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Classical L-functions

Classically, an L-function is a meromorphic function on C (often entire)
associated to a mathematical object X (usually coming from geometry,
representation theory, number theory ...).

The construction of a complex L-function usually goes mutatis mutandis
as follows:
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as follows:

(i) Write a series (a so-called Dirichlet series) of the form

L(s) = L(X,5) = a”

n=1

where the coefficients {a,}n>1 ¢ C satisfy growth conditions that
ensure that L defines a holomorphic function on the right half-plane

{Re(s) > r} c C for some r e R, r > 1. The coefficients {a,} encode
information about the object X.



Classical L-functions

(i) Find a gamma factor -y (i.e. a suitable meromorphic function on C,
often related to the usual gamma function I') such that the function
A(s) := L(s) -v(s) extends to a meromorphic function on C satisfying
a functional equation of the form

A(s)=cL-Nk-5s)

for some k> r and ¢; € C, ¢, #£0. Usually k € Z.
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(i) Find a gamma factor -y (i.e. a suitable meromorphic function on C,
often related to the usual gamma function I') such that the function
A(s) := L(s) -v(s) extends to a meromorphic function on C satisfying
a functional equation of the form

A(s)=cL-Nk-5s)

for some k> r and ¢; € C, ¢, #£0. Usually k € Z.

(iii) Use the above functional equation to extend L to a meromorphic
function on C. which we will denote again by L = L(X,s).



Why are L-functions interesting?

One common (and vague!) way to answer this question is that L-functions
contain a lot of arithmetic information about the object X.
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number formula (due to Dirichlet, Kummer, Dedekind, ...).
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Many important open conjectures in number theory can be phrased in
terms of L-functions.



Dirichlet characters

Let NeZ, N > 2. A Dirichlet character defined modulo N is a function
x : Z — C such that

e x(1)=1 x(N)=0
e x(n)=x(m)if n=m mod (N)
o x(nm)=x(n)x(m) forall n,meZ

We say that y is trivial if x(Z) < {0,1}.

The constant function 1:Z — C (1(n) =1 for all n€Z) is the unique (and
trivial!) Dirichlet character modulo 1.



Dirichlet L-functions

The Dirichlet L-series associated to  is

+oo

Lix.s) =3 X0

s
n=1

This series converges for Re(s) > 1. Actually L(x,s) defines a holomorphic
function for Re(s) > 0 if x is not trivial. In this case L(x,1) # 0.

If x is trivial then (s—1)-L(x,s) can be continued to a holomorphic
function for Re(s) > 0 (not vanishing at s = 1).

These two different behaviours are the key ingredients that allowed

Dirichlet to prove his theorem about primes in arithmetic progressions in
1837.



Riemann ( function

When x =1 then L(1,s) = ((s) is the Riemann zeta function.

Euler proved (in 1737) that it admits a product expansion as
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Riemann ( function

When x =1 then L(1,s) = ((s) is the Riemann zeta function.
Euler proved (in 1737) that it admits a product expansion as

) =T1—

1-ps

for Re(s) > 1

In 1859 Riemann proved that:

(i) there is an entire function £ such that when Re(s) > 1 it holds

(s) = 5 s(s-1)- 721 (£) <)
(i) the function ¢ satisfies {(s) =&(1—s) for all s € C.

Hence ¢ can be continued to a meromorphic function on C with a unique
simple pole at s=1



Riemann hypothesis

It is not too hard to prove that
() F(n+1)=nland [ (n+1)= (2")!ﬁfor neN

4n.nl

(i) T has simple poles at s = —n for ne N and is holomorphic elsewhere.
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(i) T has simple poles at s = —n for ne N and is holomorphic elsewhere.

Since ((s) # 0 when Re(s) > 1, we obtain that for Re(s) < 0 it can happen
((s) =0 if and only if s =—-2n for n e Zs1. These are the so-called trivial
zeroes of (. The interesting zeroes of ( lie in the strip S = {0 < Re(s) <1}
and ((sp) = 0 for some sp € S if and only if {(1-sp) =0.



Riemann hypothesis

It is not too hard to prove that
() F(n+1)=nland [ (n+1)= 2! /7 for ne N

4n.nl

(i) T has simple poles at s = —n for ne N and is holomorphic elsewhere.

Since ((s) # 0 when Re(s) > 1, we obtain that for Re(s) < 0 it can happen
((s) =0 if and only if s =—-2n for n e Zs1. These are the so-called trivial
zeroes of (. The interesting zeroes of ( lie in the strip S = {0 < Re(s) <1}
and ((sp) = 0 for some sp € S if and only if {(1-sp) =0.

Conjecture (Riemann, 1859)

The non-trivial zeroes of ¢ all lie on the critical line Re(s) = %




Bernoulli numbers and special values

Thanks to Euler we know that for all n € Zs

(_1)n+1 i (27‘(’)2” . an

¢(2n) = 2-(2n)!

where By € Q denotes the k — th Bernoulli number.
These rational numbers are defined via the equality of formal power series
in Q[[X]) )
X = X
- - Z By —
exp(X) -1 /= k!
This also means that, for n€ Zs

B2n
2n .

¢(1-2n) = -

is a rational number!



Generalized Bernoulli numbers

If x is a Dirichlet character modulo N, we define generalized Bernoulli
numbers B, € Q[x] via a modified generating function

ﬁ’:x(a)'x-exp(ax) _§° X"
o exp(NX)-1 & "l

And one can prove that for k> 1
By
Lo 1= K) =X e Q]

is an algebraic number!



The p-adic topology on Q

R = completion of Q with respect to the Euclidean absolute value
(Archimedean)

Are there other absolute values on Q7 If p is a prime number and
x =r[seQ, we can set
x|, = cvp(N=vp(s)

where c € (0,1). This new absolute value satisfies a strong triangular
inequality (we say it is non-Archimedean)

X+ ylp < max{|xp, lylp}



Zp, Qp and beyond . ..

One can complete @ with respect to | - |, obtaining a field denoted by
Qp, called field of p-adic numbers. An element o € Q, can be written
uniquely as

+00
Z an'pn
n=—M
with a,€{0,1,...,p—1}. Inside Q, we have the subring
Zp={aeQp|lalp<1}>Z

known as the ring of p-adic integers.

We can thus see Dirichlet characters taking values in an algebraic closure
Qp of Qp (after fixing an embedding Q = Qp) and study them p-adically.



Towards p-adic Dirichlet L-functions

In particular it makes sense to ask whether there exist a
(continuous/analytic) function

LPaX:ZP — @p
such that for k> 1,k € Z c Z, it holds
Lp\(1-k)=L(x,1-k)-{explicit factor at p}

The existence of such a function is suggested by the many congruences
satisfied by Bernoulli numbers.



Kubota-Leopoldt p-adic L-function

Theorem (Kubota-Leopoldt, 1964)

Let x be a (p-adic) Dirichlet character. Then there is a continuous
function Ly : Zp ~ {1} - Qp such that for all k € Zs it holds

Loy (1=k) = ~(1-xw ™ (p)-p*™)- % )
= (1-xw ™ (p) - p* 1) LOw ™, 1- k)

where w : Zp — Zp denotes the Teichmiiller character

w(s) = nI_i)rp()(j sP" e up 1 U {0} cZ,

Moreover if x is non-trivial, L, , extends to a continuous function on Z.

v



One construction of L, ,

e Write x = ¢n with 1 primitive of conductor p™ and 7 primitive of
conductor N with p + N.

e Define a p-adic pseudomeasure pip,; on Z, and let

Lon() = [ 007 () ()7 diapy
e Show that

Lpx(1=k) = (1=xw™(p)- p* 1) - L(xw ™, 1- k)



One construction of L, ,

e Write x = ¢n with 1 primitive of conductor p™ and 7 primitive of
conductor N with p + N.

e Define a p-adic pseudomeasure pip,; on Z, and let

Lon() = [ 007 () ()7 diapy
e Show that
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A measure on Z, with values in Zj can be thought as an element of

Hom%t:(c(z;;? Zp),Lp) = Lp[[Z,]]

T———— = Y



L-functions attached to modular forms

Let f € Sx(N, x) be a normalized eigenform of level N, weight k and
character x. Then f has a g-expansion as

+00
f=> anq" q = exp(2miz), Im(z) >0
-1

and the L-function associated to f is not surprisingly defined (at least for
Re(s) > k/2+1)

+ 00 an 1
[_ f, S)= - = =
(F2) Z n® H —app + x(p)pk1-%

I——~1I :

pIN L-app™ v (1- a,l)p_s)(l - a%p—s)

It extends to a holomorphic function on C and satisfies a functional
equation s & k —s.



Triple product L-functions - classical case

Let f, g, h be normalized eigenforms of level N¢, Ng, Ny, character
Xfs Xgs Xh, Weight k, [, m respectively. Let N :=lem (N, Ng, Np). Write

fzioanqn gziobnqn h:§ocnq"
n=1 n=1 1
and set
1
ne{1,21123 (1 - ag(l)ﬂg(2),yg(3) ps)

L(f xgxh,s):=]] L(f xgxh,s)p
ptN

forp+ N

L(f x gx h,s)p =

Garrett and Harris-Kudla proved that L(f x g x h,s) admits analytic
continuation to C and functional equation s < k+/+m-2-s.



Triple product p-adic L-functions

My PhD project is related to the construction of a p-adic L-function of
three variables (k,/, m) that should interpolate (the algebraic part) of the
special values

L(fx x g x hy,, KHEm=2)

where f, g, h are suitable p-adic families of eigenforms specializing to
classical eigenforms in classical weights.
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My PhD project is related to the construction of a p-adic L-function of
three variables (k,/, m) that should interpolate (the algebraic part) of the
special values

L(fx x g/ x hpy, %)
where f, g, h are suitable p-adic families of eigenforms specializing to
classical eigenforms in classical weights.

This construction has been already achieved in many cases and with
different approaches (some people involved: Andreatta, Bertolini, Darmon,
Greenberg, Hsieh, lovita, Rotger, Seveso, Venerucci, ...) and we would
like to generalise it to more general settings.
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