1(Γ, Vn(Z))
p
Ð→H1(Γ, Vn(Z))→H1(Γ, Vn(Fp))→ . . .

This implies that H1(Γ, Vn(Z))⊗Z Fp can be embedded in H1(Γ, Vn(Fp)).
By what we said above in order to prove our thesis is enough to prove that the

Fp-dimension of H1
ord(Γ, Vn(Fp)) = H1(Γ, Vn(Fp))∣e is bounded independently on n.

To prove this we will construct an isomorphism between H1
ord(Γ, Vn(Fp)) and

H1
ord(Γ,Fp).

Given P (X,Y ) = ∑
n
i=0 aiX

n−iY i ∈ Vn(R) for some ring R, one notices that

( 1 m
0 1 ) ⋅ P (X,Y ) =

n

∑
i=0
aiX

n−i(mX + Y )i

so that
(( 1 m

0 1 ) ⋅ P (X,Y ))(0,1) = P (0,1)
Define a map ϕ∶Vn(Fp) → Fp given by ϕ(P (X,Y )) = P (0,1). Since for all γ ∈ Γ it
holds that γ ≡ ( 1 ∗

0 1 ) mod p, then ϕ is a homomorphism of Γ-modules, where clearly
Γ acts trivially on Fp.
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Let
Φ∶H1(Γ, Vn(Fp))→H1(Γ,Fp)

be the induced morphism in cohomology. Using the explicit description of coho-
mology that we saw in the previous section, Φ is essentially given by postcom-
poning a 1-cocycle with ϕ. We want to prove that Φ induces an isomorphism
H1
ord(Γ, Vn(Fp)) ≅H1

ord(Γ,Fp).
We have an exact sequence of Γ-modules

0→ Ker(ϕ)→ Vn(Fp)
ϕ
Ð→ Fp → 0

yielding a long exact sequence in cohomology

⋅ ⋅ ⋅→H1(Γ,Ker(ϕ))→H1(Γ, Vn(Fp))
Φ
Ð→H1(Γ,Fp)

δ
Ð→H2(Γ,Ker(ϕ))→ . . .

Let again αp = ( 1 0
0 p ). It is easy to check that the action of αιp leaves Ker(ϕ)

invariant, so that the operator T (p) acts on Hj(Γ,Ker(ϕ)) for all j ≥ 0.
It is easy to check that

Ker(ϕ) = ⟨Xn−iY i ∣ i = 0, . . . , n − 1⟩Fp

and clearly
αιp ⋅ (X

n−iY i) = (pX)n−iY i = 0
in Vn(Fp) for i = 0, . . . , n − 1, so that the action of αιp kills Ker(ϕ). Since

ΓαpΓ =
p−1
⊔
i=0

Γαp( 1 i
0 1 )

one verifies easily that the action of T (p) is nilpotent on Hj(Γ,Ker(ϕ)) for j > 0.
Since taking ordinary parts is exact (cf. section 5.3), we can conclude that indeed

H1
ord(Γ, Vn(Fp)) ≅H1

ord(Γ,Fp).

Corollary 3.3.2. Let p ≥ 3 be a prime number and N be an integer prime to p.
Let χ be a Dirichlet character modulo Np, taking values in O×

F where F is a finite
extension of Qp. Then the integers

RankOF (Mord
k (Γ1(Np), χω

−k,OF ))

and
RankOF (Sord

k (Γ1(Np), χω
−k,OF ))

are bounded independently of k if k ≥ 2.

Proof. The assertion for cusp forms is immediate from the above theorem, since
Sk(Γ1(Np),OF ) = Sk(Γ1(Np),Zp) ⊗Zp OF . For modular forms one has to know
that the contribution of Eisenstein series basically depends only on the number of
cusps of Γ1(Np), which is finite and, of course, independent of k. For more precise
information about the space of Eisenstein series consider the dimension formulas on
page 111 of [5].
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Now we are ready to prove the following (this is theorem 2.2.1).

Theorem 3.3.3 (Cf. theorem 7.3.3 in [9]). In the setting of the above corollary
assume that p ≥ 5. Then we actually have that

RankOF (Sordk (Γ1(Np), χω
−k,OF ) = RankOF (Sord2 (Γ1(Np), χω

−2,OF )

and that

RankOF (M ord
k (Γ1(Np), χω

−k,OF ) = RankOF (M ord
2 (Γ1(Np), χω

−2,OF )

for all k ≥ 2.

Proof. Assume first that M is any OF module with an action of Γ0(Np). Let Γ be
a normal subgroup of Γ0(Np) such that Γ is torsion free and p ∤ [Γ0(Np) ∶ Γ]. If
p ≥ 5 we know that Γ = Γ1(p) ∩ Γ0(Np) is torsion free and it is actually the kernel
of the well-defined projection

Γ0(Np)→ (Z/pZ)×, ( a bc d )↦ d mod p

so that [Γ0(Np) ∶ Γ] = p − 1 is prime to p.
Via the restriction and corestriction maps on cohomology

Hj(Γ0(Np),M)
Res
ÐÐ→H i(Γ,M)Γ0(Np) Cor

ÐÐ→H i(Γ0(Np),M)

we have that Cor ○Res is the multiplication by [Γ0(Np) ∶ Γ] = p− 1, which is prime
to p. Hence if we take coefficients in OF (i.e. we view M as OF [Γ0(Np)]-module),
we know that

Hj(Γ,M)Γ0(Np) ≅Hj(Γ0(Np),M)

But by proposition 3.1.4 we know that H2(Γ,M) = 0, so that also H2(Γ0(Np),M) =
0.

We know that if M is a OF [Γ0(Np)]-module such that the action of Γ0(Np)
extends to the semi-group ring generated over OF by Γ0(Np) and αιp (where αp =
( 1 0

0 p )), then we have a well-defined T (p) = U(p) operator on Hj(Γ0(Np),M) and it
makes sense to consider the ordinary part Hj

ord(Γ0(Np),M), defined (equivalently)
as in sections 5.3 or 2.1.

Fix now a Dirichlet character ψ modulo Np taking values in O×
F . Fix a uni-

formizer π ∈ OF and let F ∶= OF /(π) denote the residue field (a finite extension of
Fp).

For any integer n ≥ 0 consider the short exact sequence of OF [Mat2(Z)≠0]-
modules

0→ V ψ
n (OF )

π
Ð→ V ψ

n (OF )→ V ψ
n (F)→ 0 (3.2)

As in the proof of theorem 3.3.1 we get an induced exact sequence in cohomology
given by

0→H1(Γ0(Np), V
ψ
n (OF ))⊗OF F→H1(Γ0(Np), V

ψ
n (F))→H2(Γ0(Np), V

ψ
n (OF ))
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By what we said at the beginning of the proof it follows that

H2(Γ0(Np), V
ψ
n (OF )) = 0

so that
H1(Γ0(Np), V

ψ
n (OF ))⊗OF F ≅H1(Γ0(Np), V

ψ
n (F))

and in particular

H1
ord(Γ0(Np), V

ψ
n (OF ))⊗OF F ≅H1

ord(Γ0(Np), V
ψ
n (F))

so that

RankOF (H1
ord(Γ0(Np), V

ψ
n (OF ))) = dimF(H

1
ord(Γ0(Np), V

ψ
n (F)))

if we prove that H1
ord(Γ0(Np), V

ψ
n (OF )) is free (equivalently π-torsion-free) as OF -

module.
To see this notice that the sequence (3.2) induces also the following exact se-

quence in cohomology

0→H0(Γ0(Np), V
ψ
n (OF ))⊗OF F→H0(Γ0(Np), V

ψ
n (F))→

δ
Ð→H1(Γ0(Np), V

ψ
n (OF ))[π]→ 0

In particular taking ordinary parts it means that we have an exact sequence

H0
ord(Γ0(Np), V

ψ
n (F))→H1

ord(Γ0(Np), V
ψ
n (OF ))[π]→ 0

so that if we prove that H0
ord(Γ0(Np), V

ψ
n (F)) = 0, then H1

ord(Γ0(Np), V
ψ
n (OF )) is

free (equivalently π-torsion-free) as OF -module.
Now for i = 0, . . . , n we have that

Xn−iY i∣T (p) =
p−1

∑
j=0

( 1 j
0 p )

ι
⋅Xn−iY i =

p−1

∑
j=0

(pX)n − i(Y − jX)i

so that for i = 0, . . . , n − 1 it holds Xn−iY i∣T (p) = 0 mod p.
If i = n we have that

Y n∣T (p) =
p−1

∑
j=0

(Y − jX)n

does not have any term involving Y n working mod p, so that Y n∣T (p)2 = 0 mod p.
In particular this shows that

H0
ord(Γ0(Np), V

ψ
n (F)) =H0(Γ0(Np), V

ψ
n (F))∣e = 0

as we wanted to prove.
Again in the same way as in the proof of theorem 3.3.1 we define a surjective

map
ϕ∶V ψ

n (F)→ V ψωn

0 (F), P (X,Y )↦ P (0,1)
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Given P (X,Y ) = ∑
n
i=0 aiX

n−iY i ∈ V ψ
n (F), we have that

( a b0 d ) ⋅ P (X,Y ) =
n

∑
i=0
ψ(d)ai(aX)n−i(bX + dY )i

so that in F (i.e. modulo p) it holds that
(( a b0 d ) ⋅ P (X,Y ))(0,1) = anψ(d)dn = anψ(d)ω(d)n

This shows that ϕ is a morphism of F[Γ0(Np)]-modules. Moreover one can check
that

ϕ(αιp ⋅ P (X,Y )) = an = α
ι
p ⋅ (ϕ(P (X,Y ))

so that we have the following exact sequence in cohomology
H1(Γ0(Np),Ker(ϕ)→H1(Γ0(Np), V

ψ
n (F))→H1(Γ0(Np), V

ψωn

0 (F))→ 0
because H2(Γ0(Np),Ker(ϕ)) = 0 by what we said before.

As in the proof of theorem 3.3.1 one checks easily that
T (p)(H1(Γ0(Np),Ker(ϕ))) = 0

so that taking ordinary parts we find that
H1
ord(Γ0(Np), V

ψ
n (F)) ≅H1

ord(Γ0(Np), V
ψωn

0 (F))

Letting n = k − 2 for k ≥ 2 and ψ = χω−k we finally get that

H1
ord(Γ0(Np), V

χω−k

n (F)) ≅H1
ord(Γ0(Np), V

χω−2

0 (F))

Via the Eichler-Shimura isomorphism we can finally deduce that
RankOF (M ord

k (Γ0(Np), χω
−k,OF )) +RankOF (Sordk (Γ0(Np), χω

−k,OF )) =

= RankOF (H1
ord(Γ0(Np), V

χω−k

k−2 (OF ))) = dimF(H
1
ord(Γ0(Np), Vk+2(χω

−k(F))) =

= dimF(H
1
ord(Γ0(Np), V0(χω

−2(F))) = RankOF (H1
ord(Γ0(Np), V

χω−2

0 (OF ))) =

= RankOF (M ord
2 (Γ0(Np), χω

−2,OF )) +RankOF (Sord2 (Γ0(Np), χω
−2,OF ))

It follows easily from lemma 5.3 in [11] that the rank of the space of ordinary
Eisenstein series

Eordk (Γ0(Np), χω
−k,OF ) =

M ord
k (Γ0(Np), χω−k,OF )

Sordk (Γ0(Np), χω−k,OF )

is independent of k ≥ 2 (and actually one can find an explicit description of a basis
for such a space).

In other words the difference
RankOF (M ord

k (Γ0(Np), χω
−k,OF )) −RankOF (Sordk (Γ0(Np), χω

−k,OF ))

is constant independent of k ≥ 2.
We can thus deduce that for all k ≥ 2 it holds

RankOF (Sordk (Γ0(Np), χω
−k,OF )) = RankOF (Sord2 (Γ0(Np), χω

−2,OF ))

and
RankOF (M ord

k (Γ0(Np), χω
−k,OF )) = RankOF (M ord

2 (Γ0(Np), χω
−2,OF ))
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Chapter 4

Examples of Hida families

4.1 Lambda-adic Eisenstein series
Fix a prime p and a positive integer N prime to p. The aim of this section is to
construct a Lambda-adic form out of Eisenstein series. For sake of simplicity let us
assume that p is odd (but with slight modifications the same construction can be
carried out even if p = 2). Here we follow mainly [1].

Recall that the classical family of Eisenstein series of level Γ(1) and variable
weight k ≥ 4 even has q-expansion

Ek(z) =
ζ(1 − k)

2 +
+∞
∑
n=1

σk−1(n)q
n (4.1)

where σm(n) ∶= ∑d∣n d
m. It is well-known that Ek(z) ∈Mk(Γ(1)).

Fix an integer N prime to p. If ψ is a Dirichlet character modulo Npr such that
ψ(−1) = (−1)k with k ≥ 1 we also have modified Eisenstein series

Ek,ψ(z) =
L(1 − k,ψ)

2 +
+∞
∑
n=1

σk−1,ψ(n)q
n (4.2)

where σm,ψ = ∑d∣nψ(d)d
m. It is well-known that Ek,ψ(z) ∈Mk(Γ0(Npr), ψ)

If ψ has level N then Ek,ψ has level N , not divisible by p. Define the p-
stabilization of E(p)

k,ψ as

E
(p)
k,ψ(z) = Ek,ψ(z) − ψ(p)p

k−1Ek,ψ(pz) (4.3)

Lemma 4.1.1. It holds (for ψ of level N)

E
(p)
k,ψ(z) =

L(p)(1 − k,ψ)
2 +

+∞
∑
n=1

σ
(p)
k−1,ψ(n)q

n ∈Mk(Γ0(Np), ψ)

where
L(p)(s,ψ) = (1 − ψ(p)p−s)L(s,ψ)

and
σ
(p)
m,ψ(n) =∑

d∣n
p∤d

ψ(d)dm
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Proof. This is an easy exercise.

If ψ has conductor divisible by p, then E
(p)
k,ψ = Ek,ψ.

We now fix the following characters:

• χ is an even Dirichlet character modulo Np for some N prime to p.
• εζ is a Dirichlet character of conductor pr associated to a p-power root of

unity ζ as follows: if ζ has order pr−1 with r ≥ 1, send the image of u = 1+ p in
(Z/prZ)× to ζ (in Q̄p).

• ω is the Teichmüller character already discussed.

Finally let ψ = χω−kεζ , so that ψ is a character of level Npr and, since χ is even,
ψ(−1) = (−1)k. We also consider E(p)

k,ψ, which is a modular form in Mk(Γ1(Npr), ψ).

Theorem 4.1.2. Set I = O[[X]] with O = Zp[χ]. If χ ≠ 1, then there is a I-adic
form

Eχ =
+∞
∑
n=0

An,χ(X)qn ∈ I[[q]]

which specializes to E(p)
k,ψ with ψ = χω−kεζ under the homomorphism I → Q̄p induced

by ϕk,εζ for k > 1, and ζ as above. If χ = 1 then Eχ exists, but it is not stricly
speaking a I-adic form, since the constant term of Eχ has denominator X.

Proof. Let Λ = Zp[[X]]. It should be clear from example 1.3.6 that if s ∈ Zp then
the power series

(1 +X)s =
+∞
∑
n=0

(
s

n
)Xn

is an element of Λ. Remark 1.3.3 shows that if d is an integer with d ≡ 1 mod p,
then d = us(d) for u = 1 + p (the fixed topological generator of Γ = 1 + pZp). Hence
setting

Ad(X) =
1
d
(1 +X)s(d)

one finds immediately
Ad(u

k − 1) = u
s(d)k

d
= dk−1

In general for d coprime to p we have ⟨d⟩ ∈ Γ so we can set

Ad(X) =
(1 +X)s(⟨d⟩)

d

obtaining

Ad(ζu
k − 1) = ζ

(s⟨d⟩)uks(⟨d⟩)

d
=
εζ(⟨d⟩)⟨d⟩k

d
= ω−k(d)εζ(d)d

k−1

Finally for n ≥ 1 set
An,χ(X) = ∑

d∣n
(d,p)=1

χ(d)Ad(X)
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so that
An,χ(ζu

k − 1) = ∑
d∣n

(d,p)=1

ψ(d)dk−1 = σ
(p)
k−1,ψ(n)

where ψ = χω−kεζ . This interpolates the non-constant terms of E(p)
k,ψ.

For the constant term we will use Iwasawa’s construction of Kubota-Leopold
p-adic L-functions. With the notation of theorem 1.3.9 we set

A0,χ(X) =
Gχ(X)

2Hχ(X)

Notice that since χ has conductor Np, if χ is not trivial then it is not of type Γ
and Hχ(X) = 1 by definition. If χ is trivial then Hχ(X) = X. So if χ ≠ 1 we have
A0,χ(X) ∈ Frac(I), with XA0,χ(X) ∈ I if χ = 1. Finally

A0,χ(ζu
k − 1) = Gχ(ζuk − 1)

2Hχ(ζuk − 1) =
Gχεζ(u

k − 1)
2Hχεζ(u

k − 1) =

=
Lp(1 − k,χεζ)

2 =
(1 − ψ(p)pk−1) ⋅L(1 − k,ψ)

2 =

=
L(p)(1 − k,ψ)

2
where we used the properties of the p-adic Dirichlet L-functions that we already
mentioned (cf. theorems 1.3.7 and 1.3.9).

Thus if we define
Eχ =

+∞
∑
n=0

An,χ(X)qn

then Eχ ∈ I[[q]] if χ ≠ 1 (if χ = 1 then XE1 ∈ I[[q]]) and satisfies the required
interpolation properties.

4.2 Theta series

4.2.1 CM modular forms
Let K be an imaginary quadratic field (of discriminant −D for some D > 0), f an
integral ideal in K and If be the group of fractional ideals prime to f. Let σ1, σ2
denote the two embeddings of K into C (say that σ1 is 1F ) and let (k1, k2) ∈ Z2.

Definition 4.2.1. A Hecke Grössencharacter ϕ of infinity type (k1, k2) defined mod-
ulo f is a group homomorphism ϕ∶ If → C× such that ϕ((α)) = σ1(α)k1σ2(α)k2 for all
α ≡ 1 mod ×f.

Remark 4.2.1. Here we say that a ≡ b mod ×f if for every prime ideal q appearing
in f it holds vq(a − b) > vq(f) (where vq denotes the q-adic valuation).
Remark 4.2.2. It is easily observed that a Hecke Grössencharacter ϕ takes values in
Q̄ and that the field generated by the values of ϕ is a number field (cf. [21] page 4,
here Hecke Grössencharacters correspond to the so-called Hecke characters of type
A0).
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We can extend such a ϕ setting ϕ(a) = 0 if a is an integral ideal not coprime to f.
Given a Hecke Grössencharacter ϕ of infinity type (k − 1,0) for some k ≥ 2 consider
the series

f(z;ϕ) ∶=∑
a

ϕ(a)qN(a)

where the sum is over all integral ideals a ⊆ OK and N(a) denotes the usual norm
of a from K to Q. This is called the theta series associated to ϕ.

It is proven in [18] (lemma 3) that if the character ϕ has exact conductor f
the above sum defines a cuspidal newform (eigenform for all Hecke operators) in
Sk(Γ0(M), χ) where M =D ⋅N(f) and χ is the Dirichlet character modulo M given
by

χ(n) = (
−D

n
)
ϕ((n))

nk−1 for (n,M) = 1

(here (−D⋅ ) denotes the Jacobi symbol).
This leads us to the notion of CM-modular form (modular form with complex

multiplication).

Definition 4.2.2. We say that a classical modular normalized eigenform (for all
Hecke operators) g ∈ Sk(Γ1(Npm)) (where N is prime to p and m ≥ 0) has CM by
an imaginary quadratic field K if its Hecke eigenvalues for the operators T` (` ∤ Np)
coincide with those of f(z;ϕ) for some Grössencharacter ϕ of K of infinity type
(k − 1,0). Sometimes we say that g is CM without specifying the field.

Actually, at least for newforms, one can give a more down-to-earth definition of
CM modular form, following [15].

Given a newform f = ∑
+∞
n=1 anq

n of weight k ≥ 1 and level Γ1(N) (with Nebentypus
χ) and a Dirichlet character ε modulo D, we let f ⊗ ε to be the twist

f ⊗ ϕ =
+∞
∑
n=1

ε(n)anq
n.

One can prove that f ⊗ ε ∈ Sk(Γ0(ND2), χε2). In particular for p ∤ ND one can
compute that

T (p)(f ⊗ ε) = ε(p)ap(f ⊗ ε)

so that f ⊗ ε is again an eigenform.
Then one can give the following definition

Definition 4.2.3. In the above setting, suppose that ε is not the trivial character.
The form f has CM (complex multiplication) by ε if

ε(p)ap = ap

for all primes p in a set of primes of density 1.

One can prove easily that if f has CM by ε in the above sense, then ε must be
a quadratic character. Looking at ε as a Galois charcater ε∶Gal(Q̄/Q) → {±1}, we
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know that its kernel determines a quadratic field K. In this case we say that f has
CM by K.

It is easily verified (essentially by the definition of the Jacobi symbol) that the
modular forms f(z;ϕ) described above (when f is the conductor of ϕ) have CM by
the imaginary quadratic field K.

After a careful analysis of the `-adic Galois representations associated to an
eigenform, Ribet proved in [15] that also the converse is in some sense true, i.e. that
essentially all CM newforms arise as theta series attached to a Grössencharacter of
an imaginary quadratic field. This means that the two definitions that we gave of
modular form with CM coincide for newforms (this is theorem 4.5 in [15]).

For the following proposition we need the notion of slope of a modular form.

Definition 4.2.4. Let f be a cuspidal eigenform (for all Hecke operators) of level
Npm for some N prime to p and m ≥ 1 and Fourier coefficients in a finite extension
of Qp. Write the q-expansion of f as

f =
+∞
∑
n=1

anq
n

Assume f is normalized, i.e. that a1 = 1. Then the p-adic slope of f is the rational
number

α(f) ∶= ordp(ap)
where ordp denotes the p-adic order, normalized in such a way that ordp(p) = 1.

Notice that f in the above definition is ordinary if and only if α(f) = 0.

Proposition 4.2.5 (cf [2] prop. 3.5). Let f = f(z;ϕ) be the newform associated to
a Hecke Grössencharacter ϕ as above. Assume that the level of f is Npm with N
prime to p and m ≥ 1. Then the p-slope of f is either 0, k−1

2 or infinite, depending
on the behaviour of the prime p in K.

Proof. Let ap be the Up-eigenvalue of f (this is also the coefficient of qp in the
q-expansion). We have three possibilities

(i) If p is inert in K then ap = 0 (there is not any ideal of norm p in K), so the
p-slope is infinite.

(ii) If p splits in K as pOK = pp, then ap = ϕ(p) + ϕ(p). We can find an integer
n such that pn = (α) with α ≡ 1 mod ×f, so that ϕ((α)) = αk−1. Notice that
α ∈ p, but α ∉ p (otherwise p = p) and ϕ(pn) = (ψ(p))n = αk−1 so ϕ(p) ∈ p ∖ p.
Analogously ϕ(p) ∈ p ∖ p. This implies that ap ∉ p necessarily, so that the
p-slope is 0.

(iii) If p ramifies in K (so pOK = p2), then ap = ϕ(p) and as in the previous case
we can write pn = (α) for some n and some α with α ≡ 1 mod ×f. Thus
ϕ(p)n = αk−1 and looking at p-adic valuations one sees that the slope must be
(k − 1)/2.
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Remark 4.2.3. Notice that the above proposition used the crucial (and easy to prove)
fact that if f is the conductor of ϕ and we set

P1(f) = {(α) ∈ If ∣ α ≡ 1 mod ×f}

then If/P1(f) is a finite group. We will need again this fact later.
The above result shows that the natural situation to consider in order to obtain

an ordinary Λ-adic form out of theta series associated to imaginary quadratic is the
case when p splits.

4.2.2 CM Λ-adic forms
Now we explain the construction of a CM Λ-adic form F containing a fixed modular
form of the kind f = f(z;ϕ) described above. Here we follow [8], pages 234-236.

Assume that f has weight k ≥ 2 and that the Nebentypus χ of f is described as
follows

χ = ψω−kεζ0

where ψ is a Dirichlet character modulo Np where p is an odd prime number and
N is prime to p, εζ0 is obtained as in section 4.1 (from a pr0−1 root of unity ζ0) and
ω is the usual Teichmüller character.

Observe that given χ, then ψ and ζ0 are uniquely determined. It is clear that
the level of f is given by Npr0 under our assumptions.

Let again K be the quadratic imaginary field of discriminant −D (with D > 0)
by which f has complex multiplication. Let λ be any Hecke Grössencharacter of
type (1,0) and conductor p and let Q(λ) be the number field (cf. remark 4.2.2)
generated by the values of λ. Here p is determined by the fixed embedding Q̄↪ Q̄p.

Let E be the completion of Q(λ) at the prime over p determined by the fixed
embedding as above. It is a finite extension of Qp.

Write OE for the ring of integers of E and decompose O×
E = µE ×WE (cf. the

analogous decomposition for Zp for p odd) where µE is finite and WE is Zp-free.
Write ⟨x⟩ for the projection of an element x ∈ O×

E to WE. Let WK be the subgroup
of WE topologically generated by ⟨λ(a)⟩ for a ranging over all integral ideals prime
to p. Notice that λ(a) ∈ O×

E because for every a coprime with p there is n such that
an = (α) for some α ∈ OK such that α ≡ 1 mod ×p. Hence (λ(a))n = λ(an) = λ(α) =
α ∈ OK and λ(a) ∈ O×

E follows immediately.

We claim that WK is isomorphic to Zp. Indeed it contains naturally Γ = 1 + pZp
because one can identify Zp with the p-adic completion of OK (thanks to the splitting
of p in F ) and because λ has type (1,0). Hence WK has at least rank 1 as Zp module.

At the same time if M ∶= #(Ip/P1(p)) we have that

W
(M)
K ∶= {xM ∣ x ∈WK} ⊆ Γ

so that necessary WK is free of rank 1 over Zp as a multiplicative group.
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Let γ ≥ 0 be defined by [WK ∶ Γ] = pγ and fix a topological generator of WK such
that wpγ = 1 + p. For all integral ideals a prime to p define

t(a) =
logp(⟨λ(a)⟩)

logp(w)
∈ Zp

Let O denote the ring of integers of E(ϕ, ζ0) (still a finite extension of Qp) and
consider the extension of Λ = Zp[[X]] given by I = O[[Y ]] defined by the relation

ζ0(1 + Y )p
γ

= 1 +X

Finally define the formal q-expansion F ∈ I[[q]] given by

F = ∑
(a,p)=1

ϕ(a)⟨λ(a)⟩−k(1 + Y )t(a)qN(a). (4.4)

This q-expansion actually does not depend on the particular choice of λ, since any
two Hecke characters of infinity type (1,0) and conductor p differ by a finite order
character. Indeed such a difference would be a character of type (0,0), i.e. in fact
a character on the finite quotient Ip/P1(p).

By definition of I, we see that every classical specialization of I takes the form
Y = ζwl − 1 where l ≥ 2 and ζ is a pr−1-th root of 1, for some r ≥ 1. Such a
specialization extends the evaluation X = ζ0ζp

γ
(1 + p)l − 1.

Set δζ(a) = ζt(a) and let

ϕl,ζ(a) = ϕ(a)⟨λ(a)⟩
l−kδζ(a).

for a integral ideal coprime with p.
Then δζ is a finite order character and ϕl,ζ is a Hecke character of infinity type

(l − 1,0). Specializing to Y = ζwl − 1 we immediately get

(1 + Y )t(a) = δζ(a)⟨λ(a)⟩
l

so that F specializes to the q-expansion

fl,ζ =∑
a

ϕl,ζ(a)q
N(a)

which is (essentially by definition) a CM cusp form of weight l.
For a Hecke character ϑ of K of infinity type (t,0), write ϑ∣Q for the induced

Dirichlet character defined by m ↦ ϑ((m))/mt. Then one checks that ⟨λ⟩∣Q = ω−1

and that δζ ∣Q = εζpγ .
By the result recalled in the previous subsection we know that the Nebentypus χ

of f is given by χ = ϕ∣Q ⋅ χK/Q where χK/Q is the quadratic character corresponding
to K (described in terms of the Jacobi symbol).

Hence the character of ϕl,ζ is given by

ϕl,ζ ∣Q ⋅ χK/Q = ϕ∣Q ⋅ χK/Q ⋅ ⟨λ⟩
l−k∣Q ⋅ δζ ∣Q = ψω−lεζ0ζp

γ

and one can check that fl,ζ has level Npr′ where pr′−1 is the exact order of ζ0ζp
γ .

We deduce that F is indeed a I-adic form. Moreover F is p-ordinary, since
a(p, fl,ζ) = ϕl,ζ(p̄) has the same p-adic valuation as ϕ(p̄). Finally when l = k, then
ϕl,1 = ϕ and fk,1 = f , thus F contains f as a specialization.
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Chapter 5

The homological counterpart

This chapter is almost completely based on [7]. We describe Hida theory by studying
the ordinary part of the homology modules of the Riemann surfaces Y1(Npr) =
Γ1(Npr)/H for some odd prime p and N an auxiliary level prime to p. The results
obtained by M. Emerton in [7] are essentially the homological couterpart of theorem
3.1 in [11]. The latter theorem is the keystone of that article and allows Hida to
prove the finiteness and freeness of the universal ordinary Hecke algebra, as well as
the horizontal control theorem for it.

This quick discussion should in some sense justify our decision to include Emer-
ton’s contribution in our thesis. We tried to expand some of the proofs given in
[7].

5.1 The tower of modular curves
As above, let p ≥ 3 be an odd prime number and let N be a positive integer prime
to p such that Γ1(Np) is torsion-free. This is not a strong requirement since it holds
that Γ1(M) is torsion-free for all M ≥ 4 (cf. [9] pag. 160 for this). In particular
we are asking that the Riemann surface Y1(Np) does not contain elliptic points.
Associated to the tower of modular curves

⋅ ⋅ ⋅→ Y1(Np
r)→ ⋅ ⋅ ⋅→ Y1(Np)

we have a corresponding chain of congruence subgroups (obtained taking the topo-
logical fundamental group of our Riemann surfaces)

⋅ ⋅ ⋅ ⊂ Γ1(Np
r) ⊂ ⋅ ⋅ ⋅ ⊂ Γ1(Np)

It is well-known that the first homology group with coefficients in Z corresponds
to the abelianization of the topological fundamental group, so that if we apply the
functor H1(−,Z) to the above tower of modular forms we get a tower of finitely
generated free abelian groups

⋅ ⋅ ⋅→ Γ1(Np
r)ab → ⋅ ⋅ ⋅→ Γ1(Np)

ab (5.1)

Recall that abelianization is not an exact functor (it is only right exact), so that we
do not necessarily have inclusions in the above chain of morphisms.
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We now follow Hida and Emerton, so we introduce intermediate congruence
subgroups

Φ1
r = Γ1(Np) ∩ Γ0(p

r)

We have inclusions Γ1(Npr) ⊂ Φ1
r ⊂ Γ1(Np) and it is immediate to check that

Γ1(Npr) is a normal subgroup of Φ1
r.

Let Γ = 1 + pZp denote as usual the principal units in Zp and let Γr for r ≥ 1
denote the unique subgroup of index pr−1 contained in Γ. It is the kernel of the
canonical projection Z×

p → (Z/pr)×. Notice this notation differs from the one used
in section 1.5.1.

There is a surjective morphism of groups Φ1
r → Γ/Γr induced by the assignment

( a bc d ) ↦ d mod (pr). It is immediately verified that the kernel of this morphism is
Γ1(Npr), so that there is an exact sequence of groups

1→ Γ1(Np
r)→ Φ1

r → Γ/Γr → 1

Lemma 5.1.1. The action of Φ1
r on Γ1(Npr) by conjugation induces an action of

the quotient Φ1
r/Γ1(Npr) = Γ/Γr on Γ1(Npr)ab. Thus Γ acts naturally on Γ1(Npr)ab

for all r and the morphisms in the chain (5.1) are morphisms of Γ-modules.

Proof. In general if G is a group and H ◁G is a normal subgroup, then the group
G/H acts on Hab by conjugation. Indeed if h = [h1, h2] = h−1

1 h
−1
2 h1h2 ∈ H is the

commutator of h1, h2 ∈H, then for every g ∈ G we have that

g−1hg = [g−1h1g, g
−1h2g]

is again a commutator. In particular if g ∈H, we have that g−1hg ∈ [H,H]◁H. This
proves that Γ acts on Γ1(Npr)ab for all r ≥ 1 via its quotients Γ/Γr = Φ1

r/Γ1(Npr).
Next we verify that the morphism Γ1(Npr+1)ab → Γ1(Npr)ab is Γ-equivariant

for all r ≥ 1. This gives us the opportunity to describe explicitly the action of Γ.
Let α ∈ Γ, then there exists a matrix g = ( a bc d ) ∈ Φ1

r such that α ≡ d mod (pr+1).
Then the automorphism induced by α on Γ1(Npr+1)ab is essentially conjugation by
g. Since by our choice we also have α ≡ d mod (pr), then also the action of α on
Γ1(Npr+1)ab is essentially given by the conjugation by g. This clearly shows the
Γ-equivariants of the morphism Γ1(Npr+1)ab → Γ1(Npr)ab.

The automorphisms induced by elements of Γ as above will be referred to as
diamond operators and the action of Γ will be referred to as the Nebentypus action.

If r ≥ s > 0 we let Φs
r to be the subgroup of Φ1

r containing Γ1(Npr) and such
Φs
r/Γ1(Npr) identifies with Γs/Γr. More explicitly

Φs
r = Γ1(Np

s) ∩ Γ0(p
r)

Hence there is an exact sequence

1→ Γ1(Np
r)→ Φs

r → Γs/Γr → 1
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which yields, taking the abelianizations, the exact sequence

Γ1(Np
r) ab → Φs

r
ab → Γs/Γr → 1 (5.2)

Let as denote the augmentation ideal in the group Z[Γs], so that as is the kernel
of the projection Z[Γs] → Z. Then we claim that under the Nebentypus action we
have

asΓ1(Np
r) ab = [Φs

r,Γ1(Np
r)]/[Γ1(Np

r),Γ1(Np
r)] ⊂ Γ1(Np

r) ab

Indeed as is generated by elements α − 1 for α ∈ Γs and the action of such elements
on [x] ∈ Γ1(Npr) ab is given exactly by

(α − 1) ⋅ [x] = [gxg−1x−1]

for a matrix g = ( a bc d ) ∈ Φs
r (we can choose g in Φs

r because α ∈ Γs) such that d ≡ α
mod (pr).

The group extension

1→ Γ1(Np
r)/[Φs

r,Γ1(Np
r)]→ Φs

r/[Φs
r,Γ1(Np

r)]→ Γs/Γr → 1

is a central extension of a cyclic group, thus it is abelian and we obtain immediately
that

[Φs
r,Γ1(Np

r)] = [Φs
r,Φs

r]

Thus the above extension can be rewritten as

1→ Γ1(Np
r) ab/asΓ1(Np

r) ab → Φs
r
ab → Γs/Γr → 1 (5.3)

This discussion allows us to give a more detailed description of a the morphisms

Γ1(Np
r) ab → Γ1(Np

s) ab

which appear in the chain (5.1). Indeed such morphism factors as the composition
of the projection

Γ1(Np
r) ab → Γ1(Np

r) ab/asΓ1(Np
r) ab,

the injection (in the above exact sequence)

Γ1(Np
r) ab/asΓ1(Np

r) ab → Φs
r
ab

and the morphism
Φs
r
ab → Γ1(Np

s) ab.

5.2 Hecke operators
Suppose T is a group which contains subgroups G and H and that t ∈ T satisfies
the property that K = t−1Ht ∩G has finite index in G. Then one has the transfer
morphism

V ∶Gab →Kab
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which is defined as follows. Write G = ⊔ri=1 xiK for a choice x1, . . . , xr of coset
representatives. Given g ∈ G write gxi = xjkj for a suitable j = j(i) and kj ∈ K.
Finally send the class of g in Gab to the class of ∏r

i=1 ki in Kab. One can then check
that this is well defined and gives a group homomorphism V as above.

Conjugation by t induces an isomorphism

(t−1Ht ∩G)ab ≅ (H ∩ tGt−1)ab.

Finally the inclusion of H ∩ tGt−1 in H induces a morphism

(H ∩ tGt−1)ab →Hab

Taking the composition of these arrows we finally get a group homomorphism

[t] ∶ Gab →Hab

which we will call the Hecke operator attached to t.
In our case we will set T = GL2(Q), G =H to be a suitable congruence subgroup

of SL2(Z) of level divisible by p and t ∶= ( 1 0
0 p ). The corresponding Hecke operator

will be denoted by U = U(p).
Suppose that G = Φs

r as in the previous section. One can check that t−1Φs
rt∩Φs

r =
Φs
r ∩ Γ0(p) where

Γ0(p) = {( a bc d ) ∈ SL2(Z) ∣ b ≡ 0 mod (p)}

and that Φs
r ∩ tΦs

rt
−1 = Φs

r+1. Hence the U operator is by definition the composition

Φs
r
ab (Φs

r ∩ Γ0(p))ab Φs
r+1

ab Φs
r
abV t(−)t−1

Following Emerton we denote by U ′ the composition of the first two of these mor-
phisms, i.e.

U ′ ∶ Φs
r
ab (Φs

r ∩ Γ0(p))ab Φs
r+1

abV t(−)t−1

Lemma 5.2.1. Suppose that r ≥ s > 0 and r′ ≥ s′ > 0 with r ≥ r′ and s ≥ s′ (so that
Φs
r ⊂ Φs′

r′). Then the following diagram commutes

Φs
r
ab Φs′

r′
ab

Φs
r+1

ab Φs′

r′+1
ab

U ′ U ′

Proof. We can factor the above diagram into the composition of two diagrams as

Φs
r
ab Φs′

r′
ab

(Φs
r ∩ Γ0(p))ab (Φs′

r′ ∩ Γ0(p))ab

Φs
r+1

ab Φs′

r′+1
ab

V V

t(−)t−1 t(−)t−1
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The lower square of the diagram clearly commutes. Now we prove that the upper
square is commutative. We claim that Φs

r ∩ Γ0(p) has index p in Φr
s with coset

representatives given by the p matrices ( 1 i
0 1 ) for i = 0, . . . , p − 1. It is immediate

to check that these matrices lie in different cosets of Φs
r/(Φs

r ∩ Γ0(p)). Moreover
if ( a bc d ) ∈ Φs

r it is enough to choose the unique i ∈ {0,1, . . . , p − 1} such that i ≡ b
mod (p) to get that

(
1 −i
0 1 )(

a b
c d

) = (
a − ic b − id
c d

) ∈ Φs
r ∩ Γ0(p)

Notice that what we proved does not depend on the particular value of r, s, so that
the transfer

Φs
r
ab V
Ð→ (Φs

r ∩ Γ0(p))ab

applied to elements of Φs
r
ab is given by the same formula as the transfer applied to

elements of Φs
r
ab when we view them inside Φs′

r′
ab. This is equivalent to say that the

upper portion of the above diagram commutes.

In particular we deduce immediately that the following diagram commutes

Φs
r
ab Φs′

r′
ab

Φs
r
ab Φs′

r′
ab

U U

saying that the natural morphism Φs
r
ab → Φs′

r′
ab is a morphism of Z[U]-modules.

Now assume that r′ = r − 1 and s′ = s ≥ r − 1.
If π∶Φs

r
ab → Φs

r−1
ab and π′∶Φs

r+1
ab → Φs

r
ab are the obvious maps, then the above

lemma gives the following equalities

U ′ ○ π = π′ ○U ′ = U ∈ EndZ(Φs
r
ab) (5.4)

π ○U ′ = U ∈ EndZ(Φs
r−1

ab) (5.5)

In particular the morphism Γ1(Npr) ab → Φs
r
ab is a morphism of Z[U]-modules,

so that its cokernel is naturally a Z[U]-module. By the sequence (5.2) we know that
this cokernel is given by Γs/Γr.

Lemma 5.2.2. The operator U acts on Γs/Γr as multiplication by p.

Proof. This is proven by direct calculation. Let α ∈ Γs and choose ( a bc d ) ∈ Φs
r such

that d ≡ α mod (pr). We now need to analyse the action of the transfer. For
i ∈ {0, . . . , p − 1} we have

(
a b
c d

)(
1 i
0 1) = (

a ai + b
c ci + d

)
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We know that there is j = j(i) and a matrix gj = ( x y
z w ) such that

(
a ai + b
c ci + d

) = (
1 j
0 1)(

x y
z w

)

In particular one sees immediately that it must be

w = ci + d ≡ d mod (pr)

as pr ∣ c by definition. We know that the transfer is the class of the product ∏p−1
j=0 gj

and that then one as to consider conjugation by t = ( 1 0
0 p ).

Since conjugation by t does not alter the lower right entry of a 2 × 2 matrix, we
conclude that, as classes in Φr

s
ab, it must be

U (
a b
c d

) = (
∗ ∗

∗ d̃
)

for some d̃ ≡ dp mod (pr). Hence the morphism U ∶Γs/Γr → ΓsΓr is given by raising
to the p-th power (or multiplication by p if we use an additive notation).

We conclude this section with the following result

Lemma 5.2.3. If r ≥ s > 0, the action of U on Φs
r
ab commutes with the Nebentypus

action of Γ on Φs
r
ab.

Proof. See lemma 3.5 in [7].

5.3 Ordinary parts
Let U be an indeterminate and consider the full subcategory (denoted by A) of the
category of Zp[U]-modules given by those modules which are finitely generated as
Zp-modules. One checks quite easily that this is an abelian category (essentially
because Zp is a Noetherian ring). Let M be any module in this category, so that
there is a morphism of Zp-modules

Zp[U]→ EndZp(M).

Since M is a finitely generated Zp-module, we have that EndZp(M) is a finitely
generated Zp-algebra, so that the image of Zp[U] in EndZp(M) is also a finite com-
mutative Zp-algebra, which will be denoted by A. By lemma 10.158.2 in [24] the
ring A factors as a product of finitely many complete local rings. We can thus write
A = Aord ×Anil, where Aord is the product of the local factors of A where the image
of U is a unit and Anil is the product of the local factors of A where the image
of U is contained in the maximal ideal. In particular Aord (and also Anil) is a flat
A-algebra and a subalgebra of EndZp(M). We define the ordinary part of M as

M ord ∶=M ⊗A A
ord.

As Aord is flat over A, it is obvious that taking ordinary part is an exact functor on
our abelian category A.
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Now let U denote again the Hecke operator defined in the previous section. By
what we just said, it makes sense to consider the ordinary part of

H1(Y1(Np
r),Zp) = Γ1(Np

r)ab ⊗Z Zp

By lemma 5.2.3 we have that (Γ1(Npr)ab⊗ZZp)ord is also a Γ-module for the Neben-
typus action.

We are now ready to state one of the most important results of this chapter

Theorem 5.3.1. If r ≥ s > 0 then the natural morphism of abelian groups

(Γ1(Np
r) ab ⊗Z Zp)ord/as → (Γ1(Np

s) ab ⊗Z Zp)ord

is an isomorphism.

Proof. We saw at the end of section 5.1 that this morphism can be viewed as the
compostion of

(Γ1(Np
r) ab ⊗Z Zp)ord/as → (Φs

r
ab ⊗Z Zp)ord

and
(Φs

r
ab ⊗Z Zp)ord → (Γ1(Np

s) ab ⊗Z Zp)ord.

We will prove that these arrows are both isomorphisms.
For the second one recall that we saw that if r > s, then there is an operator

U ′∶Φs
r−1

ab → Φs
r
ab

such that (5.4) and (5.5) hold. These equations can be interpreted saying that, upon
tensoring with Zp and taking ordinary parts, the natural map

π∶Φs
r
ab → Φs

r−1
ab

induces an isomorphism

(Φs
r
ab ⊗Z Zp)ord ≅ (Φs

r−1
ab ⊗Z Zp)ord

whose inverse is given, so to say, by ”U−1 ○U ′”. Applying descending induction it is
clear that we get the required isomorphism

(Φs
r
ab ⊗Z Zp)ord ≅ (Φs

s
ab ⊗Z Zp)ord = (Γ1(Np

s) ab ⊗Z Zp)ord

Now we have to prove that

(Γ1(Np
r) ab ⊗Z Zp)ord/as → (Φs

r
ab ⊗Z Zp)ord

is an isomorphism. For this consider the short exact sequence (5.3). Tensoring with
Zp and taking ordinary parts yields the short exact sequence

1→ (Γ1(Np
r) ab ⊗Z Zp)ord/as → (Φs

r
ab ⊗Z Zp)ord → (Γs/Γr)ord → 1

Notice that since Γs/Γr is p-torsion, it does not change when tensoring with Zp. By
lemma 5.2.2 the operator U acts on Γs/Γr as multiplication by p, so it is a nilpotent
operator. This shows that (Γs/Γr)ord is trivial and proves our isomorphism.
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5.4 Iwasawa modules
Write

W ∶= lim
←Ð
r

Γ1(Np
r) ab ⊗Z Zp

where the projective limit is taken over the chain of Zp-modules

⋅ ⋅ ⋅→ Γ1(Np
r) ab ⊗Z Zp → ⋅ ⋅ ⋅→ Γ1(Np)

ab ⊗Zp.

We know that Γ acts on Γ1(Npr) ab ⊗Z Zp through its finite quotient Γ/Γr. This
immediately implies that W is a module over the completed group algebra (the
Iwasawa algebra that we studied in subsection 1.5.1)

Λ ∶= lim
←Ð
r

Zp[Γ/Γr]

Our main focus will be to study the ordinary part of W from now on.
Following Emerton, we now prove a general result on Λ-modules which tell us

something on the quotients Word/ar for r > 0.
Suppose that {Mr}r≥1 is a projective system of Λ-modules, with Mr invariant

under Γr for all r. Then for any r ≥ s the given morphism

Mr →Ms

factors as
Mr →Mr/as →Ms.

Let
M ∶= lim

←Ð
r

Mr

so that for every s the natural morphism M→Ms factors as

M→M/as →Ms

Proposition 5.4.1. In the above setting, assume that Mr is p-adically complete for
all r and that the morphisms Mr/as →Ms are isomorphisms for all r ≥ s. Then for
any s the morphism M→M/as →Ms is an isomorphism.

Proof. Essentially by assumption we have that all the morphisms Mr →Ms are sur-
jective, so that given ms ∈Ms we can construct an element µ ∈ M whose projection
to Ms is ms. Let γs ∈ Γs be a topological generator of Γs, so that as is principal and
generated by γs − 1. It is easy to verify that

γp
i

s − 1
γs − 1 ∈ (γs − 1, p)i

The maximal ideal of Λ is m = (a1, p) and obviously we have (γs − 1, p)i ⊂ mi. Since
Mr is p-adically complete and fixed by Γr, we have that Mr is m-adically complete
for all r.
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Now for a fixed s, let (mr) be an element of M whose projection ms to Ms

vanishes. We want to prove that there exists (m′
r) ∈ M such that (mr) = (γs−1)(m′

r).
By assumption there is an element m1,s+1 ∈ Ms+1 such that ms+1 = (γs − 1)m1,s+1.
Let (m1,r) ∈ M be an element projecting to m1,s+1. Then (mr) − (γs − 1)(m1,r) has
vanishing projection to Ms+1.

Applying the same procedure we can find for all i ≥ 0 an element (mi, r) ∈ M
such that

(mr) −
i

∑
j=1

(γp
j−1

s − 1)(mj,r) = (mr) − (γs − 1)
r

∑
j=1

⎛

⎝

γp
j−1
s − 1
γs − 1

⎞

⎠
(mj,r)

has vanishing projection to Ms+i.
Since each Mr is m-adically complete, the infinite series

(m′
r) ∶=

+∞
∑
j=1

⎛

⎝

γp
j−1
s − 1
γs − 1

⎞

⎠
(mj,r)

yields a well-defined element of M, which satisfies clearly that (mr) = (γs − 1)(m′
r).

The following result is now immediate.

Corollary 5.4.2. For any r > 0 we have that

(Γ1(Np
r)ab ⊗Z Zp)ord = Word/ar

is the Γr-coinvariants of Word.

From now on the aim will be to study the structure of the Λ-module Word. In
particular the final result will be the Word is finite and free over Λ. This should
sound familiar to us and should remind of theorem 2.2.2.

Each module Γ1(Npr)ab ⊗Z Zp is Zp-free of finite rank, so it is compact in its
p-adic topology. So if we give W the topology which is the projective limit of the
p-adic topology on each module Γ1(Npr)ab ⊗Z Zp, it becomes a compact Λ-module.
The action of Λ is clearly continuous. The same remarks hold true for Word, which
is a direct summand of W.

Moreover, the above corollary implies that the projective limit topology on Word

coincides with the m-adic topology, because the kernels of the projection

Λ→ Zp/pr[Γ/Γr]

are cofinal with the sequence of ideals mr in Λ.
In conclusion Word is a Λ-module, compact in its m-adic topology, with the

property that

Word/m = Word/(a1, p) ≡ (Γ1(Np)
ab ⊗Z Zp/p)ord

is a finite dimensional Fp = Zp/pZp-module. By Nakayama’s lemma this implies that
Word is finitely generated as Λ-module. We will prove in the end that Word is free
of rank d = dimFp Word/m.
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5.5 Modules over group rings
In this section we prove a general result about reflexivity of modules over group
rings.

We let R be a commutative ring , G be a finite group and M be a left R[G]-
module. In N is an R-module, then HomR(M,N) is naturally a right R[G]-module
with G-action given by (ϕ.g)(m) = ϕ(g.m) for all ϕ ∈ HomR(M,N), g ∈ G, m ∈M .

The ring R[G] is clearly a bimodule over itself, so that R[G]⊗R N is naturally
a bimodule over R[G]. This implies that HomR[G](M,R[G]⊗RN) is a right R[G]-
module setting ψ.g(m) = ψ(m).g for all ψ ∈ HomR[G](M,R[G]⊗RN), g ∈ G, m ∈M .

Lemma 5.5.1. With the above notation, there is a canonical isomorphism of right
R[G]-modules

HomR(M,N) ≅ HomR[G](M,R[G]⊗R N)

Proof. We associate to ϕ ∈ HomR(M,N) the map ϕ̃∶M → R[G]⊗R N given by

ϕ̃(m) ∶= ∑
g∈G

g ⊗ ϕ(g−1m)

We have that for all a ∈ G

ϕ̃(a.m) = ∑
g∈G

g ⊗ ϕ(g−1a.m) = a∑
g∈G

a−1g ⊗ ϕ(g−1a.m) = a.ϕ̃(m)

so that ϕ̃ ∈ HomR[G](M,R[G] ⊗R N). This means that the association ϕ ↦ ϕ̃ is
well-defined as a map η∶HomR(M,N) → HomR[G](M,R[G] ⊗R N). This is also a
morphism of right R[G]-modules because

(ϕ̃.a)(m) = ϕ̃(m).a = ∑
g∈G

ga⊗ ϕ(g−1m) = ∑
g∈G

g ⊗ ((ϕ.a)(g−1m) = ϕ̃.a(m)

Finally we claim that in this way we have defined an isomorphism of right R[G]-
modules. To prove this we define an inverse to our association ϕ↦ ϕ̃.

Given ψ ∈ HomR[G](M,R[G]⊗R N) we set

ψ̂(m) = n1G ⇔ ψ(m) = ∑
g∈G

g ⊗ ng

Using that ψ is a morphism of R[G]-modules one checks easily that for all a ∈ G it
holds ψ̂(a−1m) = na if ψ(m) = ∑g∈G g ⊗ ng.

This proves that ψ ↦ ψ̂ defines an inverse to η, since clearly ˆ̃ϕ(m) = ϕ(m) for
all ϕ ∈ HomR(M,N) and

˜̂
ψ(m) = ∑

g∈G
g ⊗ ψ̂(g−1m) = ∑

g∈G
g ⊗ ng = ψ(m).
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Now we consider the case when N = R and we write M∗ = HomR(M,R) for the
R-dual of M . By the above lemma we see that M∗ and HomR[G](M,R[G]) are
canonically isomorphic as right R[G]-modules. The analogue of the above lemma
for right R[G]-modules is obviously true so we also get the there is a canonical
isomorphism of left R[G]-modules between HomR(M∗,R) and HomR[G](M∗,R[G]).

We know that there is a canonical morphism of R-modules

M → (M∗)∗ = HomR(M
∗,R)

which turns out to be a morphism of left R[G]-modules (easy to check). By our
discussion we immediately get the following corollary.

Corollary 5.5.2. Assume that the above canonical morphism is an isomorphism for
M , i.e. that M is a reflexive R-module. Then M is reflexive as R[G]-module.

Proof. We get a chain of isomorphisms M ≅ HomR(M∗,R) ≅ HomR[G](M∗,R[G]).

5.6 The final result
By the universal coefficient theorem we know that cohomology in degree 1 is the
dual to homology, i.e. that

H1(Y1(Np
r),Zp) = HomZ(Γ1(Np

r)ab,Zp) = HomZp(Γ1(Np
r)ab ⊗Z Zp,Zp)

As we already remarked, Λ acts on Γ1(Npr)ab ⊗Z Zp through its quotient

Λr ∶= Λ/ar = Zp[Γ/Γr]

By lemma 5.5.1 we immediately get an isomorphism of Λr-modules

HomZp(Γ1(Np
r)ab ⊗Z Zp,Zp) ≅ HomΛr(Γ1(Np

r)ab ⊗Z Zp,Λr).

If r ≥ s > 0 we have a projection

Λr → Λr/as = Λs

This yields the following chain of canonical morphisms

HomΛr(Γ1(Np
r)ab ⊗Z Zp,Λr)Ð→ HomΛr(Γ1(Np

r)ab ⊗Z Zp,Λr)/as

Ð→ HomΛr(Γ1(Np
r)ab ⊗Z Zp,Λs) = HomΛs(Γ1(Np

r)ab ⊗Z Zp/as,Λs)

Now we would like to take ordinary parts in this chain of morphism. This is
justified by the fact that if M is a Zp[U]-module which is finitely generated as
Zp-module, then M∗ = HomZp(M,Zp) is also a finitely generated Zp-module and
becomes a Zp[U]-module via the dual action of U . In this case it is easy to verify
that

(M∗)ord = (M ord)∗
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Thus we can take ordinary parts to get a chain of morphisms

HomΛr((Γ1(Np
r)ab ⊗Z Zp)ord,Λr)Ð→ HomΛr((Γ1(Np

r)ab ⊗Z Zp)ord,Λr)/as

Ð→ HomΛs((Γ1(Np
r)ab ⊗Z Zp)ord/as,Λs)

By theorem 5.3.1 we know that there is an isomorphism

(Γ1(Np
r) ab ⊗Z Zp)ord/as ≅ (Γ1(Np

s) ab ⊗Z Zp)ord

so that we indeed get a chain of morphisms

HomΛr((Γ1(Np
r)ab ⊗Z Zp)ord,Λr)Ð→ HomΛr((Γ1(Np

r)ab ⊗Z Zp)ord,Λr)/as

Ð→ HomΛs((Γ1(Np
s)ab ⊗Z Zp)ord,Λs)

Now we are ready to state the key lemma of this section.

Lemma 5.6.1. The morphism

HomΛr((Γ1(Np
r)ab ⊗Z Zp)ord,Λr)/as Ð→ HomΛs((Γ1(Np

s)ab ⊗Z Zp)ord,Λs)

is an isomorphism.

Proof. See in the appendix.

Lemma 5.6.2. Consider the chain of Λ-modules

⋅ ⋅ ⋅→ HomΛr((Γ1(Np
r)ab ⊗Z Zp)ord,Λr)→ ⋅ ⋅ ⋅→ HomZp((Γ1(Np)

ab ⊗Z Zp)ord,Zp)

Then there is a canonical isomorphism

HomΛ(Word,Λ) ≅ lim
←Ð
r

HomΛr((Γ1(Np
r)ab ⊗Z Zp)ord,Λr)

Proof. We have the following series of canonical isomorphisms

HomΛ(Word,Λ) ≅ lim
←Ð
r

HomΛ(Word,Λr) ≅ lim
←Ð
r

HomΛr(Word/ar,Λr)

≅ lim
←Ð
r

HomΛr((Γ1(Np
r)ab ⊗Z Zp)ord,Λr)

where the first two isomorphisms are the obvious ones and the third one follows
from corollary 5.4.2.

We immediately get the following

Corollary 5.6.3. For any r > 0 there is a canonical isomorphism

HomΛ(Word,Λ)/ar ≅ HomΛr((Γ1(Np
r)ab ⊗Z Zp)ord,Λr)

Proof. This follows from proposition 5.4.1 and from the previous two lemmas.

Finally we can prove the main result of this chapter.
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Theorem 5.6.4. The Λ-module Word is free of finite rank.

Proof. Since we already know that Word is a finitely generated Λ-module, it is
enough (by proposition A.1.2 in the appendix) to prove that it is reflexive to see
that it must be free. But now we a chain of canonical isomorphisms

HomΛ(HomΛ(Word,Λ),Λ) ≅ lim
←Ð
r

HomΛ(HomΛ(Word,Λ)Λr)

≅ lim
←Ð
r

HomΛr(HomΛ(Word,Λ)/ar,Λr)

≅ lim
←Ð
r

HomΛr(HomΛr((Γ1(Np
r)ab ⊗Z Zp)ord,Λr),Λr)

≅ lim
←Ð
r

(Γ1(Np
r)ab ⊗Z Zp)ord = Word

where the first two isomorphisms are the obvious ones, the third follows form the
above corollary, the fourth is a consequence of lemma 5.5.1 (because (Γ1(Npr)ab ⊗Z
Zp)ord is a finite free Zp-modules, so it is cleary reflexive as Zp-module, hence as
Λr-module).
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Appendix A

Appendix to chapter 5

A.1 Some commutative algebra
In this section we want to develop the theory which is necessary to prove that a
finitely generated and reflexive module over the Iwasawa algebra Λ ∶= Zp[[X]] is
actually free. This is the crucial result which is used in chapter 5 to prove that the
Λ-module Word is free. We will actually work in some more generality.

Let A be an integral domain. For an A-module M we let

M∗ ∶= HomA(M,A)

to be its A-dual. As usual we have a pairing

M∗ ×M → A, (α,m)↦ α(m)

inducing a canonical homomorphism of A-modules

ϕM ∶M →M∗∗, m↦ (α ↦ α(m))

Definition A.1.1. An A-module M is called reflexive if the canonical map ϕM
defined above is an isomorphism.

Remark A.1.1. It is easy to see that if M is finitely generated and free over A, then
M is reflexive.
Remark A.1.2. Since A is an integral domain it is immediate to check that M∗ is
always torsion-free. Hence M reflexive always implies that M is torsion free.

Proposition A.1.2 (cf. [14] prop. 5.1.9). Assume A is an n-dimensional Noethe-
rian regular local ring, with 2 ≤ n < +∞. Let {p1, . . . , pn} be a regular system of
parameters generating the maximal ideal of A. Let p0 = 0. Then for a finitely
generated A-module M , the following are equivalent:

(1) For every i = 0, . . . , n−2 the A/(p0, . . . , pi)-module M/(p0, . . . , pi)M is reflexive.
(2) M is a free A-module.

In particular, a reflexive A-module over a 2-dimensional regular local ring A is free.
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Proof. We only need to prove that (1) implies (2). From (1) we get immediately
that M is reflexive, hence torsion-free. Let ϕ∶Ar ↠M be a minimal free presentation
of M (i.e. M can be generated by r elements). Consider the diagram

0 Ar Ar (A/(p1))r 0

0 M M M/(p1)M 0

p1

ϕ ϕ ϕ̃

p1

Assume for a while that M/(p1)M is a free A/(p1)-module. Then by the minimality
of r and Nakayama’s lemma M/(p1)M is free of rank r over A/(p1). We clearly
have that ϕ̃ is surjective and thus an isomorphism again by Nakayama’s lemma. By
the snake lemma we see that multiplication by p1 is a surjection ker(ϕ) p1

Ð→ ker(ϕ),
so that by Nakayama’s lemma again we deduce that ker(ϕ) = 0 and that ϕ is an
isomorphism. Hence M is free of rank r over A.

We are left to prove that M/(p1)M is a free A/(p1)-module. For this note that
A/(p1) is a regular local ring of dimension n−1 and that if pi = pi+p1A for i = 2, . . . n,
then {p2, . . . , pn} is a regular system of parameters of A/(p1). Thus the hypothesis
(1) holds for the couple A/(p1) and M/(p1)M . By descending induction we are left
to check that (1) ⇒ (2) only in the case n = 2 (which is the one we are actually
interested in). In this case A/(p1) is a discrete valuation ring (regular local ring of
dimension 1) and an integral domain. Hence the A/(p1)-module HomA(M∗,A/(p1))
is torsion-free and (using that M is reflexive) we have that

M/(p1)M ≅M∗∗/(p1)M
∗∗ = HomA(M

∗,A)⊗A A/(p1)↪ HomA(M
∗,A/(p1))

Hence M/(p1)M is torsion-free over the discrete valuation ring A/(p1), hence it is
free. This concludes the proof.

A.2 The proof of lemma 5.6.1
In this section we focus on the proof of lemma 5.6.1, i.e. we want to show that the
canonical map

HomΛr((Γ1(Np
r)ab ⊗Z Zp)ord,Λr)/as → HomΛs((Γ1(Np

s)ab ⊗Z Zp)ord,Λs) (A.1)

is an isomorphism for all r ≥ s > 0 integers.
Recall that the inclusion Γ1(Npr) ⊂ Φs

r gives rise to a transfer morphism

Φs
r
ab V
Ð→ Γ1(Np

r)ab.

Lemma A.2.1. The transfer morphism Φs
r
ab V
Ð→ Γ1(Npr)ab commutes with the ac-

tion of the Hecke operator U on its source and target.

Proof. By the functoriality of the transfer one reduces to prove that the following
diagram is commutative
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(Φs
r ∩ Γ0(p))ab (Γ1(Npr) ∩ Γ0(p))ab

Φs
r
ab Γ1(Npr)ab

V

t(−)t−1 t(−)t−1

V

where t = ( 1 0
0 p ) as usual.

One finds coset representatives for Γ1(Npr) ∩ Γ0(p) in Φs
r ∩ Γ0(p) of the form

σd = ( a bc d ) with d ranging through coset representatives of Γr in Γs. Then one
computes that tσdt−1 form a set of coset representatives of Γ1(Npr) in Φs

r, so that
the action of the transfer is indeed compatible with conjugation by t in this case
and the above square is commutative.

Thanks to the above lemma we can restrict V to the ordinary parts of its source
and target to get a morphism

(Φs
r
ab ⊗Z Zp)ord

V
Ð→ (Γ1(Np

r)ab ⊗Z Zp)ord.

There is clearly a dual morphism

HomZp((Γ1(Np
r)ab ⊗Z Zp)ord,Zp)

V ∗

Ð→ HomZp((Φs
r
ab ⊗Z Zp)ord,Zp)

fitting in the following commutative diagram

HomZp((Γ1(Npr)ab ⊗Z Zp)ord),Zp) HomΛr((Γ1(Npr)ab ⊗Z Zp)ord,Λr)

HomZp((Φs
r
ab ⊗Z Zp)ord,Zp) HomΛr((Γ1(Npr)ab ⊗Z Zp)ord,Λr)/as

HomΛs((Γ1(Npr)ab ⊗Z Zp)ord/as,Λs)

HomZp((Γ1(Npr)ab ⊗Z Zp)ord,Zp) HomΛs((Γ1(Nps)ab ⊗Z Zp)ord,Λs)

∼

V ∗

∼

Let us describe this diagram:

(i) the horizontal isomorphisms are given by lemma 5.5.1;

(ii) the vertical equalities follow from theorem 5.3.1 and its proof;

(iii) the vertical arrows on the right column are the obvious ones.

The proof of the commutativity of the above diagram is essentially a computation
again. Thus to prove lemma 7.1 it is enough to prove that

HomZp((Γ1(Np
r)ab ⊗Z Zp)ord,Zp)

V ∗

Ð→ HomZp((Φs
r
ab ⊗Z Zp)ord,Zp)

is surjective with kernel equal to asHomZp((Γ1(Npr)ab ⊗Z Zp)ord,Zp).
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Since by lemma A.2.1 we have that U commutes with V and since taking ordi-
nary parts commutes with taking Zp-duals, we get that the above morphism is the
ordinary part of the morphism

HomZp(Γ1(Np
r)ab ⊗Z Zp,Zp)

V ∗

Ð→ HomZp(Φs
r
ab ⊗Z Zp,Zp).

Taking ordinary parts is exact and commutes with the Nebentypus action of Γ
(lemma 5.2.3), so that to prove our result it is enough to show that

HomZp(Γ1(Np
r)ab ⊗Z Zp,Zp)

V ∗

Ð→ HomZp(Φs
r
ab ⊗Z Zp,Zp)

is surjective with kernel asHomZp(Γ1(Npr)ab ⊗Z Zp,Zp).
To see this we work in some more generality. Let G be a torsion-free congruence

subgroup of SL2(Z). Then we have already used that

HomZp(G
ab ⊗Z Zp,Zp) = HomZ(G

ab,Zp) =H1(Y (G),Zp)

where Y (G) ∶= G/H is the corresponding open Riemann surface. We know that
Y (G) can be completed to a compact Riemann surface X(G) adding finitely many
points, called cusps, which correspond to the orbit space G/P1(Q). For a precise
description of the structure of Y (G) as a Riemann surface and the compactification
we refer to [5], chapter 2.

The Lefschetz duality theorem (cf. [6] proposition VIII.7.2) gives a canonical
isomorphism

H1(Y (G),Zp) ≅H1(X(G), cusps,Zp)
where the right-hand module is the homology taken relative to the set of cusps of
X(G).

Consider the group M ∶= Div0(P1(Q) of degree zero divisors on the set of cusps
of the complex upper half plane. The group G acts on M via its action on P1(Q)
by Möbius transformations. We can take G-coinvariants and consider

(M⊗Z Zp)/aG =H0(G,M⊗Z Zp)

where aG is the augmentation ideal in the group ring Zp[G].
Given a divisor [x] − [y] ∈M one can associate to it any path from x to y in

H ∪ P1(Q). Such a path gives a well-defined element [γx,y] in H1(X(G), cusps,Z).
Since we are assuming that G is torsion-free, one can apply the results of [13] to see
that the association [x] − [y]↦ [γx,y] gives an isomorphism

H0(G,M⊗Z Zp) ≅H1(X(G), cusps,Zp)

Now assume that H is contained in G, so that Y (G) and X(G) are respectively
quotients of Y (H) and X(H). As described above we have the transfer V ∶Gab →Hab

and the dual morphism

V ∗∶HomZp(H
ab ⊗Z Zp,Zp)→ HomZp(G

ab ⊗Z Zp,Zp).

We get a commutative diagram:
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HomZp(H
ab ⊗Z Zp,Zp) HomZp(G

ab ⊗Z Zp,Zp)

H1(Y (H),Zp) H1(Y (G),Zp)

H1(X(H), cusps,Zp) H1(X(G), cusps,Zp)

(M⊗Z Zp)/aH (M⊗Z Zp)/aG

V ∗

where the vertical arrows are the canonical isomorphisms that we have described
and the horizontal arrows are (from the top to the bottom) the dual of the transfer,
pushforward on cohomology, pushforward on homology and the natural quotient
morphism. Thus we see that V ∗ is surjective with kernel equal to

aGHomZp(H
ab ⊗Z Zp,Zp).

In particular this finishes the proof of lemma 5.6.1 if we take H = Γ1(Npr) and
G = Φs

r.
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