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Notation

In this thesis we will make use of the following standard notation

N, Z, Q, R, C will denote respectevely natural, integer, rational, real, complex
numbers.

For a rational prime p, @, denotes the field of p-adic numbers and Z,, the ring
of p-adic integers.

GL2(R)* denotes the group of invertible 2 x 2 matrices with real entries and
positive determinant.

SLy(Z) is the usual modular group (2 x 2 matrices with integral coefficients
and determinant 1).

For N €Z, N >0 we define

F(N)::{(Z Z)ESLQ(Z)MEdEl mod (N), c=b=0 mod (N)}

Fl(N)::{(CCL Z)ESLQ(Z)MEdEl mod (N), c=0 mod(N)}

To(N) = {(CC‘ Z)ESLQ(Z)\CEO mod (N)}

H:={zeC|Im(z)>0}.






Introduction

In this thesis we want to give a systematic introduction to the so-called Hida theory
of p-adic modular forms.

It is worth mentioning that the first attempt to organize modular forms in fam-
ilies where the Fourier coefficients vary p-adically continuously in the weight is due
to J.P. Serre, in his celebrated paper [17], where a first possible definition of p-adic
modular form is given. Almost at the same time N. Katz was developing his theory
of geometric modular forms.

It was H. Hida in the 80’s who, after a careful analysis of the corresponding
Hecke algebras, proved that modular forms lived in families for varying weight and
level under the so-called ordinarity assumption. The pivotal papers for Hida theory
are [10] and [11].

Following Hida’s work, A. Wiles introduced the so-called A-adic forms in [23] in
the more general framework of Hilbert modular forms. He was able to reprove the
analogues of Hida’s results using this tool.

In the last 30 years many further developments and generalizations took place
in this theory. Let us just mention the construction of the so-called Eigencurve by
R. Coleman and B. Mazur.

This thesis is essentially divided into two parts.

In the first part (consisting of the first four chapters) our main reference is [9],
chapter 7. Here Hida gives a more down-to-earth description of his theory using
Wiles’ language of A-adic forms. We tried to expand Hida’s proofs and examples.
The main technical difference with our reference is the introduction of a tame level
N throughout our exposition, which is thus slightly more general.

In chapter 4 we give explicit examples of A-adic forms. In particular CM A-adic
forms are paid a particular attention.

In the second part (chapter 5 and the relative appendix) we follow mostly M.
Emerton’s article [7], where he reproves Hida’s horizontal control theorem in the
context of homology of modular curves. The aim was again to fully understand
Emerton’s techniques and to expand the proofs given in the paper.

We should finally make clear that nothing is this thesis is new. We decided to
give an exposition based on our understanding of our references. Our hope is that
this account on Hida theory might be useful for interested math students in the
future.
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Chapter 1

Hida families as Lambda-adic
forms

In this chapter we develop the theory of classical and p-adic modular forms (for
the latter ones we follow Serre’s and Hida’s approach) and, after a quick review of
basic concepts in p-adic analysis, we give a definition of Hida family using the so
called A-adic modular forms (introduced by Wiles in the more general framework of
Hilbert modular forms, see for instance [23]).

1.1 Modular forms

If T" denotes the group I'(IV), I'; (V) or I'g(NV), then I' has finite index in SLy(Z).
For the moment let T" denote in general a congruence subgroup of SLy(Z), i.e. a
subgroup containing I'(/V) for some N > 1.

Let k£ > 1 be an integer. Recall that a modular form of weight k£ and level I' is a
holomorphic function f:H — C satisfying the following conditions

at+b
cT+d

(a) f(y1)=(cr+d)kf(7) for every 7 € H and every v = (25%) eI, where y7 =
(b) f is holomorphic at the cusps (cf. [5] pagg 16-17 for the detailed explanation
of this condition)

A modular form of weight k and level I' is called a cusp form if it vanishes at the
cusps (again cf. [5] pagg 16-17).

We denote by M (T") (resp. Si(I')) the C-vector spaces of modular (resp. cusp)
forms of weight k£ and level I'. One can prove that these spaces are finite dimensional
and even exhibit precise dimension formulas, which heavily depend on the study of
the geometry of the so-called modular curve I'\H and of its canonical compactifica-
tion (cf. chapter 3 of [5] for this).

We define the so called k-slash operators. For a matrix v = (2%) € GLy(R)* and
a function f:’H — C we define

(flen)(7) = (det(7))" (e + d) ™ f(77). (1.1)
This defines an action of GLy(R)* on the C-vector space of functions f:H — C.
In particular condition (a) above is clearly equivalent to
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(a’) flgy = f for every y eI’

The assigment (¢%) —~ d mod (NN) defines a (multiplicative) group isomorphism
Lo(N)/T1(N) 2 (Z/NZ)* for every N > 1. This means that the group (Z/NZ)*
acts on My (I';(N)) and Si(I';(IV)) via the k-slash operator. By standard results in
representation theory this yields a decomposition of My (I';(N)) (and similarly for
cusp forms) into

M (T (N)) = D Mi(To(N), x)
X
where y runs over Dirichlet characters defined modulo N and

My (Lo(N), x) = {f € Mp(I'(N)) | fley = x(d) f for every v = (&) € Lo(N)}
Define Si(T'o(N), x) in the obvious way and notice that if x(-1) # (-1)*, then
Mi(To(N),x) = 0= Sk(L'o(N), x)

Let f:H — C be a holomorphic function with f(7+1) = f(7) for all 7 € H. Since
H|Z =D ={zeC||z| <1} via 7 » q = exp(2miT), we may regard f as a function of
q undefined at ¢ =0 <> 7 = joo. Then the Laurent expansion of f gives

f(r) = Za(n, )" = Za(n, f)exp(2minT) (1.2)

n

This is also called the Fourier expansion (or g-expansion) of f at oo.

Now assume f € M(T") for I' = T';(N) or I' = I'((N). In this case the matrix
T :=(}1) belongs to I' and equation (a’) above reads f(7+1) = f(7), so that f has
a Fourier expansion at the cusp co. In particular f holomorphic at co means that
a(n, f) =0 for n <0 and f vanishing at oo means that a(n, f) =0 for n <0.

For a subring R ¢ C we define the R-module
Mp(T1(N),R) :={f € Mi(T1(N)) | a(n, f) € R for every n >0}

Similarly we define the R-modules Sg(I'1(N), R), Mp(T'o(N), x, R), Sk(I'o(N), x, R),
viewed as submodules of R[[¢]].

The following is a standard result in the integrality theory of modular forms

Proposition 1.1.1. For all positive integers N and k, the space My(T'1(N)) (resp.
Si(I'1(N))) has a basis in My(I'1(N),Z) (resp. S,(I'1(N),Z))). For every Dirichlet
character x defined modulo N, the space M(T'o(N),x) (resp. Sk(To(N),x))) has
a basis in M (To(N),x,Z[x]) (resp. Sk(To(N),x,Z[x]))

Proof. See [4] corollary 12.3.12. We are sweeping under the rug the discussion
concerning Katz’s geometric approach to modular forms. Here Z[y] denotes the
smallest subring of C containing the values of . m

Corollary 1.1.2. (a) For every subring A ¢ C the natural map
M(T1(N),A)®4 C - Mi(T'1(N))

is an isomorphism of C vector spaces (and similarly for cusp forms)
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(b) For every subring A € C containing Z[x] the natural map
Mk(FO(N)7 X5 A) ®A C~- Mk(FO(N)7X)

is an isomorphism of C vector spaces (and similarly for cusp forms)

Let p be a rational prime. We fix once and for all in this thesis an algebraic
closure @p of Q, and an embedding Q- Qp for an algebraic closure Q of Q. All
algebraic extensions of Q, will be considered as subfields of @p. On Q, normalize
the absolute value so that |p| = }D and extend it to @, in the unique possible way.

The previous results lead us to the following definition (which somehow depends
on the choice of the embedding of Q inside Q).

Definition 1.1.3. Let k£ > 1 be an integer and consider a Dirichlet character x
defined modulo N. Let A be a subring of Q,. Then we can define the space of
classical p-adic modular forms with coefficients in A and level N as

Mk(PI(N),A) = Mk(Fl(N),Z) ®7 A

and similarly for cusp forms.
If A contains Z[ x], then we can define the space of classical p-adic modular forms
with coefficients in A of level N and character x as

Mk(ro(N),X,A) = Mk(FO(N)aX7Z[X]) ®Z[X] A

Similarly we define the corresponding cuspidal subspace.

1.2 Hecke operators on modular forms

In this section we define Hecke operators on modular forms. Let I' = T'o (V) for some
N > 1 and fix a Dirichlet character x modulo N. One can prove that for v € GLy(Q)*
the orbit space ['\['aI" is a finite disjoint union of left cosets, say I'al' = |_|§:1 lay;
(cf. [5] lemma 5.1.2) and that setting, for f e My(Io(N),x),

¢
fIlTal] =" flse;
=1
defines a linear operator on M (T'o(N), x), only depending on the double coset I'al .

Among these operators there are some special ones.

Lemma 1.2.1. If p is a rational prime we have

1o, _JTOUWST(oy) ifptN
r I'= p—1 13 ! .
0 p I—lj:OF(Op) pr|N

Proof. See [5] proposition 5.2.1 O

13



We let T'(p) to be the operator corresponding to I'(§ 5 )T. The following propo-
sition describes the action of the T'(p) operator on Fourier coefficients
Proposition 1.2.2. Let f € M. (T'o(N),x) with a Fourier expansion

+o00

f(r) =2 a(n, f)q"

n=0

Then f|T(p) € Mi.(T'o(N), x) with a Fourier expansion given by

uww»&ozigmjwwnw

where
a(np, ) +x(p)p*ta(n/p, f) ifp+ N

a(np, f) ifp|N
Here a(m, f) = 0 if m ¢ Zso. Moreover if p,q are distinct primes we have that
T(p)T(q) =T(¢)T(p).

Proof. See [5] propositions 5.2.1 and 5.2.4 O

a(n, f|T(p)) ={

Now we want to define an operator T'(n) for every n € Z,;. We let T(1) be the
identity map. For prime powers, define for r > 2 inductively

T(prHT(p)-p'x()T(p2) ifpt+tN

T(p) = {T(pr‘l)T(p) if p| N

Then one inductively proves that for distinct primes p and ¢ we have T'(p")T(¢*) =
T(q*)T(p"). This allows us to extend the definition of T'(n) multiplicatively as

T(n) =TITGY) i n=[]p

so that all the T'(n) commute and we have
T(mn)=T(n)T(m)=T(m)T'(n) if gcd(m,n)=1

Since the action of Hecke operators T'(p) for p a prime differs depending of the fact
that p divides N or not, we will often denote by U(p) the Hecke operator T'(p) when
p| N. Tt follows by our definitions that U(p") = U(p)" for r > 0.

Proposition 1.2.3. Let f € M (T'o(N),x) with a Fourier expansion

+o00

f(r)=>a(n, f)q"

n=0

and let n be a positive integer. Then f|T(n) e My(To(N),x) with a Fourier expan-
sion given by

am, fITM) = Y x(d)d " a(mn/d?, d) (1.3)
dlged(m,n)

where we set x(d) =0 if ged(d, N) # 1.
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Proof. This follows directly from the description of the action of the T'(p) operators
on Fourier coefficients for p a prime. See [5] proposition 5.3.1. n

As an immediate consequence of the above proposition we get that the spaces
Mp(To(N), x, Z[x]) and Sk(T'o(N), x, Z[ x]) are preserved by the action of the Hecke
operators T'(n) for all n > 1.

It is more generally possible to define Hecke operators T'(n) on My (I'1(/N)) in an
analogous way. In this case it is no longer obvious that M (T';1(N),Z) is preserved
by the action of these Hecke operators and one has to appeal again to Katz’s theory
of geometric modular forms (cf. [4] proposition 12.4.1).

Now we want to define Hecke algebras.

Definition 1.2.4. For a subring A of C or of Q, containing Z[x], we denote by
He(To(N), x, A) (resp. hH(To(N),x, A)) the A-subalgebra of End 4 (M (T'o(N), x, A)
(resp. of Enda(Sk(To(N), x,A)) generated by the Hecke operators {T'(n)},»1. We
will call this rings Hecke algebras.

Remark 1.2.1. Notice that since T'(1) = Id and all the T'(n) commute, we have that
He(To(N), x, A) and h(To(N), x, A) are commutative A-algebras with unit.
It is clear that, essentially by definition, we have

Hi(Lo(N), x, A) = He(Lo(N), x, Z[x]) ®z1,) A

and
bk(FO(N)>X7A) = bk(FO(N)7X7Z[X]) ®7z[x] A

We need now a definition

Definition 1.2.5. Let A be a subring of C or of Q, with Z[x] € A and let K be
the quotient field of A. We define

mk(FO(N)7X7A) = {f € Mk(FO(N)7X7K) | a(naf) € Afor all n > 1}
Notice that for A as above we have a pairing

given by (H, f) = a(1, H(f)) for all H € Hy(I'o(N), x, A) and f e my(To(NV), x, 4).
Clearly there is also a cuspidal version of this pairing.

Proposition 1.2.6. The above pairing (1.4) is perfect and induces isomorphisms of
A-modules

Hom 4 (Hy(T'o(N), x, A), A) =my(I'o(N), x, A)
Hom 4 (hx(Lo(N), x, A), A) = Se(Lo(N), x, A)
Hom s (myp(To(N), x, A), A) 2 Hi(To(N), x, A)
Hom 4 (Sp(To(N), x, A), A) 2 hr(To(N), x, A)

Proof. See [9] corollary 5.4.1. O
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1.3 Some results in p-adic analysis

This section develops the necessary tools in p-adic analysis without proofs. The
contents are mainly based on chapter 5 of [19].

For a rational prime p > 0 we set

4 ifp=2
g=1" 7 (1.5)
p if p odd

We have the following classical description for the units of Z,, namely

Lemma 1.3.1. Let p be a prime p > 0, then there is a decomposition Zy = px T
induced by the splitting exact sequence

1 > I

7 > (Z]qZ) —— 1

Fe_ w _.7

-~ -

v

where I' = 1+ qZ,, p is the maximal torsion subgroup of Zx (u={+1} if p=2 and p
given by the p — 1-th roots of unity if p is odd) and w is the Teichmiiller character

Proof. The fact that p is the maximal torsion subgroup of Z5 is an easy application
of Hensel’s lemma. For the Teichmiiller lift (when p is odd) cf. [16] proposition
11.4.8. m

In what follows we will often see w as the composition

7, - (L|qZ)* = Z,

Consider again the fixed algebraic closure @p of Q,. It is well-known that @p
is not complete, so that sometimes it is useful to work with its p-adic completion,
usually denoted by C,. We have the following crucial fact.

Proposition 1.3.2. C, is algebraically closed.
Proof. See [19] prop 5.2. O

Now we introduce the p-adic exponential and the p-adic logarithm. Set formally
+o00
Xn
exp(X) = ZF (1.6)
n=0 '

One can check that

Lemma 1.3.3. The above series converges for {x € C, | |z| < p~H/®-D}
Proof. See [19] pag. 49. O
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The p-adic logarithm is defined again via a formal power series
1nxn
log,(X +1) Z ~ (D)X ) (1.7)

It is easy to check that in this case one has convergence for {z € C, | |z| < 1}.

The properties of exponential and logarithm comes formal properties of the cor-
responding power series, so that they still holds over C, when exponential and
logarithm make sense.

Actually for the logarithm one has

Proposition 1.3.4. There exists a unique extension of log, to all of C; such that
log,(p) = 0 and log,(wy) =log,(x) +log,(y) for all v,y € Cj

Proof. See [19] prop. 5.4. We just remark here that the crucial point in the proof is
the fact that one has a decomposition Cy = p2 x V x U; where V is the group of all
roots of unity of order prime to p in Cx and U, = {zr € C, | [z - 1| < 1}. O

Remark 1.3.1. One can check that log(exp(x)) = x and exp(log,(1+x)) = 1+2 hold
whenever we have |z| < p~1/®-1),

Now let a € Z5 and set (a) := w(a) 'a, so that (a) =1 modulo g. One can easily
see that log,(a) = log,({a)). Thus it makes sense to define for suitable z € C,

(@) := exp(zlog,(a)) = exp(xlog,((a)) (1.8)

Remark 1.3.2. Since |log,(a)| < |q| = 1/q, we see that the above assignment makes
sense whenever |z| < gp~1/(»-1). By the above remark we have that (a)! = (a). If for
podd n=0 mod p-1 (for p =2 the condition is n =0 mod 2), then (a)" = a™.

Remark 1.3.3. If a €' =1+ ¢Z, and u is a topological generator of I, then a = u*(®)

IOEPE ;, due to remark 1.3.1.

where s(a) :=

Now we need more general p-adic analytic functions. We introduce the general-
ized binomial coefficient

(X) _X(X-D)(X-n+1)

n n!

If p(X) e Q,(X) is any polynomial, one can easily check that the function
x + p(z) is continuous on Z,. Since moreover N is dense in Z, and the (') € N for
all m € N, we conclude that ( ) € Z,, for every x € Z,.

A classical result due to Mahler says that one can use binomial coefficients to
interpolate continuous functions f:7Z, - Q,. More precisely

Theorem 1.3.5. Any continuous function f:7Z, — Q, can be written uniquely in
the form

+00 X
f(X) = Zan( ) with a, - 0 for n - +o0 (1.9)
n=0 n
Proof. See theorem 3.2.1 in [9]. O

17



Ezxample 1.3.6. Not surprisingly one can write

+oo

x T Z n
(@ = (1+(a) =17 = ¥ (7)) - 1)
n=0
and check that the right hand side converges for |z| < ¢gp~1/(»-1). This agrees with
remark 1.3.2. In particular we have convergence for |z| < 1.

Finally recall the definitions of Bernoulli numbers and Bernoulli polynomials.
Classical Bernoulli numbers are defined in terms of a generating function

t +o00 tn

-y B, 1.10
et -1 Z n! ( )

n=0

Given a primitive Dirichlet character modulo N we define generalized Bernoulli
numbers via

a=1

X(a)teat = tn
T ;B"’Xet — (1.11)

Now we are ready to construct the p-adic L-functions that we need.

Let x be a primitive Dirichlet character modulo N. View x as taking values
in C, via the embedding Q- @p. It is clear that w:Zx - C, is a p-adic Dirichlet
character of conductor ¢ and order ¢(gq). It makes sense to consider products of
characters of the form yw” for some r € Z in this setting.

We have the following

Theorem 1.3.7. Let x be a primitive Dirichlet character modulo N and let F be
such that N | F and q | F. Then there is a p-adic meromorphic (and analytic if
X # 1) function L,(s,x) on {s€C,||s| < gp~/®V} such that

B w=k _ _ _
Ly(1-k,x) =—(1—xw"“(p)p’“‘1)% =(1-xw PP LA ~kxw™) k21

If x =1 then L,(s,1) is analytic expect for a pole at s =1 with residue 1 -1/p.
In fact one has the explicit description

L0 = g =) () (1.13)

- a
j=0
pta

Proof. See [19] theorem 5.11. O

The above function is usually called Kubota-Leopoldt p-adic L-function. We are
not interested in developing the theory leading to the proof of the results of the
above theorem but we need to mention that there is another construction of this
function due to Iwasawa.

Definition 1.3.8. Let x be a Dirichlet character. We say that y is of type I' if it
factors through I' = 1 + ¢Z,. Let v =1+ ¢ and set

x(u)(1+X)-1 if yisof type T’
H . (X):= {1

otherwise
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Theorem 1.3.9. In the above setting, there is a unique power series Gy (X) €
Zp X[ X]] such that

Ly(1-8,) = % (1.14)

More over if p is a character of type I', then it also holds

Gro(X) = Gy(p(u)(1+ X) - 1) (1.15)

1.4 p-adic modular forms a la Serre

In this section we briefly introduce Serre’s point of view on p-adic modular forms,
as it was first described in [17]. We fix an odd prime p and we let v, denote the
p-adic valuation on Q,, normalized in such a way that v,(p) = 1. If we have a formal
power series

f- fq ¢ Q,[q]

we set

Up(f) = iggvp(an)
If v,(f) >m >0 for some m € Z, we write f =0 mod p™.

Definition 1.4.1. If (f;);»1 is a sequence of elements in Q,[¢]] we say that

lim f; = feQylq]]

j—>+oo

if the coefficients of f; tend uniformly to those of f, i.e. if

lim v,(f - f;) = +o0
J—>+oo

Let meZ, m >1 and set
X = (Zp"ZY* = ZJp™ L= Z](p-1)Z

For m — +oo the X,, form a projective system of abelian groups and we have
that
X =lmX,, =Z,xZ[(p-1)Z

where obviously Z, denotes the ring of p-adic integers.

There is a canonical injective homomorphism Z — X and one can easily see that
the image of Z inside X is dense for the p-adic topology on X.

One can also see the elements of X as p-adic characters of Z5. More precisely,
if V,, = Homeoni(Z, Z5), then Z <V, via the assignment k + (z = 2*) and one can
extend this inclusion to a continuous homomorphisms e: X — V,, (if V}, is considered
with the topology of uniform convergence). One can check that ¢ is actually an
isomorphim.
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We can make things more explicit as follows. One writes k € X as k = (s,u) with
s €Zyand ueZ[/(p-1)Z. If veZyis written as v = w(v)(v) (as in the previous
section), then we have that

v i=e(k)(v) =w(v)"(v)*
We say that an element k € X is even if (-1)F = 1.

Definition 1.4.2. A p-adic modular form (d la Serre) is a formal power series

;- fq e Q,[q]

such that there is a sequence (f;);>1 of modular forms f; € My, (SLo(Z),Q) such
that

j~>+oo

There is a well-defined notion of weight for such p-adic modular forms, given by
the following

Proposition 1.4.3. Let f be a p-adic modular form, f # 0 and let (f;);»1 be a
sequence with f; € My, (SLy(Z),Q) such that f; - f for j — +oo. Then 3k € X such
that kj — k for j — +oo. Such k depends on f, but not on the choice of the sequence

(f5)-
Proof. This is théoreme 2 in [17]. O

If we allow f =0 to be a p-adic modular form of weight k € X for any k£ € X,
we then immediately see that p-adic modular forms of a fixed weight k € X form a
Q,-vector space.

If f is a p-adic modular form, one can prove that v,(f) # —oco, i.e. pNf e Z,[[¢]]
for some N.
We have the following interesting result

Theorem 1.4.4. Let (f));y; be a sequence of p-adic modular forms of weight
k@) e X. Write

+o00 .
f(]) — Z a;])qn
n=0
and assume that

(i) o) for n>1 converge uniformly to a, € Q,

(ii) the weights k) converge in X to a limit k + 0

Then the a(()j) have a limit ag € Q, and the series
+00
f = Z anqn
n=0
is a p-adic modular form of weight k.
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Proof. This is corollaire 2 in [17]. H

We are now going to apply the above discussion to the case of Eisenstein series.
Basically the above result will give us the chance of reconstructing the p-adic zeta
function of Kubota-Leopoldt.

Recall that the classical family of Eisenstein series of level SLy(Z) and variable
weight k£ > 4 even has g-expansion

CA-k) K

Er(z) = Tt Z:lak_l(n)q” (1.16)

where ,,(n) := ¥ g, d™. It is well-known that Ej(2) € M (SL2(Z)).

Now for k € X define
aP(n) =3 d*

dln
ptd

One can easily check that if (k;);s1 is a sequence of integers such that k; - ke X
for the p-adic topology and k; - +o0o in the Archimedean sense, then

oy, (n) = o (n)
uniformly in n > 1. As a corollary of theorem 1.4.4 we immediately get:

Corollary 1.4.5. For k+ 0,k e X even, there is p-adic modular form

CO(1—k) £ i
5 - 0D LS o0 )

where (P (1 - k) = lim;100 (1 - k).

We have thus defined a function () on the odd elements of X ~ {0}. Theorem
1.4.4 also shows that this function is continuous and we claim that it is indeed
essentially the same as Kubota-Leopoldt p-adic zeta function.

For (s,u) € X =Z, xZ[(p—-1)Z define

¢'(s,u) = Lp(s,w'™)

where L, is the Kubota-Leopoldt p-adic L-function defined in the previous section.
We know that ¢’ is continuous and that

CA-k)y=(1-p"N¢(1-k) ifke2Z,k>2

Now if k € 2X, k # 0 and if (k;);»1 is a sequence of integers such that k; - k
p-adically and k; - +o0 in the Archimedean sense, we get

¢'(1-k) = lim ¢'(1-k;) = lim (1-pM")C(1-k;) = lim ¢(1-k;) =¢P(1-Fk)
j—>+oo J—+o0o J—=>+oo
which shows that () = ('
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1.5 A-adic forms

Now fix a prime p and a positive integer N prime to p. As before set

4 ifp=2
“1p ifpodd
This notation is quite standard. No confusion with the ¢ used for the g-expansion
should arise hopefully.

Let x be a Dirichlet character modulo N¢q (considered as taking values in @p).
Let u=1+gel' =1+qZ, be a fixed topological generator of I'.

As before assume that F'/Q, a finite extension with Z[x] ¢ F' and let O denote
the corresponding integer ring. We set Ap = Op[[X]] for the usual Iwasawa algebra.
Let w denote the p-adic Teichmiiller character as in the above section.

In this section we will introduce A-adic forms of level N and character y. For
this we will need first some results about the structure of the ring Ar = Op[[X]].

1.5.1 The structure of the Iwasawa algebra

Fix 7 € Op a uniformizer and let mp = (7) denote the maximal ideal of the discrete
valuation ring Op. A polynomial p(X) € Op[X] is called distinguished if it takes
the form

p(X)=X"+a, 1 X"+ +ay withm|a; fori=0,... . n-1
A classical result concerning Ap is the so-called Weierstraf preparation theorem.

Proposition 1.5.1. Let f(X) = Y55 a; X" € Ap and assume that for some n it holds
that a; e mp fori=0,....,n-1 and a, ¢ mp. Then f(X) may be uniquely written as
F(X) =p(X)u(X) with u(X) € A is a unit and p(X) is a distinguished polynomial
of degree n. More generally any nonzero element f(X) € Ar can be written uniquely
as f(X) =7"p(X)u(X) for some r >0 and u(X), p(X) as before.

Proof. See [19] theorem 7.3. O

An important consequence of this fact is that a non-zero power series f(X) € Ap
has only finitely many zeroes in the disk {z € C, | |z| < 1}.

The following lemma summarizes the algebraic properties of the ring Ap =

Or[X]]-

Lemma 1.5.2. Ap is a Noetherian local ring of Krull dimension 2. It is a UFD.
Its maximal ideal is m = (7, T). All other prime ideals have height 1. They are ()
and (p(X)) where p(X) € Op[[X]] is an irreducible and distinguished polynomial.

Proof. See [19] proposition 13.9. O
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Finally it is important to recall that the ring Ar can be realized as the topological
group ring Op[[I']] as follows. Let I', = T'?" for r > 0 denote the unique closed

subgroup of I" of index p. It is clear that I'/T". is cyclic of order p" so that there is
a natural isomorphism

Op[D/T,] = Op[X]/((1+ X)" - 1)

for all r > 0, given by sending the fixed topological generator u=1+¢ mod (T',) to
1+X mod ((1+X)P -1).
If r > s one has a commutative diagram with obvious arrows

O[T/, ] —— Op[X]/((1+X)*" -1)

| |

Or[l/Ts] —— Op[X]/((1+X)”" -1)

One defines Op([I']] = lim Op[I'/T', ], viewed as a topological ring with the profinite
topology. Taking inverse limits on the above diagram one finds an isomorphism of
topological rings

Op[T]1 2 Or[[X]] = Ar

uniquely determined by the assignment u — 1+ X. For the proof of this fact cf. [19],
theorem 7.1.

1.5.2 Specializations

An element ¢ € Homo,,_q14(Ap, @p) is called a specialization. Notice that when p > 2,
under the isomorphism given above, there is a natural bijection between continuous
group homomorphisms a:I" — @; and Op-algebra homomorphisms ¢: Op — @p. In
particular such an « is uniquely determined by the image of a topological generator
u=1+pof I, which must be a principal unit in a finite extension of QQ, inside @p.
The corresponding ¢ is obtained setting p(f(X)) = f(a(u) —1) for f e Ap.

Note that the kernel of a specialization ¢ is necessarily a height one prime ideal
P, of Ap generated by an irreducible distinguished polynomial. We will also refer
to such prime ideals as specializations.

Definition 1.5.3. A specialization p:Ap — @p is called arithmetic if it is uniquely
determined by a continuous group homomorphism o:I" — @; such that a(y) =
e(y)v* for a finite order character e:T" — @; and some k > 1. We denote by ¢, .
such a specialization. If k£ > 2 we say that this specialization is classical. We denote
by Py . the corresponding prime ideal of Ap.

We have that ¢ (X) = e(u)u® - 1, so that we can see gy . as the evaluation of
power series at X =e(u)uf - 1.

If p>2welet r=r.¢eZy be such that € has exact order p", i.e. it factors
optimally through I'/T", where I, := 1 + p™1Z,. It is easy to see that to define such

an ¢ it is enough to fix a primitive p"-th root of unit in (, € Q_px and set £(u) = (.
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Notice also that since I'/T". = Z/p"Z in the obvious way, it is possible to view &
as a Dirichlet character modulo p™*! via the decomposition

(Z[p™'2)* = (Z/pZ)* x (Z[p"Z)
and defining a suitable Dirichlet character as trivial on the first component and

given by € on the second component.

If p =2 one has to ask r > 1 and fix a 2"-'-th root of unit in order to carry out
the analogous construction for arithmetic and classical specializations.

Let now L be a finite field extension of Frac(Ar) and let Z be the normalization
of Ar inside L. By Noetherianity, we know that Z is a finite flat Ap-algebra.

Definition 1.5.4. We say that an Opg-algebra homomorphism ¢:7 — @p is an
arithmetic (resp. classical) specialization if ¢|s, is an arithmetic (resp. classical)
specialization.

Notice that in the above setting if P ¢ Ap is a prime ideal, there is always a
prime ideal P ¢ Z such that PnAp = P (from the usual going-up theorem), so that
we can extend specializations to Z.

If 27 - Q, is a specialization and F = 1% a(n, F)q" € Z[[q]] then we write
@©(F) for the series

o(F) = §w<a<n,f>>qn ¢ @, (4]

1.5.3 A-adic forms

We are now ready to define Apg-adic forms.

Definition 1.5.5. A formal g-expansion F = F(X;q) € Ar[[q]] is called a Ap-adic
form (of tame character y and level N) if for almost all classical specializations ¢y, .
it holds that

@k,é(]:) € Mk(FO(qure)v 5Xw_k7 OF[g])
A Ap-adic form F(X;q) is called a cusp form if

pre(F) € Sk(To(Ngp'), exw™, Ople])
for all but finitely many classical specializations ¢y, .

We write M(N,x,Ar) (resp. S(N,x,Ar)) for the space of Ap-adic modular
forms (resp. Ap-adic cusp forms). It is immediate to check that M(N,yx,Ar) and
S(N, x, Ar) have a natural structure of Ap-module.

These modules (or rather their corresponding Hecke algebras) will be the main
object of study in this thesis.

We have the following useful fact

Proposition 1.5.6. With the above notation and assuming that the character e
takes values in OF., for any f € Mp(Lo(Ngp™®)),exw™, OF), there exists a Ap-adic
form F e M(N, x,Ar) such that o, (F) = f. A similar result holds for cusp forms.
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Proof. We will need to consider the A-adic Eisenstein series which will be constructed
in theorem 4.1.2. Since in that theorem the construction is given for p an odd prime,
we will prove the proposition under the same assumption. With the notation of that
theorem we let € = &1/Ap1(X) (so that £(0;¢) =1) and then we set

Ere(X) = E(e(u)u™(1+X) - 1) € Ap[[q]

Then F := f- & € Ap[lq]] satisfies ¢ (F) = f€(0;¢q) = f and one checks that for
all [ > k and all finite order characters A:I" - Q it holds

@ix(F) € My(To(Np M) Axw™, Op[A])
O

We now show how to extend to A-adic forms the definition of Hecke operators
that we saw in section 1.2. Given F € M(N, x, Ar) with g-expansion

F(X:q) = i:a(n,f)q"

we let F|T'(n) denote the g-expansion in Ap[[q]] with coefficients given by

a(m,F|T(n)) = > x(d)Aq-a(mn/d?, F) (1.17)

dlged(m,n),ged(d,Np)=1
where for every a € Zx we set

A, = A (X) = % 5 (S(Ef)))xn eA=Z,[X]]

n=0

with the notation of remark 1.3.3.

Lemma 1.5.7. Hecke operators defined by equation (1.17) are well defined, i.e.
for F e M(N,x,Ar), it holds that F|T(n) € M(N,x,Ar) (and similarly for cusp
forms).  More precisely, if . is a classical specialization such that ¢y (F) €
Mi(To(Nqp'),exw™, Ople]), then or(FIT(n)) = (re(F))T(n).

Proof. By the proof of theorem 4.1.2 (with the same notation) we get for every
d > 1 it holds Ayg(e(u)ur — 1) = e(d)d*'w*(d). This means that evaluating at
X =e(u)uk -1 formula (1.17) reduces to formula (1.3) for the character exw=". The
assertion now follows. O

Hence we have well defined Ag-linear operators defined on M(N,x,Ar) and
S(N » Xs AF )

Now we are going to take coefficients in extensions of Ag. In particular let Z be
again the normalization of Ag in a finite extension of Frac(Ar). We will need to
consider such extensions to construct Hida families of CM forms in the sequel.
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Definition 1.5.8. We say that a formal g-expansion F € Z[[¢q]] is called an Z-adic
form (of tame character y and level N) if for almost all classical specialization
®:7 - Q, (extending ¢y, for some k > 2 and finite order character e:T" — @;) it
holds

O(F) e My(To(Ngp™,exw™,Q,)

Analogously one defines Z-adic cusp forms.

We denote by M(N, x,Z) (resp. S(N, x,Z)) the Z-modules of Z-adic forms (resp.
Z-adic cusp forms).

It is clear that the action of Hecke operators on this Z-modules is again given by
equation (1.17).
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Chapter 2

The ordinary part

This chapter is dedicated to the detailed exposition of the so-called control theorems
for ordinary A-adic forms. To avoid technicalities and to simplify the notation, we
assume that p is an odd prime number in this chapter (and if necessary we even ask

p>5).

2.1 The ordinary projector

As in the previous chapters F' denotes a finite extension of Q, with ring of integers
Op. The maximal ideal in Or will be denoted by mpr and the residue field is
IF=(9FhuF.

Let us start with a result from commutative algebra.

Lemma 2.1.1. Let A be a commutative Or-algebra free of finite rank over Op.
Then for any x € A the limit lim,,_, . ™ exists in A for the mp-adic topology and
gives an idempotent of A.

Proof. By the Wedderburn Principal Theorem (cf. [3] theorem 72.19), any finite
dimensional algebra over a perfect field decomposes as the direct sum (as a vector
space) of its nilpotent radical and a semisimple subalgebra. Now A := A/mpA is
such an algebra over IF, so that given z € A, its class T € A can be written as T = s+n
for some nilpotent element n and some semi-simple element s of A. If n?" = 0, then

(s+n)”" =" +n?" = s

is semisimple in A. Hence for a sufficiently large integer b we know that (s +n)? =
sb = € is an idempotent in A (A/mpA is a finite ring). By Hensel’s lemma we can lift
such an idempotent to an idempotent e of A, which is easily seen to coincide with
the limit

lim 2™

n—+oo

]

Let again x: (Z/Np™*1Z)* - O% be a Dirichlet character (where NN is prime to p).
In the Hecke algebra Hi(Lo(Np 1), x,Or) (resp. bhp(To(Np 1), x,OF)) we have
the operator T'(p) = U(p) and thanks to the above lemma we can define

e= lim U(p)™

n—>+00
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The operator e defined above is called Hida ordinary projector.

Remark 2.1.1. If f is an eigenform of U, with eigenvalue A € @p, it is easy to check

that
Foat =1
fle={f W
0 if|)\<1

Definition 2.1.2. We say that a modular form f e M (T'o(Np™1),x,OF) is p-
ordinary if fle = f. We define the ordinary part of the Hecke algebras and the
spaces of modular forms by

Hzrd(FO(NpTJrl)a X OF) = er(FO(NpTJrl)a X5 OF)

b (Do(Np™), X, Or) = ebi(Lo(Np™), x, OF)
M To(Np™), x, OF) = Mi(To(Np™"), X, OF)|e
my {(To(Np™), x, Or) = mi(To(Np™'), x, Or) e
S (To(Np™1),x, OF) = Su(To(Np'™), x, Or) e
It is clear that we can define the ordinary projector and the ordinary parts of

Hecke algebras and spaces of modular forms also for level I'y(Np™1) where N is
prime to p.

Remark 2.1.2. Since e is an idempotent we get a decomposition
Hk(FO(NpT+17X7 Or) = Hzrd(ro(Nle, X, Or) x (1 - 6)7'[k(F0(Npr+1, X; Or)

and one can verify that H4(To(Np™!, x,OF) is the largest algebra direct sum-
mand on which the image of U(p) is a unit, while (1-e)H(To(Np™*t, x,OF) is the
complementary direct summand such that U(p) is topologically nilpotent.

Lemma 2.1.3. The pairing (1.4) restricts to ordinary parts and induces, for all
k> 1, isomorphisms

Home, (K7 /(To(Np™), x, OF), Op) 2 mg(To(Np™), x, OF)
Homo,. (b7 (To(Np™'), x, OF), Or) 2 SF™(To(Np™"), x, OF)
Homo, (mg™(To(Np™), x, OF), OF) 2 H{(To(Np™'), X, OF)
Homo, (SF"(To(Np™"), x, OF), Or) 2 b /(To(Np™), x, OF)

Proof. For H € H(To(Np™1), x,Or) and f € my(To(Np™1), x, OF) it holds
(H, fle) = a(1, fleH)) = (eH, f)

and similarly in the cuspidal case. This proves the assertion. O

We want to define an idempotent on the spaces of Ap-adic forms in a suitable
way.

Assume now that y is a Dirichlet character modulo Np (with N prime to p as
usual) and with values in O5.
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For every k > 2 we let M*(N,x,Ar) denote the submodule of Ag-adic forms
given by the forms F € M(N, x, Ar) such that

@ie(F) € My(To(Np &) exw™, Op[e])

for all classical specializations with j > k.
It is clear that by definition we have

M(N>XaAF) = UMk(N7X7AF) gAF[I:(]]:I

k=2
We are ready to prove the following

Theorem 2.1.4. There exists a unique idempotent e € Endy,,(M(N, x,Ar)) com-
muting with T'(n) for all n>1 and such that

e(e(F)) = pre(e(F))
for all F e M(N, x,Ar) and meaningful specializations.

Proof. We claim that for every k > 2 the map

MFE(N, x,Ar) = ] M;(Do(Np™ O+t exw™ Op[e])

j>k.e

induced by specializations is injective. Indeed assume ;. (F) = 0 for all j > k
(where ¢q is the trivial character of I'). Writing

F= f@(n,f)q”

n=0

it would follow that X + 1 -/ divides a(n,F) for all j > k. But Ap is a unique
factorization domain, so that necessarily a(n,F) =0 for all n >0 and F = 0.

Since the above map is injective, the U(p) operator on M*(N, x, Ar) is induced
by the product operator of U(p) on each M;(To(Np )+ exw™, Op[e]), since we
verified that

U(p)(¢;e(F)) = ;e(U(p)(F))

Now the limit lim,, 0o U(p)™ exists in M;(To(Np™ )+ exw, Op[e]). Such an op-
erator gives an operator on the product [T, . M;(To(Np )+ exw™, Op[e]) which
preserves the image of M¥(N, x,Ar). We thus have a well defined idempotent ey,
on M¥(N,x, Ar) which satisfies the requirements.

It is now easy to see that such idempotents e, define an idempotent e on

M(N,x,Ar) given by Fle := Fle, if F € MF(N,x,Ar) for some k > 2. O

Definition 2.1.5. (i) We define M ¢(N,x,Ar) = M(N,x,Ar)le (and analo-
gously S"¢(N, x,Ar) = S(N, x,Ar)le) and we call them the space of ordinary
A p-adic modular forms (resp. cusp forms).
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(ii) We define H"(N, x, Ar) (respectively hor(N,y,Ar)) by the subalgebra of
Endy, (M4(N, x,Ar)) (resp. Enda,.(S°74(N, x,Ar)) generated by all Hecke
operators T'(n) for n > 1 over Ap. We call it the universal ordinary Hecke
algebra of level N and character x (resp. the universal cuspidal ordinary
Hecke algebra of level N and character x).

Notice that by the above theorem we might also define M?"¢(N,x,Ar) (resp.
So7(N, x,Ar)) as the subspace of M(N, x,Ar) (resp. S(N,x,Ar)) given by those
Ap-adic forms for which almost every classical specialization is ordinary.

2.2 Vertical control theorem

In this section we state and prove the most important results concerning Apg-adic
forms.

Theorem 2.2.1. With the usual notation (x is again a Dirichlet character modulo
Np here), we have that for all k > 2 it holds

Rank@FM,STd(FO(Np), xw ™k Op) = Rank@FMé’rd(Fo(Np), w2, 0F)

and
RankoFS,‘j"d(Fo(Np), xw ™ Op) = Rank@FSé”"d(Fo(Np), w2, 0r)

Proof. The proof of this result is postponed to chapter 3, theorem 3.3.3. O
The proof of the following result is due to Wiles.

Theorem 2.2.2. The Ap-modules M°™ (N, x,Ar) and S"¢(N, x,Ar) are Ap-free
of finite rank.

Proof. We just prove the assertion for M = M°¢(N, x, Ar) because the proof for
cusp forms is identical. Ley M be a finitely generated free A p-submodule of M with
basis {Fi,...,Fr}. Write

Fi= 2, a(n, Fj)q"
n=0

Then there is a sequence of integers 0 < ny < --- < ny such that D = det(A) # 0 for
the ¢ x ¢ matrix A = [a(n;, F;)]i; with coefficients in Ap. By Weierstrafl preparation
theorem (cf. proposition 1.5.1) a non-zero power series in Ar has only finitely many
zeroes in the unit disk {x € C, | |z| < 1}. There exists an integer k£ > 2 such that
D(u*-1) #0 and

fj = (Pk,so(f.j) € M]?Td(FO(Np)a wak’ OF)

for all j=1,...,¢. In particular this implies that {f,..., f,} are Op-linearly inde-
pendent. We write ¢y, = ¢, and Py, = Py ., in the sequel.

By the previous theorem we know that the rank of Mg ¢(To(Np), xw™,OF) is
bounded independently of k > 2 (cf. also corollary 3.3.2). This means that ¢ is
bounded independently of the choice of M, and we can thus assume that ¢ is the
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maximal possible rank of Ap-free submodules of M. Hence it is clear that any
F € M can be written as ,
F = Z aj]-"j
j=1
for suitable «; € Frac(Ap). These elements a; are the solution of the linear system
Ax = a(F) where the matrix A was described before and

a(F) = (a(ny,F),...,a(ng, F)):

Multiplying on the left by the cofactor matrix of A, one easily finds that Da; € Ap
for all j=1,...,¢, where D = det(A) as above.

This shows that DM ¢ M. Since M (being a submodule of Ag[[¢]]) torsion-free
and Ap is Noetherian, we deduce immediately that M must be a finitely generated
Ap-module.

Now we show that M is actually a free Ap-module. Since it is finitely generated,
choose {®1,...,P,,} a set of generators of M. For k > 2 we have that

() € M (To(Np), xw™, OF)

for all j =1,...m. Then given F € M we have that o, (F) is a linear combination
of ¢, (®;), and hence

or(F) € M (Lo(Np), xw™, OF)

If op(F) = 0, then a(n,F)/(X +1 -uF) € Ap for all n > 0 and we have F’ =
F/(X +1-uF) e M. In any case p(F') € Mr4(To(Np), xw™,OF) by what we saw
above, so F = (X + 1 —u*)F’. This means that we have an exact sequence

0—-PM->M~— Mﬁrd(To(Np),xw_k, Or) >0

Now pick {fi,..., fr} an Op-basis of M (To(Np), xw™*,Op). By the above exact
sequence we can find {Fy,...,F,.} in M such that ¢, (F;) = f; forall j=1,...,r.
We claim that {Fi,...,F,} is a Ap-basis of M.

Assume 7, 0;F; =0 for b € Ap.

Then Y7_; i(bj) fj =0, so that bj = (X +1-u*)b; with V) € Ap forall j=1,...,7.
We thus get an equation Y7, b;F; = 0. Repeating the process, we find that any
power of X +1—u* divides bj, so b; =0 for all j = 1,...,r and {Fy,...,F,} are
A p-linearly independent.

We claim that {7y, ..., F,} also generate M. Indeed let M be the Ar submodule
of M generated by {Fi,...,F,.} and let F € M. Then we can find a linear combi-
nation Gy of {Fi,...,F.} such that F -Gy € PLM. Then (F-Gy)/(X +1-uF) e M.
Repeating the argument we find G; such that (F —Gy)/(X +1-u*) -G, € PM.
Continuing in this way, we get a sequence Gy, Gy, ..., of elements of M such that

(X +1- uk)igi mod P}

M-

F =

)

Il
o

for all j >0. Now write
Gi=apiFr+- -+, F,
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for suitable o, ; € Ap. Then by the completeness of Ar, we can take limits

J . )
o = lim (Z an (X +1- uk)J) elimAp/P/Ar = Ap
i=0

J—>+oo
form=1,...,r.
Let G:=ayFi+---+ . F, € M, so that F -G € M is divisible by (X +1-u*)? for
all 7 > 1, which implies G = F.
We conclude that M = M and that M = M°"4(N, x, Ar) is Ap-free. O

Corollary 2.2.3 (Vertical control theorem). In the above setting, if k > 2 we have
isomorphisms

MOTd(N7 X AF)/PkMOTd(Nv X AF) = M]?Td(FO(Np)’ Xw_kv OF)
SOTd(N’ X5 AF)/PkSOTd(N7 X5 AF) = S](;Td(FO(Np)v Xw_kv OF)

induced by the specializations oy.

Proof. This follows immediately from the proof of the above theorem. O]

2.3 Duality
We now define a pairing
(_7 _>: Hord(N’ X AF) x Mord(N7 X AF) g AF

given by (H,F) :=a(1,F|H).

Define also
m (N, x, Ap) = {F e M (N,x,Ar) ®, Frac(Ar) | a(n,F) € Ap for all n > 1}
The main result of this section is the following:

Theorem 2.3.1. The above pairing induces isomorphisms of Ap-modules:

(i)
HomAF(Hord(Nv X5 AF)vAF) = mord(Nv X5 AF)

Homy . (m (N, x,Ar), Ar) 2 H"(N, x, Ar)

(i)
HomAF(ho"d(N, X;Ar),Ap) 2 S‘”d(N, X, AFr)

HomAF (SOTd(N’ X AF)? AF) = hOTd(Na X AF)
In particular HY(N, x, Ar) and ho"¢(N, x, Ar) are free of finite rank over Ap.
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Proof. Since (i) and (ii) are proven essentially in the same way, we just prove (ii).
Write K = Frac(Ar). To ease the notation let also S(Ap) = S"¢(N, x,Ar) and
h(Ar) =ho4(N, x, Ar).
Set also S(K) = S(Ar) ®a,. K and h(K) =h(Ar) @4, K.

By theorem 2.2.2 we know that S(Ar) is free of finite rank over Ap, so that
dimg (S(K)) =ranks . (S(Ar)) < +o00

which implies
dimg (h(K)) < +o0

Notice that if we prove that the induced pairing

(-, -):h(K) x S(K) - K
is non-degenerate, then we get isomorphisms

Homg (h(K),K) = S(K)

and
Homg (S(K), K) = h(K)

induced by the pairing (because we are working over a field).
So let H € h(K) and assume that (H,F) =0 for all F € S(K). Then
an(F|H) = ar(FIHT(n)) = a (F|T(n)H) = (H, F|T(n)) = 0

for all » > 1. This immediately implies that F|H = 0 (since F is cuspidal by
assumption). Since F is arbitrary we deduce that H = 0.

Fix now F € S(K) and assume that (H,F) = 0 for all H € h(K). Then in

particular for all n > 1 we have
an(F) = a1 (F|T(n)) = (T(n), F) =0

so that F = 0 again. This proves that the scalar extension to K of our pairing is
non-degenerate.

Now we try to work over Ap. Arguing as above it is easy to see that the Ap-
module homomorphism

S(AF) - HOHlAF(h(AF),AF), F (H = (H, f))

is injective.
Now given ¢ € Homy . (h(Ar),Ar) it is immediate to extend it to a

¢ € Homg (h(K), K)

(just set ¢(H) = @(H) for every H € h(Ar) and extend K-linearly).
By what was proven above, there is F € S(K) such that

33



for every H € h(K). In particular
an(F) = ar(FIT(n)) = (To, F) = p(T(n)) = p(T(n)) € Ap

for all n > 1, so that indeed F € S(Ar) as we wished to prove.

Finally we have to prove that the Ap-module homomorphism
h(Ar) = Homp, (S(Ap),Ap),  Hw (Fw (H,F))

is an isomorphism. Again injectivity follows arguing as we did while working over
K. For surjectivity we have to work a bit more in this case.

Since from now on we will just work over Ap, we simplify the notation setting
h = h(Ar) and § = S(Ar). For a Ap-module M we will write M* to denote its
Ap-dual, i.e.
M* =Homy . (M, Ar)

In particular we have proven that § = h* via our pairing.
We can thus interpret a as the canonical morphism

h - h** = Homy , (h*, Ar), Hw (p-@(H))

and we know that it is injective. Since h** is free of finite rank over Ag, we deduce
that h is torsion-free as Ar module. In particular for any height one prime ideal p
of Ap we get that the localization hy, is free of finite rank over (Ap), (which is a
discrete valuation ring).

Let N = Coker(a). Since localization is exact and free modules are reflexive
(canonically isomorphic to their double dual), we immediately deduce that for any
height one prime ideal p of Ap it holds that N, =0, i.e. N is a so-called pseudo-null
Ap-module. It is well-known (cf. [14], remark 4 page 269) that pseudo-null Ap
modules are finite, so that our N is finite.

Since h** is Ap-free, then h*** ~S. Thus we have the following chain of isomor-
phims for £ > 2.

Homp, (h**/P.h**, OF) 2 S| PS = S (To(Np), xw™, OF) =
= HOIHOF(f]zrd(FO(Np), Xw_ka OF): OF)

where P, = (X +1-(1+p)*) as usual.

The first isomorphisms follows from the fact that h** is free over Ap. The
second isomorphism is the control theorem 2.2.3. Finally the third isomorphism is
the duality of lemma 2.1.3.

Tensoring the exact sequence

0O-h-h"->N->0
with Op = Ap/P,Ar we obtain an exact sequence
Torh, (N, Op) > h/Pih » h*/Ph** » N/PN
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Notice that tensoring with N the exact sequence

. _ k
OQAFMAFQ(QFQO

we get that Tory, (N, Or) = N, so that Tory, (N, O) is itself a finite Ap-module.
Thus we have another exact sequence

0+ b (To(Np), xw™,Op) - h**/P.h** - N/P.N - 0

Indeed the image of h/P;h inside the Op-free algebra h**/Ph** is generated by the
Hecke operators T'(n) for n > 1. Taking Op-duals (again we use lemma 2.1.3) in the
above exact sequence we find

0 - Homop, (h™*/Ph*™*,0F) - S (To(Np), xw ™, OF) = Exty, (N/PN,0p) - 0

and since Op is a discrete valuation ring and N/P,N is a torsion module, we have
that
Exty, (N/PN,Or) 2 N/PN

At the same time it is easy to see that the arrow
Home, (h**/P.h**,OF) - S7(To(Np), xw™, OF)
is the isomorphism that was proven above, so that
0= Exty, (N/PN,OF) = N/PN

Now we can apply Nakayama’s lemma to conclude that N = 0, showing that h 2
Homa,.(S,Ar) as we wished to prove. ]

The interpolation property for the Hecke algebras is now immediate.

Corollary 2.3.2. In the above setting, for all k > 2 there are isomorphisms of
Op-algebras, sending T'(n) to T (n) for alln > 1:

H"Y(N, x, Ap) [ PHT(N, x, Ap) 2 H7 (Do (Np), xw™, Or)

h (N, x, Ap)[Peh™ (N, x, Ar) 2 574(Do(Np), xw ™, OF)
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Chapter 3

Cohomological tools

3.1 Eichler-Shimura isomorphism

In this section we introduce the cohomological tools which are needed for the proofs
of the structure theorems in Hida theory and we state without proof the classical
Eichler-Shimura isomorphism.

Let I" be a group, let R be a commutative unitary ring and let M be any left
R[I']-module. Then we define group cohomology of M with coefficients in R in the
usual way as

H'(T', M) = Extyp (R, M) (3.1)
The functors (H(T",-)), > 0 form a universal cohomological d-functor in the sense
of [20], pages 30-32. We will use freely the properties of §-functors in what follows
to get long exact sequences in cohomology and induced morphisms in cohomology.
A standard reference for this facts is again [20], chapters 1,2, 3 and 6.

Practically, we also adopt the explicit description of H*(I', M) in terms of the
standard Bar resolution of inhomogeneous cochains (i.e. the usual description in
terms of cocycles and coboundaries, cf. [20] section 6.5).

This means that we will consider for ¢ > 0

C(T,M)={f:T" - M| f function}
(where we set CO(T', M) = M) with differentials
9:CH (T, M) - C*Y(T, M)
given by 0°m(v) = (y—1)m for me M and v €T and by
O f(y1,--vin1) =

= ’ylf(’va s 7lyi+1) + (Z(_l)jf(/yla s VY1 77i+1)) + (_1)i+1f(’717 ce 7’72)

j=1

fori>1, feCY(T,M) and ~,...7;41 € L.
As usual one can identify H¥(T', M) = Z{(T', M)/ B*(T', M') where

ZY(T, M) = Ker(;) BY(T, M) :=Tm(0;_1)

are respectively the submodules of i-cocycles and i-coboundaries.
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Lemma 3.1.1. The following holds:

(1)
H(T,M)=M"={xeM|yz=x for all vy €'} = Hompr (R, M)

(ii) If T acts trivially on M then HY(T', M) = Hom(T', M) = Hom(T'4%, M)
Proof. This is an easy exercise. ]

In particular this means that H*(T',-) compute also the right derived functors
of the functor M ~ MU' (which is easily seen to be left-exact).

Given a group homomorphism ¢:1';y — I'y, there is an induced natural transfor-
mation H%(I'y,-) — HY(I';,—). By universality, this implies that we have the so
called restriction morphisms

Res":H"(I'y, M) - H™(I'y, M)

functorially in M for every R[T's]-module M. One can easily see that at the level
of inhomogeneous cochains these morphisms are essentially given by the precompo-
sition with ¢.

Assume now that I'; <T'y is a subgroup of finite index. Then the norm
Nryry (=) =075 (5)
j=1

where {71,...,7,} is a system of representatives of I'y/I"; gives a natural transfor-
mation H(I'y,-) - H%(T'y,-) where (-) is an R[[';]-module. By universality we
obtain the so-called corestriction maps

Cores™: H"(I'y,-) - H"(T'2,-)

Again one can find a suitable description of this morphisms in terms of inhomoge-
neous cochains.

Lemma 3.1.2. In the above setting we have that Cores™ o Res" equals the multipli-
cation by [Ty : T'1] for all n > 0.

Proof. This is clear for n = 0 and it follows then for all n > 1 by universality. O

We want to apply the machinery of group cohomology in the following setting.
Let X be a compact Riemann surface and let S a finite set of points in X. Let
Y = X\ 5 and we let I" to be the fundamental group of Y with respect to a fixed
base point y € Y.

More specifically we will consider the case where I' is a torsion-free congruence
subgroup of SLy(Z), X is the compactification of the modular curve Y(I') = T'\H
and S is the set of cusps for I'.

For every se€ S let I'y = {y e I"| 7(s) = s} be the stabilizer of s in T
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Definition 3.1.3. We define the parabolic cohomology group HL(I', M) as the
kernel of the map

¢p: H'(T, M) > @ H'(T's, M)
seS

where ¢p is induced by the restrictions Resg: HY(I', M) — H(I's, M)

One can verify that in terms of cocycles and coboundaries we have an identifi-
cation

H)(T, M) = Zb(T, M)/B\(T', M)

where

ZL(0, M) = {f € ZYT, M) | f(r) € (- 1)M for all 7 ¢ P}

and P is the set of all I'-conjugates of 75 for s € S where 7 is (the class of) a loop
around s.

Again let R be a commutative ring with identity and let V,,(R) be the space of
homogeneous polynomials of degree n with two indeterminates X and Y. We let
the semigroup Mats(Z).o := Mats(Z) n GL2(Q) act on V,,(R) by

ab). P(X,)Y):=P((X,Y)(2%)) = P(aX +cY,bX +dY)

Let now x:(Z/NZ)* - R* be a Dirichlet character. We denote by RX the R[I'q(V)]-
module which is defined to be R with the action of I'o(/N) given by

¢ ) =x(d)r
for (¢%) e'o(N) and r € R. One can readily check the setting
(fer).(2q)=(fl(td))e () r
makes M (I'1(N)) ®c Cx into a right I'g(/N)-module and actually that
Mi(To(N), x) = (My(L1(N)) ®c C)F/N
and similarly for cusp forms.
Finally let V;X(R) := V,,(R) ® g RX with the diagonal T'o(N) action.

We are interested in computing group cohomology for the modules V,,(R). For
higher degrees we have the following important general result:

Proposition 3.1.4. Let I" be a torsion-free congruence subgroup of SLy(Z) and let
M be any I'-module. Then H?(I',M) =0

Proof. See proposition 6.1.1 in [9)]. O

Now let T" be a congruence subgroup of SLy(Z). Fix zg,2; € H and for f € M (T)
with k> 2 and g, h € SLy(Z) define

hzo
I;(gz0, hzo) = f F(2) (X2 +Y ) 2dz € Vi_o(C)

gzo
and .
I#(g20, ho) = f F(2)(Xz +Y)F2dz € Vi o(C)

gzo

We have the following crucial theorem
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Theorem 3.1.5 (Eichler-Shimura isomorphism). Let k > 2 and I' a congruence
subgroup of Slio(Z), and fix zy,z1 € H. Then the map

Mk(F) ® Sk(F) - Hl(F, Vk_Q((C))
(f,9) = (v = I (20,720) + 15(21,721))

is a well-defined isomorphism of C-vector spaces (called Eichler-Shimura map), not
depending on the choice of zy,2z1. Moreover the above map restricts to an isomor-
phism

Proof. See [22] proposition 6.2.3 and theorem 6.4.1 O
One can then easily get some corollaries from the above result

Corollary 3.1.6. Let N > 1, k >2 and x:(Z/NZ)* — C* be a Dirichlet character.
Then the Fichler-Shimura map gives isomorphisms

Mip(To(N), x) @ Sk(To(N), x) = H' (To(N), V.X,(C))

and

Se(To(N), x) @ Sk(To(N), x) = Hp(To(N), V5, (C))
Proof. See [22] corollary 7.4.1. O
Corollary 3.1.7. For I' =T1(N) the map
Si(I',C) » Hp(T, Via(R))
f = (v~ Re(l;(20,720)))
is an isomorphism and a similar result holds in presence of a Dirichlet character.

Proof. See [22] corollary 7.4.2. O

3.2 Hecke operators on cohomology groups
For a positive integer N define
AV(N):={a=(2%) e My(Z)|a=1 mod (N),c=0 mod (N),deta=n}

and let
A:=Ai(N):=[JA}(N)

n>1

From now on I" :=T'1(N).
For all « € T, set I'y :=T'na Ta and I'* := I'nal’a~!. It is easy to see that
[[':T,] and [I": '] are finite in this case.

For a matrix av= (2 %) € My(Z) n GL2(Q) set
a'=(4})=det(a) o
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Definition 3.2.1. Let a € A and let V be a left R[I']-module for some commutative
ring R, such that the I'-action extends to a semi-group action by the semi-group
consisting of all a* for a € A. The Hecke operator 7, acting on group cohomology is
the composition

conjo Cores

Tt HY(T, V) Res, HY (T V) — H'(I,,V) — HY(T,V)
where for a cocycle ce HY(T'*, V') we set
conjo(c)(ga) = a' - c(agaa™)

One can check via some computations that 7, restricts to an operator on the
parabolic subspace.

One has the following explicit description of 7,.

Proposition 3.2.2. Let o € A and suppose that T'al' = ||, 1'6;. Then the Hecke
operator 7o, acts on HY(I', V') and Hp(L', V') sending c € HY(L', V') to 1,(c), which is
the class of the cocycle satisfying

(Tale))(9) = ;55 (8199, 1))
for all g €T, where 04(1) is the index such that (5Z-g<5;gl(i) el.

Proof. See [22] proposition 7.3.2. O

More generally one can extend the definition of the Hecke operators 7, on higher
cohomology groups as follows (cf [12], pagg. 114-116). Assume again that I'al’ =
" [6;. Given a g-cocycle ¢ (viewed as a function ¢:I'? - M) we set

n

(7a(€)) (91, 9q) = D_ 05 - c(&(91): €t (92) - - Gitgrg90-1) (90))

i=1

where for all 1 =1,...n and for all g € I" we set

0i9 = &i(g9) gy

One can check that this induces a well-defined R-linear map on cohomology groups.

For a positive integer n, the Hecke operator T}, is defined as ), 7, where the sum
runs through a set of representatives of the double coset in the quotient T\A"/T". In

particular if p is a prime number we have that T}, = 7, where a;, = ((1)2).

In particular given a I''module V' which is invariant under the action of az, it is
possible to define and apply the T'(p) operator on H*(I', M). This will happen in
the sequel.
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3.3 The proof of theorem 2.2.1

We start with the following crucial result.

Theorem 3.3.1 (Cf. theorem 7.2.2 in [9]). Let p > 3 be a prime number and N
be an integer prime to p. Then the integer ranky (Sed(I'y(Npr*1),7Z,)) is bounded
independently of k if k> 2 and r > 0.

Proof. Write T' = T'1(Np™*!). Let L be the intersection between the image of
HY (T, Vi—2(Z)) in HY(T, V;_2(R)) with H5(T', Vi_2(R)).

Then L @z R = Hp(I',Vi—2(R)) and h,(I',Z) is by definition a commutative
subalgebra of Endy (L) which is free of finite rank over Z. Let now L, = L ®7 Z,, so
that by(I',Zy) = by (', Z) ®7 Z, is a subalgebra of Endyz,(L,). It is possible to attach
to the operator U(p) = T(p) € bi(I',Z,) an idempotent e, as described in lemma
2.1.1, so that it makes sense to consider h?"*(T',Z,) as a subalgebra of Endy, (L9?)
where Lo = L,|e

Since

vankz, (S¢(T', Z,)) = ranks, (57(T, Z,))

by duality, in order to prove our thesis it is enough to prove that rankzp(Lg’"d) is
bounded independently on k.

Let L’ denote the image of H(I", V;_2(Z)) in H(I', Vy_2(R)). Note that L/pL =
L,/pL, and that L/pL injects into L’/pL’, which is by definition a surjective image
of HI(F, Vk_Q(Z)) ®7 Z/pZ

Now set n =k —2. We have an exact sequence of I'-modules (where [, = Z/pZ)
0 - Vo (Z) 5 Vi (Z) - V,(F,) = 0
yielding a long exact sequence in cohomology
= HY(T, Vo (2)) & HY(T, Vo (Z)) » HY (T, Vo (F,)) - ...

This implies that HY(I',V,,(Z)) ®; F, can be embedded in H(I', V,,(F,)).
By what we said above in order to prove our thesis is enough to prove that the
F,-dimension of H! (T, V,(F,)) = H'(T, V,,(FF,))|e is bounded independently on n.

or

To prove this we will construct an isomorphism between H! ,(T',V,(F,)) and
ngd(erP)'

Given P(X,Y) =YY" a; X" Y eV, (R) for some ring R, one notices that

bm) P(X,Y) =S a0 X" (mX +Y)
=0

so that
((67)-P(X,Y))(0,1) = P(0,1)

Define a map ¢:V,,(F,) - F, given by ¢(P(X,Y")) = P(0,1). Since for all y eI it
holds that v = (} 1) mod p, then ¢ is a homomorphism of I'-modules, where clearly
I' acts trivially on IF).
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Let
®: H'(D, V,,(F,)) ~ H'(TF,)

be the induced morphism in cohomology. Using the explicit description of coho-
mology that we saw in the previous section, ® is essentially given by postcom-

poning a l-cocycle with ¢. We want to prove that ® induces an isomorphism
H; (T V() = Hy, (T, Fy).

ord ord
We have an exact sequence of I'-modules
0 — Ker(p) - V,.(F)) 5 F,—0
yielding a long exact sequence in cohomology
<o HY(T, Ker(p)) - HY(T, V,(F,)) > HY(T,F,) > H(T', Ker(y)) - ...
Let again o, = ((1) 0). It is easy to check that the action of o leaves Ker(y)

invariant, so that the operator T'(p) acts on H7(T',Ker(y)) for all j > 0.
It is easy to check that

Ker(¢) =(X""Y"|i=0,...,n-1)g

P

and clearly o o
oy - (X"Y?) = (pX)"'Y* =0

in V,,(F,) for i =0,...,n~1, so that the action of «, kills Ker(y). Since

p-1

Fa,l = El)rap(é i)

one verifies easily that the action of T'(p) is nilpotent on H/(T", Ker(y)) for j > 0.

Since taking ordinary parts is exact (cf. section 5.3), we can conclude that indeed

ngd(r‘?Vn(]Fp)) = H;rd(F?Fp)' [

Corollary 3.3.2. Let p > 3 be a prime number and N be an integer prime to p.
Let x be a Dirichlet character modulo Np, taking values in OF where F' is a finite
extension of Q,. Then the integers

Ranko, (M (C1(Np), xw™, OF))
and

Ranko,, (ST (Np), xw™, OF))
are bounded independently of k if k > 2.
Proof. The assertion for cusp forms is immediate from the above theorem, since
Sk(I'1(Np),Or) = Si(I't(Np),Zy) ®z, Op. For modular forms one has to know
that the contribution of Eisenstein series basically depends only on the number of
cusps of I'1(Np), which is finite and, of course, independent of k. For more precise

information about the space of Eisenstein series consider the dimension formulas on
page 111 of [5]. O
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Now we are ready to prove the following (this is theorem 2.2.1).

Theorem 3.3.3 (Cf. theorem 7.3.3 in [9]). In the setting of the above corollary
assume that p > 5. Then we actually have that

Ranko,. (Sy"(F'1(Np), xw™, Op) = Ranko, (55™(T1(Np), xw™>, Or)
and that

Ranko,. (M{™(T1(Np), xw™, Or) = Ranko, (M5 (T (Np), xw™, OF)
for all k> 2.

Proof. Assume first that M is any Op module with an action of I'o(Np). Let I be
a normal subgroup of I'o(Np) such that I" is torsion free and p 4 [To(Np) : I']. If
p > 5 we know that T' = T';(p) nTo(Np) is torsion free and it is actually the kernel
of the well-defined projection

Lo(Np) » (Z/pZ)*, @b)—>d modp

so that [[o(Np) :T'] = p-1is prime to p.
Via the restriction and corestriction maps on cohomology

HY (To(Np), M) =5 H(D, M) 22 H(Ty(Np), M)
we have that Cor o Res is the multiplication by [['g(Np) : '] = p—1, which is prime
to p. Hence if we take coefficients in Op (i.e. we view M as Op[[o(Np)]-module),

we know that
H(T, M)FoNp) = [13(Do(Np), M)

But by proposition 3.1.4 we know that H2(I', M) = 0, so that also H2(I'¢(Np), M) =
0.

We know that if M is a Op[['((Np)]-module such that the action of I'o(Np)
extends to the semi-group ring generated over O by I'((Np) and o}, (where oy, =

(9)), then we have a well-defined T'(p) = U(p) operator on H’(T'o(Np), M) and it

makes sense to consider the ordinary part H? (To(Np), M), defined (equivalently)
as in sections 5.3 or 2.1.

Fix now a Dirichlet character ¢ modulo Np taking values in OF. Fix a uni-
formizer m € O and let F := Op/(7) denote the residue field (a finite extension of

F,).
For any integer n > 0 consider the short exact sequence of Op[Mats(Z).0]-

modules )
0 V2(OF) > VI (Or) > VI(F) >0 (3.2)

As in the proof of theorem 3.3.1 we get an induced exact sequence in cohomology
given by

0~ H'(To(Np), VY (OF)) ®0, F — H'(To(Np), VY (F)) > H*(To(Np), VY (OF))
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By what we said at the beginning of the proof it follows that
H*(To(Np), VP (OF)) =0
so that
HI(FO(Np)7 Vnw(OF)) ®(9F F= HI(FO(Np)a Vnw(F))

and in particular
H,,4(To(Np), VY (Or)) ®0, F = H,,4(To(Np), VY (F))
so that

Ranko, (Hy,q(To(Np), V;! (OF))) = dims(H,,,(To(Np), V. (F)))

7

if we prove that H! ,(Io(Np), VX (Op)) is free (equivalently 7-torsion-free) as Op-
module.

To see this notice that the sequence (3.2) induces also the following exact se-
quence in cohomology

0 H°(To(Np), VP (OF)) ®0, F ~H(To(Np), V;¥ (F)) -
% H'(To(Np), V¥ (Or))[r] - 0

In particular taking ordinary parts it means that we have an exact sequence

Hg, o(To(Np), VY () = H;,y(To(Np), V' (OF))[7] > 0

(

so that if we prove that H? (To(Np),Vid' (F)) = 0, then H! (To(Np), Vil (OF)) is
free (equivalently m-torsion-free) as Op-module.

Now for 7 =0,...,n we have that

. . p-l SN L . . p-l . . i
X"YIT(p) = > (o) - X"V = (pX)"=i(Y - jX)'
=0 =0
so that for i =0,...,n -1 it holds X" YT (p) =0 mod p.

If ¢ = n we have that ,
-
YT (p) =Y (Y -jX)"

5=0

does not have any term involving Y™ working mod p, so that Y"|T'(p)?2 =0 mod p.
In particular this shows that

Hy,g(To(Np), VY (F)) = H(Do(Np), VY (F))le = 0

as we wanted to prove.

Again in the same way as in the proof of theorem 3.3.1 we define a surjective
map

VY (F) - Vi (F),  P(X,Y)w P(0,1)
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Given P(X,Y) = Y%, a; XY € V;¥(F), we have that
68)-P(X,)Y) = Y (d)a;(aX)" " (bX +dY)’
=0

so that in I (i.e. modulo p) it holds that

((§a)- P(X,Y))(0,1) = ano(d)d" = antp(d)w(d)"
This shows that ¢ is a morphism of F[T'o(Np)]-modules. Moreover one can check

that
p(a, - P(X,Y)) = an = o, - (p(P(X,Y))

so that we have the following exact sequence in cohomology
H'(To(Np), Ker(p)  H'(To(Np), ;Y (F)) » H' (Lo(Np), V5™ (F)) - 0

because H?(I'y(Np),Ker(yp)) = 0 by what we said before.
As in the proof of theorem 3.3.1 one checks easily that

T(p)(H'(L'o(Np),Ker(p))) =0
so that taking ordinary parts we find that
Hy,o(To(Np), Vi (F)) 2 Hy, o(To(Np), Vi (F))
Letting n =k — 2 for k > 2 and ¢ = yw™ we finally get that
H,,o(To(Np), VX " () = H),y(To(Np). V3 (F)

Via the Eichler-Shimura isomorphism we can finally deduce that

Ranko,, (M{™(To(Np), xw™, Or)) + Ranke,. (ST (Np), xw™, OF)) =

= Ranko, (H},,(Co(Np). Vi (Or))) = ditme(H},o(Co(Np), Vo (o™ (F))) =

= dime(H}(To(Np), Vo (xw ™ (F))) = Ranko, (Hp,y(To(Np), Vi (Or))) =

= Ranko,, (M5™(Lo(Np), xw™, OF)) + Ranko, (53" (To(Np), xw ™, OF))

It follows easily from lemma 5.3 in [11] that the rank of the space of ordinary
Eisenstein series

M;?rd(ro(Np)a xw™*,O0F)
Sy (To(Np), xw™*, Or)
is independent of k > 2 (and actually one can find an explicit description of a basis

for such a space).
In other words the difference

Ranko, (MZ(To(Np), e, Op)) - Ranko, (S7(To(Np), ™, OF))
is constant independent of k > 2.
We can thus deduce that for all £ > 2 it holds
Ranko, (S7(To(Np), x&r™, Op)) = Ranko, (S5(To(Np), xo 2, O))

E(To(Np), xw™, OF) =

and

Ranko,. (M{"(To(Np), xw™, OF)) = Ranko, (M5™(I'o(Np), xw™, OF))
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Chapter 4

Examples of Hida families

4.1 Lambda-adic Eisenstein series

Fix a prime p and a positive integer N prime to p. The aim of this section is to
construct a Lambda-adic form out of Eisenstein series. For sake of simplicity let us
assume that p is odd (but with slight modifications the same construction can be
carried out even if p = 2). Here we follow mainly [1].

Recall that the classical family of Eisenstein series of level I'(1) and variable
weight £ > 4 even has g-expansion

C(l k)

Er(z) = + Z or-1(n)q" (4.1)

where 0,,,(n) := Xgp,, d™. It is well-known that Ej(2) € Mp(I'(1)).

Fix an integer N prime to p. If ¢ is a Dirichlet character modulo Np" such that
(-1) = (-1)* with k > 1 we also have modified Eisenstein series

L(1- /mp

Epy(z) = + Z Ok-1.4(n)q" (4.2)

where 0y, 5 = ¥ g, P (d)d™. Tt is well-known that Ej ., (2) € Mp(To(Np”), )

If ¢ has level N then Ej, has level NV, not divisible by p. Define the p-
stabilization of E,gp 1/)} as

EP)(2) = By (2) = 0(0)p" iy (p2) (4.3)
Lemma 4.1.1. It holds (for 1 of level N)
(»)
B0z - LR Z o) o (m)q" € M(To(Np). )
where
L®)(s5,0) = (1-¢(p)p~*)L(s,v)
and

ol (n) = zwd)dm

p+d
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Proof. This is an easy exercise. O]

If ¢ has conductor divisible by p, then E,E,pd)} = B .

We now fix the following characters:

e x is an even Dirichlet character modulo Np for some N prime to p.

e ¢&¢ is a Dirichlet character of conductor p” associated to a p-power root of
unity ¢ as follows: if ¢ has order p"~! with r > 1, send the image of u =1+ p in

(Z[p"Z)* to ¢ (in @p).

e w is the Teichmiiller character already discussed.

Finally let ¢ = yw=*e¢, so that 1 is a character of level Np” and, since y is even,

P(-1) = (-1)*. We also consider Elgﬁl)ﬂ which is a modular form in M (T'1(Np"),¥).

Theorem 4.1.2. Set I = O[[ X ]| with O = Z,[x]. If x # 1, then there is a I-adic
form

£ - i:An,x<X>qn e 1[lq]

which specializes to E,gpd)} with ¢ = xw=*e. under the homomorphism I — @p induced
by @re. for k> 1, and ¢ as above. If x =1 then &, exists, but it is not stricly
speaking a I-adic form, since the constant term of £, has denominator X.

Proof. Let A = Z,[[X]]. It should be clear from example 1.3.6 that if s € Z, then
the power series

+00

(1+X) =% (S)X”

n=0 \T
is an element of A. Remark 1.3.3 shows that if d is an integer with d =1 mod p,
then d = u*@ for u = 1+ p (the fixed topological generator of I' = 1 + pZ,). Hence
setting

Ay(X) = 2(1 £ XY@

one finds immediately

In general for d coprime to p we have (d) € I" so we can set

(1+ X)s((d)

Ad(X) = d

obtaining

(o) = ({d)) ()t

Ag(CuF-1) = y y

= wk(d)ec(d)dh!

Finally for n > 1 set
Apx(X) = 30 x(d)Aa(X)

din
(d,p)=1
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so that
Ay (CuF =1) = 3> p(d)d* ' =P, (n)

din
(dp)=1

where 1) = yw*e,. This interpolates the non-constant terms of E,gpi.
For the constant term we will use Iwasawa’s construction of Kubota-Leopold
p-adic L-functions. With the notation of theorem 1.3.9 we set

G (X)

Ao (X) = 2H,(X)

Notice that since y has conductor Np, if y is not trivial then it is not of type I'
and H,(X) =1 by definition. If x is trivial then H,(X) = X. So if x # 1 we have
Ay (X) e Frac(I), with XA, (X) eI if x =1. Finally

G (Cub-1) Gy (uh-1)
Aox(Cut -1) = OH (CuF —1) 2Hx;(uk 1)
_Lpy(L-k xeg) _ (1-v(p)p* ") - L(1 -k, ¥)
2 2
_LO(-k)
-

where we used the properties of the p-adic Dirichlet L-functions that we already
mentioned (cf. theorems 1.3.7 and 1.3.9).
Thus if we define

&= 2, Anx (X"

then &, € I[q]] if x # 1 (if x = 1 then X&; € I[[¢q]]) and satisfies the required
interpolation properties. O

4.2 Theta series

4.2.1 CM modular forms

Let K be an imaginary quadratic field (of discriminant —D for some D > 0), f an
integral ideal in K and I; be the group of fractional ideals prime to f. Let 0,09
denote the two embeddings of K into C (say that oy is 1p) and let (ki, k2) € Z2.

Definition 4.2.1. A Hecke Grossencharacter ¢ of infinity type (kq, k2) defined mod-
ulo f is a group homomorphism ¢: I; = C* such that ¢((«)) = o1(a)* o2 (a)* for all
a =1 mod *}.

Remark 4.2.1. Here we say that a = b mod *f if for every prime ideal q appearing
in § it holds vq(a —b) > v4(f) (where vy denotes the g-adic valuation).

Remark 4.2.2. Tt is easily observed that a Hecke Grossencharacter ¢ takes values in
Q and that the field generated by the values of ¢ is a number field (cf. [21] page 4,
here Hecke Grossencharacters correspond to the so-called Hecke characters of type

Ao).
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We can extend such a ¢ setting ¢(a) = 0 if a is an integral ideal not coprime to f.
Given a Hecke Grossencharacter ¢ of infinity type (k—1,0) for some &k > 2 consider
the series

f(z0) =Y p(a)g¥®

where the sum is over all integral ideals a € Ok and N(a) denotes the usual norm
of a from K to Q. This is called the theta series associated to (.

It is proven in [18] (lemma 3) that if the character ¢ has exact conductor f§
the above sum defines a cuspidal newform (eigenform for all Hecke operators) in
Sp(To(M), x) where M = D - N(f) and x is the Dirichlet character modulo M given

b
' X(n)z(ﬁ)M for (n,M) =1

n ) k1
(here (=2) denotes the Jacobi symbol).

This leads us to the notion of CM-modular form (modular form with complex
multiplication).

Definition 4.2.2. We say that a classical modular normalized eigenform (for all
Hecke operators) g € Si(I'y(Np™)) (where N is prime to p and m > 0) has CM by
an imaginary quadratic field K if its Hecke eigenvalues for the operators Ty (¢ + Np)
coincide with those of f(z;¢) for some Grossencharacter ¢ of K of infinity type
(k-1,0). Sometimes we say that g is CM without specifying the field.

Actually, at least for newforms, one can give a more down-to-earth definition of
CM modular form, following [15].

Given a newform f = Y% a,q" of weight k > 1 and level I’y (N) (with Nebentypus
x) and a Dirichlet character € modulo D, we let f ® ¢ to be the twist

+o00
fep=73 e(n)aq".
n=1

One can prove that f ® e € Si(I'o(ND?),xe?). In particular for p + ND one can
compute that

T(p)(fec)=e(p)a,(f®c)

so that f ® € is again an eigenform.
Then one can give the following definition

Definition 4.2.3. In the above setting, suppose that ¢ is not the trivial character.
The form f has CM (complex multiplication) by e if

e(p)a, = a,
for all primes p in a set of primes of density 1.

One can prove easily that if f has CM by ¢ in the above sense, then ¢ must be
a quadratic character. Looking at € as a Galois charcater e: Gal(Q/Q) — {£1}, we
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know that its kernel determines a quadratic field K. In this case we say that f has
CM by K.

It is easily verified (essentially by the definition of the Jacobi symbol) that the
modular forms f(z;¢) described above (when f is the conductor of ¢) have CM by
the imaginary quadratic field K.

After a careful analysis of the f-adic Galois representations associated to an
eigenform, Ribet proved in [15] that also the converse is in some sense true, i.e. that
essentially all CM newforms arise as theta series attached to a Grossencharacter of
an imaginary quadratic field. This means that the two definitions that we gave of
modular form with CM coincide for newforms (this is theorem 4.5 in [15]).

For the following proposition we need the notion of slope of a modular form.

Definition 4.2.4. Let f be a cuspidal eigenform (for all Hecke operators) of level
Np™ for some N prime to p and m > 1 and Fourier coefficients in a finite extension
of Q,. Write the g-expansion of f as

+ 00
f = Z anqn
n=1

Assume f is normalized, i.e. that a; = 1. Then the p-adic slope of f is the rational
number

a(f) = ord,(a,)

where ord, denotes the p-adic order, normalized in such a way that ord,(p) = 1.
Notice that f in the above definition is ordinary if and only if «a(f) = 0.

Proposition 4.2.5 (cf 2] prop. 3.5). Let f = f(z;¢) be the newform associated to
a Hecke Grissencharacter ¢ as above. Assume that the level of f is Np™ with N
prime to p and m > 1. Then the p-slope of f is either 0, % or infinite, depending
on the behaviour of the prime p in K.

Proof. Let a, be the U,-eigenvalue of f (this is also the coefficient of ¢? in the
g-expansion). We have three possibilities

(i) If p is inert in K then a, = 0 (there is not any ideal of norm p in K), so the
p-slope is infinite.

(i) If p splits in K as pOk = pp, then a, = o(p) + ¢(p). We can find an integer
n such that p” = (a) with @ =1 mod *f, so that ¢((«)) = a*~1. Notice that
a€p, but a ¢p (otherwise p =p) and @(p™) = (¥(p))" = a1 so p(p) epp.
Analogously ¢(p) € p ~\ p. This implies that a, ¢ p necessarily, so that the
p-slope is 0.

(iii) If p ramifies in K (so pOk = p?), then a, = ¢(p) and as in the previous case
we can write p" = («) for some n and some « with @ = 1 mod *f. Thus
©(p)™ = a*1 and looking at p-adic valuations one sees that the slope must be

(k- 1)/2.
O
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Remark 4.2.3. Notice that the above proposition used the crucial (and easy to prove)
fact that if § is the conductor of ¢ and we set

P(f) ={(a)elf|a=1 mod *f}

then I¢/Pi(f) is a finite group. We will need again this fact later.

The above result shows that the natural situation to consider in order to obtain
an ordinary A-adic form out of theta series associated to imaginary quadratic is the
case when p splits.

4.2.2 CM A-adic forms

Now we explain the construction of a CM A-adic form F containing a fixed modular
form of the kind f = f(z;¢) described above. Here we follow [8], pages 234-236.

Assume that f has weight £ > 2 and that the Nebentypus x of f is described as
follows

X = Yhw e,

where 9 is a Dirichlet character modulo Np where p is an odd prime number and
N is prime to p, €¢, is obtained as in section 4.1 (from a pm~! root of unity ¢y) and
w is the usual Teichmiiller character.

Observe that given yx, then ¢ and (; are uniquely determined. It is clear that
the level of f is given by Np™ under our assumptions.

Let again K be the quadratic imaginary field of discriminant —D (with D > 0)
by which f has complex multiplication. Let A be any Hecke Grossencharacter of
type (1,0) and conductor p and let Q(A) be the number field (cf. remark 4.2.2)
generated by the values of . Here p is determined by the fixed embedding Q - @p.

Let E be the completion of Q(\) at the prime over p determined by the fixed
embedding as above. It is a finite extension of Q.

Write Op for the ring of integers of E and decompose OF = ug x Wg (cf. the
analogous decomposition for Z, for p odd) where ug is finite and Wg is Z,-free.
Write (x) for the projection of an element x € O} to Wg. Let W be the subgroup
of Wg topologically generated by (A(a)) for a ranging over all integral ideals prime
to p. Notice that A(a) € OF because for every a coprime with p there is n such that
a” = («) for some o € Ok such that « =1 mod *p. Hence (A(a))" = A(a?) = AM«) =
a € Ok and A(a) € O follows immediately.

We claim that Wi is isomorphic to Z,. Indeed it contains naturally I' = 1 + pZ,,
because one can identify Z, with the p-adic completion of Ok (thanks to the splitting
of pin F') and because A has type (1,0). Hence Wik has at least rank 1 as Z, module.

At the same time if M := #(I,/P,(p)) we have that

W o (M | e Wk T
so that necessary Wiy is free of rank 1 over Z, as a multiplicative group.
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Let v > 0 be defined by [Wg : '] = p7 and fix a topological generator of W such
that wP” =1+ p. For all integral ideals a prime to p define

_ log,({A(a)))

t(a) = log () €Z,

Let O denote the ring of integers of E(p,(p) (still a finite extension of Q,) and
consider the extension of A = Z,[[X]] given by Z = O[[Y']] defined by the relation

GOA+Y) =1+X
Finally define the formal g-expansion F € Z[[¢]] given by
F= 3 pla){Ma) (1 +Y) @gN@. (4.4)
(a,p)=1

This g-expansion actually does not depend on the particular choice of A, since any
two Hecke characters of infinity type (1,0) and conductor p differ by a finite order
character. Indeed such a difference would be a character of type (0,0), i.e. in fact
a character on the finite quotient I,/P; (p).

By definition of Z, we see that every classical specialization of Z takes the form
Y = (w! -1 where [ > 2 and ¢ is a p™~!-th root of 1, for some r > 1. Such a
specialization extends the evaluation X = (o¢?" (1 + p)! - 1.

Set d¢(a) = ¢ and let

pic(a) = p(a){A(a)) o (a).

for a integral ideal coprime with p.
Then ¢, is a finite order character and ¢, is a Hecke character of infinity type
(1-1,0). Specializing to Y = (w! - 1 we immediately get

(1+Y)"@ = g¢(a)(A(a))
so that F specializes to the g-expansion

fre =Y orc(a)gV®
a

which is (essentially by definition) a CM cusp form of weight .

For a Hecke character ¢ of K of infinity type (¢,0), write 0| for the induced
Dirichlet character defined by m ~ J((m))/m!. Then one checks that (A)|g = w™!
and that d¢|g = ¢

By the result recalled in the previous subsection we know that the Nebentypus y
of f is given by x = ¢|o - Xk /o Where Xk is the quadratic character corresponding
to K (described in terms of the Jacobi symbol).

Hence the character of ¢, is given by

wicla-Xrs = ¢lo xxja (N Flo- dclo = Y e
and one can check that f; has level Np" where p”'~! is the exact order of (y¢?”.

We deduce that F is indeed a Z-adic form. Moreover F is p-ordinary, since
a(p, fic) = ¢ic(p) has the same p-adic valuation as ¢(p). Finally when [ = &, then
w11 = and fi1 = f, thus F contains f as a specialization.
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Chapter 5

The homological counterpart

This chapter is almost completely based on [7]. We describe Hida theory by studying
the ordinary part of the homology modules of the Riemann surfaces Y;(Np") =
'y (Np)\H for some odd prime p and N an auxiliary level prime to p. The results
obtained by M. Emerton in [7] are essentially the homological couterpart of theorem
3.1 in [11]. The latter theorem is the keystone of that article and allows Hida to
prove the finiteness and freeness of the universal ordinary Hecke algebra, as well as
the horizontal control theorem for it.

This quick discussion should in some sense justify our decision to include Emer-
ton’s contribution in our thesis. We tried to expand some of the proofs given in
[7].

5.1 The tower of modular curves

As above, let p > 3 be an odd prime number and let N be a positive integer prime
to p such that I'; (Np) is torsion-free. This is not a strong requirement since it holds
that I’y (M) is torsion-free for all M >4 (cf. [9] pag. 160 for this). In particular
we are asking that the Riemann surface Y;(Np) does not contain elliptic points.
Associated to the tower of modular curves

> Y (Np') > --- > Yi(Np)

we have a corresponding chain of congruence subgroups (obtained taking the topo-
logical fundamental group of our Riemann surfaces)

~-cIy(Np") c---cT'1(Np)

It is well-known that the first homology group with coefficients in Z corresponds
to the abelianization of the topological fundamental group, so that if we apply the
functor Hy(-,Z) to the above tower of modular forms we get a tower of finitely
generated free abelian groups

<> Ty (Np")® - - > I (Np)*® (5.1)

Recall that abelianization is not an exact functor (it is only right exact), so that we
do not necessarily have inclusions in the above chain of morphisms.
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We now follow Hida and Emerton, so we introduce intermediate congruence
subgroups
@, =T (Np) nTo(p")

We have inclusions I';(Np") ¢ ®! c I';(Np) and it is immediate to check that
'y (Np") is a normal subgroup of ®!.

Let I' = 1 + pZ, denote as usual the principal units in Z, and let T', for r > 1
denote the unique subgroup of index p™~! contained in I'. It is the kernel of the
canonical projection Zx — (Z/p")*. Notice this notation differs from the one used
in section 1.5.1.

There is a surjective morphism of groups ®! — I'/T", induced by the assignment
@) d mod (pr). It is immediately verified that the kernel of this morphism is
' (Npr), so that there is an exact sequence of groups

1Ty (Np")-»®.->T/T, -1

Lemma 5.1.1. The action of ®L on I'\(Np") by conjugation induces an action of
the quotient ®L/T1(Np") =TT, on Ty(Np")®. Thus T acts naturally on T'y(Np")ab
for all r and the morphisms in the chain (5.1) are morphisms of I'-modules.

Proof. In general if GG is a group and H < GG is a normal subgroup, then the group
G/H acts on H® by conjugation. Indeed if h = [hy,ha] = hi'hy'hihy € H is the
commutator of hq, hy € H, then for every g € G we have that

g hg =97 h1g,9 " hag]

is again a commutator. In particular if g € H, we have that g-'hg € [H, H]< H. This
proves that I' acts on 'y (Np")? for all r > 1 via its quotients I'/T,. = ®} /Ty (Np").

Next we verify that the morphism T'y(Npr+1)e — T';(Np)e is T-equivariant
for all » > 1. This gives us the opportunity to describe explicitly the action of T'.
Let « € T', then there exists a matrix g = (¢4) € ®} such that o = d mod (p"*!).
Then the automorphism induced by « on 'y (Np"*1)eb is essentially conjugation by
g. Since by our choice we also have av = d mod (p), then also the action of o on
[y (Np+1)ab is essentially given by the conjugation by g. This clearly shows the
I-equivariants of the morphism I'y (Np"*1)e — T';(Np")®. O

The automorphisms induced by elements of I" as above will be referred to as
diamond operators and the action of I' will be referred to as the Nebentypus action.

If r>s>0 we let &5 to be the subgroup of ®} containing I'y(Np") and such
&3 /T (Np") identifies with T'y/T',.. More explicitly

Oy =T'1(Np*) nLo(p")
Hence there is an exact sequence
1->Ty(Np") - @ > T/T, > 1
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which yields, taking the abelianizations, the exact sequence
[(Np)® — @5 - T T, -1 (5.2)

Let a, denote the augmentation ideal in the group Z[I's], so that ay is the kernel
of the projection Z[I's] - Z. Then we claim that under the Nebentypus action we
have

a, Ly (Np") = [@7, T2 (Np")]/[T1(Np"), T (Np")] € Tu(Np")

Indeed ay is generated by elements v — 1 for a € I'y and the action of such elements
on [z] e 1 (Npr) e is given exactly by

(=1)-[x] = [gzg~'a™]

for a matrix g = (24) € ®¢ (we can choose ¢ in ®¢ because « € I';) such that d = «
mod (p").

The group extension

1> Ty (Np)/[®7, T (Np")] = 7/[®7, T (Np")] = T[T > 1

is a central extension of a cyclic group, thus it is abelian and we obtain immediately
that
[®7,T1(Np")] = [®7, 7]

Thus the above extension can be rewritten as
1Ty (Np") ®[a, Ly (Np") ® > 7% - T JT, - 1 (5.3)
This discussion allows us to give a more detailed description of a the morphisms
Ly (Np") =Ty (Np*)

which appear in the chain (5.1). Indeed such morphism factors as the composition
of the projection
Fl(Npr) ab _ Fl(Np’r) ab/asFl(Npr) ab7

the injection (in the above exact sequence)
Fl(Npr) ab/asrl(Npr) ab _, (I)f" ab
and the morphism
(I)f“ ab _ Fl(Nps) ab.
5.2 Hecke operators

Suppose T is a group which contains subgroups G' and H and that t € T satisfies
the property that K =t¢"'Ht n G has finite index in G. Then one has the transfer
morphism

V: Gab—>Kab
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which is defined as follows. Write G = |[;_; ;K for a choice zy,...,z, of coset
representatives. Given g € G write gx; = x;k; for a suitable j = j(i) and k; € K.
Finally send the class of g in G% to the class of [],_; k; in K®. One can then check
that this is well defined and gives a group homomorphism V' as above.

Conjugation by t induces an isomorphism
(t'HtnG)™ = (H ntGt 1),
Finally the inclusion of H ntGt~! in H induces a morphism
(HntGt™)®™ - H®
Taking the composition of these arrows we finally get a group homomorphism
[t]: Gab — Fab
which we will call the Hecke operator attached to t.

In our case we will set T'= GLy(Q), G = H to be a suitable congruence subgroup
of SLy(Z) of level divisible by p and ¢ := ((1)2). The corresponding Hecke operator
will be denoted by U = U(p).

Suppose that G = ®$ as in the previous section. One can check that t-1®stnds =
®s N I0(p) where

[(p) ={(¢ %) €SLa(Z) [ b=0 mod (p)}
and that @ ntdst~t = @5, ;. Hence the U operator is by definition the composition

_\-1
(I);sn;ab |4 3 ((I);SnmI‘O(p))ab t)t 3 s ab — (I)iab

r+1

Following Emerton we denote by U’ the composition of the first two of these mor-
phisms, i.e.

. PHsab |4 s 0 ab LSRN s ab

r+1

Lemma 5.2.1. Suppose that r >s>0 and v’ > s' >0 with r >’ and s > s’ (so that
ds (I);i;). Then the following diagram commutes

Psab (I)s' ab
r r!
®f‘+1 ab } @i:H ab
Proof. We can factor the above diagram into the composition of two diagrams as

!
P ab > D3, ab

I I

(2 NTO(p))®> —— (&% NTO(p))ed

lt(—)t’l \Lt(—)t’l

!
ab s (I)f"+1 ab

(PS

r+1
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The lower square of the diagram clearly commutes. Now we prove that the upper
square is commutative. We claim that ®$ nT9(p) has index p in ®7 with coset
representatives given by the p matrices (§¢) for i = 0,...,p— 1. It is immediate
to check that these matrices lie in different cosets of ®3/(®snT%(p)). Moreover
if (¢%) e @2 it is enough to choose the unique ¢ € {0,1,...,p -1} such that i = b
mod (p) to get that

I —i\fa b\ ([a-ic b-1id s 10
b ) o) (2 ) eonor

Notice that what we proved does not depend on the particular value of r, s, so that
the transfer
@3 = (07 0T (p))"

applied to elements of @2 is given by the same formula as the transfer applied to
elements of @2 when we view them inside Cij ab This is equivalent to say that the
upper portion of the above diagram commutes. O

In particular we deduce immediately that the following diagram commutes

!
(I)i ab s (I)f,, ab

e

!
(I)i ab s (I)f,, ab

saying that the natural morphism ®$® — @3, is a morphism of Z[U]-modules.

Now assume that ' =r—-1and s'=s>7r-1.
If m:@sab - s ab and 7/: @5, 2 - Psab are the obvious maps, then the above
lemma gives the following equalities

Uon=n"oU" =U eEndy(®:™) (5.4)
70U’ =U e Endg(®5_, ™) (5.5)
In particular the morphism I'y (Np") % — &2 is a morphism of Z[U]-modules,
so that its cokernel is naturally a Z[U J-module. By the sequence (5.2) we know that
this cokernel is given by T'y/T,.
Lemma 5.2.2. The operator U acts on Us/T,. as multiplication by p.

Proof. This is proven by direct calculation. Let v € T’y and choose (%) € @2 such
that d = @ mod (p”). We now need to analyse the action of the transfer. For

i€{0,...,p—1} we have
a b\(1 ¢\ [a ai+d
c dJ\0 1) \c ci+d
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We know that there is j = j(i) and a matrix g; = (7 ) such that

a ar+b) (1 j\(z y
c ca+d] \0 1)]\z w
In particular one sees immediately that it must be

w=ci+d=d mod (p")

as p" | ¢ by definition. We know that the transfer is the class of the product H?;& 9;

and that then one as to consider conjugation by ¢ = ((1)2).
Since conjugation by ¢ does not alter the lower right entry of a 2 x 2 matrix, we
conclude that, as classes in @7 it must be

o( )2 3)

for some d = d? mod (p"). Hence the morphism U:T,/T', - I',T', is given by raising
to the p-th power (or multiplication by p if we use an additive notation). O

We conclude this section with the following result

Lemma 5.2.3. Ifr > s >0, the action of U on ®5% commutes with the Nebentypus
action of T' on ®3 .

Proof. See lemma 3.5 in [7]. O

5.3 Ordinary parts

Let U be an indeterminate and consider the full subcategory (denoted by A) of the
category of Z,[U]-modules given by those modules which are finitely generated as
Z,-modules. One checks quite easily that this is an abelian category (essentially
because Z, is a Noetherian ring). Let A be any module in this category, so that
there is a morphism of Z,-modules

Z,[U] - Endg, (M).

Since M is a finitely generated Z,-module, we have that Endz, (M) is a finitely
generated Z,-algebra, so that the image of Z,[U] in Endz, (M) is also a finite com-
mutative Z,-algebra, which will be denoted by A. By lemma 10.158.2 in [24] the
ring A factors as a product of finitely many complete local rings. We can thus write
A= Aord x Amil where A°¢ is the product of the local factors of A where the image
of U is a unit and A" is the product of the local factors of A where the image
of U is contained in the maximal ideal. In particular A°"¢ (and also A™) is a flat
A-algebra and a subalgebra of Endz, (M). We define the ordinary part of M as

Mord =M ®4 Aord.

As Ao is flat over A, it is obvious that taking ordinary part is an exact functor on
our abelian category A.
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Now let U denote again the Hecke operator defined in the previous section. By
what we just said, it makes sense to consider the ordinary part of

Hy(Yi(Np"), Zy) =T1(Np")" @2 Z,

By lemma 5.2.3 we have that (I'; (Np")*®7Z,)° is also a I-module for the Neben-
typus action.

We are now ready to state one of the most important results of this chapter
Theorem 5.3.1. If r > s >0 then the natural morphism of abelian groups
(T1(NP')® @ Z,) a, - (T1(Np*) ® @7 Z,)"
is an isomorphism.

Proof. We saw at the end of section 5.1 that this morphism can be viewed as the
compostion of
(Fl(Npr) ab ®y Zp)ord/as N (q)i ab ®7 Zp)ord

and
((I)i ab ®7 Zp)ord N (Fl(NpS) ab ®7 Zp)ord'

We will prove that these arrows are both isomorphisms.
For the second one recall that we saw that if » > s, then there is an operator

I.Hs ab s ab
U' r—1 _>(I)'r

such that (5.4) and (5.5) hold. These equations can be interpreted saying that, upon
tensoring with Z, and taking ordinary parts, the natural map

. Hsab s ab
gy (I)r - (I)rfl
induces an isomorphism
s ab ord ~ s ab ord
((I)r ®z Zp) = ((Dr—l ®z Zp)

whose inverse is given, so to say, by U~ o U’”. Applying descending induction it is
clear that we get the required isomorphism

((Df" ab ®7 Zp)ord ~ (@z ab ®7 Zp)ord — (Fl(Nps) ab ®7 Zp)ord
Now we have to prove that
(Fl(Npr) ab ®7 Zp)ord/as N ((I)f" ab ®7 Zp)ord

is an isomorphism. For this consider the short exact sequence (5.3). Tensoring with
Z,, and taking ordinary parts yields the short exact sequence

1 > (Fl(Npr) ab ®7 Zp)ord/as N ((I)i ab ®7 Zp)ord N (FS/Fr)ord -1

Notice that since I';/T', is p-torsion, it does not change when tensoring with Z,. By
lemma 5.2.2 the operator U acts on I'y/T", as multiplication by p, so it is a nilpotent
operator. This shows that (I's/T",)°"? is trivial and proves our isomorphism. ]
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5.4 Iwasawa modules

Write
W =1im ' (Np") ® @7 Z,

T

where the projective limit is taken over the chain of Z,-modules
> T (Np )&y Z, — - > T1(Np)* @ Z,.

We know that I' acts on I'y(Np") ® ®z Z, through its finite quotient I'/T',. This
immediately implies that W is a module over the completed group algebra (the
Iwasawa algebra that we studied in subsection 1.5.1)

A= limZ,[T/T, ]

T

Our main focus will be to study the ordinary part of W from now on.

Following Emerton, we now prove a general result on A-modules which tell us
something on the quotients Werd/a, for r > 0.

Suppose that {M,},»1 is a projective system of A-modules, with M, invariant
under I',. for all ». Then for any r > s the given morphism

M, - M,

factors as
M, - M,]as - M,.

Let
M := I(Ln M,

so that for every s the natural morphism M — M, factors as
M - M/a, > M,

Proposition 5.4.1. In the above setting, assume that M, is p-adically complete for
all v and that the morphisms M, [as — M are isomorphisms for all r > s. Then for
any s the morphism M - M/a, > M, is an isomorphism.

Proof. Essentially by assumption we have that all the morphisms M, — M, are sur-
jective, so that given m, € M we can construct an element p € M whose projection
to My is m,. Let 5 € ' be a topological generator of I'y, so that a, is principal and
generated by v, — 1. It is easy to verify that

The maximal ideal of A is m = (ay,p) and obviously we have (7, — 1,p)? c m’. Since
M, is p-adically complete and fixed by I',., we have that M, is m-adically complete
for all r.
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Now for a fixed s, let (m,) be an element of M whose projection m, to M,
vanishes. We want to prove that there exists (m.) € M such that (m,.) = (ys—1)(m.).
By assumption there is an element my 1 € M1 such that mg,q = (75 — 1)my s41.
Let (my,) € M be an element projecting to my s41. Then (m,) — (75 — 1)(m4,) has
vanishing projection to M, .

Applying the same procedure we can find for all i > 0 an element (m;,r) € M
such that

(m,) - zw“—l) (mj,) = () - (2 - 1 >i(”§y ‘1)<mj,r>

has vanishing projection to M,;.
Since each M, is m-adically complete, the infinite series

+00 Pt
(ml)i= 3 (”—1) (m;)

I\ s -1

yields a well-defined element of M, which satisfies clearly that (m,) = (vs—1)(mL).
O

The following result is now immediate.

Corollary 5.4.2. For any r >0 we have that
(Fl(Npr)ab ®7 Zp)ord — Word/ar
is the T .-coinvariants of Werd,

From now on the aim will be to study the structure of the A-module W4, In
particular the final result will be the Wo¢ is finite and free over A. This should
sound familiar to us and should remind of theorem 2.2.2.

Each module T'y(Np")® ®y Z, is Z,-free of finite rank, so it is compact in its
p-adic topology. So if we give W the topology which is the projective limit of the
p-adic topology on each module T’y (Np)® ®z Z,, it becomes a compact A-module.
The action of A is clearly continuous. The same remarks hold true for Wer¢, which
is a direct summand of W.

Moreover, the above corollary implies that the projective limit topology on Werd
coincides with the m-adic topology, because the kernels of the projection

A = Zy[p"[T/T]

are cofinal with the sequence of ideals m” in A.
In conclusion W2 is a A-module, compact in its m-adic topology, with the
property that

Werdfm = W/ (a1, p) = (1 (Np)* ®z Zy/p)™™

is a finite dimensional F,, = Z,/pZ,-module. By Nakayama’s lemma this implies that
Werd i finitely generated as A-module. We will prove in the end that W' is free
of rank d = dimp, Wod/m.
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5.5 Modules over group rings

In this section we prove a general result about reflexivity of modules over group
rings.

We let R be a commutative ring , G' be a finite group and M be a left R[G]-
module. In N is an R-module, then Hompg(M, N) is naturally a right R[G]-module
with G-action given by (¢.g)(m) = ¢(g.m) for all ¢ €e Homg(M,N), ge G, m e M.

The ring R[] is clearly a bimodule over itself, so that R[G] ®z N is naturally
a bimodule over R[G]. This implies that Hompgq) (M, R[G] ®g N) is a right R[G]-
module setting ¢.g(m) = ¥ (m).g for all ¥ e Homp(e) (M, R[G]®r N), g G, me M.

Lemma 5.5.1. With the above notation, there is a canonical isomorphism of right

R[G]-modules
Homp(M, N) = Hompge) (M, R[G] ®r N)

Proof. We associate to ¢ € Homg(M, N) the map @: M - R[G] ®r N given by

e(m):=> g®p(g-'m)
geG

We have that for all a € G

o(a.m) = Z(;g ®p(gtam)=a %a‘lg ® (g ta.m) = a.g(m)

so that ¢ € Hompgig (M, R[G] ®g N). This means that the association ¢ = ¢ is
well-defined as a map n:Hompg(M,N) - Hompgg) (M, R[G] ®z N). This is also a
morphism of right R[G]-modules because

(¢-a)(m) = ¢(m).a = Zéga ® p(g7'm) = z(;g ® ((p.a)(g™'m) = ga(m)

Finally we claim that in this way we have defined an isomorphism of right R[G]-
modules. To prove this we define an inverse to our association ¢ — @.
Given ¢ € Hompe (M, R[G] ®r N) we set

d(m) =nig = d(m) =Y gen,

geG

Using that 1 is a morphism of R[G]-modules one checks easily that for all a € G it
holds ¥ (a~'m) = ng if ¥(m) = 2geG 9 ® Ny.

This proves that ¢ + ¢) defines an inverse to 7, since clearly ¢(m) = p(m) for
all ¢ € Homg(M,N) and

Dm) =Y gei(gm) =Y gen, = b(m).

geG geG
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Now we consider the case when N = R and we write M* = Homg(M, R) for the
R-dual of M. By the above lemma we see that M* and Hompgg) (M, R[G]) are
canonically isomorphic as right R[G]-modules. The analogue of the above lemma
for right R[G]-modules is obviously true so we also get the there is a canonical
isomorphism of left R[G]-modules between Hompg(M*, R) and Hom gye(M*, R[G]).

We know that there is a canonical morphism of R-modules

M - (M*)* =Hompg(M*, R)

which turns out to be a morphism of left R[G]-modules (easy to check). By our
discussion we immediately get the following corollary.

Corollary 5.5.2. Assume that the above canonical morphism is an isomorphism for
M, i.e. that M is a reflezive R-module. Then M is reflexive as R[G]-module.

Proof. We get a chain of isomorphisms M = Homp(M*, R) = Hompgq)(M*, R[G]).
[

5.6 The final result

By the universal coefficient theorem we know that cohomology in degree 1 is the
dual to homology, i.e. that

H'(Yy(Np'), Z,) = Hom (T (Np')™, Z,) = Homy, (T (Np)™ @5, Z,, Z,)
As we already remarked, A acts on I'y (Np")® ®z Z,, through its quotient
A, :=A/a, =Z,[T/T,]
By lemma 5.5.1 we immediately get an isomorphism of A,-modules
Homg, (T'1(Np")* &7 Zy, Z,) = Homy, (D1 (Np")™ ®7 Z,y, A,).
If r > s > 0 we have a projection
Ay > Arfag = Ag
This yields the following chain of canonical morphisms

Homy, (T'1(Np")* ®7 Z,, A,.) — Homy, (T (Np")® ®7 Z,, A,) [ a,
— Homy, (T'1(Np")*® ®z Z,, As) = Homy (T (Np")* ®7 Z,/as, Ay)

Now we would like to take ordinary parts in this chain of morphism. This is
justified by the fact that if M is a Z,[U]-module which is finitely generated as
Zy-module, then M* = Homg,(M,Z,) is also a finitely generated Z,-module and
becomes a Z,[U]-module via the dual action of U. In this case it is easy to verify
that

(M*)ord — (Mord)*
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Thus we can take ordinary parts to get a chain of morphisms

Homy, (T (Np")™ @z Z,)%, A,) — Homy, (T1(Np")™ ©2.Z,)", A,) [a,
— Homy, ((T'1(Np")*® ®7 Z,,)°" [a,, A)

By theorem 5.3.1 we know that there is an isomorphism
(T (Np") ™ ®7 Z,) " as 2 (T1(Np*) © @7 Z,,) "™
so that we indeed get a chain of morphisms

Homy, ((Fy(Np")™ 7 Z,)°", A, ) — Homy, ((T'1(Np")® ®2 Z,)", A,) [,
— Homy, (D1(Np*)™ ©2 Z,)", As)

Now we are ready to state the key lemma of this section.
Lemma 5.6.1. The morphism
Homy, (i (Np")™ ®z Z,)", ;) [a; — Homy, ((T1(Np*)® ®2 Z,)", As)
is an isomorphism.
Proof. See in the appendix. ]

Lemma 5.6.2. Consider the chain of A-modules
7 HomAr((Fl(NpT)ab ®z Zp)orda Ap) = Homzp((Fl(Np)ab ®z Zp)wda Zy)
Then there is a canonical isomorphism

Hom, (W, A) 2 lim Homy, (U1 (Np")® ®2 Z,)”, A,.)

r

Proof. We have the following series of canonical isomorphisms

Homy (W4, A) = l(iﬂlHOHIA(WOTd, A) = liI_nHOHlAT_(WOTd/ClT, A)

= lim Homy, (T (Np")™ @2 Z,)™, Ay)

T

where the first two isomorphisms are the obvious ones and the third one follows
from corollary 5.4.2. O]

We immediately get the following
Corollary 5.6.3. For any r >0 there is a canonical isomorphism
Homa (W2 A)/a, 2 Homy, (T (Np")* 7 Z,)°™, A,)
Proof. This follows from proposition 5.4.1 and from the previous two lemmas. []

Finally we can prove the main result of this chapter.
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Theorem 5.6.4. The A-module W is free of finite rank.

Proof. Since we already know that Wo? is a finitely generated A-module, it is
enough (by proposition A.1.2 in the appendix) to prove that it is reflexive to see
that it must be free. But now we a chain of canonical isomorphisms

Homy (Homa (W4 A), A) = lim Homy (Homa (W4, A)A,)

~1i ord
= lim Homy, (Homy (W, A)/a;, Ar)

2 lim Homy, (Homy, (T (Np")™ ®2 Z,)?, A ), Ay)

~ l(iLn(Fl(Npr)ab ®7 Zp)ord — Word

r

where the first two isomorphisms are the obvious ones, the third follows form the
above corollary, the fourth is a consequence of lemma 5.5.1 (because (I'1(Np")? ®;
Z,)°¢ is a finite free Z,-modules, so it is cleary reflexive as Z,-module, hence as
A,-module). O
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Appendix A

Appendix to chapter 5

A.1 Some commutative algebra

In this section we want to develop the theory which is necessary to prove that a
finitely generated and reflexive module over the Iwasawa algebra A := Z,[X]] is
actually free. This is the crucial result which is used in chapter 5 to prove that the
A-module Wor? is free. We will actually work in some more generality.

Let A be an integral domain. For an A-module M we let
M* :=Homu (M, A)
to be its A-dual. As usual we have a pairing
M*x M — A, (a,m) » a(m)
inducing a canonical homomorphism of A-modules
oM - M*, m e (a+~ a(m))

Definition A.1.1. An A-module M is called reflexive if the canonical map ¢y,
defined above is an isomorphism.

Remark A.1.1. Tt is easy to see that if M is finitely generated and free over A, then
M is reflexive.

Remark A.1.2. Since A is an integral domain it is immediate to check that M* is
always torsion-free. Hence M reflexive always implies that M is torsion free.

Proposition A.1.2 (cf. [14] prop. 5.1.9). Assume A is an n-dimensional Noethe-
rian reqular local ring, with 2 < n < +oo. Let {p1,...,pn} be a regular system of
parameters generating the mazimal ideal of A. Let py = 0. Then for a finitely
generated A-module M, the following are equivalent:

(1) For everyi=0,...,n-2the A/(po,...,p;)-module M [(po,...,p;)M is reflexive.
(2) M is a free A-module.

In particular, a reflexive A-module over a 2-dimensional regular local ring A is free.
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Proof. We only need to prove that (1) implies (2). From (1) we get immediately
that M is reflexive, hence torsion-free. Let ¢: A” -» M be a minimal free presentation
of M (i.e. M can be generated by r elements). Consider the diagram

0 y Ar s A > (A/(p1))" —— 0

l¢ l¢ IE

M 2 M > M/(py))M —— 0

0

v

Assume for a while that M /(p;)M is a free A/(p;)-module. Then by the minimality
of r and Nakayama’s lemma M /(p;)M is free of rank r over A/(p;). We clearly
have that ¢ is surjective and thus an isomorphism again by Nakayama’s lemma. By
the snake lemma we see that multiplication by p; is a surjection ker(¢) = ker(yp),
so that by Nakayama’s lemma again we deduce that ker(¢) = 0 and that ¢ is an
isomorphism. Hence M is free of rank r over A.

We are left to prove that M/(p;)M is a free A/(p1)-module. For this note that
A/(py) is a regular local ring of dimension n—1 and that if p; = p;+p1 A fori =2,...n,
then {pg,...,Pn} is a regular system of parameters of A/(p;). Thus the hypothesis
(1) holds for the couple A/(p1) and M /(p;)M. By descending induction we are left
to check that (1) = (2) only in the case n = 2 (which is the one we are actually
interested in). In this case A/(p;) is a discrete valuation ring (regular local ring of
dimension 1) and an integral domain. Hence the A/(p;)-module Hom4(M*, A/(p1))
is torsion-free and (using that M is reflexive) we have that

M[(p1)M = M**[(p1)M** =Homs(M*, A) ®4 A/(p1) = Homu(M*, A/(p1))

Hence M /(p1)M is torsion-free over the discrete valuation ring A/(p;), hence it is
free. This concludes the proof. O

A.2 The proof of lemma 5.6.1

In this section we focus on the proof of lemma 5.6.1, i.e. we want to show that the
canonical map

Homy, ((T'1(Np")® ® Zp)‘”"d, A,)/as - Homy, ((T'1(Np*)? ® Zp)"’"d, As) (A1)

is an isomorphism for all r > s > 0 integers.
Recall that the inclusion I'; (Np") c @2 gives rise to a transfer morphism

q)i ab L Fl(Npr)ab.

Lemma A.2.1. The transfer morphism ®g AR [y (Npr)® commutes with the ac-
tion of the Hecke operator U on its source and target.

Proof. By the functoriality of the transfer one reduces to prove that the following
diagram is commutative

70



(@3N I0(p))® —— (Di(Np") nIO(p))et

it(—)t‘l \Lt(—)t‘l

(I)i ab |4 3 I‘l(Npr)ab

where t = ((1)2) as usual.

One finds coset representatives for I'y(Np™) nT9(p) in &3 nT%(p) of the form
oq = (¢%) with d ranging through coset representatives of I', in I'y. Then one
computes that togt~! form a set of coset representatives of I'(Np") in @2, so that
the action of the transfer is indeed compatible with conjugation by ¢ in this case
and the above square is commutative. O]

Thanks to the above lemma we can restrict V' to the ordinary parts of its source
and target to get a morphism

(q)i ab ®7 Zp)ard K) (Fl(Npr)ab ®7 Zp)ord'
There is clearly a dual morphism
V*
Homg, ((T1(Np")® ®2 Z,)", Z,) — Homy, (9} * ®2 Z,)"", Z,)
fitting in the following commutative diagram

Homg, (T (Np")® ®z Z,)"?), Zy) — Homy, ((T1(Np")® &z 2Z,)"¢, Ar)

- |

HomZp((q)i ©® ®z Zp)ord7 Zp) HomAr((Fl(NpT)ab ®z, Zp)mda Ar)/us

|

Homy, (T (Np")® ®z Z,) /a5, As)

Homg, (T (Np")* ®z 2,)"?, Zy) —— Homy, ((I'(Np*)® ®z Z)"?, As)

Let us describe this diagram:

(i) the horizontal isomorphisms are given by lemma 5.5.1;
(ii) the vertical equalities follow from theorem 5.3.1 and its proof;

(iii) the vertical arrows on the right column are the obvious ones.

The proof of the commutativity of the above diagram is essentially a computation
again. Thus to prove lemma 7.1 it is enough to prove that

V*
Homy, ((T'1(Np")* &7 Z,)"*, Z,) — Homg, ((9:** ®7 Z,)"*, Z,)
is surjective with kernel equal to a,Homgz, ((I't(Np")® ®z Z,)°rd, Zy).
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Since by lemma A.2.1 we have that U commutes with V' and since taking ordi-
nary parts commutes with taking Z,-duals, we get that the above morphism is the
ordinary part of the morphism

HomZp(Fl(Npr)ab ®z ZP? ZP) V_*) HomZp((I)wS" o 7z Zpa Zp)

Taking ordinary parts is exact and commutes with the Nebentypus action of I'
(lemma 5.2.3), so that to prove our result it is enough to show that

V:(—
Homg, (T'1(Np")* &z Zy, Z,) — Homgz, (9 ®7 Z,, Z,)

is surjective with kernel a,Homg, (I'y(Np")® ®7 Z,, Z,).

To see this we work in some more generality. Let G be a torsion-free congruence
subgroup of SLy(Z). Then we have already used that

Homg, (G* ®z Z,, Z,,) = Homz (G, Z,,) = H (Y (G), Zy)

where Y (G) := G\H is the corresponding open Riemann surface. We know that
Y (G) can be completed to a compact Riemann surface X (G) adding finitely many
points, called cusps, which correspond to the orbit space G\P'(Q). For a precise
description of the structure of Y (G) as a Riemann surface and the compactification
we refer to [5], chapter 2.

The Lefschetz duality theorem (cf. [6] proposition VIII.7.2) gives a canonical
isomorphism

HY(Y(G),Z,) 2 H(X(G),cusps,Z,)

where the right-hand module is the homology taken relative to the set of cusps of

X(G).

Consider the group M := Divy(P(Q) of degree zero divisors on the set of cusps
of the complex upper half plane. The group G acts on M via its action on P'(Q)
by Moébius transformations. We can take G-coinvariants and consider

(M ®7 Zp)/ClG = HO(G, M ®7 Zp)

where a¢ is the augmentation ideal in the group ring Z,[G].

Given a divisor [z] - [y] € M one can associate to it any path from z to y in
H uP(Q). Such a path gives a well-defined element [~v,,] in Hi(X(G), cusps, Z).
Since we are assuming that G is torsion-free, one can apply the results of [13] to see
that the association [z] - [y] = [74,] gives an isomorphism

H(G,M ®zZ,) = Hi(X(G),cusps,Z,)

Now assume that H is contained in G, so that Y (G) and X (G) are respectively
quotients of Y/(H) and X (H). As described above we have the transfer V: G — H®
and the dual morphism

V*:Homg, (H" ®z Z,, Z,) —~ Homg, (G* ®7 Z,, Zy,).

We get a commutative diagram:
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Homy, (H® ®7 Z,, Z,) —— Homg, (G® ® Z,, Z,)
HY Y (H),Zy,) —— HYW(Y(G),Zy)

H,(X(H),cusps, Z,) — H1(X(G),cusps,Z,)

(M ®7 Zp)/aH _— (M ®7 Zp)/a(;

where the vertical arrows are the canonical isomorphisms that we have described
and the horizontal arrows are (from the top to the bottom) the dual of the transfer,
pushforward on cohomology, pushforward on homology and the natural quotient
morphism. Thus we see that V* is surjective with kernel equal to

acHomgz, (H™ 7 Z,, Zy).

In particular this finishes the proof of lemma 5.6.1 if we take H = I';(Np") and
G = ;.
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