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Preface
These lecture notes were written during the Corona-term 2020. There are surely still plenty
of typos, although already many have been found by the participants of this course. I thank
all of the participants for their interest in the topic and their hunt for typos, errors and
inaccuracies! If you notice further issues, please sent me a mail.
Many sources have been used to write these notes, and I often follow the outline of some
sections from other books quite closely. This includes:

• The presentation of the theory of continued fractions roughly follows the presentation
in [11].

• Everything on Siegel’s Lemma is essentially taken from [5].

• The proof of Dobrowolski’s theorem closely follows the outline from [8].

• the proof of Roth’s Lemma is a mixture from the proofs given in [1] and [5].

• The proof of Roth’s theorem closely follows the outline in [1].

• The proof of the Gelfond-Schneider theorem is essentially taken from [9].

• The mentioned applications of linear forms in logarithms are taken from [3].
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Notations
Z the integers
Q the rational numbers
R the real numbers
C the complex numbers
N the positive integers {1, 2, 3, . . .}
N0 the non-negative integers {0, 1, 2, 3, . . .}
Q a fixed algebraic closure of Q contained in C
bαc the Gauß-bracket of α (largest integer smaller or equal to the real number α)
{α} the fractional part of α (α− bαc)
|z| the usual absolute value of z ∈ C
|M | the cardinality of the set M
M(α) the Mahler measure of α ∈ Q
Kv the completion of the number field K with respect to the absolute value v on K
dv the local degree [Kv : Qp]

MK

set of pairwise non equivalent non-trivial absolute values v on the number field
K, normalized such that the restriction of an archimedean v to Q is the usual |.|,
and the restriction of a non-archimedean v to Q is a usual p-adic absolute value

OK the ring of integers of a number field K
H(α) the absolute multiplicative Weil-height of α ∈ Q
h(α) the absolute logarithmic Weil-height of α ∈ Q
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Chapter 1

Foundations

1.1 Introduction to Diophantine Approximations

The word Diophantine usually refers to the integers or rationals. Hence, the main goal in
the field of Diophantine Approximation is to approximate real numbers by rational num-
bers. Since Q is dense in R, this is always possible to an arbitray accuracy. However, some
approximations are nicer than others. For instance1

π = 3, 1415926 . . . ≈ 314159
100000 (“good approximation with huge denominator”)

≈ 355
113 (“better approximation with small denominator”)

So, in some intuitive way, the latter approximation is much nicer.
Formally, for a given α ∈ R, we want to study p

q ∈ Q, with p ∈ Z, q ∈ N, and gcd(p, q) = 1,
such that |α− p

q | is small. This is surely the case if |qα−p| is small. Hence, we will frequently
work with this latter quantity.

Definition 1.1.1. For α ∈ R we define the Gauß-bracket of α as the largest integer bαc
smaller or equal to α. The fractional part of α is {α} = α− bαc.

Remark 1.1.2. The function b·c : R −→ Z is also known as the floor function. To be able to
distinguish between the fractional part of α and the set with the only element α (although it
should always be clear from the context), we put the brackets of the fractional part in bold
face.
Note that we always have {α} ∈ [0, 1) for all α ∈ R.

Example 1.1.3. It is

• bπc = 3 and {π} = 0, 1415926 . . .

•
⌊

3
4

⌋
= 0 and {3

4} = 3
4

• b−ec = b−2, 7182 . . .c = −3 and {− e} = −e+ 3 = 0, 2817 . . .
1the first few digits of π can be remembered by: How I want a drink? Alcoholic of course! (just count the

letters of each word)

1
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Lemma 1.1.4. Let α = a
b ∈ Q, with a ∈ Z, b ∈ N, and gcd(a, b) = 1. Let p, q ∈ Z such that

α 6= p
q , then |qα− p| ≥

1
b .

Proof. This is trivial: We have |qa− pb| = 0 if and only if α = a
b = p

q . If this is not the case,
we have

|qα− p| =
∣∣∣∣qab − p

∣∣∣∣ ≥ |qa− pb|b
≥ 1
b
.

Notation 1.1.5. Usually, when speaking of a rational number p
q , we mean that p ∈ Z, q ∈ N,

and gcd(p, q) = 1.

Theorem 1.1.6 (Dirichlet). Let α ∈ R be arbitrary. For each Q ∈ N, there are coprime
p, q ∈ Z, with q ∈ {1, . . . , Q}, such that

|qα− p| < 1
Q
. (1.1)

Proof. The following proof is most beautiful! We cut the interval [0, 1) into Q subintervals of
equal size; i.e.

[0, 1) = [0, 1
Q

)︸ ︷︷ ︸
=:I1

∪ [ 1
Q
,

2
Q

)︸ ︷︷ ︸
=:I2

∪ . . . ∪ [Q− 1
Q

, 1)︸ ︷︷ ︸
=:IQ

.

The Q+ 1 numbers {0 ·α}, {1 ·α}, . . ., {Q ·α} all lie in [0, 1). Now, we have Q+ 1 numbers
in Q subintervals, and it follows that two of these numbers must lie in the same subinterval.
Say {a · α},{b · α} ∈ Ik, for a, b,∈ {1, . . . , Q}, k ∈ {1, . . . , Q}, and a > b. Then

1
Q
> |{a · α}− {b · α}| = |a · α− b · α− ba · αc+ bb · αc|

= |(a− b) · α− (ba · αc − bb · αc)| .

Hence, (1.1) is fulfilled with q = a− b ∈ {1, . . . , Q} and p = ba · αc − bb · αc ∈ Z.

Corollary 1.1.7. A real number α ∈ R is irrational (i.e. ∈ R \ Q) if and only if there are
sequences (pn)n∈N ∈ Z and (qn)n∈N ∈ N, such that

0 6= |qnα− pn| −→ 0 as n tends to infinity. (1.2)

Proof. If α is irrational, then surely |qα− p| 6= 0 for all p ∈ Z and q ∈ N. By Theorem 1.1.6,
for any n ∈ N, we can find pn ∈ Z and qn ∈ N, such that |qnα− pn| < 1

n . Hence, (1.2) follows.
If on the other hand α is rational, then (1.2) is not satisfied by Lemma 1.1.4.

Slogan: Irrational numbers can be better approximated than rational numbers!

Example 1.1.8. We give two applications:

(a) We have
⌊√

2
⌋

= 1 (since 12 < 2 and 22 > 2). Hence,
∣∣∣√2− 1

∣∣∣ < 1. It follows that

0 6=
∣∣∣(√2− 1)n

∣∣∣ tends to zero as n tends to infinity. Since (
√

2 − 1)n ∈ Z[
√

2], for any
n ∈ N, there are pn, qn ∈ Z such that (

√
2 − 1)n = qn

√
2 − pn. This means that (1.2) is

satisfied, and therefore
√

2 is irrational. We all knew this before, but this proof does not
need any knowledge of prime decomposition!
If you like to have it slightly more explicit, one can show that
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• p0 = −1, p1 = 1, p2 = −3, and pn+1 = −2pn + pn−1 for all n ≥ 2
• q0 = 0, q1 = 1, p2 = −2, and qn+1 = −2qn + qn−1 for all n ≥ 2.

(b) Euler’s constant e equals
∑∞
i=0

1
i! . Set qn = n! ∈ N and pn = n! ·

∑n
i=0

1
i! ∈ N. Then, it is

0 6= |qne− pn| = n! ·
∞∑
i=1

1
(n+ i)!

=
∞∑
i=1

1
(n+ 1)(n+ 2) · . . . · (n+ i) <

∞∑
i=1

1
(n+ 1)i

= 1
1− 1

n+1
− 1 = 1

n
n→∞−→ 0.

By Corollary 1.1.7 it follows that e is irrational.

The next corollary to Theorem 1.1.6 is the first major result of Diophantine Approximation,
that we come across.

Corollary 1.1.9. Let α ∈ R be irrational. There are infinitely many rational numbers p
q ,

with gcd(p, q) = 1, q ≥ 1, such that ∣∣∣∣α− p

q

∣∣∣∣ < 1
q2 . (1.3)

Proof. Actually, the proof is almost immediately clear from Theorem 1.1.6. But as the result
is that important, we will give the proof in full detail.
Assume that for some irrational α there are only finitely many – say precisely n – rational
numbers p1

q1
, . . . , pnqn satisfying (1.3). Since α /∈ Q, we have 0 6=

∣∣∣α− pi
qi

∣∣∣ for all i ∈ {1, . . . , n}.
Take any Q ∈ N satisfying 1

Q < mini∈{1,...,n}
∣∣∣α− pi

qi

∣∣∣. By Theorem 1.1.6, there are coprime
p, q ∈ Z, with q ∈ {1, . . . , Q}, such that

0 6=
∣∣∣∣α− p

q

∣∣∣∣ = 1
q
· |qα− p| < 1

qQ
<

∣∣∣∣α− pi
qi

∣∣∣∣ ∀ i ∈ {1, . . . , n}.

In particular, pq 6=
pi
qi

for all i ∈ {1, . . . , n}. Moreover, as q ∈ {1, . . . , Q}, we have∣∣∣∣α− p

q

∣∣∣∣ = 1
q
· |qα− p| < 1

qQ
≤ 1
q2 .

So, there are at least n+1 rational numbers satisfying (1.3), which contradicts our assumption.
Hence, there must be infinitely many rational numbers satisfying (1.3). This proves the
corollary.

Remark 1.1.10. The exponent 2 in (1.3) will keep us busy for some time . A natural question
is, whether the statement of Corollary 1.1.9 remains true if 2 is replaced by 3, or 4, or 5, ...
Note that increasing the exponent makes the approximations better!

Notation 1.1.11. Throughout the lectures, we will fix an algebraic closure of Q in C and
denote it by Q. An element in α ∈ Q is called algebraic or an algebraic number. This means,
that there are integers a0, . . . , ad, with ad 6= 0, such that adαd + ad−1α

d−1 + . . . + a0 = 0.
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A different way to formulate this, is that there is a polynomial f(x) ∈ Z[x] \ {0}, with
f(α) = 0. In fact, there is a unique (up to multiplication by −1) irreducible polynomial
f(x) ∈ Z[x] satisfying f(α) = 0. Such a polynomial is called minimal polynomial of α. If
f(x) = adx

d+ad−1x
d−1+. . .+ad is the minimal polynomial of α, then k = gcd(ad, . . . , a0) = 1,

since otherwise f(x) = k · (adk x
d + . . .+ a0

k ) would not be irreducible.
An equivalent definition for an algebraic number is, that α ∈ C is algebraic if and only if
[Q(α) : Q] is finite. In this case, [Q(α) : Q] equals the degree of the minimal polynomial of α,
and is called the degree of α.
You have learned all of this in your Algebra class, to which we refer for further details!

Theorem 1.1.12 (Liouville). Let α ∈ Q be of degree d ≥ 2 (i.e. an algebraic irrational
number). Then there is a constant c(α) > 0 such that for all rational numbers p

q , q ∈ N, we
have

∣∣∣α− p
q

∣∣∣ > c(α)
qd

.

Proof. We will present an analytic proof here. Later we will present an algebraic proof as
well.
Let f(x) = adx

d + ad−1x
d−1 + . . .+ a0 be the minimal polynomial of α. Since d ≥ 2, there is

a non-constant polynomial g(x) ∈ C[x] such that f(x) = (x− α) · g(x). Since any irreducible
polynomial over Z[x] is separable (does not have multiple roots), we know that g(α) 6= 0.
Also, since f(x) is irreducible, it has no roots in Q, and hence g(pq ) 6= 0. Moreover, as a
polynomial, g(x) is a continuous self-map on C. Let ε > 0 be smaller than the distance of α
to any other root of f(x). Then, g(β) 6= 0 for all β ∈ C, with |α− β| < ε. So in particular
0 6= δ = sup|α−β|<ε |g(β)|. Since g(x) is continuous on C, we also know that δ 6= ∞. Hence,
c(α) := min{ε, δ−1} ∈ R.
Assume there are p ∈ Z, q ∈ N, such that

∣∣∣α− p
q

∣∣∣ ≤ c(α)
qd

. Then∣∣∣∣α− p

q

∣∣∣∣ < ε =⇒ 0 6=
∣∣∣∣g(p

q
)
∣∣∣∣ < δ

=⇒
∣∣∣∣f(p

q
)
∣∣∣∣ =

∣∣∣∣α− p

q

∣∣∣∣ · ∣∣∣∣g(p
q

)
∣∣∣∣ < c(α)

qd
· δ ≤ 1

qd
.

Multiplying both sides of the latter inequality by qd yields

1 >
∣∣∣∣qd · f(p

q
)
∣∣∣∣

=
∣∣∣∣qd · (ad(pq )d + ad−1(p

q
)d−1 + . . .+ a0

∣∣∣∣ =
∣∣∣adpd + ad−1p

d−1q + . . .+ a0q
d
∣∣∣ ∈ N0.

It follows that
∣∣∣qd · f(pq )

∣∣∣ = 0, which contradicts f(pq ) 6= 0.

Remark 1.1.13. Theorem 1.1.12 tells us, that algebraic numbers cannot have “arbitrarily
good” approximations. So maybe we can use this to prove the transcendence of certain
complex numbers. Recall that an α ∈ C is called transcendental over Q if it is not algebraic.
Cantor provided a remarkable argument for the existence of transcendental numbers: The
set of complex numbers is uncountable by Cantor’s diagonal argument. On the other hand
Q consists of roots of polynomials in Z[x]. We have

Z[x] =
∞⋃
N=0
{a0 + a1x+ . . .+ adx

d|d ∈ N, a0, . . . , an ∈ Z, and d+ |a0|+ . . .+ |ad| = N}.
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As a countable union of finite sets, Z[x] is countable. But similarly,

Q =
⋃

f(x)∈Z[x]
{α ∈ C|f(α) = 0}

is a countable union of finite sets, and also countable. This means that the number of algebraic
numbers in C is countable, and the number of transcendental elements in C is uncountable.
So the probability that an randomly chosen α ∈ C is transcendental is 1. However, the task
of proving that a complex number is transcendental is extremely hard, and in most cases even
impossible with the known methods.

Corollary 1.1.14. Let α be a real number. If for all d ∈ N there are sequences (pn)n∈N in Z
and (qn)n∈N in N, such that

0 6= qdn |qnα− pn| −→ 0 , as n→∞, (1.4)

then α is transcendental.

Proof. We will show that if α is algebraic (i.e. not transcendental), then for some d ∈ N there
are no such sequences satisfying (1.4). This is obvious for α ∈ Q (see Lemma 1.1.4). Hence,
we assume that α is algebraic of degree d+1 ≥ 2. Then by Theorem 1.1.12, there is a positive
constant c(α), such that

∣∣∣α− p
q

∣∣∣ ≥ c(α)
qd+1 for all p ∈ Z, q ∈ N. This means precisely

qd · |qα− p| > c(α) ∀ p ∈ Z, q ∈ N.

In particular, there are no sequences (pn)n∈N in Z and (qn)n∈N in N, satisfying (1.4). This is
what we needed to prove.

Slogan: Transcendental numbers can be better approximated than algebraic numbers!

Example 1.1.15. The number α = 0, 1 00000 . . . 0︸ ︷︷ ︸
n-times

1 can be approximated by 1
10 to a very

high accuracy (depending on n). To construct a number α such that for any n ∈ N there is
a rational number p

q that satisfies
∣∣∣α− p

q

∣∣∣ < 1
qn , we may increase the numbers of zeros in the

decimal digits between non-zero entries:

α = 0, 10 . . . 010 . . . . . . 010 . . . . . . . . . 010 . . . . . . . . .

Let’s do this with a concrete example. We set

L :=
∞∑
k=1

1
10k! .

The sum surely converges, so L is indeed a real number. For any n ∈ N we define pn =∑n
k=1 10n!−k!, and qn = 10n! so that

sn =
n∑
k=1

1
10k! =

∑n
k=1 10n!−k!

10n! = pn
qn
.
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For d ∈ N arbitrary, we have

0 6= qdn · |qnL− pn| = 10n!d
∣∣∣∣∣10n!

∞∑
k=1

1
10k! −

n∑
k=1

10n!−k!
∣∣∣∣∣

= 10n!d
∞∑

k=n+1

1
10k! < 10n!d

∞∑
k=(n+1)!

1
10k

= 1
9 · 10n!(n+1−d) − 1

n→∞−→ 0.

It follows from Corollary 1.1.14, that L is transcendental. The number L is called the Liouville-
constant. It was the first example of a transcendental number. Actually, this example was
also the first proof of the existence of transcendental numbers, as its construction precedes
Cantors set theoretic argument.

Remark 1.1.16. We want to compare Theorem 1.1.12 (which gives an lower bound for
approximations of algebraic numbers) and Corollary 1.1.9 (which gives an upper bound for
approximations of any real number). Therefore, let α be a real algebraic number of degree
d ≥ 2. As usual, all rational numbers p

q are of the form p ∈ Z, q ∈ N, and gcd(p, q) = 1. Then

c(α)
qd

<︸︷︷︸

fo
r
al
lr

at
io
na

ls

∣∣∣∣α− p

q

∣∣∣∣ <︸︷︷︸
fo
r
in
fin

ite
ly

m
an

y
ra
tio

na
ls

1
q2 .

Which of the two bounds is closer to the truth? It follows that if α is an irrational quadratic
number (i.e. the degree d of α is two), then we can neither increase the exponent in Dirichlet’s
result, nor shrink the exponent in Liouville’s result. Since, the exponent in Dirichlet’s result
is independent on α, we cannot improve this result, by replacing the exponent 2 by 3. This
answers the question in Remark 1.1.10. After Liouville, many mathematicians tried to improve
his result.

1844:
∣∣∣α− p

q

∣∣∣ > c(α)
qd

(Liouville)

1908:
∣∣∣α− p

q

∣∣∣ > c(α,ε)
q1+d/2+ε ∀ ε > 0 (Thue)

1921:
∣∣∣α− p

q

∣∣∣ > c(α)
q2
√
d
(Siegel)

1947:
∣∣∣α− p

q

∣∣∣ > c(α)
q
√

2d (Dyson)

Finally, in 1955 Klaus Friedrich Roth proved the following Theorem. This Theorem is best
possible, since it is false for ε = 0 (if d ≥ 3), by Dirichlet’s Corollary 1.1.9. For his proof,
Roth was awarded the Fields medal in 1958.
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Theorem 1.1.17 (Roth’s Theorem). For any ε > 0 and any α ∈ Q \ Q, there exists a
constant c(α, ε) > 0, such that for all rational numbers p

q , q ∈ N, we have
∣∣∣α− p

q

∣∣∣ > c(α,ε)
q2+ε .

The goals for this course are:

• Prove how to find the “best” approximations for a given α ∈ R (and explain what this
actually means).

• We can also approximate real numbers by elements from a fixed number field. We will
formulate and prove generalizations of all results from this introduction in this setting.

• We could replace the usual absolute value |.| by a p-adic absolute value. We will study
this setting as well.

• Finally, we aim to formulate and prove Roth’s theorem for arbitrary absolute values
and arbitrary number fields.

Exercises

Exercise 1.1. Let n,Q ∈ N be arbitrary. Prove that for every choice of n real numbers
α1, . . . , αn ∈ R there exist p1, . . . , pn ∈ Z and q ∈ {1, . . . , Qn} such that

|qαi − pi| <
1
Q

∀ i ∈ {1, . . . , n}.

Exercise 1.2. Improve Theorem 1.1.6 in the following way: Prove that for every α ∈ R and
every Q ∈ N, there exist p ∈ Z and q ∈ {1, . . . , Q} such that |qα− p| ≤ 1

Q+1 .
Hint: Follow the original proof, with Q+ 1 subintervals.

Exercise 1.3. Prove the claim in Example 1.1.8 (a). This is, prove that for

• p0 = −1, p1 = 1, p2 = −3, and pn+1 = −2pn + pn−1 for all n ≥ 2, and

• q0 = 0, q1 = 1, p2 = −2, and qn+1 = −2qn + qn−1 for all n ≥ 2

we have (
√

2− 1)n = qn
√

2− pn for all n ∈ N0.

Exercise 1.4. Give examples of at least five transcendental numbers, not including the
Liouville-constant. Choose your examples such that you could prove of at least two of your
examples that they are indeed transcendental.

Exercise 1.5. Prove that at least one of the numbers π + e and π · e is transcendental.
Hint: You have to use some basic statements from an algebra course.

Exercise 1.6. Prove that the following real number is transcendental:

α =
∞∑
k=1

1
23k .

Hint: You may (and should) assume the validity of Roth’s theorem.
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1.2 Finite Continued Fractions
Definition 1.2.1. Let x0, x1, . . . , xn ∈ R, with x1, . . . , xn > 0. Then we set

〈x0, x1, . . . , xn〉 = x0 +
1

x1 +
1

x2 +
1

. . . +
1

xn−1 +
1
xn

If a0 ∈ Z and a1, . . . , an ∈ N, then 〈a0, . . . , an〉 is called a finite continued fraction.

So for instance

〈1, 2, 3〉 = 1 +
1

2 +
1
3

= 1 + 1
7
3

= 1 + 3
7 = 10

7 .

Note that 〈x0, x1, . . . , xn〉 is always a real number, since x1, . . . , xn > 0 and hence all denom-
inators are (as sums of positive real numbers) positive.

Lemma 1.2.2. For all x0, . . . , xn ∈ R, with x1, . . . , xn > 0, we have

(i) 〈x0, . . . , xn〉 = x0 + 1
〈x1,...,xn〉 = 〈x0, 〈x1, . . . , xn〉〉.

(ii) 〈x0 + x, x1, . . . , xn〉 = x+ 〈x0, . . . , xn〉 for all x ∈ R.

(iii) 〈x0, x1, . . . , xn〉 = 〈x0, x1, . . . , xn−2, xn−1 + 1
xn
〉.

(iv) 〈x0, . . . , xn〉 ≥ x0 with equality, if and only if n = 0.

Proof. All these statements follow immediately from the definition.

It is clear that any finite continued fraction represents a rational number. The converse is
also true:

Proposition 1.2.3. For every α ∈ Q, there are a0 ∈ Z and a1, . . . , an ∈ N such that α =
〈a0, . . . , an〉.

Proof. The proof is constructive! Write α = p
q , with p ∈ Z, q ∈ N, and gcd(p, q) = 1. We run

the Euclidean algorithm and get

p = a0q + r0; a0 =
⌊
p

q

⌋
∈ Z, r0 ∈ {0, . . . , q − 1}

q = a1r0 + r1; a1 ∈ N, r1 ∈ {0, . . . , r0 − 1}
r0 = a2r1 + r2; a2 ∈ N, r2 ∈ {0, . . . , r1 − 1}

...
rn−3 = an−1rn−2 + rn−1; an−1 ∈ N, rn−1 = 1 (since gcd(p, q) = 1)

rn−2 = anrn−1; an = rn−2 ∈ N
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The remainders become smaller and smaller, so in particular r0, . . . , rn−1 ≥ 1. We claim that
α = p

q = 〈a0, . . . , an〉 and prove this by induction on n.
If n = 0, then p = a0q which implies α = p

q = a0 = 〈a0〉. This provides the induction base.
Now we assume that the statement is correct whenever the Euclidean algorithm takes n− 1
steps, which is the case for q and r0. Hence, our induction hypothesis implies q

r0
= 〈a1, . . . , an〉.

Therefore,
p

q
= a0 + r0

q
= a0 + 1

q
r0

= a0 + 1
〈a1, . . . , an〉

1.2.2= 〈a0, . . . , an〉.

For the first equality, just divide the equation p = a0q + r0 by q.

Example 1.2.4. We calculate two finite continued fractions.

(a) First we work with 355
113 (do you recognize this?). The Euclidean algorithm gives

355 = 3 · 113 + 16
113 = 7 · 16 + 1
16 = 16 · 1 + 0

Hence, 355
113 = 〈3, 7, 16〉.

(b) Recall the Fibonacci sequence f0 = 0, f1 = 1, and fn+1 = fn + fn−1 for all n ∈ N.
Obviously, this sequence is strictly increasing for n ≥ 2. For any n ≥ 2 the Euclidean
algorithm of two consecutive Fibonacci numbers reads

fn+1 = 1 · fn + fn−1

fn = 1 · fn−1 + fn−2
...
f4 = 1 · f3 + f2

f3 = 2 · f2 + 0

Therefore,
fn+1
fn

= 〈 1, . . . , 1︸ ︷︷ ︸
(n−2)-times

, 2〉 = 〈 1, . . . , 1︸ ︷︷ ︸
(n−2)-times

, 1 + 1
1〉

1.2.2= 〈1, . . . , 1︸ ︷︷ ︸
n-times

〉.

We see, that the representation of a rational number by a finite continued fraction is not
unique. But the next lemma tells us, that the situation is still quite comfortable.

Lemma 1.2.5. For every α ∈ Q there are precisely two representations of α as a finite
continued fraction. For α ∈ Z these are 〈α〉 and 〈α − 1, 1〉. For α ∈ Q \ Z these are of the
form 〈a0, . . . , an〉, an ≥ 2, and 〈a0, . . . , an − 1, 1〉.

Proof. As usual we write α = p
q , q ≥ 1, gcd(p, q) = 1, and perform an induction on q. In the

induction base we have q = 1, which is precisely the case when α ∈ Z. We have α = 〈a0〉
if and only if α = a0. So assume α = 〈a0, . . . , an〉, with n ≥ 1. Then α = a0 + 1

〈a1,...,an〉 ,

and 〈a1, . . . , an〉
1.2.2
≥ a1 ≥ 1. But 1

〈a1,...,an〉 = α − a0 is an integer. Hence 〈a1, . . . , an〉 = 1.
Again by Lemma 1.2.2, this is precisely the case when n = 1 and a1 = 1. It follows that
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α = 〈a0, 1〉 = a0 + 1
1 , and therefore a0 = α − 1. This gives that α = 〈α − 1, 1〉 is the only

representation of α as a finite continued fraction with more than one entry.
Our induction hypothesis is, that for fixed q > 1 the statement of the lemma is true for all
rational numbers p′

q′ , with q
′ ∈ {1, . . . , q − 1}.

For the induction step, we take a rational number α = p
q = 〈a0, . . . , an〉 (with q from the

induction hypothesis). Since q > 1, we know that α is not an integer, and hence n ≥ 1. As
in the proof of the induction base, we have

α = p

q
= a0 + 1

〈a1, . . . , an〉︸ ︷︷ ︸
∈(0,1)

But this just means that a0 =
⌊
p
q

⌋
and 1

〈a1,...,an〉 = {pq}. In particular, there is just one
possible value for a0, which is the same as a0 is uniquely determined.
Moreover,

1 ≤ a1 < 〈a1, . . . , an〉 = 1
〈0, a1, . . . , an〉

=
(
p

q
− a0

)−1
= q

p− qa0
.

Hence, 〈a1, . . . , an〉 = q
u , for some u ∈ {1, . . . , q−1}. Now we can apply our induction hypoth-

esis, and we can conclude that there precisely two finite continued fraction representations of
q
u , namely 〈a1, . . . , an〉, with an ≥ 2, and 〈a1, . . . , an− 1, 1〉. Since we already know that a0 is
uniquely determined, the lemma is proved.

Remark 1.2.6. Given a0 ∈ Z and a1, . . . , an ∈ N, we can calculate p, q ∈ Z with 〈a0, . . . , an〉 =
p
q by successively calculating

〈a0, . . . , an〉 = 〈a0, . . . , an−1 + 1
an︸ ︷︷ ︸

=p′/q′

〉 = 〈a0, . . . , an−2 + q′

p′︸ ︷︷ ︸
=p′′/q′′

〉 = . . .

This is, we can calculate p and q by going from right to left, which can become quite painful
for large n. In the following proposition we will introduce an important recursive formula,
which allows us to calculate p and q from left to right.

Proposition 1.2.7. Let a0 ∈ Z and a1, a2, . . . be an infinite sequence of natural numbers.
We define

p−2 = 0, p−1 = 1, and pk = akpk−1 + pk−2 ∀ k ∈ N0

q−2 = 1, q−1 = 0, and qk = akqk−1 + qk−2 ∀ k ∈ N0

Then we have 〈a0, . . . , an, x〉 = xpn+pn−1
xqn+qn−1

for all integers n ≥ −1 and all real numbers x > 0.

Proof. Induction again: For n = −1 we have 〈a0, . . . , an, x〉 = 〈x〉 = x·1+0
x·0+1 = xpn+pn−1

xqn+qn−1
for all

x ∈ R, which provides the induction base.
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Now we assume that the equation holds for all real x > 0 for a fixed n ≥ −1. Then we get
for any real x > 0

〈a0, . . . , an+1, x〉 = 〈a0, . . . , an, an+1 + 1
x
〉

IH=
(an+1 + 1

x)pn + pn−1

(an+1 + 1
x)qn + qn−1

= x(an+1pn + pn−1) + pn
x(an+1qn + qn−1) + qn

Def= xpn+1 + pn
xqn+1 + qn

.

This proves the proposition.

Corollary 1.2.8. In the notation from Proposition 1.2.7, we have 〈a0, . . . , an〉 = pn
qn

for all
n ∈ N0.
Proof. By Proposition 1.2.3 it follows

〈a0, . . . , an〉 = anpn−1 + pn−2
anqn−1 + qn−2

= pn
qn
.

Example 1.2.9. The integers pn and qn are defined recursively, and hence from left to right.
Which rational number is represented by 〈2, 1, 2, 1, 1, 4〉? We just need to calculate p5 and q5.
This is most convenient using the following table

k ak pk qk
−2 - 0 1
−1 - 1 0
0 2 2 1
1 1 3 1
2 2 8 3
3 1 11 4
4 1 19 7
5 4 87 32

It follows 〈2, 1, 2, 1, 1, 4〉 = 87
32 (and 〈2, 1, 2, 1, 1〉 = 19

7 , and 〈2, 1, 2, 1〉 = 11
4 , ...).

Remark 1.2.10. The idea is, that p0
q0
, p1
q1
, p2
q2
, ... approximate pn

qn
= 〈a0, . . . , an〉 with an

increasing accuracy (check this for the values in Example 1.2.9). Since we want to approximate
real numbers and not only rational numbers we have to generalize our continued fractions
before we can prove the vague statement above.

Exercises
Exercise 1.7. (a) Write 123

73 as a continued fraction.

(b) Let n ≥ 2 be an integer. Write the continued fraction 〈1, n − 1, 1, 3, n〉 as a rational
number p

q , with integers p, q depending on n.
Exercise 1.8. Let a0 ∈ Z and a1, a2 . . . ∈ N. Moreover, let pk and qk be defined as in
Proposition 1.2.7. Prove that for every n ∈ N0 we have

〈an, an−1, . . . , a1〉 = qn
qn−1

and 〈0, an, an−1, . . . , a1〉 = qn−1
qn

.
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1.3 Infinite Continued Fractions
Notation 1.3.1. In this section we will extensively use the notations from Proposition 1.2.7,
which we recall here:

• a0 ∈ Z, and a1, a2, . . . is an infinite sequence of natural numbers.

• p−2 = 0, p−1 = 1, and pk = akpk−1 + pk−2 for all k ∈ N0.

• q−2 = 1, q−1 = 0, and qk = akqk−1 + qk−2 for all k ∈ N0.
Lemma 1.3.2. We use Notation 1.3.1. Then we have
(i) pnqn−1 − qnpn−1 = (−1)n−1 for all integers n ≥ −1.

(ii) 1 = q0 ≤ q1 < q2 < q3 < . . ., which means that (qn)n∈N is strictly increasing.

(iii) pn+1
qn+1

− pn
qn

= (−1)n
qn+1qn

for all n ∈ N0.

(iv) p0
q0
< p2

q2
< p4

q4
< . . ., which means that (p2n

q2n
)n∈N0 is strictly increasing.

(v) p1
q1
> p3

q3
> p5

q5
> . . ., which means that (p2n+1

q2n+1
)n∈N0 is strictly decreasing.

Proof. None of these statements requires any deep thoughts.
(i) For n = −1 we have p−1q−2−q−1p−2 = 1 ·1−0 ·0 = (−1)−1−1, which gives the induction

base. Now assume that the equation is correct for fixed but arbitrary n ≥ −1. Then

pn+1qn − qn+1pn = (an+1pn + pn−1)qn − (an+1qn + qn−1)pn
= pn−1qn − qn−1pn = (−1) · (pnqn−1 − qnpn−1)
IH= (−1) · (−1)n−1 = (−1)(n+1)−1.

This proves the first statement of the lemma.

(ii) This follows from

1 = a0 · q−1︸︷︷︸
=0

+ q−2︸︷︷︸
=1

= q0 ≤ a1 · q0︸︷︷︸
=1

+ q−1︸︷︷︸
=0

= q1 < a2q1︸︷︷︸
≥q1

+ q0︸︷︷︸
≥1

= q2 < a3q2︸︷︷︸
≥q2

+ q1︸︷︷︸
≥1

= q3 < . . .

We will not not give the formal induction, since the statement should be clear enough
now.

(iii) For any n ∈ N0 we have
pn+1
qn+1

− pn
qn

= pn+1qn − qn+1pn
qn+1qn

(i)= (−1)n

qn+1qn
.

(iv) Let n ∈ N be arbitrary. Then we have
p2n
q2n
− p2n−2
q2n−2

=
(
p2n
q2n
− p2n−1
q2n−1

)
+
(
p2n−1
q2n−1

− p2n−2
q2n−2

)
(iii)= (−1)2n−1

q2nq2n−1
+ (−1)2n−2

q2n−1q2n−2

= 1
q2n−1q2n−2

− 1
q2nq2n−1

(ii)
> 0.

This proves part (iv) and part (v) follows from exactly the same argument.
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Proposition 1.3.3. Let a0 ∈ Z and a1, a2, . . . ∈ N be an infinite sequence. Then the limit
limn→∞〈a0, . . . , an〉 exists and is irrational.

Proof. As always we will use the notation from 1.3.1. Then 〈a0, . . . , an〉 = pn
qn

for all n ∈ N0
by Corollary 1.2.8. Hence, we have to prove that limn→∞

pn
qn

exists and is irrational.
We already know from Lemma 1.3.2 that the sequence (p2n

q2n
)n∈N0 is strictly increasing, and

the sequence (p2n+1
q2n+1

)n∈N0 is strictly decreasing. Moreover, we have for all n ∈ N

p2n
q2n

1.3.2= p2n−1
q2n−1

− 1
q2nq2n−1

<
p2n−1
q2n−1

≤ p1
q1

and p2n+1
q2n+1

1.3.2= p2n
q2n

+ 1
q2n+1q2n

>
p2n
q2n
≥ p0
q0
.

So, the sequence (p2n
q2n

)n∈N0 is strictly increasing and bounded from above by p1
q1
. Hence,

E = limn→∞
p2n
q2n

exists, and the same argument yields that N = limn→∞
p2n+1
q2n+1

exists.
We are left to prove N = E. But this follows again from Lemma 1.3.2, since

p2n+1
q2n+1

− p2n
q2n

= 1
q2n+1q2n

n→∞−→ 0.

This proves the existence of limn→∞
pn
qn

= limn→∞〈a0, . . . , an〉. Since the sequence with even
indices is strictly increasing, and the sequence with odd indices is strictly decreasing, we have

p2k+1
q2k+1

> lim
n→∞

pn
qn

>
p2k
q2k

∀ k ∈ N0. (1.5)

In particular, ∣∣∣∣ lim
n→∞

pn
qn
− pk
qk

∣∣∣∣ < ∣∣∣∣pk+1
qk+1

− pk
qk

∣∣∣∣ 1.3.2= 1
qk+1qk

∀ k ∈ N0, (1.6)

which implies ∣∣∣∣qk lim
n→∞

pn
qn
− pk

∣∣∣∣ < 1
qk+1

k→∞−→ 0.

By Corollary 1.1.7, it follows that limn→∞
pn
qn

must be irrational (it can be approximated too
good, to be a rational number).

Definition 1.3.4. For a0 ∈ Z and an infinite sequence a1, a2, . . . ∈ N, we set 〈a0, a1, . . .〉 =
limn→∞〈a0, . . . , an〉 and call this an infinite continued fraction.

As we have seen above, for any sequence 〈a0, a1, . . .〉 exists and is a real irrational number.

Example 1.3.5. We already have calculated an explicit example in 1.2.4:

〈1, 1, 1, . . .〉 = lim
n→∞

〈1, . . . , 1︸ ︷︷ ︸
n times

〉 = lim
n→∞

fn+1
fn

=
√

5 + 1
2 .

Here, f0, f1, f2, . . . are the Fibonacci numbers. The last equation is a standard property of
Fibonacci numbers. The value

√
5+1
2 is called the golden ratio.

We already know that every rational number can be represented (in precisely two ways) as
a finite continued fraction. We had two representatives, since we could manipulate the last
entry of the finite continued fraction. In an infinite continued fraction, there is no last entry,
which is essentially the argument for the uniqueness in the following proposition.
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Proposition 1.3.6. For all α ∈ R\Q, there are unique integers a0, a1, . . ., with a1, a2, . . . ≥ 1,
such that α = 〈a0, a1, . . .〉.

Proof. As in the rational case, the proof is constructive. Actually, a kind of Euclidean algo-
rithm for non-integers is hidden in this proof. Define

α0 = α, and αn = 1
{αn−1} = 1

αn−1 − bαn−1c
∀ n ∈ N.

Since α = α0 is irrational, we have {α0} = α0 − bα0c ∈ (0, 1), and α1 > 1 is again irrational.
Inductively, it follows that αn > 1 is irrational for all n ∈ N. In particular, every αn is
well-defined. Note, that αn = bαnc+{αn} = bαnc+ 1

αn+1
for all n ∈ N0. Using this equation,

we have

α = α0 = 〈bα0c+ 1
α1
〉 1.2.2= 〈bα0c , α1〉 = 〈bα0c , bα1c+ 1

α2
〉 1.2.2= 〈bα0c , bα1c , α2〉

= . . . = 〈bα0c , bα1c , bα2c , . . . , bαnc , αn+1〉 ∀ n ∈ N. (1.7)

Now you should have an idea how the infinite continued fraction for α looks like. We set
bαnc = an for all n ∈ N0. Since αn > 1 for all n ∈ N, we know that an ∈ N for all n ∈ N.
With pn and qn as usual (see 1.3.1), we get

αn+1qn + qn−1 > bαn+1c qn + qn−1 = an+1qn + qn−1 = qn+1 ∀ n ∈ N0. (1.8)

It follows:∣∣∣∣α− pn
qn

∣∣∣∣ (1.7)=
∣∣∣∣〈a0, a1, . . . , an, αn+1〉 −

pn
qn

∣∣∣∣ 1.2.7=
∣∣∣∣αn+1pn + pn−1
αn+1qn + qn−1

− pn
qn

∣∣∣∣
=
∣∣∣∣(αn+1pn + pn−1)qn − (αn+1qn + qn−1)pn

(αn+1qn + qn−1)qn

∣∣∣∣ =
∣∣∣∣ pn−1qn − qn−1pn
(αn+1qn + qn−1)qn

∣∣∣∣
1.3.2= 1

(αn+1qn + qn−1)qn
(1.8)
<

1
qn+1qn

. (1.9)

Since 1
qn+1qn

tends to zero as n tends to infinity, we finally achieve

α = lim
n→∞

pn
qn

= lim
n→∞

〈a0, . . . , an〉 = 〈a0, a1, . . .〉.

So in particular every real irrational α can be written as an infinite continued fraction. It
remains to prove the uniqueness of the an’s. Therefore, let α = 〈b0, b1, . . .〉 for some integers
b0, b1, . . .. Then α = b0 + 1

〈b1,...〉 , and
1

〈b1,...〉 ∈ (0, 1). It follows, b0 = bαc = a0. Moreover,
α1 = 〈b1, . . .〉, and as before we see that b1 = bα1c = a1. It follows inductively that bn = an for
all n ∈ N0. Hence, there is just one representation of α as an infinite continued fraction.

Remark 1.3.7. The values α0, α1, . . . from the proof above will be used throughout this
chapter. Note that the construction ensures, that αk = 〈ak, ak+1, ak+2, . . .〉 (see (1.7)). This
is in harmony with the fundamental properties 1.2.2, since we have

〈a0, a1, . . . , ak−1, αk〉 = α = 〈a0, . . . , ak−1, 〈ak, ak+1, . . .〉〉.

Example 1.3.8. As mentioned in the proof, we now have a perfectly explicit method to
construct the entries of an infinite continued fraction.
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(a) Let us write
√

2 as an infinite continued fraction. We set α0 =
√

2, and a0 =
⌊√

2
⌋

= 1.
Then α1 = 1√

2−1 and

a1 =
⌊ 1√

2− 1

⌋
=
⌊ √

2 + 1
(
√

2− 1)(
√

2 + 1)

⌋
=
⌊√

2 + 1
⌋

= 2.

Next, we have α2 = 1
α1−bα1c = 1√

2+1−2 = α1 and hence a2 = a1 = 2.

Since α1 = α2, it is also α3 = 1
α2−a2

= 1
α1−a1

= α2 (and in particular a3 = a2 = a1). This
is, we are in a loop and have an = a1 = 2 for all n ∈ N. Hence

√
2 = 〈1, 2, 2, 2, 2, 2, . . .〉.

(b) Without proof we mention that the infinite continued fraction for e looks like

〈2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, . . .〉

For a proof of this we refer to Sections 2.10 and 2.11 of [2].

(c) Of course ”most“ continued fractions do not follow such a nice pattern. We will calculate
the first few entries of the continued fraction for π.

a0 = bπc = 3

a1 =
⌊ 1
π − 3

⌋
= 7

a2 =
⌊

1
1

π−3 − 7

⌋
=
⌊

π − 3
−7π + 22

⌋
= 15

a3 =
⌊

1
π−3
−7π+22 − 15

⌋
=
⌊ −7π + 22

106π − 333

⌋
= 1

Hence, π = 〈3, 7, 15, 1, . . .〉.

Definition 1.3.9. In the usual notation, for any n ∈ N0 we call pnqn
1.2.8= 〈a0, . . . , an〉 the n-th

convergent of the infinite continued fraction 〈a0, a1, . . .〉.

Remark 1.3.10. We know that pnqn−1− qnpn−1 = ±1. Hence, by Bézout’s lemma, we have
gcd(pn, qn) = 1 for all n ∈ N0. We have seen in Proposition 1.3.3 that

lim
n→∞

∣∣∣∣〈a0, a1, . . .〉 −
pn
qn

∣∣∣∣ = 0.

Hence, the rational numbers pn
qn

are indeed approximations of α = 〈a0, a1, . . .〉 with increasing
accuracy.

Example 1.3.11. The first convergents of
√

2 = 〈1, 2, 2, 2, 2, . . .〉 are
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k ak pk qk
pk
qk

−2 – 0 1 –
−1 – 1 0 –
0 1 1 1 1
1 2 3 2 3

2
2 2 7 5 7

5
3 2 17 12 17

12
4 2 41 29 41

29
5 2 99 70 99

70
6 2 239 169 239

169
One application of this, was the size of an A4 paper. In order that a A4 paper looks like a
small A3 paper, such that the width of the A3 paper is the height of the A4 paper, the side
length of an A4 paper should have the ratio

√
2. But of course, one would like to be able to

measure everything in full millimetres. Hence, the side-ratio should be approximately
√

2. In
fact it is 297

210 = 99
70 , the fifth convergent.

The same argument yields, that the side-ratio of any A paper should be approximately
√

2.
In addition, the area of an A0 paper should be approximately 1m2. Try to figure out the
actual side-ratio of an A0 paper!
Next we will show, that the convergents of α are actually the best possible approximations of
α. Therefore, the following theorem is sometimes called the law of best approximation.
Theorem 1.3.12. Let α ∈ R \Q be arbitrary, and let α = 〈a0, a1, a2, . . .〉 and pn, qn be as in
Notation 1.3.1. Then
(i) |qnα− pn| > |qn+1α− pn+1| for all n ∈ N0.

(ii) For fixed n ∈ N let p ∈ Z, q ∈ N, with q ≤ qn and (p, q) 6= (pn, qn). Then |qα − p| ≥
|qn−1α− pn−1|.

Remark 1.3.13. Note, that Theorem 1.3.12 implies that |α− p
q | > |α−

pn
qn
|, whenever q ≤ qn

and p
q 6=

pn
qn
. This means that pn

qn
is the best approximation for α among all rational numbers

with positive denominator ≤ qn.
Proof of Theorem 1.3.12. The first statement is quite easy to prove. The proof of the second
statement goes back to Lagrange.
(i) Let n ∈ N0 be arbitrary. We use the notation from the proof of Proposition 1.3.6. This

is α0 = α, and αk = 1
{αk−1} for all k ∈ N. As seen in the proof of Proposition 1.3.6, we

have
1 < αn+2 and αn+1 = an+1 + 1

αn+2
< an+1 + 1. (1.10)

This implies

|qn+1α− pn+1|
(1.9)= 1

αn+2qn+1 + qn

(1.10)
<

1
qn+1 + qn

= 1
an+1qn + qn−1 + qn

= 1
(an+1 + 1)qn + qn−1

(1.10)
<

1
αn+1qn + qn−1

(1.9)= |qnα− pn|,

which proves part (i) of the theorem.
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(ii) Let p, q, and n be as in the statement. We again apply the fundamental property

pnqn−1−qnpn−1 = ±1. The left hand side is the determinant of the matrix
(
pn pn−1
qn qn−1

)
.

In particular, this determinant is invertible in Z, and hence the matrix is in GL2(Z).
So, there are k, ` ∈ Z such that(

pn pn−1
qn qn−1

)
·
(
k
l

)
=
(
p
q

)
. (1.11)

We distinguish between several cases. Note that q ∈ N, and hence k and ` cannot both
be equal to zero.

1. case: ` = 0, k 6= 0

Then kpn = p and kqn = q. But since q ≤ qn, it follows k = 1, which implies (p, q) =
(pn, qn). This contradicts our assumption, and hence this case is not possible.

2. case: k = 0, ` 6= 0

Then `pn−1 = p and `qn−1 = q. This implies the claim, since

|qα− p| = |`| · |qn−1α− pn−1| ≥ |qn−1α− pn−1|.

3. case: k` 6= 0

We already know that pn
qn
> α if n is odd and pn

qn
< α if n is even. Since qn and qn−1 are

both positive (and precisely one of n and n − 1 is even), it follows that qnα − pn and
qn−1α− pn−1 have opposite signs (one is positive, the other is negative). Moreover, by

(1.11) we have kqn + `qn−1 = q, and |kqn|+ |`qn−1|
k 6=0
> qn ≥ q. Therefore, k and ` must

be of opposite sign, too. Multiplying the pairs (k, `) and (qnα − pn, qn−1α − pn−1) of
opposite signs, yields that k · (qnα− pn) and ` · (qn−1α− pn−1) have the same sign. (If
you doubt this conclusion: check all four possible combinations!).
Since these two terms have the same sign, we get

|k · (qnα− pn)|+ |` · (qn−1α− pn−1)| = |k · (qnα− pn) + ` · (qn−1α− pn−1)| = |qα− p|.

The values |k · (qnα− pn)| and |` · (qn−1α− pn−1)| are both positive, and hence

|qα− p| > |` · (qn−1α− pn−1)|
`6=0
≥ |qn−1α− pn−1|,

which proves statement (ii).
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Corollary 1.3.14. With α = 〈a0, a1, . . .〉 and pn, qn as usual, we have

lim inf
(p,q)∈Z×N

q2 ·
∣∣∣∣α− p

q

∣∣∣∣ = lim inf
n→∞

q2
n ·
∣∣∣∣α− pn

qn

∣∣∣∣ .
Proof. Let us first note some simple facts, which will be used later. By Dirichlet 1.1.9 we have
lim inf(p,q)∈Z×N q

2 ·
∣∣∣α− p

q

∣∣∣ ≤ 1. Moreover, for any fixed q ∈ N it is lim infp∈Z q2 ·
∣∣∣α− p

q

∣∣∣ =∞.

Hence, in any sequence of rational numbers pq such that q2·
∣∣∣α− p

q

∣∣∣ converges, the denominators
q tend to infinity.
Obviously, we have lim inf(p,q)∈Z×N q

2 ·
∣∣∣α− p

q

∣∣∣ ≤ lim infn→∞ q2
n ·
∣∣∣α− pn

qn

∣∣∣. In order to prove
equality, let (p, q) ∈ Z × N be arbitrary. By our introductory remarks, it is enough to prove
that there is some convergent pn

qn
such that q2 ·

∣∣∣α− p
q

∣∣∣ ≥ q2
n ·
∣∣∣α− pn

qn

∣∣∣.
There is an n ∈ N such that qn−1 ≤ q < qn. For this n, we have

q ·
∣∣∣∣α− p

q

∣∣∣∣ 1.3.12
≥ qn−1 ·

∣∣∣∣α− pn−1
qn−1

∣∣∣∣
=⇒ q2 ·

∣∣∣∣α− p

q

∣∣∣∣ ≥ q · qn−1 ·
∣∣∣∣α− pn−1

qn−1

∣∣∣∣ ≥ q2
n−1 ·

∣∣∣∣α− pn−1
qn−1

∣∣∣∣
=⇒ lim inf

n→∞
q2
n ·
∣∣∣∣α− pn

qn

∣∣∣∣ ≤ lim inf
(p,q)∈Z×N

q2 ·
∣∣∣∣α− p

q

∣∣∣∣ ,
proving the claim.

Remark 1.3.15. For α = 〈a0, a1, . . . , 〉 = limn→∞
pn
qn
, we have q1 < q2 < q3 < . . ., and from

(1.6) we know ∣∣∣∣α− pn
qn

∣∣∣∣ < 1
qnqn+1

= 1
q2
n ·

qn+1
qn

∀ n ∈ N.

Since the convergents pn
qn

are the best approximations of α, it follows that α can be approxi-
mated particularly well, if the qn’s increase very fast, and particularly bad if the qn’s increase
very slow. We have qn+1 = an+1qn + qn−1, hence the an’s control how fast the qn’s increase.
In particular, the golden ratio 〈1, 1, 1, . . .〉 1.3.5= 1+

√
5

2 should be the worst approximable irra-
tional number. We will make this precise in a moment. First, we improve the constant 1 in
Dirichlet’s approximation result (Corollary 1.1.9).

Lemma 1.3.16. Let α and β be positive real numbers with α > β. In the usual notation, we
have

〈a0, . . . , an, α〉 > 〈a0, . . . , an, β〉 ⇐⇒ n is odd.

Proof. This is a simple calculation:

〈a0, . . . , an, α〉 > 〈a0, . . . , an, β〉
1.2.7⇐⇒ αpn + pn−1

αqn + qn−1
>
βpn + pn−1
βqn + qn−1

⇐⇒ (βqn + qn−1)(αpn + pn−1) > (αqn + qn−1)(βpn + pn−1)
⇐⇒ (pnqn−1 − qnpn−1)α > (pnqn−1 − qnpn−1)β
1.3.2⇐⇒ (−1)n−1α > (−1)n−1β

This proves the claim, since α > β by hypothesis.
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Theorem 1.3.17. Let α ∈ R \ Q be arbitrary. There are infinitely many rational numbers
p
q , q ≥ 1, such that ∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2 . (1.12)

Proof. We again use α = 〈a0, a1, . . . , an, αn+1〉 for every n ∈ N0, where α0 = 0 and αk =
1

{αk−1} for all k ∈ N. Recall from Proposition 1.3.6, that ak = bαkc < αk for all k ∈ N0.
Since the convergents of α are the best approximations of α, we can restrict our attention to
these rational numbers. We have∣∣∣∣α− pn

qn

∣∣∣∣ (1.9)= 1
(αn+1qn + qn−1)qn

= 1
q2
n ·

αn+1qn+qn−1
qn

∀ n ∈ N.

Hence, in order to prove the theorem, we have to show that

αn+1qn + qn−1
qn

= αn+1 + qn−1
qn

>
√

5 for infinitely many n ∈ N. (1.13)

There are some smart arguments for this, but we will prove this straight-forward, chasing
through several natural cases.

1. case: an ≥ 3 for infinitely many n ∈ N

Then for any n ∈ N such that an+1 ≥ 3 (there are infinitely many of those), we have

αn+1 + qn−1
qn
≥ 3 + qn−1

qn
> 3 >

√
5.

This proves (1.13).

2. case: an ≥ 3 only for finitely many n ∈ N, but an ≥ 2 for infinitely many n ∈ N

For any n ∈ N such that an+1 = 2 and an ≤ 2 (there are infinitely many of those), we have
an + qn−2

qn−1
< 2 + 1 = 3 and hence

αn+1 + qn−1
qn

> an+1 + qn−1
anqn−1 + qn−2

= 2 + 1
an + qn−2

qn−1

> 2 + 1
3 >
√

5.

This proves (1.13).

3. case: an ≥ 2 only for finitely many n ∈ N

In this case, there is a k ∈ N0 such that

α = 〈a0, a1, . . . , ak, 1, 1, 1, 1, 1, . . .〉.

This is, k is at least the largest index, such that ak ≥ 2. In particular,

αn
1.3.7= 〈1, 1, . . .〉 1.3.5= 1 +

√
5

2 ∀n > k.
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We use the statement of Exercise 1.8, to conclude

αk+N+1 + qk+N−1
qk+N

= 1 +
√

5
2 + 〈0, 1, 1, . . . , 1︸ ︷︷ ︸

N -times

, ak, ak−1, . . . , a1〉 ∀ N ∈ N. (1.14)

The rational number 〈ak, . . . , a1〉 is either greater or smaller than the golden ratio 〈1, 1, . . .〉 =
1+
√

5
2 . Hence, by Lemma 1.3.16, either for all odd N or for all even N , we have

〈0, 1, 1, . . . , 1︸ ︷︷ ︸
N -times

, ak, ak−1, . . . , a1〉 = 〈0, 1, 1, . . . , 1︸ ︷︷ ︸
N -times

, 〈ak, ak−1, . . . , a1〉〉

>〈0, 1, 1, . . . , 1︸ ︷︷ ︸
N -times

, 〈1, 1, . . .〉〉 = 〈0, 1, 1, 1, . . .〉

= 1
〈1, 1, 1, . . .〉

1.3.5= 2
1 +
√

5
. (1.15)

Combining (1.14) and (1.15) yields that either for every odd N or for every even N (so in
particular for infinitely many integers N) we have

αk+N+1 + qk+N−1
qk+N

(1.14)= 1 +
√

5
2 + 〈0, 1, 1, . . . , 1︸ ︷︷ ︸

N -times

, ak, ak−1, . . . , a1〉

(1.15)
>

1 +
√

5
2 + 2√

5 + 1
= 1 +

√
5

2 + −1 +
√

5
2 =

√
5.

This proves (1.13) also in this last case, which concludes the proof of the theorem.

Remark 1.3.18. The proof of Theorem 1.3.17 tells us, that if there are only finitely many
rational numbers p

q such that
∣∣∣α− p

q

∣∣∣ < 1
7
3 ·q2 , then α is of the form

〈a0, . . . , ak, 1, 1, 1 . . .〉 = 〈a0, . . . , ak,
1 +
√

5
2 〉 ∈ Q(

√
5).

With some more care one can prove that one may replace 7
3 by

√
8 in this statement.

Moreover, the constant
√

5 in Theorem 1.3.17 is best possible: For α = 〈1, 1, . . .〉 Equation
(1.14) implies that

αn + qn−2
qn−1

−→ 1 +
√

5
2 + 1

〈1, . . .〉 =
√

5.

In particular, for any ε > 0 there are only finitely many rational numbers p
q , with

∣∣∣α− p
q

∣∣∣ <
1

(
√

5+ε)q2 .

Definition 1.3.19. A real number α ∈ R is called badly approximable if

lim inf
(p,q)∈Z×N
gcd(p,q)=1

q2 ·
∣∣∣∣α− p

q

∣∣∣∣ > 0.

Remark 1.3.20. By Liouville’s Theorem 1.1.12 for all α ∈ Q of degree ≤ 2, there is a
constant c > 0 such that

∣∣∣α− p
q

∣∣∣ > c
qdegα , whenever p

q 6= α. This shows that every α ∈ Q of
degree ≤ 2 is badly approximable. The condition gcd(p, q) = 1 is necessary, solely to exclude
that α = p

q for infinitely many admissible pairs (p, q).
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Proposition 1.3.21. Let α = 〈a0, a1, . . .〉 be an irrational number. Then α is badly approx-
imable if and only if there is a constant C such that an < C for all n ∈ N0.

Proof. We skip the proof.

Exercises

Exercise 1.9. Let pn
qn

be the n-th convergent of
√

2. Prove that
∣∣∣√2− 1

∣∣∣n+1
=
∣∣∣qn√2− pn

∣∣∣.
Exercise 1.10. Write

√
7 as an infinite continued fraction.

Exercise 1.11. We study the irrational number α = 〈a0, a1, a2, . . .〉, with an = 2n! for all
n ∈ N0. As usual pnqn is the n-th convergent of α. The aim is to prove that α is transcendental.

(a) Prove that for all n ∈ N0 we have 2(n+1)!

(2n!+1)n−1 ≥ qn.

Hint: Check that the statement is correct for n ∈ {0, 1, 2} and then proceed by induction.
Note that qn ≤ (an + 1)qn−1.

(b) Prove that for all n ∈ N we have qn−1
n−1 < qn.

Hint: This is again an induction, and the inequality qn ≤ (an + 1)qn−1 is still valid.

(c) Prove that α is transcendental.
Hint: The convergents should be very good approximations...

Hint: You may use (a) and (b) , whether you solved them or not.

Exercise 1.12. Let α ∈ R be arbitrary and p
q ∈ Q, with q ∈ N.

(a) Let P
Q ∈ Q be another rational number with Q ∈ N and P

Q 6=
p
q . Prove that 1

qQ ≤∣∣∣α− p
q

∣∣∣+ ∣∣∣α− P
Q

∣∣∣.
(b) Prove that whenever

∣∣∣α− p
q

∣∣∣ ≤ 1
2q2 holds true, then p

q is a convergent of α.

Exercise 1.13. Prove Proposition 1.3.21.

1.4 Periodic Continued Fractions and Pell’s Equation
We already came across periodic infinite continued fractions, for instance 〈1, 1, 1, . . .〉. A more
convenient way to write this, is (as for periodical decimal expansions) 〈1〉.

Example 1.4.1. Which real number α is represented by 〈1, 2〉 = 〈1, 2, 1, 2, 1, 2, 1, . . .〉? Luck-
ily, the most naive thing one could do is the best! We have

α = 1 +
1

2 +
1

1 +
1

2 +
1
. . .

= 1 + 1
2 + 1

α

= 1 + α

2α+ 1 .
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Multiplying both sides with (2α+ 1) and shifting everything to one side, yields

2α2 − 2α− 1 = 0.

Now we solve this quadratic equation and achieve that α is one of the elements 1±
√

3
2 . But

which of them? Since α = 〈1, . . .〉, we know that 1 < α < 2. This implies α = 1+
√

3
2 .

Lemma 1.4.2. Let

α = 〈a0, a1, . . . , ar, b1, b2, . . . , bs, b1, b2, . . . , bs, b1, . . . , bs, b1, . . .〉
= 〈a0, . . . , ar, b1, . . . , bs〉

be a periodic infinite continued fraction. Then α is an algebraic number of degree 2.

Proof. The same argument as in Example 1.4.1, proves that β = 〈b1, . . . , bs〉 is an algebraic
number of degree 2. This is actually all we need to know, since

α
1.3.7= 〈a1, . . . , ar, β〉

1.2.7= prβ + pr−1
qrβ + qr−1

∈ Q(β).

Note, that the values pn, qn are integers.

The converse of this lemma is also true:

Theorem 1.4.3. Let α be an algebraic number of degree 2. Then the continued fraction
expansion of α is periodic.

Proof. By assumption α is a root of a quadratic polynomial with integral coefficients. This
is, there are a, b, c ∈ Z, with

aα2 + bα+ c = 0. (1.16)

Since α is irrational, there is a unique infinite continued fraction 〈a0, a1, . . .〉 representing α.
This is, as you all know by now, constructed by an = bαnc, where α0 = α and αn = 1

{αn−1}
for all n ∈ N. How can we read of the periodicity of the continued fraction from the αn’s?
Assume that there are k, ` ∈ N with k 6= `, such that αk = α`, say ` = k + r for some r ∈ N.
Then we have

αk+r = α` = αk

αk+r+1 = 1
{αk+r}

= 1
{αk}

= αk+1

...

αk+2r−1 = 1
{αk+2r−2} = 1

{αk+r−2} = αk+r−1

αk+2r = 1
{αk+2r−1} = 1

{αk+r−1} = αk+r = αk.

Now we are in a loop, and it follows

an+r = bαn+rc = bαnc = an ∀ n ≥ k,

which means that the continued fraction is periodic.
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We are left to prove that two of the αn’s are equal. The only direct relation between α and
αn that we know is α = pn−1αn+pn−2

qn−1αn+qn−2
(see Proposition 1.2.7). Hence, by (1.16) it is

a ·
(
pn−1αn + pn−2
qn−1αn + qn−2

)2
+ b ·

(
pn−1αn + pn−2
qn−1αn + qn−2

)
+ c = 0.

Removing denominators yields,

Anα
2
n +Bnαn + Cn = 0,

with

An = ap2
n−1 + bpn−1qn−1 + cq2

n−1 ∈ Z
Bn = 2apn−1qn−2 + bpn−1qn−2 + bpn−2qn−1 + 2cqn−1qn−2 ∈ Z
Cn = An−1 ∈ Z.

We will prove that independently on n, there are only a finite number of possible coefficients
An, Bn and Cn. So all of the αn’s are roots of a finite number of quadratic polynomials. In
particular, there are just finitely many possible values for the αn, and hence we must have
αk = α` for some k 6= `.
For any n ∈ N, by (1.6) we have

∣∣∣α− pn−1
qn−1

∣∣∣ < 1
q2
n−1

. Hence, there exists a real r of absolute
value < 1 such that pn−1

qn−1
= α+ r

q2
n−1

. So finally, we get

|An| = q2
n−1 ·

∣∣∣∣∣a
(
pn−1
qn−1

)2
+ b

(
pn−1
qn−1

)
+ c

∣∣∣∣∣
= q2

n−1 ·

∣∣∣∣∣∣a
(
α+ r

q2
n−1

)2

+ b

(
α+ r

q2
n−1

)
+ c

∣∣∣∣∣∣ for some |r| < 1

= q2
n−1 ·

∣∣∣∣∣∣∣∣aα
2 + bα+ c︸ ︷︷ ︸
(1.16)

= 0

+2aα r

q2
n−1

+ a
r2

q4
n−1

+ b
r

q2
n−1

∣∣∣∣∣∣∣∣ for some |r| < 1

=
∣∣∣∣∣2aαr + a

r2

q2
n−1

+ br

∣∣∣∣∣ ≤ |2aαr|+
∣∣∣∣∣a r2

q2
n−1

∣∣∣∣∣+ |b| |r|<1
< |2aα|+ |a|+ |b| ,

which means that |An| is bounded independently on n. Therefore, also |Cn| = |An−1| is
bounded independently on n. We could do some similar estimate for Bn, or we notice that
|Bn| =

√
|4AnCn − 4ac+ b2| is bounded independently on n. Since An, Bn and Cn are inte-

gers, there are only finitely many possible values for the coefficients of the minimal polynomials
of the αn’s. As noticed above, this concludes the proof.

Let us briefly explain the mysterious formula B2
n = 4AnCn−4ac+b2. We can represent a quadratic polynomial

by a quadratic matrix. Namely, for any β ∈ C it is(
β
1

)t
·
(
a b

2
b
2 c

)
·
(
β
1

)
= aβ2 + bβ + c,

and this matrix is uniquely determined by this property. Moreover, for all β ∈ C(
pn−1 pn−2
qn−1 qn−2

)
·
(
β
1

)
=
(
pn−1β + pn−2
qn−1β + qn−2

)
.
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Putting this together, yields for all (but one) β ∈ C

a ·
(
pn−1β + pn−2

qn−1β + qn−2

)2

+ b ·
(
pn−1β + pn−2

qn−1β + qn−2

)
+ c

=
(

1
qn−1β + qn−2

(
pn−1 pn−2
qn−1 qn−2

)
·
(
β
1

))t
·
(
a b

2
b
2 c

)
·
(

1
qn−1β + qn−2

(
pn−1 pn−2
qn−1 qn−2

)
·
(
β
1

))
=
(

1
qn−1β + qn−2

)2(
β
1

)t
·
(
pn−1 pn−2
qn−1 qn−2

)t(
a b

2
b
2 c

)(
pn−1 pn−2
qn−1 qn−2

)(
β
1

)
.

On the other hand, by definition of An, Bn, Cn we have for all (but one) β ∈ C

a ·
(
pn−1β + pn−2

qn−1β + qn−2

)2

+ b ·
(
pn−1β + pn−2

qn−1β + qn−2

)
+ c =

(
1

qn−1β + qn−2

)2(
β
1

)t(
An

Bn
2

Bn
2 Cn

)(
β
1

)
.

Hence, the following equality holds true:(
pn−1 pn−2
qn−1 qn−2

)t(
a b

2
b
2 c

)(
pn−1 pn−2
qn−1 qn−2

)
=
(
An

Bn
2

Bn
2 Cn

)
.

Taking determinants yields

AnCn −
B2
n

4 = det
(
An

Bn
2

Bn
2 Cn

)
= det

((
pn−1 pn−2
qn−1 qn−2

)t(
a b

2
b
2 c

)(
pn−1 pn−2
qn−1 qn−2

))
= det

(
pn−1 pn−2
qn−1 qn−2

)
︸ ︷︷ ︸

=(−1)n−2

· det
(
a b

2
b
2 c

)
· det

(
pn−1 pn−2
qn−1 qn−2

)
︸ ︷︷ ︸

=(−1)n−2

= ac− b2

4 .

This finally implies the claimed relation between Bn, An and Cn.

Remark 1.4.4. We are going to use this theory to solve a classical Diophantine equation.
Again Diophantine refers to the integers. Hence, a Diophantine equation is usually given by a
F ∈ Z[x1, . . . , xn] and one is interested in finding a1, . . . , an ∈ Z satisfying F (a1, . . . , an) = 0.
In general, it is even too hard to decide whether such a solution exists, and if, if there are
infinitely many solutions.

Definition 1.4.5. Let d ∈ N be arbitrary, then the equation

x2 − dy2 = 1 (1.17)

is called Pell’s equation. A solution to Pell’s equation is a pair (x, y) ∈ Z2, such that (1.17)
is satisfied.

This equation is named after John Pell (1611–1685), who never wrote anything concerning
this equation.

Remark 1.4.6. It is easy to see that there are only two solutions to (1.17) if d is a square
number. So we assume from now on that

√
d ∈ R \ Q. If (x, y) is a solution to (1.17), then

1
y2 = x2

y2 − d. For large y, this implies that x
y is close to

√
d. So morally approximations of

√
d

should be connected to solutions of (1.17).
From number theory, you know Dirichlet’s unit theorem. This tells you that the unit group of
Z+
√
dZ is multiplicatively generated by −1 and some fundamental unit ε (note that Z+

√
dZ

is an order in the field Q(
√
d)). Write ε = a +

√
db for some a, b ∈ Z, b 6= 0. Since ε is a

unit, the norm of ε satisfies a2− db = ±1. The norm is multiplicative, and hence the norm of
ε2n = an +

√
dbn is 1. This implies that for all n ∈ N the pair (an, bn) is a solution of (1.17).

In particular, Pell’s equation has infinitely many solutions. We will use continued fractions,
to explicitly construct solutions of Pell’s equation.
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Proposition 1.4.7. Let d ∈ N be not a square. Then there is an s ∈ N such that
√
d = 〈a0, a1, . . . , as〉.

Proof. We use our good friends α0, α1, . . . Recall that α = 〈a0, . . . , an−1, αn〉, and αn+1 =
1

αn−an ∈ Q(
√
d) for all n ∈ N. Manipulating this equation gives αn = an + 1

αn+1
for all n ∈ N.

Let σ be the non-trivial element in Gal(Q(
√
d)/Q); i.e. σ(a+ b

√
d) = a− b

√
d for all a, b ∈ Q.

Then

σ(α1) = σ

 1
√
d−

⌊√
d
⌋
 = 1

−
√
d−

⌊√
d
⌋ ∈ (−1, 0)

=⇒ σ(α2) = σ

( 1
α1 − a1

)
= 1
σ(α1)− a1

∈ (−1, 0)

induction=⇒ σ(αn) ∈ (−1, 0) ∀ n ∈ N. (1.18)

By Theorem 1.4.3 we know that α = 〈a0, . . . , ak, ak+1, . . . , ak+r〉 for some k, r ∈ N. Assume
that k is minimal with this property, and k > 1. Then, we have

ak 6= ak+r, (1.19)

since otherwise α = 〈a0, . . . , ak−1, ak, . . . , ak+r−1〉, contradicting the minimality (here we need
the assumption k > 1). Moreover, (see Remark 1.3.7)

αk+1 = 〈ak+1, . . . , ak+1+r〉 = αk+r+1. (1.20)

On the other hand, we have

σ(αk)︸ ︷︷ ︸
(1.18)
∈ (−1,0)

− σ(αk+r)︸ ︷︷ ︸
(1.18)
∈ (−1,0)︸ ︷︷ ︸

∈(−1,1)

= σ(αk − αk+r)

= σ

(
ak + 1

αk+1
− ak+r −

1
αk+r+1

)
(1.20)= σ(ak − ak+r︸ ︷︷ ︸

∈Z

) = ak − ak+r.

Hence, ak − ak+r is an integer in (−1, 1), which contradicts (1.19). It follows that k ≤ 1 and
hence

√
d = 〈a0, a1, . . . , ar+1〉.

Finally we can solve Pell’s equation.

Theorem 1.4.8. Let d ∈ N be not a square, with
√
d = 〈a0, a1, . . . , ar〉. As usual pnqn denotes

the n-th convergent of
√
d. For all k ∈ N0 we have

p2
kr−1 − dq2

kr−1 = (−1)kr−2.

In particular, at latest the (2r− 2)-nd convergent of
√
d gives a non-trivial solution for Pell’s

equation (1.17).
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Proof. We use the notation from the proof above. Since all arguments are familiar by now,
we can rush through the proof. For all k ∈ N we have

1√
d− a0

= α1 = 〈a1, . . . , ar〉 = αkr+1.

Fix any k ∈ N0 and set x = akr − a0 ∈ Z. Then αkr = akr + 1
αkr+1

= x+
√
d.

1.2.7=⇒
√
d = pkr−1αkr + pkr−2

qkr−1αkr + qkr−2
= (x+

√
d)pkr−1 + pkr−2

(x+
√
d)qkr−1 + qkr−2

=⇒ dqkr−1 + (xqkr−1 + qkr−2)
√
d = (xpkr−1 + pkr−2) + pkr−1

√
d

=⇒ dqkr−1 = xpkr−1 + pkr−2 & xqkr−1 + qkr−2 = pkr−1

=⇒ dq2
kr−1 = xpkr−1qkr−1 + pkr−2qkr−1 & xqkr−1pkr−1 + qkr−2pkr−1 = p2

kr−1

=⇒ p2
kr−1 − dq2

kr−1 = pkr−1qkr−2 − qkr−1pkr−2
1.2.2= (−1)kr−2.

This proves the proposition.

Exercises
Exercise 1.14. Let a ∈ N and b ∈ Z. Give formulas for the quadratic algebraic numbers 〈a〉
and 〈b, a〉.

Exercise 1.15. Let d ∈ N be arbitrary. Prove the following statements:

(a) If d is a square number, then there are just two integral solutions of x2 − dy2 = 1.

(b) If d is not a square number, and p, q ∈ N are such that p2−dq2 = 1, then p
q is a convergent

of
√
d.

Hint: Exercise 1.12.



Chapter 2

The Weil-Height

2.1 The Mahler Measure

We want to formulate Roth’s Theorem 1.1.17 for an arbitrary number field. Recall, that
Roth’s theorem for Q reads:

∀ α ∈ Q, ∀ ε > 0, ∃ c(α, ε) > 0, such that
∣∣∣∣α− p

q

∣∣∣∣ > c(α, ε)
|q|2+ε , ∀ p

q
∈ Q \ {α}. (RT1)

(I know that this does not look very nice, but we need to have the whole statement in one
line for later references.) Note that this is not precisely the same formulation as in Theorem
1.1.17. But we have simply avoided any assumption on p and q in Z, which explains the
usage of |q| instead of q. Moreover, if α ∈ Q, then the only good rational approximation of α
is α itself (cf. Lemma 1.1.4). However, we still use the explicit form p

q with p, q ∈ Z for an
rational number. Such a nice representation is not available in an arbitrary number field K.
We now come to another mild reformulation of (RT1).

Lemma 2.1.1. Roth’s Theorem (RT1) is equivalent to the following statement: For all α ∈ Q
and for all ε > 0 there exists a positive constant c(α, ε) > 0 such that

∣∣∣α− p
q

∣∣∣ > c(α, ε) ·
max{|p| , |q|}−(2+ε) for all pq ∈ Q \ {α}. Formally this statement reads

∀ α ∈ Q, ∀ ε > 0, ∃ c(α, ε) > 0, such that∣∣∣∣α− p

q

∣∣∣∣ > c(α, ε) ·max{|p| , |q|}−(2+ε), ∀ p
q
∈ Q \ {α}. (RT2)

Proof. We prove the two necessary implications.

⇒ This implication follows immediately, since for all pq ∈ Q \ {α} we have

∣∣∣∣α− p

q

∣∣∣∣ (RT1)
>

c(α, ε)
|q|2+ε = c(α, ε) · |q|−(2+ε) ≥ c(α, ε) ·max{|p| , |q|}−(2+ε).

⇐ We first note that for any n ∈ Z we have
∣∣∣α− p

q

∣∣∣ =
∣∣∣(α+ n)− p+nq

q

∣∣∣ for all p
q ∈ Q.

This means that shifting α by an integer, does not affect the possible approximations

27
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by rational numbers. In particular, for fixed α ∈ Q, and fixed ε, c > 0 we have

∣∣∣∣α− p

q

∣∣∣∣ > c

|q|2+ε ∀ p
q
∈ Q\{α} ⇐⇒

∣∣∣∣∣∣∣∣(α− bαc)︸ ︷︷ ︸
∈(0,1)

−p
q

∣∣∣∣∣∣∣∣ >
c

|q|2+ε ∀ p
q
∈ Q\{α−bαc}.

Hence, in order to prove (RT1) we may and will assume from now on that α ∈ [0, 1)∩Q.
If |p| > |q|, then

∣∣∣∣α− p

q

∣∣∣∣ ≥
∣∣∣∣∣∣∣∣∣∣∣
|α|︸︷︷︸
∈[0,1)

−
∣∣∣∣pq
∣∣∣∣︸︷︷︸

≥ |q|+1
|q|

∣∣∣∣∣∣∣∣∣∣∣
≥ |q|+ 1

|q|
− 1 = 1

|q|
= |q|

1+ε

|q|2+ε ≥
1
|q|2+ε .

Hence, for any ε > 0 there exists a c(α, ε) > 0 such that for all pq ∈ Q \ {α} we have

∣∣∣∣α− p

q

∣∣∣∣ >


1
|q|2+ε if |p| > |q|
c(α,ε)
|q|2+ε if |p| ≤ |q| (by (RT2))

But this just means, that for all pq ∈ Q \ {α} we have
∣∣∣α− p

q

∣∣∣ > min{1,c(α,ε)}
|q|2+ε , implying

(RT1).

Definition 2.1.2. Let α ∈ Q be arbitrary and let f(x) ∈ Z[x] be a minimal polynomial of
α. Write f(x) = adx

d + ad−1x
d−1 + . . . + a0 = ad(x − α1) · . . . · (x − αd); i.e. a0, . . . , ad ∈ Z

and α1, . . . , αd ∈ C are the roots of f(x). Then the Mahler measure of α is given by

M(α) = |ad| ·
d∏
i=1

max{1, |αi|}.

Remark 2.1.3. • Recall that a minimal polynomial f(x) = adx
d + . . .+ a0 of α is irre-

ducible in Z[x] (so in particular it is irreducible in Q[x]). Moreover, the greatest common
divisor of a0, . . . , ad is 1. It follows that −f(x) is the only other minimal polynomial of
α, hence the Mahler measure of α is well defined.

• The Mahler measure of α is just the absolute value of the product of the leading coef-
ficient of f and all roots of f lying outside the unit circle. In particular, M(α) ≥ 1 for
all α ∈ Q.

• The elements α1, . . . , αd from the definition of the Mahler measure are precisely the
Galois conjugates of α (including α itself). We conclude that M(α) = M(σ(α)) for any
σ ∈ Gal(Q/Q).

Example 2.1.4. Let us calculate a few examples.
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(a) Let p, q ∈ Z, with q 6= 0 and gcd(p, q) = 1. Then the minimal polynomial of pq is qx− p.
Hence,

M(p
q

) = |q| ·max{1,
∣∣∣∣pq
∣∣∣∣} = max{|q| , |q| ·

∣∣∣∣pq
∣∣∣∣} = max{|q| , |p|}.

(Haven’t we seen this maximum before?!)

(b) The minimal polynomial of
√

2 is x2 − 2 = (x−
√

2)(x+
√

2). Hence,

M(
√

2) = |1| ·
∣∣∣√2

∣∣∣ · ∣∣∣−√2
∣∣∣ = 2.

(c) The minimal polynomial of the golden ratio 1+
√

5
2 is x2 − x− 1 = (x− 1+

√
5

2 )(x− 1−
√

5
2 ).

Hence,

M(1 +
√

5
2 ) = 1 +

√
5

2 .

By this example, Roth’s theorem (RT2) can be formulated as: For all α ∈ Q and all ε > 0,
there exists a positive constant c(α, ε) > 0 such that |α− β| > c(α, ε) ·M(β)−(2+ε) for all
β ∈ Q \ {α}. Formally,

∀ α ∈ Q, ∀ ε > 0, ∃ c(α, ε) > 0, such that |α− β| > c(α, ε) ·M(β)−(2+ε), ∀ β ∈ Q \ {α}.
(RT3)

In this formulation, Q could be replaced by any number field, since every algebraic number
has a Mahler measure! So let us study this measure further.

Lemma 2.1.5 (Vieta’s formula). Let ad, α1, . . . , αd ∈ C be arbitrary, with ad 6= 0. Then

ad(x− α1) · . . . · (x− αd) = adx
d + ad−1x

d−1 + . . .+ a1x+ a0,

with

ai = (−1)d−i · ad ·
∑

J⊆{1,...,d}
|J |=d−i

∏
j∈J

αj

 ∀ i ∈ {0, . . . , d}.

Proof. This is well known and easy to see: If we multiply the left hand side, then choosing
the x precisely i-times, is the same as choosing d− i of the values α1, . . . , αd. Since the ai is
the sum of all these choices, the Lemma follows.

Remark 2.1.6. An α ∈ Q is called an algebraic integer if the minimal polynomial of α in
Z[x] is monic; i.e. the minimal polynomial of α is of the form xd+ad−1x

d−1 + . . .+a0 ∈ Z[x].
The set of algebraic integers in a number field K is a ring, which we will denote by OK .

Lemma 2.1.7. Let α ∈ Q be of degree d and let f(x) = adx
d + . . .+ a0 ∈ Z[x] be a minimal

polynomial of α. Then for all i ∈ {0, . . . , d} we have(
d

i

)
M(α) ≥ |ai| .
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Proof. Let α1, . . . , αd be the roots of f ; i.e. the Galois conjugates of α. For any i ∈ {0, . . . , d}
Vieta’s formula 2.1.5 implies

|ai| = |ad| ·
∑

J⊆{1,...,d}
|J |=d−i

∏
j∈J
|αj |

 ≤ |ad| · ∑
J⊆{1,...,d}
|J |=d−i

 d∏
j=1

max{1, |αj |}



=
∑

J⊆{1,...,d}
|J |=d−i

|ad| · d∏
j=1

max{1, |αj |}


︸ ︷︷ ︸

=M(α)

=
(

d

d− i

)
M(α) =

(
d

i

)
M(α).

Theorem 2.1.8 (Northcott). Let A,B ∈ R be arbitrary. Then there are at most finitely
many algebraic numbers α ∈ Q with [Q(α) : Q] ≤ A and M(α) ≤ B.

Proof. We need to prove that the set

{α ∈ Q|[Q(α) : Q] ≤ A, and M(α) ≤ B} =
⋃

1≤d≤A
{α ∈ Q|[Q(α) : Q] = d, and M(α) ≤ B}

is finite. Hence it is enough to prove the finiteness of

{α ∈ Q|[Q(α) : Q] = d, and M(α) ≤ B}

for fixed d ∈ N. But if α ∈ Q is of degree d, then its minimal polynomial is of the form
f(x) = adx

d + . . .+ a0 ∈ Z[x], with ad 6= 0. If also M(α) ≤ B, then by Lemma 2.1.7

|ai| ≤
(
d

i

)
M(α) ≤

(
d

i

)
·B ∀ i ∈ {0, . . . , d}.

Hence, since ai ∈ Z, there are just finitely many possible coefficients for the minimal polyno-
mial of an algebraic α of degree d and Mahler measure ≤ B. This implies that there are only
finitely such algebraic numbers, concluding the proof.

Remark 2.1.9. Northcott’s theorem tells us in particular that {α ∈ K|M(α) ≤ B} is finite
for any number fields K and all B ∈ R. This means that one can use the Mahler measure to
count elements in a number field, and to prove finiteness results in number fields. The latter
statement can be explained as follows, if we want to prove that a certain set of points in an
number field K is finite, we need to prove that the Mahler measure of each element of the set
is uniformly bounded from above.
This explains the reason for taking max{1, |αi|} instead of |αi| in the definition of the Mahler
measure. In the latter case, at least for algebraic integers, we would get the modulus of the
usual norm. But surely there may be infinitely many algebraic integers of bounded norm in
a number field. For instance, algebraic units α ∈ O∗K have norm ±1, but there are infinitely
many algebraic units in K, as long as K is neither Q nor a totally imaginary quadratic field.

Lemma 2.1.10. A polynomial f(x) = adx
d + . . . + a0 ∈ Z[x] is irreducible in Z[x], if and

only if f(x) is irreducible in Q[x] and gcd(a0, . . . , ad) = 1.

Proof. This is usually proved in an algebra course.
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Proposition 2.1.11. The following statements are true:

(i) M(α) = M(α−1) for all α ∈ Q∗, and

(ii) M(αk) ≤M(α)k for all k ∈ N and all algebraic integers α.

(The assumption in (ii) that α has to be an algebraic integer instead of an arbitrary algebraic
number, will be removed soon.)

Proof. Let α be an algebraic number of degree d ∈ N with minimal polynomial

f(x) = adx
d + . . .+ a0 = ad(x− α1) · . . . · (x− αd) ∈ Z[x].

(i) To prove the claimed equality, we want to express the minimal polynomial of α−1 in
terms of f(x). We know from algebra, that the degree of the minimal polynomial of
α−1 is equal to deg(f) = d. Hence, by Lemma 2.1.10 a polynomial g(x) ∈ Z[x] is a
minimal polynomial of α−1 if and only if deg(g) = d, g(α−1) = 0, and the gcd of all the
coefficients of g is one.
We note that

g(x) = xdf( 1
x

) = xd · (ad(
1
x

)d + ad−1( 1
x

)d−1 + . . .+ a0) = ad + ad−1x+ . . .+ a0x
d ∈ Z[x]

satisfies all these conditions: Since f(α) = 0, we have g(α−1) = α−df(α) = 0. Moreover,
the irreducibility of f(x) implies a0 6= 0, since otherwise x would be a divisor of f(x).
Hence, deg(g) = d. Lastly, again be the irreducibility of f , one has gcd(a0, . . . , ad) = 1
(note that the coefficients of f and g are the same in reversed order).
So now we know the minimal polynomial of α−1 and we know that the roots of g(x) are
precisely 1

α1
, . . . , 1

αd
(which follows already immediately by Galois theory). Hence,

M(α−1) = |a0| ·
d∏
i=1

max
{

1,
∣∣∣∣ 1
|αi|

∣∣∣∣} 2.1.5= |ad| ·
d∏
i=1
|αi| ·

d∏
i=1

max
{

1,
∣∣∣∣ 1
|αi|

∣∣∣∣}

= |ad| ·
d∏
i=1
|αi| ·max

{
1,
∣∣∣∣ 1
|αi|

∣∣∣∣} = |ad| ·
d∏
i=1

max
{
|αi| ,

∣∣∣∣|αi| · 1
|αi|

∣∣∣∣}

= |ad| ·
d∏
i=1

max {|αi| , 1} = M(α).

This proves (i).

(ii) From now on we assume that α is an algebraic integer. Then, since ad = 1, it is
M(α) =

∏d
i=1 max{1, |αi|}. The only possible Galois conjugates of αk are αk1 , . . . , αkd.

Say, the Galois conjugates of αk are precisely {αki |i ∈ I} for some I ⊆ {1, . . . , d}. Since
αk is again an algebraic integer, we find

M(αk) =
∏
i∈I

max{1,
∣∣∣αki ∣∣∣} ≤ d∏

i=1
max{1,

∣∣∣αki ∣∣∣} =
d∏
i=1

max{1, |αi|}k = M(α)k.
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Theorem 2.1.12 (Kronecker). For α ∈ Q∗ we have M(α) = 1 if and only if α is a root of
unity.

Remark 2.1.13. Recall that M(α) ≥ 1 for all α ∈ Q. Hence, Kronecker’s theorem tells us
that the Mahler measure is minimal precisely for roots of unity.

Proof of Theorem 2.1.12. We use the usual notation for the minimal polynomial of α. Then
M(α) = |ad|

∏d
i=1 max{1, |αi|} = 1 if and only if |ad| = 1 and max{1, |αi|} = 1 for all

i ∈ {1, . . . , d}. In particular, this is the case if and only if α is an algebraic integer such that
all Galois conjugates lie on or inside the unit circle.1
If α is a root of unity, then the minimal polynomial of α is a divisor of xn−1 for some n ∈ N.
In particular, the leading coefficient is one (i.e. α is an algebraic integer) and all roots lie on
the unit circle. Hence, M(α) = 1 as noted above.
Now, assume that M(α) = 1. Then, α must be an algebraic integer. Moreover, for any k ∈ N
we have

1 ≤M(αk)
2.1.11
≤ M(α)k = 1,

which implies M(αk) = 1 for all k ∈ N. Moreover, αk ∈ Q(α) for all k ∈ N. Hence, by
Northcott’s theorem the set α, α2, α3, α4, . . . is finite! Therefore, it exist k, ` ∈ N, with k > `
and αk = α`. We conclude αk−` = 1, and hence α is a root of unity.

Remark 2.1.14. This means that any algebraic integer with all its Galois conjugates on
the unit circle, must be a root of unity. Without this integral assumption this is false. The
number 2+i

2−i surely has all Galois conjugates on the unit circle, but it is note a root of unity.
Also notice that its minimal polynomial is 5x2 − 6x+ 5 and hence M(2+i

2−i) = 5.

The (in my personal biased opinion) main conjecture concerning the Mahler measure is the
following.

Lehmer’s conjecture 2.1.15. There exists an absolute constant c > 1, such that M(α) ≥ c
for all α ∈ Q∗ which are not a root of unity.
More precisely, the constant c is conjectured to be 1, 1762 . . ., the Mahler measure of any root
of

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1.

Remark 2.1.16. Actually D. H. Lehmer never conjectured anything. He found in 1933 [7]
that the Mahler measure of a root of this polynomial is remarkably small, and he then asked
if there is an irreducible polynomial leading to a smaller value than c. Such a polynomial has
not been found, yet. This is somehow amazing, comparing the computational power of today
and of 1933...

There is another, more analytic, definition of the Mahler measure. Let us recall the mean
value theorem for harmonic functions, at least a very special case of it: If g : C → R is
harmonic in the unit disc D = {z ∈ Z|z ≤ 1}, then the mean value of g on the unit circle is
equal to g(0); i.e. g(0) = 1

2π
∫ 2π

0 g(eiθ)dθ.

Proposition 2.1.17. Let f(x) = adx
d + . . . + a0 = ad(x − α1) · . . . · (x − αd) ∈ Z[x] be

irreducible. That is, f(x) is the minimal polynomial of αi for all i ∈ {1, . . . , d}. Then

M(α1) = exp
( 1

2π

∫ 2π

0
log

∣∣∣f(eiθ)
∣∣∣ dθ) .

1From Lemma 2.1.5 it follows, that actually all roots must lie on the unit circle.
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Proof. We first note that

exp
( 1

2π

∫ 2π

0
log

∣∣∣f(eiθ)
∣∣∣ dθ) = exp

( 1
2π

∫ 2π

0
log

∣∣∣ad(eiθ − α1) · . . . · (eiθ − αd)
∣∣∣ dθ)

= exp
(

1
2π

∫ 2π

0
log |ad|+

d∑
k=1

log
∣∣∣eiθ − αk∣∣∣ dθ

)

= exp

 1
2π

∫ 2π

0
log |ad|dθ︸ ︷︷ ︸

=log|ad|

+
d∑

k=1

1
2π

∫ 2π

0
log

∣∣∣eiθ − αk∣∣∣ dθ


= |ad| ·
d∏

k=1
exp

( 1
2π

∫ 2π

0
log

∣∣∣eiθ − αk∣∣∣ dθ) (2.1)

For any α ∈ C with |α| > 1, the function log |x− α| is harmonic on the unit disc. Hence,
in this case we have 1

2π
∫ 2π

0 log
∣∣∣eiθ − α∣∣∣ dθ = log |0− α| = log |α| > 0, by the mean value

theorem.
For any α ∈ C with |α| < 1, the function log |1− xα| is harmonic on the unit disc. Moreover,
for any z on the unit circle, we have log |z − α| = log(|z| · |1− zα|). Hence, again by the mean
value theorem, we have

1
2π

∫ 2π

0
log

∣∣∣eiθ − α∣∣∣ dθ = 1
2π

∫ 2π

0
log

∣∣∣1− e−iθα∣∣∣ dθ = log(1) = 0.

Finally, for any α ∈ C on the unit circle, let z1, z2, . . . be a sequence of complex numbers in
the unit circle, converging to α. Then,

1
2π

∫ 2π

0
log

∣∣∣eiθ − α∣∣∣ dθ = 1
2π

∫ 2π

0
log

∣∣∣eiθ − lim
n→∞

zn
∣∣∣ dθ = lim

n→∞
1

2π

∫ 2π

0
log

∣∣∣eiθ − zn∣∣∣ dθ = 0.

Hence, for any α ∈ C we have 1
2π
∫ 2π

0 log
∣∣∣eiθ − α∣∣∣ dθ = max{0, log |α|}. Now we can proceed

with equation 2.1, concluding

exp
( 1

2π

∫ 2π

0
log

∣∣∣f(eiθ)
∣∣∣ dθ) = |ad| ·

d∏
k=1

exp
( 1

2π

∫ 2π

0
log

∣∣∣eiθ − αk∣∣∣ dθ)

= |ad| ·
d∏

k=0
exp (max{0, log |αk|})

= |ad| ·
d∏

k=0
max{1, |αk|} = M(α1).

We will now slowly come back to our original goal, namely to generalize the results from
Section 1.1. But before we do so, we will learn a further technicality.
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Definition 2.1.18. Let R be a ring. Moreover, let f(x) = anx
n + an−1x

n−1 + . . . + a0 and
g(x) = bkx

k + bk−1x
k−1 + . . .+ b0 be two polynomials in R[x]. The resultant of f and g is the

determinant of the (n+ k)× (n+ k)-matrix

an an−1 · · · a0 0 0 · · · · · · 0
0 an · · · a1 a0 0 . . . . . . 0
... . . . . . . . . . . . . . . . · · · · · ·

...
0 · · · 0 an an−1 · · · · · · a0 0
0 · · · 0 0 an an−1 · · · · · · a0
bk bk−1 · · · b1 b0 0 · · · · · · 0
0 bk · · · · · · b1 b0 0 · · · 0
... . . . . . . . . . . . . . . . · · · · · ·

...
0 · · · 0 bk bk−1 · · · · · · b0 0
0 · · · 0 0 bk bk−1 · · · · · · b0




k


n

(2.2)

The resultant of f and g is denoted by Res(f, g) ∈ R.

Example 2.1.19. The resultant of f(x) = x2+2x+3 ∈ Z[x] and g(x) = −4x3−3x2−2x−1 ∈
Z[x] is the determinant of 

1 2 3 0 0
0 1 2 3 0
0 0 1 2 3
−4 −3 −2 −1 0
0 −4 −3 −2 −1


I just wanted to illustrate the form of the matrix, but for completeness we note that Res(f, g) =
256.

Theorem 2.1.20. Let x1, . . . , xn, y1, . . . , yk be distinct formal variables over the integral do-
main R′. We define the polynomial ring R = R′[x1, . . . , xn, y1, . . . , yk] in n+ k variables. Let
a0, . . . , an, b0, . . . , bk ∈ R, an 6= 0 6= bk, be such that

an(T − x1) · . . . · (T − xn) = anT
n + an−1T

n−1 + . . .+ a0 = f(T ) ∈ R[T ], and (2.3)
bk(T − y1) · . . . · (T − yk) = bkT

k + bk−1T
k−1 + . . .+ b0 = g(T ) ∈ R[T ]. (2.4)

Then

Res(f, g) = aknb
n
k

n∏
i=1

k∏
j=1

(xi − yj) ∈ R.

Proof. Since a polynomial ring over an integral domain is again an integral domain, the ring R
is again an integral domain. Moreover, for any an, bk ∈ R\{0} there are uniquely determined
elements a0, . . . , an−1, b0, . . . , bk−1 satisfying (2.3) and (2.4). We just have to calculate the
left hand sides of (2.3) and (2.4) and collect the T ’s of the same exponent.
The claimed formula for the resultant looks like a Vandermonde-determinant. So it may not
surprise you, that a Vandermonde-matrix appears in the proof. Define

V =


yn+k−1

1 · · · yn+k−1
k xn+k−1

1 · · · xn+k−1
n

yn+k−2
1 · · · yn+k−2

k xn+k−2
1 · · · xn+k−2

n
...

...
...

...
...

y0
1 · · · y0

k x0
1 · · · x0

n


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and denote the matrix from (2.2) by S (the matrix is known as a Sylvester-matrix). Then,
using the well-known formula for the Vandermonde-determinant2,

det(S · V ) = det(S) · det(V ) 2.1.18= Res(f, g) · det(V ) (2.5)

= Res(f, g) ·
∏

1≤i<j≤n
(xi − xj) ·

∏
1≤i<j≤k

(yi − yj) ·
n∏
i=1

k∏
j=i

(yj − xi). (2.6)

Let z ∈ R be arbitrary. The scalar product of the vectors0, · · · , 0︸ ︷︷ ︸
r-times

, an, an−1, · · · , a0, 0, · · · , 0

 , and
(
zn+k−1, zn+k−2, · · · , z0

)
is anzn+k−1−r + an−1z

n+k−2−r + . . .+ a0z
n+k−n−1−r = zk−1−rf(z). And similarly for the ai’s

replaced by the bi’s. Hence,

S · V =



yk−1
1 f(y1) · · · yk−1

k f(yk) xk−1
1 f(x1) · · · xk−1

n f(xn)
...

...
...

...
...

...
y0

1f(y1) · · · y0
kf(yk) x0

1f(x1) · · · x0
nf(xn)

yn−1
1 g(y1) · · · yn−1

k g(yk) xn−1
1 g(x1) · · · xn−1

n g(xn)
...

...
...

...
...

...
y0

1g(y1) · · · y0
kg(yk) x0

1g(x1) · · · x0
ng(xn)


.

Since, f(xi) = g(yj) = 0 for all i ∈ {1, . . . , n} and j ∈ {1, . . . , k}, it follows that

S · V =



yk−1
1 f(y1) · · · yk−1

k f(yk) 0 · · · 0
...

...
...

...
...

...
y0

1f(y1) · · · y0
kf(yk) 0 · · · 0

0 · · · 0 xn−1
1 g(x1) · · · xn−1

n g(xn)
...

...
...

...
...

...
0 · · · 0 x0

1g(x1) · · · x0
ng(xn)


.

Applying the standard rules for the determinant and the formula for calculating the determi-
nant of a Vandermonde-matrix, yields

det(S · V ) =

 k∏
j=1

f(yj) · det


yk−1

1 · · · yk−1
k

... · · ·
...

y0
1 · · · y0

k


 ·

 n∏
i=1

g(xi) · det


xn−1

1 · · · xn−1
n

... · · ·
...

x0
1 · · · x0

n




=
k∏
j=1

f(yj) ·
n∏
i=1

g(xi) ·
∏

1≤i<j≤k
(yi − yj) ·

∏
1≤i<j≤n

(xi − xj). (2.7)

2If it is not well-known to you, then change this situation! The proof is by induction on the number of
variables.
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Since R is an integral domain and all factors in the equations (2.5) and (2.7) are non-zero,
combining these formulas gives

Res(f, g) ·
n∏
i=1

k∏
j=i

(yj − xi) =
k∏
j=1

f(yj) ·
n∏
i=1

g(xi)

=
(
an

n∏
i=1

(y1 − xi)
)
· . . . ·

(
an

n∏
i=1

(yk − xi)
)
·

bk k∏
j=1

(x1 − yj)

 · . . . ·
bk k∏

j=1
(xn − yj)


=⇒ Res(f, g) = aknb

n
k ·

n∏
i=1

k∏
j=1

(xi − yj)

This proves the Theorem.

Remark 2.1.21. The very same proof applies without changes to the setting, where f(x),
g(x) ∈ Z[x] and the roots of f and g are pairwise distinct. But using this more general setting,
we get this formula also in the case where f and g have a common root. The formula predicts
that in this setting the resultant of f and g is zero.

Corollary 2.1.22. Let R be an integral domain with field of fractions K. Let f(x) = anx
n +

. . . and g(x) = bkx
k+. . . be polynomials in R[x], with roots α1, . . . , αn ∈ K, resp. β1, . . . , βk ∈

K, where K is an algebraic closure of K. Then

(i) Res(f, g) = aknb
n
k

∏n
i=1

∏k
j=1(αi − βj) ∈ R,

(ii) Res(f, g) = akn
∏n
i=1 g(αi),

(iii) Res(f, g) = (−1)nk Res(g, f).

Proof. We just plug in the roots α1, . . . βk into the polynomial formula from Theorem 2.1.20.
Formally:
Consider the polynomial ring R[x1, . . . , xn, y1, . . . , yk] and let ϕ be the unique ring homo-
morphism from R[x1, . . . , xn, y1, . . . , yk] to K, satisfying ϕ(xi) = αi for all i ∈ {1, . . . , n},
ϕ(yj) = βj for all j ∈ {1, . . . , k}, and ϕ(r) = r for all r ∈ R. This gives

Res(f, g) = ϕ(Res(f, g)︸ ︷︷ ︸
∈R

) 2.1.20= ϕ(aknbnk︸ ︷︷ ︸
∈R

n∏
i=1

k∏
j=1

(xi − yj))
ϕ hom.= aknb

n
k

n∏
i=1

k∏
j=1

(αi − βj).

Hence part (i) is proven. Part (ii) follows, since g(αi) = bk
∏k
j=1(αi − βj), by definition of g.

For part (iii), we just have to note that (αi − βj) = (−1)(βj − αi). Alternatively, the matrix
(2.2) defining Res(f, g) can be transferred to the matrix defining Res(g, f) by interchanging
rows nk-times.

We give another application of the resultant.

Corollary 2.1.23. Let f(x), g(x) ∈ Z[x], such that α ∈ C is a root of f and β ∈ C is a root
of g. We consider the ring R = Z[y], where y is a formal variable.

(i) Consider f(x), g(y − x) as polynomials in R[x]. Then r(y) = Res(f(x), g(y − x)) ∈
R \ {0} = Z[y] \ {0}, and r(α+ β) = 0.
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(ii) Consider f(x), xdeg(g)g( yx) as polynomials in R[x]. Then r(y) = Res(f(x), xdeg(g)g( yx)) ∈
R \ {0} = Z[y] \ {0}, and r(α · β) = 0.

Proof. Since both proofs are essentially the same, we only prove part (i). Let f(x) = an(x−
α1) · . . . · (x− αn) and g(x) = bk(x− β1) · . . . · (x− βk). Then

Res(f(x), g(y − x)) = aknb
n
k

n∏
i=1

g(y − αi) ∈ R \ {0}.

Plugging in αj +β for any j ∈ {1, . . . , n} and any root β of g, yields a factor g(αj +β−αj) =
g(β) = 0, proving the claim.

Remark 2.1.24. Starting with two monic polynomials (leading coefficient equal to 1), guar-
antees that also the resultants in statements (i) and (ii) are monic. Hence, this reproves (quite
effectively) the well-known theorem, that the set of algebraic integers forms a ring.

Lemma 2.1.25. For all α, β ∈ C the following inequalities hold true:

|α− β| ≤ 2 max{|α| , |β|} ≤ 2 max{1, |α|}max{1, |β|}.

Proof. The triangular inequality tells us

|α− β| ≤ |α|+ |β| ≤ 2 max{|α| , |β|}.

This proves the first inequality. But obviously

max{|α| , |β|} ≤ max{1, |α| , |β| , |αβ|} = max{1, |α|}max{1, |β|},

proving the lemma.

Proposition 2.1.26. Let α, β ∈ Q such that d = [Q(α) : Q], k = [Q(β) : Q], and α and β do
not have the same minimal polynomial. Then

|α− β| ≥ 1
2dkM(α)kM(β)d .

Proof. The minimal polynomial of α is f(x) = adx
d + . . . ∈ Z[x] and the minimal polynomial

of β is g(x) = bkx
k + . . . ∈ Z[x] and by assumption ad 6= 0 6= bk. Denote the roots of f by

α1, . . . , αd, and the roots of g by β1, . . . , βk. Since f(α) = 0 = g(β) we may and will assume
α = α1 and β = β1. Since f 6= g and both polynomials are irreducible, it follows that αi 6= βj
for all (i, j) ∈ {1, . . . , d} × {1, . . . , k}. By Corollary 2.1.22, we know that 0 6= Res(f, g) ∈ Z.
Hence,

1 ≤ |Res(f, g)| . (2.8)
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More precisely, Corollary 2.1.22 tells us

|Res(f, g)| =
∣∣∣akdbdk∣∣∣ · |α1 − β1| ·

∏
(i,j)∈{1,...,d}×{1,...,k}\{(1,1)}

|αi − βj |

2.1.25
≤

∣∣∣akdbdk∣∣∣ · |α1 − β1| ·
∏

(i,j)∈{1,...,d}×{1,...,k}\{(1,1)}
2 max{1, |αi|}max{1, |βj |}

≤
∣∣∣akdbdk∣∣∣ · |α1 − β1| ·

∏
(i,j)∈{1,...,d}×{1,...,k}

2 max{1, |αi|}max{1, |βj |}

=
∣∣∣akdbdk∣∣∣ · |α1 − β1| · 2dk

d∏
i=1

max{1, |αi|}k
k∏
j=1

max{1, |βj |}d

= |α1 − β1| 2dk
(
|ad| ·

d∏
i=1

max{1, |αi|}
)k
·

|bk| · k∏
j=1

max{1, |βj |}

d

= |α1 − β1| 2dkM(α)kM(β)d.

Applying (2.8), gives 1 ≤ |α1 − β1| 2dkM(α)kM(β)d = |α− β| 2dkM(α)kM(β)d, proving the
claim.

Maybe you have noticed that his is a very familiar statement.

Corollary 2.1.27. Let α ∈ Q be of degree d ≥ 2, and let K be a number field. Then there
exists a positive constant cK(α) > 0 such that for all β ∈ K \ {α} we have

|α− β| ≥ cK(α)
M(β)d .

Proof. Just let cK(α) be less than the minimum of the distance between α and any Galois
conjugate of α and less than 1

2dkM(α)[K:Q] . Then the statement follows immediately from
Proposition 2.1.26.

Remark 2.1.28. This is Liouville’s Theorem 1.1.12 for arbitrary number fields! So in this
case, the Mahler measure is indeed the correct quantity to measure the quality of an approx-
imation. In particular, Roth’s theorem for number fields will be the obvious generalization of
(RT3), namely for any number field K it is

∀ α ∈ Q, ∀ ε > 0, ∃ cK(α, ε) > 0, such that |α− β| > cK(α, ε)·M(β)−(2+ε), ∀ β ∈ K\{α}.
(RT4)

In the exercises you will prove that (RT4) is equivalent to the following statement: For any
number field K we have

∀ α ∈ Q, ∀ ε > 0, the set
{
β ∈ K| |α− β| < M(β)−(2+ε)

}
is finite. (RT5)

Exercises

Exercise 2.1. (a) Let a ∈ Z and n ∈ N be arbitrary. Calculate M( n
√
a), for any choice of

the n-th root.
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(b) Prove that M(α) ≥ 2 for all α ∈ Q which are not an algebraic unit. Recall, that an
algebraic unit is an unit in the ring of algebraic integers.

(c) Let α ∈ Q be an algebraic integer with Galois conjugates α = α1, . . . , αd. Assume that
none of the quotients α/αi, i ∈ {2, . . . , d}, is a root of unity. Show that for all n ∈ N, we
have M(αn) = M(α)n.

Exercise 2.2. Aim is to prove a Theorem of Andrej Schinzel, on the Mahler measure of
totally real algebraic integers.

(a) Let x ∈ (0, 1) be arbitrary. Prove that log(x) + 1√
5 log( 1

x − x) ≤ log( 2
1+
√

5).

Hint: Consider the left hand side as a function in x. Take the derivative of this function
and use elementary calculus.

(b) Prove that
max{1, |x|}

|x| ·
∣∣∣ 1x − x∣∣∣ 1√

5
≥ 1 +

√
5

2

for all x ∈ R \ {0,±1}.
Hint: Use (a) for the case |x| < 1. Then replace x by x−1.

(c) Let f(x) = (x− α1) · . . . · (x− αd) ∈ Z[x] be irreducible, with d ≥ 2. Prove that

d∏
i=1
|αi|

1
2

∣∣∣∣ 1
αi
− αi

∣∣∣∣ 1
2
√

5 = |f(0)|
1
2−

1
2
√

5 · |f(1)f(−1)|
1

2
√

5 .

Hint: Vieta’s formulas.

(d) Let α be an algebraic integer of degree d ≥ 2, such that all Galois conjugates of α are in

R. Prove that M(α) ≥
(

1+
√

5
2

) d
2 .

Hint: Combine parts (b) and (c).

(e) Conclude that Lehmers conjecture is true for all totally real numbers, i.e. for all α ∈ Q∩R
such that all Galois conjugates of α are real.

Exercise 2.3. Let f(x) = anx
n + an−1x

n−1 + . . .+ a0 ∈ Z[x], with f(x) = ad(x− α1) · . . . ·
(x− αn), for some α1, . . . , αn ∈ C (so in particular ad 6= 0). The discriminant of f is defined
as

∆(f) = a2n−2
n

∏
1≤i<j≤n

(αi − αj)2.

Prove that ∆(f) = a−1
n (−1)

n(n−1)
2 Res(f, f ′), where f ′ is the derivative of f .

Exercise 2.4. Prove part (ii) in Corollary 2.1.23.

Exercise 2.5. We recall Haramard’s determinant inequality from linear algebra: For every
A = (aij) ∈Mn(C) we have

|det(A)|2 ≤
n∏
i=1

 n∑
j=1
|aij |2

 .
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Let α ∈ Q be of degree d, with minimal polynomial f ∈ Z[x]. Use Hadamard’s inequality, to
prove |∆(f)| ≤ ddM(α)2d−2.

Exercise 2.6. Prove that (RT4) and (RT5) are equivalent.

Exercise 2.7. By Northcott’s theorem the set Md = {M(α)|[Q(α) : Q] = d} is discrete for
all d ∈ N.

(a) Find the two smallest values in M2 \ {1}.

(b) Find the smallest value in M3 \ {1}.

2.2 Recap on Valuation Theory
I assume that you have basic knowledge of valuation theory. The material provided by
the course algebraic number theory by Prof. Kohlhaase last term, should be sufficient. To
guarantee that all of us stand more or less on the same ground, I will recall the most important
results and definitions. The proofs are skipped or sketched. In addition to an lecture on
algebraic number theory, everything can be found in the books [10] and [6].

2.2.1 Absolute Values, Ramification, Inertia

First of all, recall that all number fields are contained in a fixed algebraic closure Q ⊆ C.
Given any complex number z (so in particular any element in Q), the complex conjugate of
z is denoted by z.

Definition 2.2.1. Let K be a field. An absolute value on K is a function |.| : K → R
satisfying

(i) |a| ≥ 0 and |a| = 0 ⇐⇒ a = 0,

(ii) |a · b| = |a| · |b|, and

(iii) |a+ b| ≤ |a|+ |b|,

for all a, b ∈ K. If |.| satisfies the ultrametric inequality

(iii’) |a+ b| ≤ max{|a| , |b|},

then |.| is called non-archimedean. Otherwise, it is called archimedean. The trivial absolute
value |.|0 is given by |0|0 = 0 and |a|0 = 1 for all a ∈ K∗.

If |.| is non-archimedean, then |a| 6= |b| implies |a+ b| = max{|a| , |b|}: Assume |a| > |b|,
then surely |a+ b| ≤ max{|a| , |b|} = |a|. On the other hand, we have |a| = |a+ b− b| ≤
max{|a+ b| , |b|}. Since |a| > |b|, it follows |a| ≤ |a+ b|, proving the claim.
It is easy to check that if |.| is an absolute value on the field K, then so is |.|ε for any ε ∈ [0, 1].

Definition 2.2.2. Let K be a field. Two absolute values |.|1 and |.|2 on K are equivalent, if
and only if there is an ε > 0 such that |a|1 = |a|ε2 for all a ∈ K.

Equivalently, one could say that two absolute values on K are equivalent if and only if they
induce the same topology on K.
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Example 2.2.3. On Q we have the usual (archimedean) absolute value |α|∞ = max{α,−α}.
Let p be a prime number. Every α ∈ Q∗ can be written as α = pvp(α) · ab with vp(α), a, b ∈ Z,
and p - a · b. Obviously, this vp(α) is uniquely determined. Now, the p-adic absolute value of
α ∈ Q∗ is given by |α|p = p−vp(α) (and of course |0|p = 0).

Lemma 2.2.4. Let P be the set of all primes. Then
∏
p∈P∪{∞} |α|p = 1 for all α ∈ Q∗.

Proof. Write α = a
b with coprime a, b ∈ Z. Since it clearly suffices to check the claim for

positive numbers, we assume a, b ∈ N. Then for all p ∈ P we have

|α|p =


p−vp(a) if p | a
pvp(b) if p | b
1 else.

Hence
∏
p∈P |α|p = b

a , proving the lemma.

Theorem 2.2.5. Any non-trivial absolute value on Q is equivalent to |.|∞ or to |.|p for some
prime number p.

We set
MQ = {|.|p |p ∈ P} ∪ {|.|∞}. (2.9)

Now we do the same for an arbitrary number field K. There are precisely [K : Q] embeddings
of K into C (or equivalently Q). Here an embedding is just a ring-homomorphism, which is
necessarily injective, since K is a field, and necessarily every element in Q is fixed, since 1 7→ 1
and it is a ring-homomorphism. We denote the set of embeddings of K by HomQ(K/C).
Let σ ∈ HomQ(K,C) and let |.| be the usual absolute value on C. This is: For z = a+b ·i ∈ C,
we have |z| =

√
a2 + b2 =

√
z · z.

Then (obviously) |σ(.)| is an archimedean absolute value on K. Given any σ ∈ HomQ(K,C),
the map

σ : K −→ C ; α 7→ σ(α)

is also in HomQ(K,C). We have σ = σ if and only if all values of σ are real. In this case σ is
called a real embedding, otherwise it is called a complex embedding.

Theorem 2.2.6. Let σ1, . . . , σr, σr+1, σr+1, . . . , σr+s, σr+s be all embeddings of the number
field K. (Note that this implies [K : Q] = r + 2s.) Then there are precisely r + s non-
equivalent archimedean absolute values on K, namely

|.|σi = |σi(.)| for i ∈ {1, . . . , r + s}. (2.10)

Remark 2.2.7. Note that this differs from Prof. Kohlhaase’s notation. This is due to the
fact that ‖.‖σ =

∣∣∣σ(.) · σ(.)
∣∣∣ is in general NOT an absolute value!

The non-archimedean absolute values of K are still missing. In the case K = Q we used the
unique prime decomposition in Z. Now Z is just the ring of (algebraic) integers in Q. Denote
with OK the ring of (algebraic) integers in K. Then there is not necessarily an unique prime
decomposition in OK , but there is a unique prime ideal decomposition! So we can mimic the
construction of the p-adic absolute values, with prime ideals instead of prime elements.
Let P be a prime ideal in OK and let α ∈ K∗ be arbitrary. Write α = α1

α2
with α1, α2 ∈ OK

(which is always possible, since K is the field of fractions of OK). There are non-negative
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integers vP(α1), vP(α2) such that αi ∈ PvP (αi) and αi /∈ PvP (αi)+1 for i ∈ {1, 2}. Set vP(α) =
vP(α1)− vP(α2), then we define

‖α‖P = N(P)−vP (α),

where N(P) = |OK/P| is the norm of P. Using fractional ideals, we have a unique prime ideal
decomposition αOK =

∏
P PvP (α), where the product runs over all prime ideals in OK .

Since P is a prime ideal, and OK is a Dedekind domain, it is actually a maximal ideal and
OK/P is a field of characteristic p for a (necessarily unique) prime number p ∈ P. Hence,
N(P) = pfP|p for some integer fP|p ∈ N which we call the inertia degree of P over p. In
particular,

‖α‖P = N(P)−vP (α) = p−fP|pvP (α).

Let us define the inertia degree in a slightly more general setting.

Definition 2.2.8. Let L/K be an extension of number fields. Moreover, let P be a prime
ideal in OK ⊆ OL and P ⊇ P be a prime ideal in OL. Then we say that P lies above P and
the inertia degree of P over P is given by fP|P = [OL/P : OK/P].

Note that this is well-defined and in the case K = Q and P = pZ, we indeed recover the first
definition of the inertia degree.

Theorem 2.2.9. For any prime ideal P in OK , the function ‖.‖P (with the convention
‖0‖P = 0) is a non-archimedean absolute value on K. Moreover, whenever ‖.‖ is a non-
trivial non-archimedean absolute value on K, the set P = {α ∈ K| ‖α‖ < 1} ∩OK is a prime
ideal in OK , and ‖.‖ is equivalent to ‖.‖P .

Let p be a prime number. Since pOK has a unique prime ideal decomposition, there are
prime ideals P1, . . . ,Pn in OK , such that pOK = PeP1|p

1 · . . . · PePn|pn , with ePi|p ≥ 1 for all
i ∈ {1, . . . , n}. (In the notation above it is ePi|p = vPi(p).) This means, that the Pi’s are
precisely the prime ideals in OK containing p. The integer ePi|p is called ramification index
of Pi over p. Now, for any i ∈ {1, . . . , n} it is

‖p‖Pi = p−fPi|pePi|p .

Since |p|p = p−1 for the usual p-adic absolute value, the absolute value of p depends on the
chosen ground field K and the chosen prime ideal above p. This is very unpleasant!
Before we proceed let us again define the ramification index in a slightly more general setting.

Definition 2.2.10. Let L/K be an extension of number fields, and let P be a prime ideal
in OK . Then by the unique prime ideal decomposition, there are finitely many prime ideals
P1, . . . ,Pn in OL such that

POL =
n∏
i=1

P
ePi|P
i ,

for positive integers eP1|P , . . . , ePn|P . The prime ideals Pi are precisely the prime ideals above
P, and ePi|P is the ramification index of Pi over P.

Lemma 2.2.11. Let F/L/K be extensions of number fields. Moreover, let p, P, P, be prime
ideals in OF , OL, resp. OK , such that P ⊆ P ⊆ p. Then

(i) P = P ∩ OK = p ∩ OK and P = p ∩ OL.
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(ii) ep|P · eP|P = ep|P .

(iii) fp|P · fP|P = fp|P .

(iv) If L/K is a Galois extension, and P1 and P2 are two prime ideals in OL lying above
P, then eP1|P = eP2|P , and fP1|P = fP2|P .

We resume the study of non-archimedean absolute values on a number field K. We define for
any prime ideal P in OK

|.|P = ‖.‖
1

fP|peP|p
P = p

−
vP (.)fP|p
fP|peP|p = p

− vP (.)
eP|p , (2.11)

where p is the unique prime number in P. Since 1
fP|peP|p

≤ 1, we know that |.|P is again a
non-archimedean absolute value. The benefit of this normalization is the following

Proposition 2.2.12. Let L/K be an extension of number fields, and let P and P be prime
ideals in OL, resp. OK , such that P lies above P. Then |.|P restricted to K is equal to |.|P .

Proof. Let α ∈ K∗ be arbitrary. Since P appears exactly vP(α)-times in the prime ideal
decomposition of αOK , and P appears precisely eP|P -times in the prime ideal decomposition
of POL, the prime ideal P appear precisely vP(α)eP|P -times in the prime ideal decomposition
of αOL. This just means that we have

vP(α) = vP(α)eP|P . (2.12)

That is already the main observation, since

|α|P = p−
vP(α)/eP|p

(2.12)= p−
vP (α)eP|P/eP|p 2.2.11= p−

vP (α)eP|P/eP|PeP|p = p−
vP (α)/eP|p = |α|P .

Let us summarize what we have done so far. We have classified all absolute values on the num-
ber field K. Let again σ1, . . . , σr be the real embeddings of K, and σr+1, σr+1, . . . σr+s, σr+s
be the complex embeddings of K. Then the following is a full list of pairwise non-equivalent
absolute values on K:

(i) the trivial one,

(ii) (the archimedean ones) |.|σi , with i ∈ {1, . . . , r + s}, normalized as in (2.10) and

(iii) (the non-archimedean ones) |.|P , with P a prime ideal in OK , normalized as in (2.11).

We set
MK = {|.|σi |i ∈ {1, . . . , r + s}} ∪ {|.|P |P prime ideal in OK}. (2.13)

By (maybe heavy) abuse of notation, we will often identify the absolute value |.|v ∈MK with
its index v.
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Definition 2.2.13. Let L/K an extension of number fields, and let v ∈MK and w ∈ML. If
w restricted to K is equal to v, then we denote this by w | v and say that w is an extension
of v to L. If w is not an extension of v we write w - v. In particular, v is archimedean if and
only if v | ∞, and v is non-archimedean if and only if there is a prime number p such that
v | p.
If v and w are non-archimedean, and they correspond to P and P resp., then we define the
ramification index ew|v = eP|P and the inertia degree fw|v = fP|P . If v and w are archimedean,
corresponding to the embeddings σ, and τ , then we define the ramification index

ew|v =
{

1 if σ, τ are both real or both complex
2 if σ is real and τ is complex,

and the inertia degree fw|v = 1 in all cases. Note that w | v implies that τ |K = σ, hence it is
not possible that τ is real and σ is complex.
If v | p for some p ∈ MQ, then we drop the dependence on p and say that ev = ev|p is the
ramification index of v, and fv = fv|p is the inertia degree of v.

Theorem 2.2.14. Let L/K be an extension of number fields. For all v ∈MK we have∑
w∈ML
w|v

ew|v · fw|v = [L : K].

Proof. Let σ be an embedding ofK corresponding to the archimedean absolute value v ∈MK .
By Galois theory, there are precisely [L : K] embeddings of τ of L, such that τ |K = σ. If r
of these embeddings are real and 2s of these embeddings are complex, then there are r + s
extensions of v to L. By definition r of these have ramification index 1 and s of these have
ramification index 2. Hence,∑

w|v
ew|vfw|v =

∑
w|v

ew|v = r + 2s = [L : K].

If v is non-archimedean, then this result was proven in Kohlhaase’s course last term. By
the multiplicativity of the ramification index, the inertia degree and the degree of a field
extension, it suffices to prove this result in the case, where K = Q, and v = p is a prime
number. The idea of the proof was to use the Chinese remainder theorem

OL/pOL ∼=
n∏
i=1

OL/
(
P
ePi|p
i

)
,

where pOL = PePi|p1 · . . . ·PePi|pn is the prime ideal decomposition of pOL. This isomorphism is
in particular an isomorphism of Fp = Z/pZ-vector spaces. The claimed statement follows from
comparing the dimensions. One proves that the dimension of OL/pOL is [L : Q] (one has to do
something for this), and that the dimension of OL/

(
P
ePi|p
i

)
is ePi|pfPi|p for all i ∈ {1, . . . , n}

(this is quite easy). It then follows

[L : Q] =
n∑
i=1

ePi|pfPi|p =
∑
v∈ML
v|p

ev · fv,

as claimed.
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Corollary 2.2.15. If K/Q is a Galois extension, p ∈ MQ, and n the number of extensions
of p to K, then [K : Q] = n · ev · fv, for any v ∈MK extending p.

Recall that the norm of an element α ∈ K is given by NK/Q(α) =
∏
σ∈HomQ(K/C) σ(α), and

that (non-trivially)
∣∣∣NK/Q(α)

∣∣∣ =
∏
P N(P)vP (α). This implies the product formula

Theorem 2.2.16. Let K be a number field, then for all α ∈ K∗ we have∏
v∈MK

|α|evfvv = 1.

Definition 2.2.17. Let K be a number field. Set Mfin
K = {v ∈MK |v -∞}, and let S ⊆Mfin

K

be a finite subset. An α ∈ K is called an S-integer if |α|v ≤ 1 for all v ∈Mfin
K \ S. The set of

all S-integers is denoted by OK,S .

Proposition 2.2.18. Let K and S be as above, then OK,S is a ring, and OK,∅ = OK .

Proof. If α, β ∈ OS and v ∈ Mfin
K is arbitrary, then |α · β|v = |α|v · |β|v ≤ 1 and |α+ β|v ≤

max{|α|v , |β|v} ≤ 1. Hence, α ·β ∈ OK,S and α+β ∈ OK,S , which proves the first statement.
The second statement follows directly from the definition of the absolute value |.|v.

2.2.2 Completions

Let K be a field with absolute value |.|. Then there is a “smallest field” F in which all Cauchy
sequences of elements in K converge. This field is called the completion of K with respect
to |.|. If |.| is archimedean, then the completion is either R or C. The completion of Q with
respect to the p-adic absolute value |.|p is the field of p-adic numbers Qp.
If K is a number field and v ∈ MK , then the completion of K with respect to v is denoted
Kv. The absolute value v extends uniquely to an absolute value on Kv. This is: if α ∈ Kv

then there exists an infinite sequence α1, α2, . . . ∈ K such that α = limi→∞ αi. Hence, we
define |α|v = limi→∞ |αi|v. The field Kv is complete with respect to this absolute value; i.e.
every Cauchy sequence (with respect to v) of elements in Kv converges in Kv.
In the following, we always let K be a number field, and v ∈MK be non-archimedean.

Lemma 2.2.19. Let F/Kv be a finite extension. Then there is precisely one absolute value
ν on F extending v. It is given by |α|ν =

∣∣∣NF/Kv(α)
∣∣∣1/[F :Kv ]

v
. Here NF/Kv(α) is the norm of

α; i.e. the product of all σ(α), where σ runs through all Kv-embeddings of F into Kv.

Lemma 2.2.20. For every α ∈ Kv, there is a β ∈ K such that |α|v = |β|v.

Proof. Let α = limn→∞ αn, with αn ∈ K. Then |αn|v −→ |α|v. But by definition we have

|αn|v = 1
p
a
ev

for some a ∈ Z.

The set pZ/ev := {p
a
ev |a ∈ Z} = { 1

p
a
ev
|a ∈ Z} is discrete, and hence, |αn|v −→ |α|v either

means that |α|v = 0 or |α|v = |αn|v for all large enough n.

If F is a field with absolute value ν, then we define the set |F |ν = {|a|ν |a ∈ F ∗}. This
is obviously a group under multiplication. Now we can rephrase the preceding lemma as
|K|v = |Kv|v.
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Definition 2.2.21. Let K be a number field with non archimedean valuation v ∈MK . Then
Ov = {α ∈ Kv| |α|v ≤ 1} is the ring of v-adic integers.

Using the ultrametric inequality, it is indeed obvious that Ov is a ring.

Lemma 2.2.22. Let K, v,Ov be as above. Then Ov is a local ring, with unique prime ideal
Mv = {α ∈ Kv| |α|v < 1}. Moreover, Ov is a principle ideal domain. Denote by p the unique
prime number such that v | p. An element πv ∈ Kv is a generator of Mv if and only if
|πv|v = p−1/ev . Such an element is called uniformizer in Kv.

Proof. Note that πv is just any element in Kv with largest possible absolute value less than
one. If α ∈ Mv, then |α|v < 1, and hence |α|v = p−a/ev = |πv|av, for some a ∈ N. Then,∣∣∣πa−1
v

α
πav

∣∣∣
v
≤ 1, and α = πv · πa−1

v
α
πav
∈ πv · Ov.

Lemma 2.2.23. Let L/K be an extension of number fields and let w ∈ML, such that w | v.
Then

(i) Kv ⊆ Lw, and

(ii) (|Lw|w : |Kv|v) = (|L|w : |K|v) = ew|v.

Proof. Since w is an extension of v, every Cauchy sequence of elements in K with respect to
w (which is equal to v on K) converges in Kv. This proves part (i). This implies that |Kv|v
is indeed a subgroup of |Lw|w. The first equality in (ii) follows immediately from Lemma
2.2.20. Since |L|w = pZ/ew and |K|v = pZ/ev , for the unique prime number satisfying v | p,
we know that the group index (|L|w : |K|v) is equal to ew

ev

2.2.11= ew|v.

Proposition 2.2.24. Let L/K be an extension of number fields, and let w ∈ ML be such
that w | v. Then Ov is the completion of OK with respect to v, and Ow is the integral closure
of Ov in Lw.

Proof. We only sketch the proof of the second statement. Let α ∈ Lw be integral over Ov.
This means that there are a0, . . . , an−1 ∈ Ov such that

0 = αn + an−1α
n−1 + . . .+ a0.

This implies

|α|nw =
∣∣∣an−1α

n−1 + . . .+ a0
∣∣∣
w
≤ max

0≤i≤n−1
{
∣∣∣aiαi∣∣∣

w
} ≤ max

0≤i≤n−1

∣∣∣αi∣∣∣
w
,

where the last inequality follows, since |ai|w = |ai|v ≤ 1 for all i ∈ {0, . . . , n − 1}. It follows
|α|w ≤ 1, and hence α ∈ Ow.
Now assume that α ∈ Ow, or equivalently |α|w ≤ 1. Let F be the Galois closure of Lw over
Kv. By Lemma 2.2.19 there is a unique absolute value ν on F extending w. It follows that
|σ(α)|ν = |α|ν = |α|w ≤ 1 for all σ ∈ Gal(F/Kv). Galois theory tells us that∏

σ∈Gal(F/Kv)
(x− σ(α)) = xn + an−1x

n−1 + . . .+ a0 ∈ Kv[x].

Since |σ(α)|ν ≤ 1 for all σ, the ultrametric inequality (together with Vieta’s formulas 2.1.5)
predicts that also |ai|ν = |ai|v ≤ 1 for all i ∈ {0, . . . , n− 1}. Hence α is integral over Ov.
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Proposition 2.2.25. Let P be the prime ideal in OK corresponding to v. Then for all n ∈ N
we have OK/Pn ∼= Ov/Mn

v .

Theorem 2.2.26. Let L/K be an extension of number fields, and let w ∈ ML be such that
w | v. Then the local degree is dw|v = [Lw : Kv] = ew|v · fw|v. In case that K = Q, we simply
write dw for dw|v. This is also true if v | ∞.

Proof. The proof in the non-archimedean case was done in the number theory course. The
archimedean case is true by the definition of ew and fw: It is Lw = R if w corresponds to a
real embedding, and Lw = C if w corresponds to a complex embedding. Moreover fw = 1
in all archimedean cases. Since Q∞ = R, we have dw = 1 = ew if w corresponds to a real
embedding, and dw = 2 = ew if w corresponds to a complex embedding.

Exercises
Exercise 2.8. Let K be a number field, and let p be a prime number. Moreover, we fix a
v ∈MK such that v | p. Prove that for all α ∈ Ov, with α 6= αp

fv , we have
∣∣∣α− αpfv ∣∣∣

v
≤ 1

p1/ev .

2.3 The Weil-height (finally)
All absolute values on a number field will be normalized as in (2.10) and (2.11).

Notation 2.3.1. Let K be a field with absolute value |.|ν and let K[x1, . . . , xn] be the
polynomial ring over K in n variables. For d = (d1, . . . , dn) ∈ Zn define xd = xd1

1 · . . . · xdnn .
Any f ∈ K[x1, . . . , xn] can be written as f =

∑
d∈Nn0

adx
d, with ad = 0 for all but finitely

many d ∈ Nn0 . Then we set

|f |v =

∣∣∣∣∣∣
∑
d∈Nn0

adx
d

∣∣∣∣∣∣
v

= max
d∈Nn0

∣∣ad∣∣v .
Lemma 2.3.2 (Gauß-Lemma). Let K be a number field, and let v ∈MK be non-archimedean.
Then |f · g|v = |f |v · |g|v for all f, g ∈ Kv[x1, . . . , xn].

Proof. If f = 0 or g = 0, then surely |f · g|v = 0 = |f |v · |g|v. So we assume from now on,
that f · g 6= 0. For all α ∈ Kv, the definition of |f |v implies |α · f |v = |α|v · |f |v.
Assume first that |f |v = 1 = |g|v. This means that the absolute value of each coefficient
of f and g is ≤ 1, so we have f, g ∈ Ov[x1, . . . , xn]. Since Ov is a ring, we know f · g ∈
Ov[x1, . . . , xn], which implies |f · g|v ≤ 1.
We apply the canonical projection π : Ov[x1, . . . , xn] −→ Ov/Mv[x1, . . . , xn]. Since at least one
of the coefficients of f and one of the coefficients of g has absolute value = 1, this coefficient in
not inMv. Hence π(f) 6= 0 6= π(g). Since Ov/Mv is a field, it follows π(f ·g) = π(f) ·π(g) 6= 0.
But this means that at least one of the coefficients of f · g does not lie inMv. Hence, it must
be |f · g|v = 1.
For arbitrary f, g ∈ Kv[x1, . . . , xn]\{0}, we choose α, β ∈ Kv such that |α · f |v = 1 = |β · g|v.
(For instance this works if α is the inverse of the maximal coefficient of f). Then, by the
special case studied above,

|α · β|v · |f · g|v = |α · f · β · g|v = |α · f |v · |β · g|v = |α · β|v · |f |v · |g|v .

This proves the claim.
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Remark 2.3.3. Just for completeness, we will give the proof of the well-known Lemma 2.1.10. The statement
was: A polynomial f ∈ Z[x] is irreducible in Z[x], if and only if f is irreducible in Q[x] and the gcd of its
coefficients is equal to one.
The assumption on the gcd just guarantees that f does not have a factor in Z. Hence, if the gcd is 1 and f is
irreducible in Q[x], it is surely irreducible in Z[x].
Now, let f be irreducible in Z[x]. Then again the gcd is 1. Assume that there are g, h ∈ Q[x] such that
f = g · h. Since |f |p ≤ 1 for all primes p, and at least one coefficient is not divisible by p, we know that
1 = |f |p = |g|p · |h|p for all primes p. If |g|p 6= 1, we multiply g with some pap and f with p−ap for some ap ∈ Z
such that |pag|p = 1 =

∣∣p−ah∣∣
p
. Let α be the product of all pap , for the finitely many primes p, such that

|g|p 6= 1 or |h|p 6= 1. Then f = (αg) · (α−1h) and |αg|p = 1 =
∣∣α−1f

∣∣
p
for all primes p. Hence, αg, α−1h ∈ Z[x],

and since f is irreducible in Z it follows that g or h must be constant. Therefore, f is irreducible in Q[x].

Actually the height will just be a normalized form of the Mahler measure, but this normal-
ization (and formulation) will enable us to extend it to much more general settings.
Recall that in view of Theorem 2.2.26, the product formula for the number field K 2.2.16
reads ∏

v∈MK

|α|dvv = 1 for all α ∈ K∗.

Theorem 2.3.4. Let α ∈ Q be arbitrary with minimal polynomial f(x) = adx
d + . . .+ a0 =

ad(x− α1) · . . . · (x− αd) ∈ Z[x]. Then we have

M(α) =
∏

v∈MQ(α)

max{1, |α|dvv }.

Proof. If α = 0, then both sides are equal to 1. So we assume from now on that α ∈ Q∗. The
definition of the Mahler measure and the normalization of the archimedean absolute values,
implies

M(α) = |ad| ·
d∏
i=1

max{1, |αi|} = |ad| ·
∏

v∈MQ(α)
v|∞

max{1, |α|dvv }.

Hence, we are left to prove
|ad| =

∏
v∈MQ(α)
v-∞

max{1, |α|dvv }. (2.14)

To this end, let K/Q be a Galois extension with α ∈ K (so you may take the Galois closure
of Q(α)). The product formula predicts

1 =
∏

w∈MK

|ad|dww =
∏

w∈MK
w|∞

|ad|dww ·
∏

w∈MK
w-∞

|ad|dww

ad∈Z= |ad|
∑

w∈MK,w|∞
dw ·

∏
w∈MK
w-∞

|ad|dww
2.2.14= |ad|[K:Q] ·

∏
w∈MK
w-∞

|ad|dww . (2.15)

By assumption all Galois conjugates α1, . . . , αd of α are in K. Since moreover the coefficients
of f are coprime, the Gauß-Lemma 2.3.2 tells us

1 = |f(x)|w = |ad|w ·
d∏
i=1
|x− αi|w = |ad|w ·

d∏
i=1

max{1, |αi|w} ∀ w ∈MK , w -∞.
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This implies

1 =
∏

w∈MK
w-∞

|ad|dww ·
∏

w∈MK
w-∞

d∏
i=1

max{1, |αi|dww }

(2.15)=⇒ |ad|[K:Q] =
∏

w∈MK
w-∞

d∏
i=1

max{1, |αi|dww }. (2.16)

For each σ ∈ Gal(K/Q), and all w ∈ MK , w | v for some v ∈ MQ(α), the function w ◦ σ is
again an absolute value on K extending the same absolute value on Q as v does. We will
apply the following facts. Fact (A): Since K/Q is Galois, we know from Lemma 2.2.11 and
Theorem 2.2.26 that dw◦σ = dw. Fact (B): Since w | v we have |α|dww = |α|dw|vdvv . Fact (C):
For every i ∈ {1, . . . , d} there are precisely [K : Q(α)] = [K : Q]/d embeddings σ ∈ Gal(K/Q)
such that σ(α) = αi. Fact (D): σ permutes the elements in Mfin

K (this is ν 7→ ν ◦σ is bijective
on Mfin

K for any σ ∈ Gal(K/Q)3). This gives us

∏
w∈MK
w-∞

d∏
i=1

max{1, |αi|dww }
(C)=

∏
w∈MK
w-∞

∏
σ∈Gal(K/Q)

max{1, |σ(α)|dww }
d/[K:Q]

(A)=
∏

w∈MK
w-∞

∏
σ∈Gal(K/Q)

max{1, |α|dw◦σw◦σ }
d/[K:Q] (D)=

∏
σ∈Gal(K/Q)

∏
w∈MK
w-∞

max{1, |α|dww }
d/[K:Q]

=
∏

w∈MK
w-∞

max{1, |α|dww }
d =

∏
v∈MQ(α)
v-∞

∏
w∈MK
w|v

max{1, |α|dww }
d

(B)=
∏

v∈MQ(α)
v-∞

∏
w∈MK
w|v

max{1, |α|dwv }
d (B)=

∏
v∈MQ(α)
v-∞

max{1, |α|dvv }
d
∑

w∈MK,w|v
dw|v

2.2.14=
∏

v∈MQ(α)
v-∞

max{1, |α|dvv }
d·[K:Q(α)] =

∏
v∈MQ(α)
v-∞

max{1, |α|dvv }
[K:Q].

Combining this with (2.16) proves (2.14) and hence the theorem.

With Theorem 2.3.4 we see that the archimedean absolute value does not play any exceptional
role in the definition of the Mahler measure. Hence, if the archimedean distance between two
algebraic numbers is bounded in terms of the Mahler measure, then the p-adic distance should
be bounded in terms of the Mahler measure as well.
The same calculation as in the proof of Theorem 2.3.4 also proves:

Lemma 2.3.5. Let α ∈ Q be arbitrary, and let K be any number field containing α. Then ∏
v∈MQ(α)

max{1, |α|v}
dv

1/[Q(α):Q]

=

 ∏
w∈MK

max{1, |α|v}
dv

1/[K:Q]

.

3There is a pretty obvious inverse map...
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Definition 2.3.6. For all α ∈ Q the absolute multiplicative Weil-height of α is defined as
H(α) =

(∏
v∈MK

max{1, |α|v}dv
)1/[K:Q]

, for any number field K containing α. In the same no-
tation, the absolute logarithmic Weil-height of α is h(α) = 1

[K:Q]
∑
v∈MK

dv log(max{1, |α|v}).

Remark 2.3.7. • We have seen in Lemma 2.3.5 that the height is indeed well-defined.

• Obviously we have H(α) = exp(h(α)) for all α ∈ Q.

• We have H(α) = M(α)1/[Q(α):Q] and h(α) = 1
[Q(α):Q] log(M(α)). So why does this

deserves a new definition? This is justified, since the definition of the height is much
more flexible than the definition of the Mahler measure: Not every algebraic object
defined over a number field has a minimal polynomial, but everything has a bunch
of absolute values! So without any difficulties we can (and will) extend the height to
polynomials, and to points in higher dimensions.
Moreover, with Theorem 2.3.4 we see that the archimedean absolute value does not
play any exceptional role in the definition of the Mahler measure (and obviously not in
the definition of the height). Hence, if the archimedean distance between two algebraic
numbers is bonded in terms of the Mahler measure, then the p-adic distance should be
bounded in terms of the Mahler measure as well.

The reformulation of Northcott’s theorem, now reads.

Theorem 2.3.8 (Northcott). For any A,B ∈ R there are at most finitely many algebraic
numbers α, with [Q(α) : Q] ≤ A and h(α) < B, resp. H(α) < B.

Lemma 2.3.9. Let α1, . . . , αn ∈ Q∗ be arbitrary, and with h we denote the absolute logarith-
mic Weil-height (from now on only called height). Then

(a) h(α1) ≥ 0, and h(α1) = 0 if and only if α1 is a root of unity.

(b) h(α1 · ζ) = h(α1) for all roots of unity ζ.

(c) h(αr1) = |r| · h(α1) for all r ∈ Q.

(d) h(α1 + . . .+ αn) ≤ h(α1) + . . .+ h(αn) + log(n).

(e) h(α1 · . . . · αn) ≤ h(α1) + . . .+ h(αn).

Proof. Part (a) is just a reformulation of Kronecker’s Theorem 2.1.12, since the height vanishes
precisely when the Mahler measure is 1. We will now prove part (d). The other statements
are given as exercises.
Let α1, . . . , αn ∈ Q∗ be arbitrary, and let K be any number field containing all the αi’s. We
denote the degree of K by d. The height of α1 + . . .+ αn collects information of all possible
absolute values of this number. So we should start with estimates for the absolute values of
α1 + . . .+ αn. For v ∈MK the (ultrametric) triangular inequality implies

|α1 + . . .+ αn|v ≤
{

max1≤i≤n |αi|v if v -∞
n ·max1≤i≤n |αi|v if v | ∞.

(2.17)

(The first estimate follows from the definition of the ultrametric triangular inequality, which
holds (again by definition) for all non-archimedean absolute values. For the second estimate,
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just note that the archimedean absolute values behave precisely as the standard absolute
value on C.) Now the result follows from a dry calculation, which starts in a moment. Recall
that we have 1

d

∑
v|∞ dv = 1 (cf. 2.2.14 and 2.2.26). Let’s finally prove the claimed inequality:

h(α1 + . . .+ αn) = 1
d

∑
v∈MK

dv log(max{1, |α1 + . . .+ αn|v})

=1
d

∑
v∈MK
v|∞

dv log(max{1, |α1 + . . .+ αn|v}) + 1
d

∑
v∈MK
v-∞

dv log(max{1, |α1 + . . .+ αn|v})

(2.17)
≤ 1

d

∑
v∈MK
v|∞

dv log(max{1, n max
1≤i≤n

|αi|v}) + 1
d

∑
v∈MK
v-∞

dv log(max{1, max
1≤i≤n

|αi|v})

≤1
d

∑
v∈MK
v|∞

dv log(n ·max{1, max
1≤i≤n

|αi|v}) + 1
d

∑
v∈MK
v-∞

dv log(max{1, max
1≤i≤n

|αi|v})

= 1
d

∑
v∈MK
v|∞

dv log(n)

︸ ︷︷ ︸
=log(n)

+1
d

∑
v∈MK

dv log(max{1, max
1≤i≤n

|αi|v})

≤ log(n) +
n∑
i=1

1
d

∑
v∈MK

dv log(max{1, |αi|v}) = log(n) +
n∑
i=1

h(αi).

This concludes the proof of part (d).

Following Remark 2.3.7 we can now (most elegantly) extend Liouville’s theorem to non-
archimedean absolute values.
Theorem 2.3.10. Let α, β ∈ Q be arbitrary with α 6= β. Denote the degree of α by d and
the degree of β by k. Let S ⊆MQ(α,β) be a finite set. Then we have∏

v∈S
min{1, |α− β|dvv } ≥

1
2kdM(α)kM(β)d .

Proof. It is α−β 6= 0 and hence, by Lemma 2.3.9 H(α−β) = H((α−β)−1). Now we calculate

H((α− β)−1) =
∏

v∈MQ(α,β)

max{1,
∣∣∣∣ 1
α− β

∣∣∣∣dv/[Q(α,β):Q]

v

} =
∏

v∈MQ(α,β)

1
min{1, |α− β|v}

dv/[Q(α,β):Q]

≥
∏
v∈S

1
min{1, |α− β|v}

dv/[Q(α,β):Q]
.

This implies∏
v∈S

min{1, |α− β|v}
dv ≥ 1

H(α− β)[Q(α,β):Q]
2.3.9
≥ 1

(2H(α)H(β))[Q(α,β):Q]

2.3.7= 1
2[Q(α,β):Q]M(α)[Q(α,β):Q]/[Q(α):Q]M(β)[Q(α,β):Q]/[Q(β):Q]

.

The standard inequalities [Q(α,β):Q]
[Q(α):Q] ≤ k, [Q(α,β):Q]

[Q(β):Q] ≤ d, and [Q(α, β) : Q] ≤ kd prove the
theorem.
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The following immediate consequence is the direct (and effective) generalization of Liouville’s
Theorem for number fields.

Corollary 2.3.11. Let α ∈ Q be of degree d, and fix a number field K of degree k. Moreover,
let S ⊆MK(α) be a finite set. Then for all β ∈ K \ {α} we have

∏
v∈S

min{1, |α− β|dvv } ≥
cK(α)

M(β)[K(α):Q(β)] ≥
cK(α)

M(β)d[K:Q(β)] = cK(α)
H(β)dk ,

where cK(α) = 1
2kdM(α)k .

Note that the dependence on K is actually just a dependence on the degree of K. Moreover,
this gives us a quite good feeling on how the statement of Roth’s theorem for arbitrary number
fields, and arbitrary absolute values should look like. Namely, for a fixed number field K we
should have something like

∀ α ∈ Q, ∀ ε > 0, ∀ S ⊆MK(α) finite, ∃ cK(α, ε, S) > 0 such that∏
v∈S

min{1, |α− β|dvv } >
cK(α, ε, S)

H(β)[K:Q](2+ε) ∀ β ∈ K \ {α}. (RT6)

As seen in the exercises, this is equivalent to the statement

∀ α ∈ Q, ∀ ε > 0, ∀ S ⊆MK(α) finite, the set{
β ∈ K|

∏
v∈S

min{1, |α− β|v}
dv < H(β)−[K:Q](2+ε)

}
is finite. (RT7)

Notice that in sharp contrast to the constant in the general Liouville’s theorem 2.3.11, the
constant cK(α, ε, S) from (RT6) is completely ineffective. That is, for no choice of K, α, ε,
and S, any constant is known that satisfies (RT6).

Definition 2.3.12. Let Q[x1, . . . , xn] be the polynomial ring over Q in n variables. The
multiplicative (resp. logarithmic) absolute Weil-height of f ∈ Q[x1, . . . , xn] is given by

H(f) =
∏

v∈MK

max{1, |f |v}
dv/[K:Q] (resp. h(f) = 1

[K : Q]
∑
v∈MK

dv log (max{1, |f |v}) ),

where K is any number field, with f ∈ K[x1, . . . , xn].

As before we can conclude that the height of a polynomial is well-defined. We know that
Q ⊆ Q[x1, . . . , xn], and it is obvious that the height for polynomials and the height for
algebraic numbers coincide for constant polynomials.

Definition 2.3.13. Let K be a field and let n ∈ N be arbitrary. We have an equivalence
relation ∼ on Kn+1 \ {0}, given by (a0, . . . , an) ∼ (b0, . . . , bn) if and only if there exists a
λ ∈ K∗ such that ai = λbi for all i ∈ {0, . . . , n}. We set Pn(K) = Kn+1\{0}/∼ and call this
the projective space over K of dimension n. The equivalence class of (a0, . . . , an) in Pn(K) is
denoted by [a0 : . . . : an].
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Proposition 2.3.14. Let n ∈ N be arbitrary. The following function is well-defined:

H : Pn(Q) −→ R ; [a0 : . . . : an] 7→
∏

v∈MK

max
0≤i≤n

|ai|
dv/[K:Q]
v ,

where K is any number field, with a0, . . . , an ∈ K.

Proof. The value of H([a0 : . . . : an]) could depend on the choice of representative for the
equivalence class, and on the choice of number field K. We have to exclude both.
Notice that for a0, . . . , an ∈ Q, with ai = 1 for some i, the value

∏
v∈MK

max0≤i≤n |ai|
dv/[K:Q]
v

is equal to H(anxn + . . . + a0) for all number fields K, such that a0, . . . , an ∈ K. Hence,
H([a0 : . . . : an]) is indeed independent on the choice of K.
Next, let λ ∈ Q∗ be arbitrary, and let K be a number field containing λ, a0, . . . , an. Then∏

v∈MK

max
0≤i≤n

|λai|
dv/[K:Q]
v =

∏
v∈MK

|λ|dv/[K:Q]
v max

0≤i≤n
|ai|

dv/[K:Q]
v

=

 ∏
v∈MK

|λ|dvv

1/[K:Q] ∏
v∈MK

max
0≤i≤n

|ai|
dv/[K:Q]
v

2.2.16=
∏

v∈MK

max
0≤i≤n

|ai|
dv/[K:Q]
v .

It follows that H is well-defined.

Definition 2.3.15. For all P ∈ Pn the absolute multiplicative Weil-height of P is given by
H(P ), for the function H from Proposition 2.3.14. The absolute logarithmic Weil-height of P
is given by h(P ) = log(H(P )).

This is of course a direct extension of the definition of the height on Q, since for any α ∈ Q, we
have H(α) = H([α : 1]). Therefore, we can safely use the same notation for both functions.
Again for α ∈ Q it follows immediately from Theorem 2.3.4, that H(σ(α)) = H(α) for all
σ ∈ HomQ(Q(α),C) (or equivalently for all σ ∈ Gal(Q/Q)). This is also true for points in
Pn(Q) for n ≥ 2.

Lemma 2.3.16. Let P = [a0 : . . . : an] ∈ Pn(Q) and σ ∈ Gal(Q/Q). Then σ(P ) = [σ(a0) :
. . . : σ(an)] is well-defined, and we have H(P ) = H(σ(P )).

Proof. For any λ ∈ Q∗ we have

[σ(λa0) : . . . : σ(λan)] = [σ(λ)︸ ︷︷ ︸
∈Q∗

σ(a0) : . . . : σ(λ)︸ ︷︷ ︸
∈Q∗

σ(an)] = σ(P ).

Hence σ(P ) is indeed well-defined.
Let K/Q be any Galois extension containing all Galois conjugates of all the ai’s for i ∈
{0, . . . , n}. For any σ ∈ Gal(Q/Q), we have that the restriction of σ to K is in Gal(K/Q).
Hence, we may assume σ ∈ Gal(K/Q).
As seen before, for any v ∈ MK also v ◦ σ ∈ MK . Moreover, since K/Q is Galois, we have
dv = dv◦σ for all v ∈ MK , and the map v 7→ v ◦ σ is a bijection on MK (v 7→ v ◦ σ−1 is an
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inverse map). Hence,

H(σ(P )) =
∏

v∈MK

max
0≤i≤n

|σ(ai)|
dv/[K:Q]
v =

∏
v∈MK

max
0≤i≤n

|ai|
dv/[K:Q]
v◦σ

=
∏

v∈MK

max
0≤i≤n

|ai|
dv◦σ/[K:Q]
v◦σ =

∏
v∈MK

max
0≤i≤n

|ai|
dv/[K:Q]
v = H(P ).

Exercises
Exercise 2.9. Let α ∈ Q be arbitrary. Prove that M(α) is an algebraic integer.

Exercise 2.10. Prove that the height (multiplicative or logarithmic) of a polynomial in
Q[x1, . . . , xn] is well-defined.

Exercise 2.11. Prove statements (b),(c), and (e) in Lemma 2.3.9. Moreover, prove that the
inequality in (d) is strict. This is, prove that for every n ∈ N there are algebraic numbers
α1, . . . , αn, such that h(α1 + . . .+ αn) = log(n) + h(α1) + . . .+ h(αn).

Exercise 2.12. Let m,n be distinct integers, and let α ∈ Q∗ be such that αn is a Galois
conjugate of αm. Prove that α is a root of unity.

Exercise 2.13. Here you can prove (using an enormous shortcut) a result which is originally
due to Enrico Bombieri and Umberto Zannier: Let α ∈ Q be an algebraic integer, such that
all Galois conjugates of α lie in Qp for some fixed prime number p (such an element is called
totally p-adic integer). Assume furthermore that α 6= αp.

(a) Use Exercise 2.8 to prove that h((α− αp)−1) ≥ log(p).

(b) Conclude h(α) ≥ log(p/2)
p−1 .

(c) Conclude that the only possible roots of unity in Qp are the p− 1-st roots of unity.

(d) Conclude that Lehmer’s conjecture is true for all totally p-adic numbers, for any p ≥ 3.

(e) Prove that Lehmer’s conjecture is also true for all totally 2-adic numbers.

2.4 Siegel’s Lemma
Large parts of this section are shamelessly stolen from [5]. For the whole section we will fix
the following notation.

Notation 2.4.1. Let N > M > 0 be integers, and let

A =

 a11 . . . a1N
... . . .

...
aM1 . . . aMN

 ∈MM×N (Q)

be a matrix with entries in Q. We are looking for a “small” solution of the equation

A · x = 0. (2.18)
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Since N > M there are more variables than equation, and hence there is a non-trivial (x 6= 0)
solution of (2.18). Without loss of generality we assume that A does not have a zero row.
We define

Lj = aj1x1 + . . .+ ajNxN ∈ Q[x1, . . . , xN ] \ {0} ∀ j ∈ {1, . . . ,M},

where Q[x1, . . . , xN ] is the polynomial ring over Q with variables x1, . . . , xN . Now, obviously,
solving (2.18) is equivalent to find some b ∈ QN such that Lj(b) = 0 for all j ∈ {1, . . . ,M}.
How do we measure the size of an algebraic object in this section? By heights! And maybe
you can guess by now what’s the height of A.
Let K be a number field containing all entries aij of the matrix A. For v ∈ MK define
|A|v = maxi,j |aij |v . Then the height of A is given by

H(A) =
∏

v∈MK

max{1, |A|v}
dv/[K:Q].

Since the coefficients of each Lj come from a subset of the entries of A, we immediately
conclude

H(A) ≥ max
1≤j≤M

H(Lj). (2.19)

We will give three results in this direction. First, we assume that the matrix A and the
solution vector have entries in Z.

Proposition 2.4.2 (Siegel’s Lemma for (Z,Z)). Let A ∈MM×N (Z). Then there is a solution
b ∈ ZN \ {0} of (2.18), such that H(b) ≤ (NH(A))

M
N−M .

Proof. Before we start the proof, please note that this formulation is slightly too advanced,
since H(A) is just the maximal modulus of the entries of A, and H(b) is the maximal modulus
of the entries of b.
The proof is an application of the box principle. However, before we come to the nice con-
clusion, we will do the necessary computations. To ease notation we set

X =
⌊
(NH(A))

M
N−M

⌋
∈ N.

For any a ∈ R we define a+ = max{a, 0} and a− = max{−a, 0}. Then we get for all a ∈ R the
equations a = a+ − a− and |a| = a+ + a−. Similarly, for each of our linear forms L1, . . . , LM
we define L+

j =
∑N
i=1 a

+
ji , L

−
j =

∑N
i=1 a

−
ji and L̃j = L+

j + L−j . It is immediately clear that

L̃j =
N∑
i=1
|aji| ≤ N ·H(Lj) ≤ N ·H(A) ∀ j ∈ {1, . . . ,M}. (2.20)

Note also, that by definition of X, we have X + 1 > (NH(A))
M

N−M . We apply this to achieve

(X + 1)N = (X + 1)M · (X + 1)N−M > (X + 1)M ·
(
(NH(A))

M
N−M

)N−M
= ((X + 1) · (N ·H(A)))M

(2.20)
≥

M∏
j=1

(
L̃j · (X + 1)

)
≥

M∏
j=1

(
L̃j ·X + 1

)
. (2.21)
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Actually, the value in the theorem is exactly chosen such that this inequality is true.
Now we will set the stage to apply the box principle. Therefore we estimate the cardinality
of

A · {0, . . . , X}N := {A · b|b ∈ {0, . . . , X}N}.

Any element b ∈ {0, . . . , X}N satisfies

−L−j ·X ≤ Lj(b) ≤ L+
j ·X.

Hence, we can conclude

A · {0, . . . , X}N ⊆ [−L−1 ·X,L
+
1 ·X]× . . .× [−L−M ·X,L

+
M ·X].

Since the interval [−L−j ·X,L
+
j ·X] contains precisely L−j ·X+L+

j ·X+1 = L̃j ·X+1 integers,
we get ∣∣∣A · {0, . . . , X}N ∣∣∣ ≤ M∏

j=1
(L̃j ·X + 1), (2.22)

and from (2.21) it follows that

∣∣∣A · {0, . . . , X}N ∣∣∣ ≤ M∏
j=1

(L̃j ·X + 1) < (X + 1)N =
∣∣∣{0, . . . , X}N ∣∣∣ .

Hence, the box principle guarantees that there are two distinct elements t, s ∈ {0, . . . , X}N
such that A · t = A · s. Then b = t − s ∈ {−X, . . . ,X}N \ {0} satisfies A · b = 0. Since
the condition b ∈ {−X, . . . ,X}N is precisely the same as b ∈ ZN , with H(b) ≤ X, the
proposition is proved.

Remark 2.4.3. One can slightly improve on this result, be replacing the factor N by
√
N .

Next we aim for a version of Siegel’s lemma, where A has entries in a number field and the
small solution has entries in Z.

Lemma 2.4.4. Let K be a number field. For each v ∈MK we fix an element αv ∈ K and a
real number cv ≥ 1, such that cv = 1 for all but finitely many v ∈MK . Then

|{α ∈ K| |α− αv|v ≤ cv ∀ v ∈MK}| ≤
(
2C1/[K:Q] + 1

)[K:Q]
,

where C =
∏
v∈MK

cdvv .

Proof. We start by fixing some notation. Let [K : Q] = d and denote by σ1, . . . , σr the real
embeddings of K and by σr+1, σr+1, . . . , σr+s, σr+s the complex embeddings of K, such that
d = r + 2s. A full set of non-equivalent archimedean absolute values on K is then given by
|.|σ1

= |σ1(.)| , . . . , |.|σr+s = |σr+s(.)|. For any α ∈ K and ε > 0 we define

B(α, ε) = {x = (x1, . . . , xr+s) ∈ Rr × Cs| |xi − σi(α)| < εcσi ∀ i ∈ {1, . . . , r + s}}.

Moreover, we define A = {α ∈ K| |α− αv|v ≤ cv ∀ v ∈ MK}, which is precisely the set
whose cardinality we want to estimate. Lastly, we set

ε = 1
2C
−1/d. (2.23)
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Now let α, β ∈ A and assume there exists an x = (x1, . . . , xr+s) ∈ B(α, ε)∩B(β, ε). Then for
all i ∈ {1, . . . , r + s} we have

|α− β|σi = |σi(α)− σi(β)| ≤ |xi − σi(α)|+ |xi − σi(β)| < 2εcσi
for the archimedean absolute values, and for all v ∈Mfin

K we have (since α, β ∈ A)

|α− β|v = |α− αv − (β − αv)|v ≤ max{|α− αv|v , |β − αv|v} ≤ cv.

We can conclude that∏
v∈MK

|α− β|dvv < (2ε)d
∏

v∈MK

cdvv = (2ε)d · C (2.23)= 1.

By the product formula 2.2.16, this is only possible if α = β. In conclusion we have just seen,
that for two different points α, β ∈ A, the boxes B(α, ε) and B(β, ε) are disjoint. This implies

Vol (∪α∈AB(α, ε)) = |A| ·Vol (B(0, ε)) = |A| · εd Vol (B(0, 1)) . (2.24)

Here we use the usual volume on Rr×Cs and the obvious fact that the volume of some B(α, ε)
does not depend on the point α.
If (x1, . . . , xr+s) ∈ ∪α∈AB(α, ε), then for all i ∈ {1, . . . , r + s} we have that for some α ∈ A

|xi − σi(ασi)| ≤ |xi − σi(α)|+ |σi(α)− σi(ασi)|︸ ︷︷ ︸
=|α−ασi |σi

≤ (1 + ε)cσi .

This just means, that

∪α∈AB(α, ε) ⊆
r∏
i=1
{x ∈ R| |x− σi(ασi)| ≤ (1 + ε)cσi}

×
s∏
i=1
{x ∈ C|

∣∣x− σr+i(ασr+i)∣∣ ≤ (1 + ε)cσr+i},

and the volume of the right hand side is equal to Vol (B(0, 1 + ε)) = (1 + ε)d · Vol(B(0, 1)),
since we may shift the center of the box to the point (0, . . . , 0) without changing the volume.
Hence, we have

|A| · εd Vol (B(0, 1)) (2.24)= Vol (∪α∈AB(α, ε)) ≤ (1 + ε)d ·Vol (B(0, 1)) ,

which implies

|A| ≤
(1 + ε

ε

)d (2.23)=
(
2C1/d + 1

)d
,

concluding the proof.

Remark 2.4.5. Now we can generalize the first version of Siegel’s Lemma. In the situation
considered next, we are given a matrix A with entries in a number field K and we want to
solve the usual equation (2.18) with a vector in ZN . But the usual assumption M < N is
clearly too weak to guarantee the existence of such a solution. Assume M = 1 and N = 3.
Then the matrix is just a single row, and we want to solve a single linear equation with three
variables. Taking 1 ·x1 + 3√2 ·x2 + ( 3√2)2 ·x3 = 0 shows that there are in general no solutions,
because the degree of 3√2 is too large. (If there was an integral solution to this equation, it
would yield a quadratic polynomial with root 3√2.) Hence, we need at least the assumption
[K : Q] ·M < N to guarantee an integral solution. This is indeed sufficient.
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Proposition 2.4.6 (Siegel’s Lemma for (K,Z)). Let K be a number field of degree d, and
assume A ∈MM×N (K). Moreover, we assume that the positive integers M,N satisfy d ·M <

N . Then there is a solution b ∈ ZN \ {0} of (2.18), such that H(b) ≤ (NH(A))
dM

N−dM .

Proof. We want to mimic the proof from Proposition 2.4.2 and want to apply the box principle
in the very same fashion. Again we ease notation and set X =

⌊
(NH(A))

dM
N−dM

⌋
. Then as

before we want to estimate the cardinality of

A · {0, . . . , X}N := {A · b|b ∈ {0, . . . , X}N}.

We can estimate the cardinality of the set above, if for all j ∈ {1, . . . ,M} we can estimate

Lj({0, . . . , X}N ) := {Lj(b)|b ∈ {0, . . . , X}N}.

This will be done by the preceding lemma. We fix for the moment an j ∈ {1, . . . ,M} and
define for all v ∈MK

αv =
{
Lj(X2 , . . . ,

X
2 ) if v | ∞

0 if v -∞

cv =
{1

2NX max{1, |Lj |v} if v | ∞
max{1, |Lj |v} if v -∞.

Then cv ≥ 1 for all v ∈MK , and cv = 1 for all but finitely many v. Furthermore, we calculate

C =
∏

v∈MK

cdvv = (1
2NX)d ·

∏
v∈MK

max{1, |Lj |dvv } = (1
2NX)d ·H(Lj)d

(2.19)
≤ (1

2NXH(A))d. (2.25)

Hence, we know from Lemma 2.4.4 that∣∣∣∣∣∣∣{α ∈ K| |α− αv|v ≤ cv ∀ v ∈MK}︸ ︷︷ ︸
=A

∣∣∣∣∣∣∣ ≤
(
2C1/d + 1

)d (2.25)
≤ (NXH(A) + 1)d. (2.26)

We claim that Lj({0, . . . , X}N ) ⊆ A (actually we have chosen the αv and cv precisely such
that this is the case). Indeed, let b = (b1, . . . , bN ) ∈ {0, . . . , X}N be arbitrary. Then, applying
that bi− X

2 ∈ [−X
2 ,

X
2 ], and that the non-archimedean absolute value of an integer is at most

1, we get

|Lj(b)− αv|v =


∣∣∣Lj(b1 − X

2 , . . . , bN −
X
2 )
∣∣∣
v
≤ |Lj |vN max1≤i≤N

∣∣∣bi − X
2

∣∣∣
v
≤ cv if v | ∞

|Lj(b1, . . . , bN )|v ≤ max1≤i≤N |ajibi|v ≤ |Lj |v ≤ cv if v -∞.

This proves the claim, and we conclude that for all j ∈ {1, . . . ,M} we have

∣∣∣Lj({0, . . . , X}N )
∣∣∣ ≤ |A| (2.26)

≤ (NXH(A) + 1)d.
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This immediately implies ∣∣∣A · {0, . . . , X}N ∣∣∣ ≤ (NXH(A) + 1)dM , (2.27)

and we can finally proceed exactly as in the proof of Proposition 2.4.2. Since by the definition
of X and (2.27) we have∣∣∣A · {0, . . . , X}N ∣∣∣ ≤ (NXH(A) + 1)dM ≤ (NH(A))dM (X + 1)dM

dM<N
< (X + 1)N−dM (X + 1)dM =

∣∣∣{0, . . . , X}N ∣∣∣ .
Hence, the box principle guarantees two different elements t, s ∈ {0, . . . , X}N such that
A · t = A · s. Setting b = s− t gives a non-trivial solution to (2.18), with H(b) ≤ X.

As a corollary of this last version of Siegel’s Lemma we achieve:

Corollary 2.4.7 (Siegel’s Lemma for (K,OK)). Let K be a number field of degree d and
let A ∈ MM×N (K). Then there is a solution b ∈ ONK \ {0} of (2.18), such that H(b) ≤
cK(cKNH(A))

M
N−M , for some constant cK only depending on K.

Proof. This is given as an Exercise. Be aware of the fact, that the constant cK in the theorem,
will indeed depend on the field K and not only on d.

We will give a sample application of Siegel’s Lemma.

Corollary 2.4.8. Let α ∈ Q be arbitrary. There exists a polynomial f ∈ Z[x] such that
f(α) = 0 and H(f) ≤M(α) (this means that all coefficients of f have absolute value ≤M(α)).

Proof. Let α ∈ Q be of degree d, and consider the linear equation

L(x) = x1 + α · x2 + . . .+ αN−1 · xN = 0.

This is we set M = 1 in the above notation, and the matrix A consists of the single row
(1, α, . . . , αN−1). The height of A (resp. L) is given by

H(A) =
∏

v∈MQ(α)

max{1, max
1≤j≤N−1

{
∣∣∣αj∣∣∣

v
}}dv/d =

∏
v∈MQ(α)

max{1,
∣∣∣αN−1

∣∣∣
v
}dv/d

= H(αN−1) 2.3.9= H(α)N−1.

Hence, by Siegel’s Lemma 2.4.6, there are b1, . . . , bN ∈ Z, such that b1+α·b2+. . .+αN−1 ·bN =
0, and

max
1≤j≤N

|bj | ≤ (N ·H(α)N−1)
d

N−d = N
d

N−d ·M(α)
N−1
N−d N→∞−→ M(α).

Therefore, for N sufficiently large, we may assume that max1≤j≤N |bj | ≤M(α). Moreover, by
the choice of A, we know that α is a root of the polynomial f(x) = b1+b2·x+. . .+bN ·xN−1.

Remark 2.4.9. The bound for the coefficients in Corollary 2.4.8 is sharp: the Mahler measure
of a positive integer a ∈ N is just a, and any polynomial f ∈ Z[x] such that f(a) = 0 satisfies
x− a | f(x). Hence, the coefficient of f with smallest index, is a non-zero multiple of a.
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Moreover, note that the polynomial from Corollary 2.4.8 need not to be the minimal polyno-
mial of α (compare the bound from Lemma 2.1.7). As an example we take the polynomial
f(x) = (x+ 1)8 + 1. This is irreducible and has (by the binomial theorem) largest coefficient(8
4
)

= 70. Since it is irreducible, the Mahler measure of all of its roots is the same. Note that
ζ16 − 1 is a root of f , where ζ16 is a primitive 16-th root of unity. The Mahler measure of
ζ16 − 1 is however 13, 13707..., which is much smaller than 70.

Definition 2.4.10. Let P ∈ C[x] be a polynomial. We write P (x) =
∏
z∈C(x − z)ordP (z),

with non-negative integers ordP (z), which are equal to zero for all but finitely many z ∈ C.
The integer ordP (z) is called the order of P at z.

In simpler words, the order of z ∈ C at P ∈ C[x] measures the multiplicity of the root z
of P . By the fundamental theorem of Algebra, for every P ∈ C[x] there are unique (up to
permutation) pairwise distinct z1, . . . , zd ∈ C, and e1, . . . , ed ∈ N such that

P (x) = (x− z1)e1 · . . . · (x− zd)ed .

Then, ordP (zi) = ei for all i ∈ {1, . . . , d} and ordP (z) = 0 for all z ∈ C \ {z1, . . . , zd}. We
denote the nth derivative of a polynomial P ∈ C[x] by P (n). So in particular P (0) = P . Then
we have

ordP (z) = T ⇐⇒ P (n)(z) = 0 ∀ n ∈ {0, . . . , T − 1} and P (T )(z) 6= 0.

Or, rephrasing this, the order of P at α is given by the minimal T such that the T th derivative
of P does not vanish at α.

Proposition 2.4.11. Let α ∈ Q be arbitrary of degree d, and let T and L be positive integers,
with L ≥ dT . Then there exists a polynomial P ∈ Z[x] \ {0}, such that

(i) deg(P ) ≤ L,

(ii) ordP (α) ≥ T , and

(iii) H(P ) ≤
(
(L+ 1)LT−1H(α)L

)dT/L+1−dT
.

Proof. We imitate the proof of Corollary 2.4.8. That the order of P at α is at least T
means that P (α) = P (1)(α) = . . . = P (T−1)(α) = 0. Hence, the coefficients of P satisfy
T linear equations defined over Q(α). More precisely, the nth derivative of a polynomial
P (x) = bLx

L + . . .+ b0 (which is obviously of degree at most L) is given by

P (n)(x) = bL · (
n−1∏
i=0

(L− i))xL−n + bL−1 · (
n−1∏
i=0

(L− 1− i))xL−1−n + . . .+ bn · (
n−1∏
i=0

(n− i)).

(Check this for your own!) By our first observation, this polynomial has order ≥ T at α if

Ln(b0, . . . , bL) :=
L∑
j=n

bj(
n−1∏
i=0

(j − i))αj−n = 0 ∀ n ∈ {0, . . . , T − 1}. (2.28)

Note that the Ln’s are linear in the bj ’s. So, we have T linear equations in L+1 variables, and
by assumption we know L + 1 > Td. Hence, in order to apply Siegel’s Lemma, we estimate
the height of the linear equations Ln ∈ Q(α)[x1, . . . , xL+1].
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If v ∈MQ(α) is non-archimedean, then we have (since once more the absolute value v of each
integer is at most 1) for all n ∈ {0, . . . , T − 1}

|Ln|v = max
n≤j≤L

∣∣∣∣∣(
n−1∏
i=0

(j − i))αj−n
∣∣∣∣∣
v

≤ max
n≤j≤L

∣∣∣αj−n∣∣∣
v

= max{1,
∣∣∣αL−n∣∣∣

v
}.

If v ∈MQ(α) is archimedean, then we calculate for all n ∈ {0, . . . , T − 1}

|Ln|v = max
n≤j≤L

∣∣∣∣∣(
n−1∏
i=0

(j − i))αj−n
∣∣∣∣∣
v

≤
∣∣∣∣∣
n−1∏
i=0

(L− i)
∣∣∣∣∣
v

·max{1,
∣∣∣αL−n∣∣∣

v
}.

We conclude that for all n ∈ {0, . . . , T − 1} we have

H(Ln) =

 ∏
v∈MQ(α)

max{1, |Ln|dvv }

1/[Q(α):Q]

≤

 ∏
v∈MQ(α)
v|∞

∣∣∣∣∣
n−1∏
i=0

(L− i)
∣∣∣∣∣
dv

v


1/[Q(α):Q]

·

 ∏
v∈MQ(α)

max{1,
∣∣∣αL−n∣∣∣

v
}dv
1/[Q(α):Q]

=
(
n−1∏
i=0

(L− i)
)
·H(αL−n)︸ ︷︷ ︸

=H(α)L−n

< LT−1H(α)L

Now Siegel’s Lemma guarantees that there are b0, . . . , bL ∈ Z of absolute value at most(
(L+ 1)LT−1H(α)L

)dT/L+1−dT
,

not all equal to zero, satisfying all equations from (2.28). Conclusively, the polynomial P (x) =
bLx

L+. . .+b0 has ordP (α) ≥ T , deg(P ) ≤ L, andH(P ) ≤
(
(L+ 1)LT−1H(α)L

)dT/L+1−dT
.

For the proof of Roth’s theorem, we need an extension of this result to polynomials in several
variables. Before we take the effort to formulate and prove such an extension, we should
present a convincing example, why statements like Proposition 2.4.11 are indeed helpful.
This will be done in the next section. After that, we will handle the multi-variable case of
this proposition. If you think that all of this is interesting enough without any example, you
may want to read Section 2.6 before Section 2.5.

Exercises
Exercise 2.14. Prove Corollary 2.4.7.

Exercise 2.15. Find small integers x, y, z, not all zero, such that

(
1 2 1
2 1 3

)
·

xy
z

 =
(

0
0

)
.
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Exercise 2.16. Let F be a field and let F be an algebraic closure of F . For each α ∈ F we
extend the map

ord : F [x] \ {0} −→ Z ; f 7→ ordf (α)

to a map from the field of fractions F (x) of F [x], by setting ord0(α) = ∞, and ordf/g(α) =
ordf (α) − ordg(α) for all f, g ∈ F [x] \ {0}. Fix any real number ε ∈ (0, 1). Prove that
|φ|α = εordφ(α) is a non-archimedean absolute value on F (x).
Here we use the rule ε∞ = 0 for ε ∈ (0, 1).

2.5 On Lehmer’s Conjecture

Denote the set of all roots of unity by µ. Recall that the Lehmer conjecture predicts a
constant c′ > 0 such that M(α) ≥ 1 + c′ for all α ∈ Q∗ \ µ. If we formulate this in terms of
the logarithmic height, the conjecture predicts a positive constant c > 0 such that h(α) ≥ c

d

for all algebraic numbers α ∈ Q∗ \ µ of degree d.
So we can measure the logarithmic height of an algebraic number asymptotically in its degree.
The example

h( 2√2) = log(2)
2 , h( 3√2) = log(2)

3 , h( 4√2) = log(2)
4 , h( 5√2) = log(2)

5 , . . .

shows that we cannot hope for a stronger bound than h(α) ≥ c
[Q(α):Q] . Lehmer’s conjecture

is true for some classes of algebraic numbers. All of us know that it is true for all algebraic
numbers, which are not an algebraic unit. This can be improved further: It is true for all
algebraic numbers α, except for those which are algebraic units and Galois-conjugated to α−1

or −α−1.4
In Exercise 2.5 you have shown that it is true for all algebraic numbers, whose minimal
polynomial has “large” discriminant. Moreover, in the optional Exercises 2.2 and 2.13 you
can prove that it is true for all algebraic numbers, such that all Galois conjugates lie in a
fixed completion of Q.
The goal for this section is to prove the following theorem.

Theorem 2.5.1 (Dobrowolski). For all ε > 0 there is a constant c(ε) such that

h(α) ≥ c(ε)
[Q(α) : Q]1+ε for all α ∈ Q∗ \ µ.

So we are only an ε away from Lehmer’s conjecture. However, this seems to be a very large
step. Taking more care in the correct choices of parameters below, one can obtain a slightly
stronger result, with which I will not bother you. We follow in this section the exhibition
from [8].

Remark 2.5.2. In proving Theorem 2.5.1, it is enough to consider algebraic numbers α,
with h(α) < log(2)

[Q(α):Q] , since all the others satisfy a stronger inequality. In the exercises you
have proved that log(2) ≤ log(M(α)) = [Q(α) : Q]h(α) for all α which are not an unit in the
ring of algebraic integers. Hence, we could assume throughout that α is an algebraic unit,
different from a root of unity.

4We will not give further details. Everything can be found in [1].
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Moreover, by Northcott’s theorem 2.3.8 there are only finitely many numbers of bounded
degree and bounded height. The height of these finitely many numbers, which are different
from roots of unity, is surely bounded away from zero. Hence, it suffices to prove the bound
in Theorem 2.5.1 for all algebraic numbers of huge degree, where this “huge” must depend on
ε.

Now we set the agenda for the proof of Theorem 2.5.1.

Lemma 2.5.3. Let T and L be positive integers, and let α ∈ Q be of degree d. If there is a
prime number p, and a polynomial P ∈ Z[x] such that

(i) deg(P ) ≤ L,

(ii) ordP (α) ≥ T , and

(iii) P (αp) 6= 0.

Then we have
h(α) ≥ 1

pL
· log

(
pT

(L+ 1) ·H(P )

)
.

Proof. We assume that all assumptions of the lemma are met. Moreover, let f(x) = adx
d +

ad−1x
d−1 + . . .+ a0 ∈ Z[x] be the minimal polynomial of α. We reduce f modulo p. That is

we apply the canonical projection

π : Z[x] −→ Fp[x].

Since Fp has characteristic p, it is well known5 that z 7→ zp is a homomorphism on Fp[x].
Combining this with Fermat’s little theorem (zp ≡ z mod p for all z ∈ Fp), we achieve
π(f(x)p) = π(f(xp)). Hence, there is a polynomial g ∈ Z[x] such that

f(xp) = f(x)p + pg(x) and deg(g) ≤ d · p. (2.29)

The latter statement comes simply from comparing the degrees. It is deg(f(x)p) = d · p =
deg(f(xp)). Hence, the degree of g cannot be larger than d · p.
We know that ordP (α) ≥ T and hence α is a root of P of multiplicity at least T . This
means that f(x) divides P (x) at least T -times. Therefore, there is a q(x) ∈ Z[x] such that
f(x)T · q(x) = P (x), and deg(q) = deg(P )− deg(fT ) ≤ L− dT . We combine this with (2.29),
which yields

P (xp) = f(xp)T q(xp) = (f(x)p + pg(x))T · q(xp).

We plug in α and define its image as

β = P (αp) = (f(α)p︸ ︷︷ ︸
=0

+pg(α))T · q(αp) = pT g(α)T · q(αp).

The degree of g(x)T · q(xp) is at most Tdp+ p(L− dT ) = pL. Therefore

g(α)T · q(αp) = bpLα
pL + bpLα

pL−1 + . . . b0 , with b0, . . . , bpL ∈ Z.
5This phrase should be a red flag for you! It just means that I assume you know this result, and I am to

lazy to explain it further.
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LetK be any number field containing α, and let v ∈MK be arbitrary. If v is non-archimedean,
the ultrametric inequality (and the fact |bi|v ≤ 1 for all i ∈ {1, . . . , bpL}) implies

|β|v =
∣∣∣pT g(α)T · q(αp)

∣∣∣
v

= |p|Tv
∣∣∣g(α)T · q(αp)

∣∣∣
v
≤ |p|Tv max{1, |α|v}

pL.

We want to bound the height of α in terms of p. Hence, we will not apply the usual estimate |p|v ≤ 1, which
would remove the p. Actually, doing so would give a trivial (negative) bound for the logarithmic height of α.
If v is archimedean, then

|β|v = |P (αp)|v ≤ (deg(P ) + 1)︸ ︷︷ ︸
number of coeff. of P

H(P ) max{1, |α|v}
p deg(P ) ≤ (L+ 1)H(P ) max{1, |α|v}

pL.

By assumption, β = P (αp) 6= 0. Hence, the product formula 2.2.16 gives

1 =
∏

v∈MK

|β|dvv

≤
∏

v∈MK ,v-∞
|p|dvTv ·

∏
v∈MK ,v|∞

((L+ 1)H(P ))dv ·
∏

v∈MK

max{1, |α|pLv }
dv

= p−T [K:Q]((L+ 1)H(P ))[K:Q]H(α)Lp[K:Q].

A tiny bit of algebra transfers this inequality into

H(α) ≥
(

pT

(L+ 1)H(P )

) 1
pL

.

Taking logarithms now proves the lemma.

In order to prove Theorem 2.5.1, we will prove the existence of a prime p and a polynomial P
satisfying the assumptions in Lemma 2.5.3, such that the claimed height bound drops out. It
should not surprise you, that the existence of the polynomial P follows from Siegel’s Lemma
2.4.6. More precisely, we will use the polynomial P from Proposition 2.4.11. This P ∈ Z[x]
already satisfies two of the three assumptions from Lemma 2.5.3. To ensure P (αp) 6= 0 for
some “nice” prime number p, we need a bit of Algebra and (of course) the prime number
theorem.

Lemma 2.5.4. Let α ∈ Q be arbitrary of degree d. Then there are at most log(d)
log(2) prime

numbers p such that [Q(αp) : Q] 6= d.

Proof. Let p1, . . . , pn be distinct primes such that [Q(αpi) : Q] < d for all i ∈ {1, . . . , n}. This
is, α /∈ Q(αpi) for all i ∈ {1, . . . , n}. We define K0 = Q(α) and for all i ∈ {1, . . . , n} we set
Ki = Q(αp1···pi). Then we have a chain of number fields

Q ⊆ Kn ⊆ Kn−1 ⊆ . . . ⊆ K1 ⊆ K0 = Q(α). (2.30)

We claim that for each i ∈ {1, . . . , n} we have Ki 6= Ki−1. Assume that Ki = Ki−1 for some
i ∈ {1, . . . , n}. Then αp1···pi−1 ∈ Q(αpi·(p1···pi−1)) ⊆ Q(αpi). However, by Bézout’s lemma
there are u, v ∈ Z such that 1 = piu+ (p1 · · · pi−1)v. Hence,

α = α1 = αpiu+(p1···pi−1)v = (αpi)u︸ ︷︷ ︸
∈Q(αpi )

· (αp1···pi−1)v︸ ︷︷ ︸
∈Q(αpi )

∈ Q(αpi).
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But this implies Q(α) = Q(αpi), contradicting the main property of pi. Hence – as claimed –
all inclusions in (2.30) are strict. In particular,

d = [Q(α) : Q] = [K0 : K1]︸ ︷︷ ︸
≥2

· [K1 : K2]︸ ︷︷ ︸
≥2

· . . . · [Kn−1 : Kn]︸ ︷︷ ︸
≥2

·[Kn : Q] ≥ 2n.

Hence n ≤ log(d)
log(2) , as proposed.

Theorem 2.5.5 (Prime Number Theorem). Denote for any x ∈ R the number of prime
numbers less or equal to x by π(x). Then

lim
x→∞

π(x)
x/log(x)

= 1.

For our purposes a much weaker result would suffice. We only need that for large x there are
many prime numbers between x and 2x. For instance we could use Ramanujan’s version of
Bertrand’s postulate [13]: For all x > 0 we have π(2x)− π(x) > 1

log(2x) · (
1
3x− 3

√
2x), which

surely tends to infinity for increasing x. We conclude a similar statement ineffectively from
the prime number theorem:

Corollary 2.5.6. Let δ, c, χ > 0 be given positive constants. Then there is a constant
κ(δ, c, χ), such that for all d ≥ κ(δ, c, χ), there are more than χ+log(d)/ log(2) prime numbers
between cdδ and 2cdδ.

Proof. With π(x) as above, the prime number theorem 2.5.5 gives limx→∞
π(2x)−π(x)
x/log(x) = 1.

This is, there are asymptotically x/log(x) primes between x and 2x. Hence, there are asymp-
totically cdδ/log(cdδ) primes between cdδ and 2cdδ, for increasing d. The statement of the
corollary follows by noting

cdδ

log(cdδ) −
log(d)
log(2) −→∞ as d→∞.

“d to the power of a positive whatsoever grows faster than log(d).”

Proof of Theorem 2.5.1. We want to prove that for all ε > 0 there exists a constant c(ε) such
that h(α) ≥ c(ε)

[Q(α):Q] for all α ∈ Q∗ \ µ, where µ is the set of roots of unity.
We should start by fixing an ε > 0. We already have outlined the proof. We will fix some
parameters L and T (depending on ε), and then we will apply Lemma 2.5.3 for a polynomial
constructed by Proposition 2.4.11, and a “nice” prime number p which exists by Lemma 2.5.4
and Corollary 2.5.6.
We make the following choices:

(A) Let α ∈ Q∗\µ be of degree d, such thatM(α) = H(α)d ≤ 2. As noted already in Remark
2.5.2, this restriction does not jeopardize the conclusion of the theorem.

(B) Let T ∈ N be such that 1
T < ε.

(C) Set χ ∈ R such that ε = 1
T + T

χ−T . From (B) it follows that χ > T .

(D) Set L = bχdc.
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With these choices we run our agenda6. By Proposition 2.4.11 there is a polynomial P ∈ Z[x]
of degree at most L, ordP (α) ≥ T , and

H(P ) ≤
(
(L+ 1)LT−1H(α)L

) dT
L+1−dT

(A)
≤
(
(L+ 1)LT−1

) dT
L+1−dT · 2

LT
L+1−dT

(D)
≤
(
(L+ 1)LT−1

) T
χ−T · 2

χT
χ−T ≤ (2L)

T2
χ−T · 2

χT
χ−T

(D)
≤ (2χd)

T2
χ−T 2

χT
χ−T =

(
(2χ)

T2
χ−T 2

χT
χ−T

)
· d

T2
χ−T . (2.31)

Keeping Lemma 2.5.3 in mind, we need a prime number p which is not too big, but greater
than

(L+ 1) ·H(P )
(D)
≤ (2χd)H(P )

(2.31)
≤ C(T, χ)d1+ T2

χ−T , (2.32)

where C(T, χ) = 2χ
(

(2χ)
T2
χ−T 2

χT
χ−T

)
only depends on T , and χ. In particular C(T, χ) is

independent on the degree d. By Corollary 2.5.6 (with δ = ε = 1
T + T

χ−T and c = T
√

2C(χ, T )),
there are more than χ+ log(d)/ log(2) primes p such that

2C(T, χ)d1+ T2
χ−T ≤ pT ≤ 2T+1C(T, χ)d1+ T2

χ−T , (2.33)

whenever d ≥ κ(T, χ), for some constant only depending on T and χ.

(E) From now on we assume that we have d ≥ κ(T, χ).

Among all the prime numbers satisfying (2.33), by Lemma 2.5.4 there are different prime
numbers p1, . . . , pn, with n ≥ χ + 1 such that [Q(αpi) : Q] = [Q(α) : Q] = d for all i ∈
{1, . . . , n}. Since α is not a root of unity, αp and αq are not Galois conjugated for different
primes p and q (cf. Exercise 2.12). Therefore, all the minimal polynomials of αp1 , . . . , αpn are
distinct. Hence, if P (αpi) = 0 for all i ∈ {1, . . . , n}, then all these n minimal polynomials of

degree d divide P . But then the degree of P would be at least d ·n ≥ d(χ+1)
(D)
> L ≥ deg(P ),

which is a contradiction.

(F) Hence, there is (at least) one prime p satisfying (2.33) such that P (αp) 6= 0.

Now we have all ingredients to finally apply Lemma 2.5.3. This gives

h(α) ≥ 1
pL
· log

(
pT

(L+ 1) ·H(P )

)
(2.32)
≥ 1

pL
· log

(
pT

C(T, χ)d1+T2/χ−T

)
(2.33)
≥ 1

pL
· log(2)

(2.33),(D)
≥ 1

2T+1/TC(T, χ)1/Td
1/T+ T

χ−T χd
log(2) (C)= C2(χ, T ) · 1

d1+ε ,

where C2(χ, T ) = log(2)
2T+1/TC(T,χ)1/Tχ

only depends on T and χ, but is independent on d. Since
T and χ depend on ε, this is precisely what we wanted to prove. But recall that this bound

6If one proves the Theorem for the first time, one has to work with undetermined values for L and T . Then,
at the end of the proof, one can fix L and T that satisfy all assumptions one had to apply. That we can work
with these magically appearing constants, is due to the fact that it is not the first time that someone proves
this theorem.
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is only valid for α such that M(α) = H(α)d ≤ 2 (by (A)), and [Q(α) : Q] ≥ κ(T, χ) (by
(E)). But by Northcott’s theorem 2.1.8, there are only finitely many α of degree ≤ κ(T, χ)
and M(α) ≤ 2. Let c be the smallest positive value of the logarithmic height of these finitely
many numbers, then

h(α) ≥ min{c, 2, C2(T, χ)} · 1
d1+ε ∀ α ∈ Q∗ \ µ.

Hence, with any choice of T, χ satisfying (B) and (C), we can conclude Theorem 2.5.1.

Remark 2.5.7. If you take the trouble to go through the proof once more, you will notice,
that the constant c(ε) in Theorem 2.5.1 can be explicitly determined. So the result is fully
effective.

Remark 2.5.8. Let us recall the basic steps of the proof. We wanted to prove something
about a given α ∈ Q. We used a particular polynomial, which vanished at α (we called this
P ). This polynomial was not allowed to vanish at a certain other number αp. Moreover,
it was necessary to estimate the “size” of P (αp) (see the β in the proof of Lemma 2.5.3).
Comparing α and P (αp) gave the result we were longing for.
Stated this way, you may notice a similarity to the very first proof of Liouville’s Theorem
1.1.12. There, the polynomial was just the minimal polynomial f of α. The second number
was a rational pq , and it was obvious that f did not vanish at this rational number. Also the
“size” of f(pq ) was easily determined. Comparing α and f(pq ) concluded the proof.
Undoubtedly the proof of Dobrowolski’s Theorem 2.5.1 was much more advanced than the
simple proof of Liouville’s Theorem 1.1.12. But (taking the right perspective) the skeletons
of both proofs share some strong similarities. The basic parts outlined above, will also be
visible in the skeleton of the proof of Roth’s theorem! But again we have lift things to the
next level of complexity.

Remark 2.5.9. Very recently (a few month ago), the little brother of Lehmer’s conjecture
– the Schinzel-Zassenhaus conjecture – has been proved by Vesselin Dimitrov [4]: For any
non-cyclotomic monic irreducible polynomial f(x) = (x− α1) · . . . · (x− αd) ∈ Z[x], we have

max
1≤i≤d

|αi| ≥ 2
1
4d .

Exercises
Exercise 2.17. Proof that Lehmer’s conjecture implies the existence of a constant c > 1,
such that max1≤i≤d |αi| ≥ c

1
d for all monic non-cyclotomic irreducible polynomials f(x) =

(x− α1) · . . . · (x− αd) ∈ Z[x] \ {x} of degree at least 1.

Exercise 2.18. Find explicit positive constants c, κ ∈ R such that h(α) ≥ c

[Q(α):Q]1+ 1
2
for all

α ∈ Q∗ \ µ of degree ≥ κ.

2.6 Siegel’s Lemma Once More
In the last section we saw that an auxiliary polynomial, constructed by the aid of Siegel’s
lemma, can be a helpful tool. As stated before, in order to prove Roth’s theorem, we need an
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auxiliary polynomial in multiple variables. Hence, we are going to formulate a multi-variable
version of Proposition 2.4.11, which stated:
Of course we know how to measure the degree of a polynomial P ∈ Z[x1, . . . , xn]. We will
work with the partial degrees in each variable. This is, for each i ∈ {1, . . . , n}, the degree at
xi of P , is the degree of P considered as a polynomial in (Z[x1, . . . , xi−1, xi+1, . . . , xn]) [xi],
and we denote it by degxi(P ).
The height of a polynomial in Z[x1, . . . , xn] is also already defined: It is simply the maximum
of all absolute values of its coefficients. Hence, it remains to generalize the order of P at a
given point. This will surely be linked to the derivatives of P . For every d = (d1, . . . , dn) ∈ Nn0
the operator

∂d

∂xd
P = ∂d1

∂xd1
1

∂d2

∂xd2
2
· · · ∂

dn

∂xdnn
P

takes the d1th partial derivative of P at x1, then the d2th partial derivative of P at x2, and
so on. We know from slightly after elementary school that this is independent on the order
in which one takes the partial derivatives.

Lemma 2.6.1. For any d = (d1, . . . , dn) ∈ Nn0 , and any P ∈ Z[x1, . . . , xn], each coefficient
of ∂d

∂xd
P is divisible by d1! · . . . · dn!.

Proof. The main part has already been done, since we know this result for a single variable.
Taking the dth derivative of the monomial xk yields (cf. the proof of Proposition 2.4.11)

∂d

∂xd
xk = k · (k − 1) · . . . · (k − d+ 1)xk−d = d!

(
k

d

)
xk−d,

where the latter equation is just applying the well-known formula for the binomial coefficient,
with the usual extra that

(k
d

)
= 0 whenever d > k. Let P =

∑
i∈Nn0

cix
i1
1 ·. . .·xinn ∈ Z[x1, . . . , xn]

be arbitrary (we still use i = (i1, . . . , in)). Then

∂d

∂xd
P =

∑
i∈Nn0

ci
∂d

∂xd
xi11 · · ·x

in
n =

∑
i∈Nn0

ci

(
∂d1

∂xd1
1
xi11

)
· · ·
(
∂dn

∂xdnn
xinn

)

=
∑
i∈Nn0

ci

(
d1!
(
i1
d1

)
xi1−d1

1

)
· · ·
(
dn!
(
in
dn

)
xin−dnn

)

= (d1! · · · dn!) ·
∑
i∈Nn0

ci

(
i1
d1

)
· · ·
(
in
dn

)
xi1−d1

1 · · ·xin−dnn︸ ︷︷ ︸
∈Z[x1,...,xn]

, (2.34)

which proves the claim.
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We want to achieve a polynomial with small integral coefficients. Hence, we will work from
now on with the following normalization of the derivative of P ∈ Z[x1, . . . , xn]. For each
d = (d1, . . . , dn) ∈ Nn0 we set

∂dP = 1
d1! · · · dn! ·

∂d

∂xd
P

2.6.1
∈ Z[x1, . . . , xn].

Note that (2.34) gives a precise formula for this normalized derivative!
Now we can generalize the order of a polynomial. Again, we have to make things slightly
more complicated, and add another normalization.

Definition 2.6.2. For points α = (α1, . . . , αn) ∈ Cn, and r = (r1, . . . , rn) ∈ Nn, we define
for all P ∈ C[x1, . . . , xn] \ {0} the index of P with respect to α and r to be

Ind(α,r)(P ) = min{ i1
r1

+ . . .+ in
rn
|(i1, . . . , in) ∈ Nn0 and ∂(i1,...,in)P (α) 6= 0}.

Hence, the index of a polynomial at α is up to normalization the smallest value i1 + . . .+ in,
such that the (i1, . . . , in)th derivative does not vanish at α.

Example 2.6.3. • Let k ≥ q ≥ 1 and P (x, y) = xk − yq ∈ C[x, y]. Then

Ind((0,0),(k,k))(P ) = q

k
,

since ∂(i,j)P (0, 0) = 0, whenever i < k and j < q. On the other hand ∂(0,q)P =
−q!

(q
q

)
y0 = −q!, does not vanish at (0, 0).

• We have Ind(α,r)(P ) = 0 if and only if the (0, . . . , 0)th derivative of P does not vanish
at α. This means, that the index is zero if and only if P (α) 6= 0.

• Let P ∈ C[x1, . . . , xn] \ {0} be arbitrary, and choose integers i1, . . . , in ∈ N0, such
that ik > degxk(P ) for at least one k ∈ {1, . . . , n}. Then ∂(i1,...,in)P = 0. Hence, if
∂(i1,...,in)P 6= 0 we have ik ≤ degxk(P ) for all k ∈ {1, . . . , n}. In particular, for all
α ∈ Cn and all r = (r1, . . . , rn) ∈ Nn, we have the estimate

Ind(α,r)(P ) ≤
n∑
i=1

degxi(P )
ri

.

Thus, the index is indeed a well defined rational number.

Finally, we have all ingredients at hand to formulate a generalization of Proposition 2.4.11.
However, for the proof we need one more lemma.

Lemma 2.6.4. Let (r1, . . . , rn) ∈ Nn and ε ∈ (0, 1). Then there are at most

(r1 + 1) · · · (rn + 1) · e−ε
2n/4

elements (d1, . . . , dn) ∈ {0, . . . , r1} × . . .× {0, . . . , rn} such that
∑n
i=1

di
ri
≤ n

2 (1− ε).
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Proof. We do not present every single detail of the proof. Set B(r1, . . . , rn) to be the “box”
{0, . . . , r1} × . . .× {0, . . . , rn}. We need to estimate the cardinality of

I(n, ε) = {(d1, . . . , dn) ∈ B(r1, . . . , rn)|
n∑
i=1

di
ri
≤ n

2 (1− ε)}.

By definition, each (d1, . . . , dn) ∈ I(n, ε) satisfies exp(n2 −
εn
2 −

∑n
i=1

di
ri

) ≥ 1. Moreover,
exp(n2 −

εn
2 −

∑n
i=1

di
ri

) > 0 for any (d1, . . . , dn) ∈ Nn0 (simply, since et is always positive).
Of course, we can multiply the term inside the exp(.) by any positive real number, without
changing these estimates. Hence, we have

|I(n, ε)| =
∑

d∈I(n,ε)
1 ≤

∑
d∈B(r1,...,rn)

exp
(
ε

(
n

2 −
εn

2 −
n∑
i=1

di
ri

))

= exp
(
−ε

2n

2

)
n∏
h=1

(
rh∑
i=0

exp
(
ε

(1
2 −

i

rh

)))
(2.35)

The summand ε
(

1
2 −

i
rh

)
always lies in (−ε/2, ε/2) ⊆ (−1, 1). Using the inequality exp(t) ≤

1 + t+ t2 for all t ∈ (−1, 1), one shows

rh∑
i=0

exp
(
ε

(1
2 −

i

rh

))
≤ (rh + 1)(1 + ε2/4) ∀ h ∈ {1, . . . , n}.

Combining this estimate with (2.35), and applying 1+t ≤ exp t for all t ∈ R, gives the claimed
result.

Finally we are willing and able to prove the generalization of Proposition 2.4.11.

Theorem 2.6.5. Let α ∈ Q be of degree d. Moreover, let ε ∈ (0, 1) and n ∈ N such that
exp(ε2n/4) ≥ 2d, and set α = (α, . . . , α) ∈ Qn. For every r = (r1, . . . , rn) ∈ Nn there exists
a polynomial P ∈ Z[x1, . . . , xn] \ {0} such that

(i) degxi(P ) ≤ ri for all i ∈ {1, . . . , n},

(ii) Ind(α,r)(P ) ≥ n
2 (1− ε), and

(iii) H(P ) ≤ (4H(α))r1+...+rn.

Proof. Of course we want to apply Siegel’s lemma. Hence, we need to find certain linear
equations for the coefficients of P . We want that the degree of P at xi is bounded by ri for
all i ∈ {1, . . . , n}. Hence, any monomial appearing in P with a non-zero coefficient, is of the
form xi11 · · ·xinn , with

(i1, . . . , in) ∈ {0, . . . , r1} × . . .× {0, . . . , rn} =: B(r1, . . . , rn).

Hence, we are looking for a polynomial

P (x1, . . . , xn) =
∑

i∈B(r1,...,rn)
cix

i1
1 · · ·x

in
n ∈ Z[x1, . . . , xn].
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Such a polynomial has N = |B(r1, . . . , rn)| = (r1 +1) · · · (rn+1) coefficients, which we handle
as unknowns.
The bound in (ii) for the index of P is true, if and only if

0 = ∂dP (α) (2.34)=
∑

i∈B(r1,...,rn)
ci

(
i1
d1

)
· · ·
(
in
dn

)
αi1−d1 · · ·αin−dn

=
∑

i∈B(r1,...,rn)
ci

(
i1
d1

)
· · ·
(
in
dn

)
α(i1+...+in)−(d1+...+dn) (2.36)

for all d = (d1, . . . , dn) ∈ Nn such that
∑n
i=1

di
ri
< n

2 (1−ε). By Lemma 2.6.4 there are at most
|B(r1, . . . , rn)| exp(−ε2n/4) of such tuples. Hence, our assumption on ε guarantees that the
number of equations in 2.36 is

M ≤ N · exp(−ε2n/4) ≤ N

2d. (2.37)

This enables us to apply Siegel’s Lemma 2.4.6 to the M linear equations in N unknowns
given in (2.36), which are defined over the number field Q(α) of degree d.7 It only remains
to calculate the height of such an equation. Therefore, let v ∈MQ(α) be archimedean, then∣∣∣∣∣

(
i1
d1

)
· · ·
(
in
dn

)
α(i1+...+in)−(d1+...+dn)

∣∣∣∣∣
v

≤
∣∣∣2i1+...+in

∣∣∣
v
·max{1, |α|i1+...+in

v } ≤ 2r1+...+rn ·max{1, |α|v}
r1+...+rn . (2.38)

Here we have used the generous estimate
(i
d

)
≤ 2i, which is obvious from a combinatorial

point of view:
(i
d

)
is the number of subsets of cardinality d of a set of cardinality i, and 2i is

the total number of subsets of a set of cardinality i.
Now let v ∈MQ(α) be non-archimedean. Then∣∣∣∣∣

(
i1
d1

)
· · ·
(
in
dn

)
α(i1+...+in)−(d1+...+dn)

∣∣∣∣∣
v

≤max{1, |α|i1+...+in
v } ≤ max{1, |α|v}

r1+...+rn . (2.39)

We can conclude that the multiplicative height of any of the polynomials in (2.36) (keep in
mind that the ci’s are the unknowns) is less or equal to

∏
v∈MQ(α)
v|∞

(
2r1+...+rn ·max{1, |α|v}

r1+...+rn
)dv/d

·
∏

v∈MQ(α)
v-∞

(
max{1, |α|v}

r1+...+rn
)dv/d

=
∏

v∈MQ(α)
v|∞

(
2r1+...+rn

)dv/d
·

∏
v∈MQ(α)

(
max{1, |α|v}

r1+...+rn
)dv/d

=2r1+...+rnH(α)r1+...+rn = (2H(α))r1+...+rn .

7Actually it would be enough to assumeM ≤ N/d in order to apply Siegel’s Lemma. The 2 is only included,
so that we can bound the exponent appearing in Siegel’s Lemma by 1 (see the second to last inequality in the
proof).
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We apply Siegel’s Lemma 2.4.6, and conclude that there are coefficients ci ∈ Z, such that all
equations from (2.36) are satisfied, and such that

H(
∑

i∈B(r1,...,rn)
cix

i1
1 · · ·x

in
n ) ≤

(
N(2H(α))r1+...+rn

)dM/(N−dM)

=
(
(r1 + 1) · · · (rn + 1) · (2H(α))r1+...+rn

) 1
N/dM−1

(2.37)
≤ (r1 + 1) · · · (rn + 1) · (2H(α))r1+...+rn ≤ (4H(α))r1+...+rn .

The last inequality comes again from comparing binomial coefficients with a power of 2: we
have 1 + r =

(r
0
)

+
(r
1
)
≤ 2r. This proves the theorem.

Exercises
Exercise 2.19. Let α ∈ Cn and r ∈ Nn be arbitrary. Prove that for all P, P ′ ∈ C[x1, . . . , xn]\
{0}, we have

Ind(α,r)(P · P ′) = Ind(α,r)(P ) + Ind(α,r)(P ′).



Chapter 3

Roth’s Theorem

Roth’s theorem is around since the very first lecture. It served as a motivation for introducing
the Mahler measure and the height, although theses functions are – of course – of independent
interest. Recall from (RT7):

Roth’s Theorem 3.0.1. Let K be a number field of degree d, and let S ⊆MK be finite. For
any α ∈ Q and for each element v ∈ MK we fix one extension v′ | v to K(α). Then, for all
ε > 0 there are at most finitely many β ∈ K such that∏

v∈S
min{1, |α− β|v′}

dv < H(β)−d(2+ε).

Remark 3.0.2. Note that we may replace the right hand side by CH(β)−[K:Q](2+ε) for any
constant C > 0. The argument has been given in one of the exercises, but we recall it here
again. In the notation from Roth’s Theorem 3.0.1, we assume that β ∈ K satisfies∏

v∈S
min{1, |α− β|v′}

dv < CH(β)−[K:Q](2+ε) = C

H(β)[K:Q]ε/2H(β)−[K:Q](2+ ε
2 ). (3.1)

Then β satisfies

H(β) ≤ C2/(ε[K:Q]) or
∏
v∈S

min{1, |α− β|v}
dv < H(β)−[K:Q](2+ ε

2 ).

By Northcott’s Theorem 2.3.8 there are at most finitely many β ∈ K satisfying the first
condition, and by Roth’s Theorem 3.0.1 for ε/2 there are at most finitely many β ∈ K
satisfying the second condition. This proves that there are indeed at most finitely many
β ∈ K satisfying (3.1).

Remark 3.0.3. Let v be an absolute value on the number field K, and α ∈ Q such that
α /∈ Kv. This means that α is not in the completion of K with respect to v. In particular,
there is a positive constant c > 0 such that |α− β|v > c for all β ∈ Kv. Concerning Roth’s
theorem, this tells us two things:

• Whenever α /∈ Kv for some v ∈ S, then this v does not provide any good approximations.
Hence, we can always assume that α ∈ Kv for all v ∈ S.

• This fact is taken care about in our formulation of Roth’s theorem, by taking dv as an
exponent on the left hand side instead of dv′ : If α ∈ Kv, then both local degrees dv and
dv′ are the same for some choice of v′.

73
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We already have seen how we can use this theorem in order to prove the transcendence of
certain complex numbers. In this chapter we will finally prove Roth’s theorem 3.0.1. Before
we give the proof, we will study a further application.

3.1 Thue equations

The classical Thue equation is given by F (x, y) = m, where F (x, y) ∈ Z[x, y] is an irreducible
homogeneous polynomial of degree n ≥ 3, and m ∈ Z \ {0}. We will apply Roth’s Theorem
3.0.1 to prove that such equation has at most finitely many integral solutions. Since, Roth’s
theorem is valid over number fields, we will actually prove a generalization of this result. We
recall a special case of a theorem stated on one of the exercise sheets, namely:

Theorem 3.1.1. Let f ∈ Q[x] be a polynomial of degree n. Then there is a constant cf such
that for all α ∈ Q we have

H(α)n · c−1
f ≤ H(f(α)) ≤ H(α)n · cf .

Proof. We should have proven this earlier, so it is tempting to skip the proof. However, this
would feel like cheating, too much. So here it is:
Let f ∈ Q[x] be of degree n, and let α ∈ Q be arbitrary. We fix any number field K such that
f ∈ K[x] and α ∈ K. We set d = [K : Q]. If f is constant, then n = 0 and the statement is
trivial. Hence we may assume that n ≥ 1.
We will start with proving the upper bound, which follows from the (ultrametric) triangular
inequality. Let v ∈MK be archimedean. Then we have

|f(α)|v ≤ (n+ 1) · |f |v ·max{1, |α|nv}
≤ (n+ 1) ·max{1, |f |v} ·max{1, |α|nv} (3.2)

=⇒ max{1, |f(α)|v} ≤ (n+ 1) ·max{1, |f |v} ·max{1, |α|nv}.

Now, let v ∈MK be non-archimedean. Then we have

|f(α)|v ≤ |f |v ·max{1, |α|nv}
≤ max{1, |f |v} ·max{1, |α|nv} (3.3)

=⇒ max{1, |f(α)|v} ≤ max{1, |f |v} ·max{1, |α|nv}.

Putting these estimates together gives

H(f(α)) =
∏

v∈MK

max{1, |f(α)|v}
dv/d

≤

 ∏
v∈MK
v|∞

(n+ 1)dv/d

 ·
 ∏
v∈MK

max{1, |f |v}
dv/d

 ·
 ∏
v∈MK

max{1, |αn|v}
dv/d


= (n+ 1) ·H(f) ·H(αn) = (n+ 1) ·H(f) ·H(α)n.

This proves the upper bound with an effective constant C1(f) = (n+ 1)H(f).
The main observation for the proof of the lower bound is the following:
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Claim: There are polynomials g1, g2 ∈ K[x] of degree at most n such that x2n = g1(x)f(x)+
g2(x).
We will prove the claim as simple as possible. Writing f(x) =

∑n
i=0 aix

i, then we need to
construct a polynomial g1(x) =

∑n
i=0 bix

i ∈ K[x] such that the degree of x2n − f(x)g1(x) is
at most n. This just means that

f(x)g1(x) =
2n∑
i=0

 ∑
r+s=i

arbs

xi = x2n + cnx
n + cn−1x

n−1 + . . .+ c0.

Hence, we only have to choose b0, . . . , bn ∈ K such that

anbn =
∑

r+s=2n
arbs = 1 and

∑
r+s=k

arbs = 0 ∀ k ∈ {n+ 1, . . . , 2n− 1}.

But surely there are such elements b0, . . . , bn. Since an 6= 0, we have to take bn = a−1
n . Then

we construct bn−1, bn−2, . . . , b0 inductively, by bn−` = −a−1
n

∑n
i=n−`+1 a2n−`−ibi. This proves

the claim.
Note that the polynomials g1 and g2 are given solely in terms of f . Now we prove H(f(α)) ≥
C2(f)H(α)n for some positive constant C2(f) not dependent on α. To this end, let v ∈ MK

be non-archimedean. Then we have

|α|2nv = |g1(α)f(α) + g2(α)|v ≤ max{|g1(α)|v |f(α)|v , |g2(α)|v}
≤ max{|g1(α)|v , |g2(α)|v} ·max{|f(α)|v , 1}
(3.3)
≤ max{|g1|v , |g2|v} ·max{1, |α|nv} ·max{|f(α)|v , 1}

=⇒ max{1, |α|v}
2n ≤ max{|g1|v , |g2|v , 1} ·max{1, |α|v}

n ·max{|f(α)|v , 1}
=⇒ max{1, |α|v}

n ≤ max{|g1|v , |g2|v , 1} ·max{|f(α)|v , 1}.

Similarly, if v ∈MK is archimedean, then we have

|α|2nv = |g1(α)f(α) + g2(α)|v ≤ 2 max{|g1(α)|v |f(α)|v , |g2(α)|v}
≤ 2 max{|g1(α)|v , |g2(α)|v} ·max{|f(α)|v , 1}
(3.2)
≤ 2(n+ 1) max{|g1|v , |g2|v} ·max{1, |α|v}

n ·max{|f(α)|v , 1}
=⇒ max{1, |α|v}

2n ≤ 2(n+ 1) max{|g1|v , |g2|v , 1} ·max{1, |α|v}
n ·max{|f(α)|v , 1}

=⇒ max{1, |α|v}
n ≤ 2(n+ 1) max{|g1|v , |g2|v , 1} ·max{|f(α)|v , 1}.

Hence, the proposed inequality is true at each single absolute value. All we have to do next,
is to combine all these estimates.

H(α)n =
∏

v∈MK

(max{1, |α|v}
n)dv/d

≤
∏

v∈MK
v|∞

(2(n+ 1))dv/d ·
∏

v∈MK

(max{|g1|v , |g2|v , 1})
dv/d ·

∏
v∈MK

max{|f(α)|v , 1}
dv/d

= 2(n+ 1) ·
∏

v∈MK

(max{|g1|v , |g2|v , 1})
dv/d

︸ ︷︷ ︸
≤H(g1)·H(g2)

·H(f(α))
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Hence the lower bound is proved, with C2(f) = (2(n + 1)H(g1)H(g2))−1. Taking cf as the
maximum of C1(f) and C2(f) proves the theorem.

Remark 3.1.2. The statement in the claim above may remind you on Hilbert’s Nullstellen-
satz. Indeed, if you want to prove this statement in higher dimensions (as formulated on the
exercise sheet), you can do precisely the same using Hilbert’s Nullstellensatz in order to prove
the claim.

Theorem 3.1.3. Let K be a number field of degree d and let F (x, y) ∈ K[x, y] be homogeneous
of degree n > 2d, without a multiple linear factor over C[x, y] and such that F (1, 0) 6= 0. For
any γ ∈ K∗ there are at most finitely many pairs (α, β) ∈ O2

K such that F (α, β) = γ. As
usual OK denotes the ring of integers in K.

Proof. We have F (x, y) =
∑n
i=0 aix

iyn−i, for some a1, . . . , an ∈ K. Our assumption guaran-
tees that an = F (1, 0) 6= 0. It follows

1
yn
F (x, y) =

n∑
i=0

ai

(
x

y

)i
= an(x

y
− α1) · · · (x

y
− αn),

for certain α1, . . . , αn ∈ Q. In particular, the linear factors of F (x, y) are precisely (x− αiy)
for i ∈ {1, . . . , n}. Hence, by assumption the elements α1, . . . , αn are pairwise distinct.
Let N ∈ N be such that Nan ∈ OK . We have

F (α, β) = γ ⇐⇒ Nnan−1
n F (α, β) = Nnan−1

n γ

⇐⇒
n∏
i=1

(Nanα−Nanαiβ) = Nnan−1
n γ.

Hence, whenever (α, β) ∈ O2
K is a solution of F (x, y) = γ, then (Nanα, β) ∈ O2

K is a solution
of F̃ (x, y) = Nnan−1

n γ, where

F̃ (x, y) =
n∏
i=1

(x−Nanαiy) ∈ K[x, y].

In particular, if the latter equation has only finitely many integral solutions, then the original
equation has at most finitely many integral solutions. Hence we may assume from now on
that an = 1.
After this reduction step, we can outline the idea for the proof: If we have infinitely many
integral solutions (α, β) ∈ OK of F (x, y) = γ, then we have infinitely many very good
approximations of one of the elements α1, . . . , αn. These approximations will be given by
α/β.
With this in mind, we should note the following. If β = 0 then there are at most n different
α such that F (α, 0) = γ. Hence, we may assume that β 6= 0. Moreover, if F (α, β) = γ,
and λ ∈ Q is arbitrary, then F (λα, λβ) = λnγ. Hence, for any solution (α, β) there are at
most n− 1 other solutions (α′, β′) such that α/β = α′/β′. This means, that infinitely many
solutions (α, β) of F (x, y) = γ lead to infinitely many different elements α/β.
Having said all this, we can start with the actual proof. Let (α, β) ∈ O2

K be a solution to
F (x, y) = γ, with β 6= 0. Then we have

γ

βn
= 1
βn
F (α, β) = (α

β
− α1) · · · (α

β
− αn). (3.4)
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Let σ ∈ Gal(Q/Q) be such that |β|σ = |σ(β)| is maximal (i.e. σ(β) is a largest Galois-
conjugate of β). Since β ∈ OK , the product of all conjugates of β is a rational integer. Hence,
not all Galois conjugates of β can be located inside the unit circle. In particular we know
|β|σ ≥ 1. For any j, k ∈ {1, . . . , n} with j 6= k we have∣∣∣∣αβ − αj

∣∣∣∣
σ

+
∣∣∣∣αβ − αk

∣∣∣∣
σ

≥ |αj − αk|σ ≥ min
1≤r<s≤n
τ∈Gal(Q/Q)

|αr − αs|τ =: C1(F ) > 0.

Here we apply the assumption, that all the αi’s are pairwise distinct. It follows that at most
one of the numbers

∣∣∣αβ − αi∣∣∣σ is < C1(F )/2. This means that all but one of these absolute
values are ≥ C1(F )/2. It follows

min
1≤j≤n

∣∣∣∣αβ − αj
∣∣∣∣
σ

·
(
C1(F )

2

)n−1
≤

n∏
i=1

∣∣∣∣αβ − αi
∣∣∣∣
σ

(3.4)= |γ|σ
|β|nσ

,

and hence
min

1≤j≤n

∣∣∣∣αβ − αj
∣∣∣∣
σ

≤
( 2
C1(F )

)n−1
· |γ|σ
|β|nσ

. (3.5)

Now assume that there are infinitely many integral solutions (α, β) of F (x, y) = γ. Then, by
the box principle, there is one k ∈ {1, . . . , n} such that

min
1≤j≤n

∣∣∣∣αβ − αj
∣∣∣∣
σ

=
∣∣∣∣αβ − αk

∣∣∣∣
σ

for infinitely many pairs (α, β) ∈ O2
K . We rename the indices to assume k = 1. Taking our

remarks at the beginning into account, and applying (3.5) we find that there are infinitely
many numbers α/β ∈ K, with α, β ∈ OK , such that∣∣∣∣αβ − α1

∣∣∣∣
σ

≤ C2(F, γ)
|β|nσ

, with (3.6)

C2(F, γ) =
( 2
C1(F )

)n−1
· max
τ∈Gal(Q/Q)

|γ|τ .

That already looks like too many good approximations of α1. We are left to compare |β|σ
with M(α/β). Here the mysterious choice of σ comes into play:

|β|nσ = |σ(β)|n︸ ︷︷ ︸
=max{1,|σ(β)|}n

≥
∏

τ∈HomQ(Q(β),C)
max{1, |τ(β)|}n/[Q(β):Q] β∈OK= H(β)n.

Define the polynomial f(x) = F (x, 1) = (x − α1) · · · (x − αn). Then there exists a positive
constant C3(F ) only depending on F , such that

H(γ) + H(βn)︸ ︷︷ ︸
=H(β−n)

≥ H(γ · β−n) (3.4)= H(f(α
β

))
3.1.1
≥ H(α

β
)n · C3(F ).

We conclude
|β|nσ ≥ H(α

β
)nC3(F )−H(γ).
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Together with (3.6), this gives for infinitely many numbers α/β ∈ K the estimate∣∣∣∣αβ − α1

∣∣∣∣
σ

≤ C2(F, γ)
H(αβ )nC3(F )−H(γ) =

C2(F,γ)
C3(F )

H(αβ )n − C3(F )−1H(γ) . (3.7)

By Northcott’s theorem 2.3.8, there are at most finitely many elements α/β ∈ K such that
1
2H(α/β)n ≤ H(γ)C3(F )−1. Hence, if there are infinitely many α/β ∈ K satisfying (3.7),
then there must be infinitely many α/β ∈ K such that∣∣∣∣αβ − α1

∣∣∣∣
σ

≤
C2(F,γ)
2C3(F )
H(αβ )n =

C2(F,γ)
2C3(F )

H(αβ )d·
n
d

Since n/d > 2, by or assumption, this contradicts Roth’s Theorem 3.0.1 (cf. Remark 3.0.2).
Hence, there are at most finitely many solutions (α, β) ∈ O2

K of the equation F (x, y) = γ.

Remark 3.1.4. The polynomials handled in Theorem 3.1.3 are indeed a generalization of the
original Thue equations. ChooseK = Q in the theorem and let F (x, y) ∈ Z[x, y] be irreducible
and homogeneous of degree n ≥ 3 > 2[Q : Q]. Since, F is irreducible and Q is a perfect
field, there are no multiple linear factors of F in C[x, y]. Write F (x, y) =

∑n
i=0 aix

iyn−i. If
an = F (1, 0) = 0, then F (x, y) =

∑n−1
i=0 aix

iyn−i = y ·
∑n−1
i=0 aix

iyn−i−1 contradicting the fact
that F is irreducible. Hence, F is indeed handled in Theorem 3.1.3.
However, we do not need the full force of Roth’s theorem to prove that a Thue equation has
at most finitely many solutions. But still we need more than Liouville’s approximation.

Remark 3.1.5. This result can be extended further in several ways. For instance, with
almost the same proof one can show, that the equation F (x, y) = γ as in Theorem 3.1.3 has
only finitely many solutions in the S-integers OK,S for any finite set S ⊆Mfin

K .

As an example I could write down any Thue equation like x3 − 3yx2 + 5y2x − 2y3 = 1, and
now we know that there are at most finitely many integral solutions to this equation. But
most likely, you would not be very enthusiastic about this result. So let me give you another,
non-obvious, application of this result. We study the question, how often the sum of two
algebraic units is again an algebraic unit. Let us try to make this more precise, by studying
a simple example.

Example 3.1.6. Let n ∈ N be odd and denote with ζn a primitive nth root of unity. By
Euler’s theorem we have 2ϕ(n) ≡ 1 mod n, where ϕ is Eulers-Phi-Function. Hence ζn = ζ2ϕ(n)

n .
We compute (

ζ2
n − 1
ζn − 1

)
︸ ︷︷ ︸

=ζn+1

·
(
ζ4
n − 1
ζ2
n − 1

)
︸ ︷︷ ︸

=ζ2
n+1

· . . . ·
(
ζ2ϕ(n)
n − 1

ζ2ϕ(n)−1
n − 1

)
︸ ︷︷ ︸

=ζ2ϕ(n)−1
n +1

=
(
ζ2ϕ(n)
n − 1
ζn − 1

)
= 1.

In particular, ζn + 1 is always an algebraic unit (and so are ζn and 1).

This example shows that there are infinitely many pairs of algebraic units, such that the sum
is again an algebraic unit. However, the examples we have found do not lie in a fixed number
field. So maybe we should ask: For a given number field K, are there still infinitely many
α, β ∈ O∗K such that α + β ∈ O∗K as well? This was answered in the negative by Siegel. By
multiplying with the inverse of α + β, one may equivalently ask for solutions α, β ∈ O∗K of
the equation x+ y = 1. This is the so-called unit-equation.
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Theorem 3.1.7. Let K be a number field. There are at most finitely many α, β ∈ O∗K such
that α+ β = 1.

Proof. We have to solve the equation x+ y = 1. The left hand side is indeed a homogeneous
polynomial in two variables, but the degree is equal to 1, and not ≥ 3. So at fist sight, Thue-
equations do not seem to be an appropriate tool. We will artificially introduce an appropriate
exponent n to this equation.
Let us start with applying the first thing that comes to mind, when we see O∗K : Dirichlet’s
unit theorem. This is, O∗K is finitely generated, and has rank r+ s−1, where r is the number
of real embeddings of K and s is the number of complex embeddings of K. Alternatively, we
can describe r + s as the number of archimedean absolute values in MK .
Since O∗K is finitely generated, the quotient group O∗K/(O∗K)n is finite for all n ∈ N, where
(O∗K)n = {εn|ε ∈ O∗K} denotes the subgroup of nth powers in O∗K .
For all n ∈ N, we denote with Rn ⊆ O∗K a full set of representatives of the elements in the
quotient O∗K/(O∗K)n. Hence, if α ∈ O∗K , then there is an unique a ∈ Rn and an ε ∈ O∗K such
that α = aεn.
So finally we have introduced our nth power. Hence, having the Thue-equation in mind, we
fix some integer n > 2[K : Q]. We see that

α+ β = 1 for α, β ∈ O∗K
⇐⇒ aεn + bδn = 1 for some a, b ∈ Rn and ε, δ ∈ O∗K .

Recall that Rn is finite. Hence, any solution α, β ∈ O∗K of x+ y = 1, gives rise to a solution
ε, δ ∈ O∗K of one of the finitely many equations

axn + byn = 1 with a, b ∈ Rn. (3.8)

Since any of these equations factors as axn+ byn = a
∏n
i=1(x− ζin n

√
−b/ay) for some choice of

the nth root of −b/a, all linear factors of any of these equations are pairwise distinct. Now we
can apply Theorem 3.1.3, and conclude that the finitely many equations from (3.8) have only
finitely many solutions in OK (and in particular in O∗K). Hence, there are at most finitely
many solutions of x+ y = 1 in the algebraic units O∗K .

Remark 3.1.8. As before we state that with minor changes in the proof, we see that there
are at most finitely many S-units in K that sum up to another S-unit, for any finite set
S ⊆Mfin

K .

We close this section with an outline of the proof of Roth’s theorem:

(1) Assume there are many good approximations of a given α ∈ Q – saym. Then we construct
a polynomial P ∈ Z[x1, . . . , xm] that vanishes at α = (α, . . . , α) ∈ Qm to a very large
order (more precisely: with a very large index).

(2) If β1, . . . , βm ∈ K are the good approximations of α, we aim to prove that P does not
vanish at β = (β1, . . . , βm).

(3) Then P (β) is not too small in terms of the βi’s (gap principle). Note that we can assume
that the height of all the βi’s is very large, since there are only finitely many elements in
K of bounded height.
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(4) But since P vanishes at α with a large index, the Taylor expansion of P at α can be used
to prove that P (β) is very close to zero (with large enough m). If it is too close to zero,
we hopefully get something which contradicts (3).

Of course, the polynomial P should be constructed using Siegel’s Lemma 2.4.6 (cf. Theorem
2.6.5). However, in sharp contrast to the case of polynomials in one variable, there is no reason
why P (β) should not be zero. One of the ingenious ideas in the proof is the observation, that
it might be zero, but the index at β should be considerable smaller than the index from (1).
Then the argument outlined above applies for some derivative of P ! To prove that the index
of P at β is small (a result known as Roth’s lemma), is the hardest part of the proof.

Exercises
Exercise 3.1. (a) Prove that there are at most finitely many solutions (α, β) ∈ Z2 of the

equation
x5 + 4x4y + y − 6x3y2 − y2 + 8xy4 − 2y5 − 1 = 0.

(b) Formulate a general statement about finiteness of integral solutions of a class of Diophan-
tine equations, which contains the above equation.

(c) Are there finitely many or infinitely many integral solutions of the equation

x4 − 4x2y2 + 4y4 = 16?

3.2 Preliminaries I – Multivariable Polynomial Estimates
We already know quite a bit about heights. But so far, we have not really worked with the
height of multivariable polynomials. Above we claimed that a polynomial P ∈ Q[x1, . . . , xn]
with certain vanishing properties and of small height, will play an essential role in the proof
of Roth’s theorem. The vanishing properties of a polynomial do not change if we multiply the
polynomial with some non-negative constant. Hence, once we have found a polynomial with
good vanishing properties, we should multiply it with an appropriate constant, to reduce its
height. Alternatively, we could consider the set of polynomials λ · P as an equivalence class
of the polynomial P , and define a height for this equivalence class.

Definition 3.2.1. For f ∈ Q[x1, . . . , xn] \ {0} we define the multiplicative projective height
of f to be the quantity

HP(f) =
∏

v∈MK

|f |dv/[K:Q]
v ,

for any number field K that contains all coefficients of f . The logarithmic projective height
of f is, as usual hP(f) = log(HP(f)).

The projective height of a polynomial is calculated by considering its coefficients as coordinates
of a point in a projective space, and then calculate the height of this point.

Lemma 3.2.2. For any f ∈ Q[x1, . . . , xn] \ {0} we have

HP(f) = min
λ∈Q∗

H(λ · f).
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Proof. This is given as an exercise.

Given polynomials f1, . . . , fr ∈ Q[x1, . . . , xn], we want to compare the (projective) heights of
the fi’s with the height of f = f1 · · · fr. The non-archimedean part of the heights can be
easily compared by the Gauß-Lemma 2.3.2, since for any non-archimedean v ∈ MK we have
|f |v = |f1|v · · · |fr|v, where K is any number field with f1, . . . , fr ∈ K[x1, . . . , xn]. What is
still missing, is an archimedean version of the Gauß-Lemma.
We know from Proposition 2.1.17, that we can express the Mahler measure of some α ana-
lytically in terms of it’s minimal polynomial f , by M(α) = exp

(
1

2π
∫ 2π

0 log
∣∣∣f(eiθ)

∣∣∣ dθ). The
right-hand-side of course only depends on the polynomial f . So in particular, we can define
the Mahler measure of any polynomial f ∈ C[x] by this formula. This is:

M(f) = exp
( 1

2π

∫ 2π

0
log

∣∣∣f(eiθ)
∣∣∣ dθ) ∀ f ∈ C[x].

We want to study multivariable polynomials. Luckily, the definition above readily generalizes
to the case of multivariable polynomials.

Definition 3.2.3. For all f ∈ C[x1, . . . , xn] we define the Mahler measure of f to be the
quantity

M(f) = exp
( 1

(2π)n
∫ 2π

0
· · ·
∫ 2π

0
log

∣∣∣f(eiθ1 , . . . , eiθn)
∣∣∣ dθ1 · · · dθn

)
.

Keeping in mind that we want to compare the heights of f1 · · · fr with the heights of the
factors f1, . . . , fr, the Mahler measure seems to be a promising tool. We know that it is
somehow linked to the height, and obviously, we have

M(f1 · · · fr) = M(f1) · · ·M(fr). (3.9)

We will use two results from complex analysis as a black box.

Theorem 3.2.4. Let f ∈ C[x1, . . . , xn]. As usual we write f =
∑
k∈Nn0

akx
k, with xk =

xk1
1 · · ·xknn for k = (k1, . . . , kn). Then we have

(a) (Parseval’s formula)( 1
2π

)n ∫ 2π

0
· · ·
∫ 2π

0

∣∣∣f(eiθ1 , . . . , eiθn)
∣∣∣2 dθ1 · · · dθn =

∑
k∈Nn0

∣∣ak∣∣2 .
(b) (Jensen’s inequality)

M(f)2 ≤
( 1

2π

)n ∫ 2π

0
· · ·
∫ 2π

0

∣∣∣f(eiθ1 , . . . , eiθn)
∣∣∣2 dθ1 · · · dθn.

Remark 3.2.5. Both statements are special cases of general analytic results (non of which
is particularly difficult to prove). For instance, Jensen’s inequality states that for any convex
function ϕ : R→ R, and any probability space (Ω, µ) we have ϕ (

∫
Ω gdµ) ≤

∫
Ω ϕ ◦ gdµ for all

µ-integrable functions g : Ω → R. Hence statement (b) follows from noticing, that exp(.) is
convex.
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Corollary 3.2.6. For any f ∈ C[x1, . . . , xn] we have

M(f) ≤
(

n∏
i=1

(degxi(f) + 1)
)1/2

· |f | .

Proof. We again write f =
∑
k∈Nn0

akx
k. Combining part (a) and part (b) from Theorem

3.2.4, we get

M(f) ≤

∑
k∈Nn0

∣∣ak∣∣2
1/2

. (3.10)

At most
∏n
i=1(degxi(f) + 1) of the coefficients of f are non-zero, and by definition of |f | all

coefficients of f are of absolute value ≤ |f |. Using this in formula (3.10) gives the claimed
bound

M(f) ≤
(

n∏
i=1

(degxi(f) + 1)
)1/2

· |f | .

We know from Lemma 2.1.7 that the i’s coefficient ai of a one-variable polynomial f of degree
d satisfies |ai| ≤

(d
i

)
M(f) ≤

( d
bd/2c

)
M(f). We generalize this to polynomials in n variables.

Lemma 3.2.7. Let f ∈ C[x1, . . . , xn], with degxi(f) ≤ ri for all i ∈ {1, . . . , n}, for certain
integers r1, . . . , rn. Then

|f | ≤
n∏
i=1

(
rn
brn/2c

)
·M(f).

Proof. We prove this by induction on the number of variables n. As mentioned before, the
induction base has already be done in Lemma 2.1.7. Hence, we assume that the statement is
true for all polynomials in less than n variables.
There are polynomials f0, . . . , frn ∈ C[x1, . . . , xn−1] such that

f =
rn∑
k=0

fk(x1, . . . , xn−1) · xkn.

We first note that the set of coefficients of f is precisely the set of coefficients of all the fk’s.
This just means

|f | = max
0≤k≤rn

|fk| . (3.11)

For any choice of real numbers θ1, . . . , θn−1, we apply our induction base to get

M(f(eiθ1 , . . . , eiθn−1 , xn)) ≥ max
0≤k≤rn

∣∣∣fk(eiθ1 , . . . , eiθn−1)
∣∣∣ · ( rn
brn/2c

)−1

. (3.12)
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We split the multiple integrals in the definition of the Mahler measure of f to get

log(M(f))
Def= 1

(2π)n−1

∫ 2π

0
· · ·
∫ 2π

0︸ ︷︷ ︸
(n−1)-times

1
2π

∫ 2π

0
log

∣∣∣f(eiθ1 , . . . , eiθn)
∣∣∣ dθndθ1 · · · dθn−1

Def= 1
(2π)n−1

∫ 2π

0
· · ·
∫ 2π

0
log(M(f(eiθ1 , . . . , eiθn−1 , xn)))dθ1 · · · dθn−1

(3.12)
≥ 1

(2π)n−1

∫ 2π

0
· · ·
∫ 2π

0
log

 max
0≤k≤rn

∣∣∣fk(eiθ1 , . . . , eiθn−1)
∣∣∣ · ( rn
brn/2c

)−1
dθ1 · · · dθn−1

= 1
(2π)n−1

∫ 2π

0
· · ·
∫ 2π

0
max

0≤k≤rn
log

(∣∣∣fk(eiθ1 , . . . , eiθn−1)
∣∣∣) dθ1 · · · dθn−1 + log(

(
rn
brn/2c

)−1

)

≥ max
0≤k≤rn

1
(2π)n−1

∫ 2π

0
· · ·
∫ 2π

0
log

(∣∣∣fk(eiθ1 , . . . , eiθn−1)
∣∣∣) dθ1 · · · dθn−1 + log(

(
rn
brn/2c

)−1

)

= max
0≤k≤rn

log(M(fk)) + log(
(

rn
brn/2c

)−1

).

This implies

M(f) ≥ max
0≤k≤rn

M(fk) ·
(

rn
brn/2c

)−1
IH
≥ max

0≤k≤rn
|fk| ·

n−1∏
i=1

(
ri
bri/2c

)−1
 · ( rn

brn/2c

)−1

(3.11)= |f | ·
(

n∏
i=1

(
ri
bri/2c

))−1

,

and hence the claim.

Lemma 3.2.8. Let r1, . . . , rn ∈ N0 be arbitrary. Then we have(
r1
br1/2c

)
· · ·
(

rn
brn/2c

)
≤
(

r1 + . . .+ rn
b(r1 + . . .+ rn)/2c

)
.

Proof. We only have to prove the case n = 2, then the result follows immediately by induction.
Consider the polynomial equation

(1 + x)r1 · (1 + x)r2 = (1 + x)r1+r2 .

The a = br1/2c+ br2/2c coefficient of the left hand side is
∑
k+`=a

(r1
k

)(r2
`

)
≥
( r1
br1/2c

)( r2
br2/2c

)
.

But the left hand side tells us that every coefficient of this polynomial is less or equal to( r1+r2
b(r1+r2)/2c

)
. This proves the lemma.

Lemma 3.2.9. For any d ∈ N0 we have
( d
bd/2c

)√
d+ 1 ≤ 2d.

Proof. The estimate is obviously true for d = 0 and d = 1. Now the statement is true for all
even d = 2d′, which can be proved by induction on d′. Then one shows that this implies the
statement for all odd d as well. The details are left as an exercise.
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Lemma 3.2.10. Let f1, . . . , fr ∈ C[x1, . . . , xn] be arbitrary, and define f = f1 · · · fr. Then
we have

|f1| · · · |fr| ≤ 2degx1 (f)+...+degxn (f) |f | .

Proof. We have to combine all the estimates we have established in this section. To this end,
set ri(j) := degxi(fj) for all (i, j) ∈ {1, . . . , n} × {1, . . . , r}. Then

r∑
j=1

ri(j) = degxi(f) ∀ i ∈ {1, . . . , n}. (3.13)

Now we can start:

r∏
j=1
|fj |

3.2.7
≤

r∏
j=1

n∏
i=1

(
ri(j)
bri(j)/2c

)
M(fj) =

 r∏
j=1

n∏
i=1

(
ri(j)
bri(j)/2c

) · r∏
j=1

M(fj)

(3.9)=

 r∏
j=1

n∏
i=1

(
ri(j)
bri(j)/2c

) ·M(f)

3.2.6
≤

 n∏
i=1

r∏
j=1

(
ri(j)
bri(j)/2c

) · ( n∏
i=1

(degxi(f) + 1)
)1/2

· |f |

3.2.8,(3.13)
≤

(
n∏
i=1

(
degxi(f)⌊

degxi(f)/2
⌋)) · ( n∏

i=1

√
degxi(f) + 1

)
· |f |

=
n∏
i=1

((
degxi(f)⌊

degxi(f)/2
⌋) ·√degxi(f) + 1

)
· |f |

3.2.9
≤

(
n∏
i=1

2degxi (f)
)
· |f | .

This is what we wanted to prove.

Remark 3.2.11. A straight forward computation, which we avoid in this lecture, also gives
the estimate

|f1| · · · |fr| ≥ 2−(degx1 (f)+...+degxn (f)) |f | ,

with the notation from Lemma 3.2.10.

Finally, we can prove the main result in this section.

Proposition 3.2.12 (Gelfond’s Lemma). Let f1, . . . , fr ∈ Q[x1, . . . , xn], and define f =
f1 · · · fr. Then we have

HP(f) ≥ 2−(degx1 (f)+...+degxn (f))
r∏
j=1

HP(fj).

Proof. This (at least) follows immediately from the Gauß Lemma 2.3.2 and Lemma 3.2.10.
We fix any number field K such that f1, . . . , fr ∈ K[x1, . . . , xn]. The degree of K is denoted
by d. Note that for any archimedean v ∈ MK we can use the estimate from Lemma 3.2.10,
since for any polynomial g ∈ K[x1, . . . , xn] we have |g|v = |σ(g)| for some σ ∈ Gal(Q,Q).
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Now we conclude
r∏
j=1

HP(fj) =
∏

v∈MK

(|f1|v · · · |fr|v)
dv/d =

∏
v∈MK
v|∞

(|f1|v · · · |fr|v)
dv/d ·

∏
v∈MK
v-∞

(|f1|v · · · |fr|v)
dv/d

2.3.2=
∏

v∈MK
v|∞

(|f1|v · · · |fr|v)
dv/d ·

∏
v∈MK
v-∞

|f |dv/dv

3.2.10
≤

∏
v∈MK
v|∞

(
2degx1 (f)+...+degxn (f)

)dv/d
·
∏

v∈MK

|f |dv/dv

= 2degx1 (f)+...+degxn (f) ·HP(f).

This proves the proposition.

Remark 3.2.13. If we apply Remark 3.2.11 instead of Lemma 3.2.10, then, in the notation
from Proposition 3.2.12, we get

HP(f) ≤ 2degx1 (f)+...+degxn (f)
r∏
j=1

HP(fj).

Exercises
Exercise 3.2. Prove that for all f ∈ Q[x1, . . . , xn] \ {0}, we have

HP(f) = min
λ∈Q∗

H(λ · f).

Exercise 3.3. Let n > k ≥ 1 be integers, and let Q[x1, . . . , xn] be the polynomial ring
in n variables. Prove that for all f ∈ Q[x1, . . . , xk] and all g ∈ Q[xk+1, . . . , xn], we have
HP(f) ·HP(g) = HP(f · g).

Exercise 3.4. Prove Lemma 3.2.9.

3.3 Preliminaries II – Linearly Independent Polynomials
We know that for any field F the polynomial ring F [x1, . . . , xn] is an F -vector space. We
want to find a tool which will help us to decide whether a set of polynomials in F [x1, . . . , xn]
is F -linearly independent or not. The main result in this section has its origin in the theory
of ordinary partial differential equations. We will only sketch the proofs.
In this section we always assume that F is a subfield of C. Let us first study the case of a
single variable.

Definition 3.3.1. Let f1, . . . , fm ∈ F [x], then the Wronskian determinant of f1, . . . , fm is

W (f1, . . . , fm) = det


f

(0)
1 (x) · · · f

(0)
m (x)

... . . . ...
f

(m−1)
1 (x) · · · f

(m−1)
m (x)

 ∈ F [x],

where as before f (k)(x) is the kth derivative of f .
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Lemma 3.3.2. If f1, . . . , fm ∈ F [x] are F -linearly dependent, then W (f1, . . . , fm) = 0.

Proof. This follows from the fact that derivation is a linear operator. Let c1, . . . , cm ∈ F not
all zero satisfy

c1f1(x) + . . .+ cmfm(x) = 0.

Without loss of generality, we may assume cm 6= 0. Then

fm = − 1
cm

m−1∑
i=1

cifi(x), and hence f (k)
m = − 1

cm

m−1∑
i=1

cif
(k)
i (x) ∀ k ∈ N0.

This means that the last column in the matrix defining W (f1, . . . , fm) is a linear combination
of all the other columns. Hence W (f1, . . . , fm) = 0.

The interesting thing is, that also the converse of the preceding lemma is true.

Proposition 3.3.3. The polynomials f1, . . . , fm ∈ F [x] are F -linearly independent if and
only if W (f1, . . . , fm) 6= 0.

Proof. It is left to prove that f1, . . . , fm are F -linearly dependent, whenever W (f1, . . . , fm) =
0. This can be proved by induction on m. The induction base is trivial, since W (f1) = f1 = 0
if and only if f1 is linearly dependent. Hence, we may assume that the statement is true for
a fixed m ≥ 1.
Now, assume that W (f1, . . . , fm, fm+1) = 0. Combining this with Lemma 3.3.2, we know
that W (f1, . . . , fm, fi) = 0 for all i ∈ {1, . . . ,m+ 1}. Expanding the determinants along the
last column gives us that for all i ∈ {1, . . . ,m+ 1} we have

0 = f
(0)
i det


f

(1)
1 · · · f

(1)
m

... . . . ...
f

(m)
1 · · · f

(m)
m


︸ ︷︷ ︸

=V0(x)

−f (1)
i det


f

(0)
1 · · · f

(0)
m

f
(2)
1 · · · f

(2)
m

... . . . ...
f

(m)
1 · · · f

(m)
m


︸ ︷︷ ︸

=V1(x)

+ . . .

± f (m)
i det


f

(0)
1 · · · f

(0)
m

... . . . ...
f

(m−1)
1 · · · f

(m−1)
m


︸ ︷︷ ︸

=Vm(x)

.

By induction, we may assume that Vm(x) 6= 0, since otherwise f1, . . . , fm are F -linearly
dependent, and then f1, . . . , fm+1 are as well. This means that the f1, . . . , fm+1 are solutions
of one homogeneous partial differential equation (PDE) of order m. But the dimension of
the F -vector space of solutions of such a PDE has dimension m. Hence, the polynomials
f1, . . . , fm+1 must be F -linearly dependent.

Recall that for any f ∈ F [x1, . . . , xn] and any d = (d1, . . . , dn) ∈ Nn0 , we set

∂df = 1
d1! · · · dn! ·

∂d

∂xd
f ∈ F [x1, . . . , xn].
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Definition 3.3.4. For any d = (d1, . . . , dn) ∈ Nn0 , the order of the operator ∂d, is given by
ord(∂d) = d1 + . . .+ dn.

Definition 3.3.5. Let f1, . . . , fm ∈ F [x1, . . . , xn]. Then a generalized Wronskian determinant
of f1, . . . , fm is given by

Wd(1),...,d(m)(f1, . . . , fm) = det


∂d(1)f1 · · · ∂d(1)fm

... . . . ...
∂d(m)f1 · · · ∂d(m)fm

 ∈ F [x1, . . . , xn],

where for all i ∈ {1, . . . ,m} we have ord(∂d(i)) ≤ i− 1.

Remark 3.3.6. Let us consider the case n = 1. Then for each i there is precisely one operator
∂d = ∂i of order i. Of course, the generalized Wronskian determinant is zero if d(i) = d(j)
for some i 6= j. Hence, a generalized Wronskian determinant of g1, . . . , gm ∈ F [x] is zero or
equal to

W0,1,...,m−1(g1, . . . , gm) = det

 ∂0g1 · · · ∂0gm
... . . . ...

∂m−1g1 · · · ∂m−1gm



= det


1
0!g

(0)
1 · · · 1

0!g
(0)
m

... . . . ...
1

(m−1)!g
(m−1)
1 · · · 1

(m−1)!g
(m−1)
m


=
(
m−1∏
i=0

1
i!

)
·W (g1, . . . , gm).

Theorem 3.3.7. The polynomials f1, . . . , fm ∈ F [x1, . . . , xn] are F -linearly independent if
and only if there is some generalized Wronskian determinant Wd(1),...,d(m)(f1, . . . , fm) not
identically zero.

Proof. That all generalized Wronskian determinants of f1, . . . , fm vanish if the polynomials
f1, . . . , fm are F -linearly dependent follows precisely as in Lemma 3.3.2. The other implication
can be reduced to the case n = 1, as follows.
Let d ∈ N be greater than all partial degrees of all the polynomials f1, . . . , fm. Then the
substitution xi 7→ td

i−1 for all i ∈ {1, . . . , n} is injective on all monomials appearing in one
of f1, . . . , fm. This can be used to prove that the polynomials f1, . . . , fm ∈ F [x1, . . . , xn] are
F -linearly independent, if and only if the one variable polynomials

ϕ1(t) = f1(t, td, . . . , tdn−1), . . . , ϕm(t) = fm(t, td, . . . , tdn−1)

are F -linearly independent. From Proposition 3.3.3 we know, that this is the case if and only
if W (ϕ1, . . . , ϕm) is not the zero polynomial. But, playing around with derivatives, shows
that W (ϕ1, . . . , ϕm) is an F [t]-linear combination of generalized Wronskians

Wd(1),...,d(m)(f1, . . . , fm)(t, td, . . . , tdn−1)

(note that any generalized Wronskian of f1, . . . , fm is an element in F [x1, . . . , xn]). We con-
clude, that if f1, . . . , fm are linearly independent, then at least one generalized Wronskian
determinant is not identically zero. This proves the theorem.
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Lemma 3.3.8. For any P ∈ F [x1, . . . , xn]\{0} there are F -linearly independent polynomials
f0, . . . , fs ∈ F [x1, . . . , xn−1], and F -linearly independent polynomials g0, . . . , gs ∈ F [xn], such
that

P (x1, . . . , xn) =
s∑
i=0

fi(x1, . . . , xn−1) · gi(xn),

where s ≤ degxn(P ).

Proof. Set degxn(P ) = rn. We start off by noting that

P (x1, . . . , xn) =
rn∑
i=0

f ′i(x1, . . . , xn−1) · xi,

for certain f ′0, . . . , f ′rn ∈ F [x1, . . . , xn−1]. The polynomials 1, xn, . . . , xrnn are surely F -linearly
independent. Hence there is a minimal s ∈ {0, . . . , rn} such that we can write P in the form

P (x1, . . . , xn) =
s∑
i=0

fi(x1, . . . , xn−1) · gi(xn), (3.14)

where g0, . . . , gs ∈ F [xn] are F -linearly independent. We claim that then also the f0, . . . , fs
are F -linearly independent. For the sake of contradiction, we assume that the f0, . . . , fs are
F -linearly dependent. Then, after renumbering the fi’s, we can write

fs =
s−1∑
i=0

cifi for c0, . . . , cs−1 ∈ F.

We plug this in into (3.14), which yields

P (x1, . . . , xn) =
s−1∑
i=0

fi(x1, . . . , xn−1) · (gi(xn) + cigs(xn)).

But the polynomials (g0(xn) + c0gs(xn)), . . . , (gs−1(xn) + cs−1gs(xn)) are F -linearly indepen-
dent, since the g0, . . . , gs are. This contradicts the minimality of s. Hence, the polynomials
f0, . . . , fs from (3.14) are indeed F -linearly independent.

Lemma 3.3.9. Let P (x1, . . . , xn) =
∑s
i=0 fi(x1, . . . , xn−1) · gi(xn) ∈ F [x1, . . . , xn] be as in

Lemma 3.3.8. Moreover, let Wd(0),...,d(s)(f0, . . . , fs) be any generalized Wronskian determinant
of f0, . . . , fs. Then,

Wd(0),...,d(s)(f0, . . . , fs) ·W0,1,...,s(g0, . . . , gs) = det


∂(d(0),0)P · · · ∂(d(0),s)P

... . . . ...
∂(d(s),0)P · · · ∂(d(s),s)P

 .

Here, for every i ∈ {0, . . . , s} we have d(i) = (d1(i), . . . , dn−1(i)) ∈ Nn−1
0 , with

∑n−1
j=1 dj(i) ≤

i− 1, and (d(i), j) = (d1(i), . . . , ds(i), j) ∈ Nn0 for all j ∈ {0, . . . , n}.
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Proof. This is essentially a matrix multiplication. We have

Wd(0),...,d(s)(f0, . . . , fs) = det


∂d(0)f0 · · · ∂d(0)fs

... . . . ...
∂d(s)f0 · · · ∂d(s)fs


︸ ︷︷ ︸

=:W

,

and (cf. Remark 3.3.6)

W0,...,s(g0, . . . , gs) = det

∂0g0 · · · ∂0gs
... . . . ...

∂sg0 · · · ∂sgs

 = det

∂0g0 · · · ∂sg0
... . . . ...

∂0gs · · · ∂sgs


︸ ︷︷ ︸

=:V

.

We are left to calculate W · V . The entry in line i and row j of W · V is given by

∂d(i)f0 · ∂jg0 + . . .+ ∂d(i)fs · ∂jgs = ∂(d(i),j)f0g0 + . . .+ ∂(d(i),j)fsgs = ∂(d(i),j)P.

The first equality comes from the fact that the fi’s are independent on xn, and the second
equality comes from the linearity of the derivation and the definition of P . This proves the
lemma.

Exercises

Exercise 3.5. Fill the gaps in the proof of Theorem 3.3.7. This is: Let f1, . . . , fm ∈
F [x1, . . . , xn], where F is a subfield of C, and let d ∈ N be greater than max1≤i≤m,1≤j≤n degxj (fi).
For all i set

ϕ(fi(x1, . . . , xn)) = fi(t, td, . . . , td
n−1) ∈ F [t],

where t is a variable, independent on x1, . . . , xn.

(a) Prove that the polynomials f1, . . . , fm are F -linearly independent, if and only if the
polynomials ϕ(f1), . . . , ϕ(fm) are linearly independent.

(b) Let k ∈ N0 be arbitrary, and set g(k) as the kth derivative of g ∈ F [x]. Prove that there
are polynomials ad,k ∈ F [t] such that for all i ∈ {1, . . . ,m} we have

ϕ(fi)(k) =
∑
∂d

ord(∂d)≤k

ad,k∂dfi(t, td, . . . , td
n−1).

(c) Prove that W (ϕ(f1), . . . , ϕ(fm)) is a F [t]-linear combination of generalized Wronskian
determinants of f1, . . . , fm evaluated at (t, td, . . . , tdn−1).

(d) Conclude that some generalized Wronskian determinant of f1, . . . , fm is not constantly
zero, if the f1, . . . , fm are F -linearly independent.
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3.4 Preliminaries III – Roth’s Lemma

We already know how to construct polynomials of small height that vanish at a given point
α ∈ Qn with large index. The main point in the proof of Roth’s theorem is, that we can bound
the index of a polynomial at another point β ∈ Qn from above, as long as β = (β1, . . . , βn)
satisfies some properties. Actually, we have to assume that the height of the βi’s is quite
large. In our application, the βi’s will be good approximations of a given α ∈ Q lying in
a fixed number field K. If we assume that there are infinitely many such approximations
(in order to eventually derive a contradiction), by Northcott’ Theorem 2.3.8 there must be
approximations of arbitrarily large height. Thus, the assumption of large heights of the βi’s
does not cause any difficulties.
Here is the formal result.

Theorem 3.4.1 (Roth’s Lemma). We fix the following data. Let P ∈ Q[x1, . . . , xn]\{0} be a
polynomial, β = (β1, . . . , βn) ∈ Qn be a point, and let σ ∈ (0, 1

2 ] be a real number. Moreover,
we fix r = (r1, . . . , rn) ∈ Nn and assume the following conditions:

(i) ri ≥ degxi(P ) for all i ∈ {1, . . . , n},

(ii) ri+1 ≤ ri · σ for all i ∈ {1, . . . , n− 1}, and

(iii) rih(βi) ≥ σ−1(hP(P ) + 4nr1) for all i ∈ {1, . . . , n}.

Then, we have Indr,β(P ) ≤ 2nσ1/2n−1.

Remark 3.4.2. These conditions guarantee that the positive integers r1, . . . , rn decrease
rapidly, and the sequence h(β1), . . . , h(βn) increases rapidly.
Moreover, assumption (i) gives the easy estimate

Indr,β(P ) ≤ n. (3.15)

Hence, Roth’s lemma is non-trivial, only if σ is very small.

The rest of this section is devoted to the proof of Theorem 3.4.1. Let us first consider the
case n = 1, which will actually be our induction base.

Lemma 3.4.3. Let P ∈ Q[x] \ {0}, r ≥ deg(P ) ∈ N, and β ∈ Q be arbitrary. Then

Indr,β(P ) · r · h(β) = ordβ(P ) · h(β) ≤ hP(P ) + r log(2).

Proof. The first equality sign in the displayed formula is just the definition of the index. By
definition of the order, we know that

P (x) = (x− β)ordβ(P ) · P ′(x),

for some P ′(x) ∈ Q[x] with P ′(β) 6= 0. Hence

hP(P )
3.2.12
≥ −deg(P ) log(2) + hP((x− β)ordβ(P )) + hP(P ′) ≥ −r log(2) + ordβ(P )h(β),
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which proves the lemma. For the last inequality, we have used r ≥ deg(P ), hP(P ′) ≥ 0, and

hP((x− β)ordβ(P )) = hP

ordβ(P )∑
i=0

(
ordβ(P )

i

)
(−β)ixordβ(P )−i


= 1

[Q(β) : Q]
∑

v∈MQ(β)

dv log
(

max
0≤i≤ordβ(P )

∣∣∣∣∣
(

ordβ(P )
i

)
βi
∣∣∣∣∣
v

)

≥ 1
[Q(β) : Q]

∑
v∈MQ(β)

dv log
(

max
i∈{0,ordβ(P )}

∣∣∣∣∣
(

ordβ(P )
i

)
βi
∣∣∣∣∣
v

)

= 1
[Q(β) : Q]

∑
v∈MQ(β)

dv log
(
max{1,

∣∣∣βordβ(P )
∣∣∣
v
}
)

= h(βordβ(P )) = ordβ(P )h(β).

Remark 3.4.4. If r ∈ N and β ∈ Q satisfy assumption (iii) from Roth’s Lemma 3.4.1 (which
just means rh(β) ≥ σ−1(hP(P ) + 4r)), then Lemma 3.4.3 implies

Indr,β(P ) ≤ σ ·
(
hP(P ) + r log(2)
hP(P ) + 4r

)
≤ σ < 2σ,

which indeed proves Roth’s Lemma 3.4.1 for n = 1.

From now on we use the notation from Roth’s Lemma 3.4.1, and assume (as our induction
hypothesis) that the statement is correct for all natural numbers < n.

3.4.5. We apply Lemma 3.3.8 to write

P (x1, . . . , xn) =
s∑
i=0

fi(x1, . . . , xn−1) · gi(xn),

with s ≤ degxn(P ) ≤ rn, and f0, . . . , fs ∈ Q[x1, . . . , xn−1] are (Q-)linearly independent, and
g0, . . . , gs ∈ Q[xn] are also linearly independent.
By Theorem 3.3.7 there is a generalized Wronskian determinant

U(x1, . . . , xn−1) := Wd(0),...,d(s)(f0, . . . , fs) ∈ Q[x1, . . . , xn−1] \ {0},

and as well it is
V (xn) := W0,...,s(g0, . . . , gs) ∈ Q[xn] \ {0}.

We apply Lemma 3.3.9 to conclude that

W (x1, . . . , xn) = det


∂(d(0),0)P · · · ∂(d(0),s)P

... . . . ...
∂(d(s),0)P · · · ∂(d(s),s)P

 ∈ Q[x1, . . . , xn] \ {0}.

Since the partial degree at xi of any entry in the above matrix is bounded from above by
degxi(P ) ≤ ri for all i ∈ {1, . . . , n}, we conclude

degxi(W ) ≤ ri(s+ 1) ∀ i ∈ {1, . . . , n}, (3.16)

and in particular, degxi(U) ≤ ri(s+ 1) for all i ∈ {1, . . . , n− 1}, and degxn(V ) ≤ rn(s+ 1).
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We aim to apply our induction hypothesis to the polynomials U and V . For all i ∈ {1, . . . , n}
we set r′i = ri(s + 1). We have just seen, that U and V satisfy assumption (i) from
Roth’s Lemma, with ri replaced by r′i. Moreover, since r1, . . . , rn satisfy assumption (ii),
also r′1, . . . , r′n satisfy assumption (ii). We need to show that U and V , together with the
natural numbers r′1, . . . , r′n also satisfy assumption (iii). This is, we need

(s+ 1)rih(βi) ≥ σ−1(hP(U) + 4(n− 1)r1(s+ 1)) ∀ i ∈ {1, . . . , n− 1}, (3.17)

and
(s+ 1)rnh(βn) ≥ σ−1(hP(V ) + 4rn(s+ 1)). (3.18)

Since we assume that rih(βi) ≥ σ−1(hP(P ) + 4nr1) for all i ∈ {1, . . . , n} (and rn < r1), the
inequalities (3.18) and (3.17) follow as soon as we know hP(U) ≤ (s + 1)(hP(P ) + 4r1), and
hP(V ) ≤ (s + 1)(hP(P ) + 4r1). This is what we are going to prove now. More precisely, we
will prove

hP(U) + hP(V ) = hP(W ) ≤ (s+ 1)(hP(P ) + 4r1), (3.19)

where the equality sign, was proven in the exercise sessions, as U and V are defined over
independent variables.

3.4.6. We write Ss+1 for the set of bijections of the set {0, . . . , s}. Then, by the Leibniz
formula, we have

W (x1, . . . , xn) =
∑

π∈Ss+1

sign(π)
s∏
i=0

∂(d(i),π(i))P. (3.20)

Let K be any number field containing all coefficients of P . Note that the sum of two polyno-
mials is defined coefficient-wise. Hence, the absolute values on polynomials satisfy the usual
(ultrametric) triangular inequalities. Hence, as seen many times before, we have∣∣∣∣∣∣

∑
π∈Ss+1

sign(π)
s∏
i=0

∂(d(i),π(i))P

∣∣∣∣∣∣
v

≤ max
π∈Ss+1

∣∣∣∣∣
s∏
i=0

∂(d(i),π(i))P

∣∣∣∣∣
v

2.3.2= max
π∈Ss+1

s∏
i=0

∣∣∣∂(d(i),π(i))P
∣∣∣
v
,

if v ∈MK is non-archimedean, and∣∣∣∣∣∣
∑

π∈Ss+1

sign(π)
s∏
i=0

∂(d(i),π(i))P

∣∣∣∣∣∣
v

≤ (s+ 1)!︸ ︷︷ ︸
=|Ss+1|

max
π∈Ss+1

∣∣∣∣∣
s∏
i=0

∂(d(i),π(i))P

∣∣∣∣∣
v

3.2.11
≤ (s+ 1)!2r1+...+rn max

π∈Ss+1

s∏
i=0

∣∣∣∂(d(i),π(i))P
∣∣∣
v
,

if v ∈ MK is archimedean. Luckily, the definition of ∂(d(i),π(i))P (see also (2.34)) gives us
readily the estimates

∣∣∣∂(d(i),π(i))P
∣∣∣
v
≤
{
|P |v , if v is non-archimedean
2r1+...+rn |P |v , if v is archimedean.



3.4. PRELIMINARIES III – ROTH’S LEMMA 93

For the archimedean estimate we have used – as in (2.38) – the estimates
(i
d

)
≤ 2i ≤ 2r for

all i ≤ r. We combine all these estimates to achieve

hP(W ) ≤ (s+ 1)hP(P ) + log(2(s+1)(r1+...+rn)) + log(2r1+...+rn) + log((s+ 1)!)
= (s+ 1)hP(P ) + (s+ 2)(r1 + . . .+ rn) log(2) + log((s+ 1)!)

= (s+ 1)(hP(P ) + (s+ 2)(r1 + . . .+ rn) log(2)
s+ 1 + log((s+ 1)!)

s+ 1 )

≤ (s+ 1)(hP(P ) + 2(r1 + . . .+ rn) log(2) + log((s+ 1)!)
s+ 1 ) (3.21)

Assumption (ii) of Roth’s Lemma 3.4.1 gives the estimate r1 + . . . + rn ≤ 2r1, and a trivial
induction shows log((s+ 1)!) ≤ (s+ 1) · log(s+ 1) ≤ (s+ 1) log(rn + 1) ≤ (s+ 1)rn. Moreover,
again by assumption (ii), it is rn ≤ 1

2r1. Throwing these estimates into (3.21) proves (3.19).

Now we can apply our induction hypothesis for U ∈ Q[x1, . . . , xn−1] ⊆ Q[x1, . . . , xn], r′ =
((s+ 1)r1, . . . , (s+ 1)rn), and β = (β1, . . . , βn). This is, we can conclude that

Indr,β(U) = (s+ 1) Indr′,β(U) ≤ 2(s+ 1)(n− 1)σ1/2n−2
.

Here we have used that, since xn does not appear in U , the index Indr′,β(U) is the same
as removing the last entry in r′ and in β. Hence, this is indeed the induction hypothesis.
Applying the same argument for V and Lemma 3.4.3 gives

Indr,β(V ) = (s+ 1) Indr′,β(V ) ≤ (s+ 1)σ

(cf. Remark 3.4.4). As seen in the exercises, the index behaves well under multiplication of
polynomials. Hence, we conclude

Indr,β(W ) = Indr,β(U) + Indr,β(V ) ≤ 2(s+ 1)(n− 1)σ1/2n−2 + (s+ 1)σ. (3.22)

We have bounded the index of W , so all that is left to do is to compare the index of W with
the index of P . Since W was constructed in terms of P , this should be possible.

3.4.7. The index of a polynomial also satisfies a “logarithmic ultrametric triangular equation”.
This is, for any f, g ∈ Q[x1, . . . , xn] we have

Indr,β(f + g) ≥ min{Indr,β(f), Indr,β(g)}.

We have seen this in the case n = 1 in the exercises. The general statement follows similarly.
Using (3.20), we conclude

Indr,β(W ) ≥ min
π∈Ss+1

{
s∑
i=0

Indr,β(∂(d(i),π(i))P )
}
. (3.23)

The ∂d(i) was part of a generalized Wronskian determinant. Therefore, writing d(i) =
(d1(i), . . . , dn−1(i)), we have d1(i) + . . .+ dn−1(i) ≤ i− 1 ≤ (s+ 1)− 1 = s ≤ rn. Moreover,
r1 > r2 > . . . > rn > 0, and rn/rn−1 ≤ σ by assumption (ii) of Roth’s Lemma 3.4.1. Now,
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(almost) from the definition of the index, we have

Indr,β(∂(d(i),π(i))P ) ≥ Indr,β(P )− d1(i)
r1
− . . .− dn−1(i)

rn−1
− π(i)

rn

≥ Indr,β(P )− 0
r1
− . . .− 0

rn−2
− i− 1
rn−1

− π(i)
rn

≥ Indr,β(P )− rn
rn−1

− π(i)
rn

≥ Indr,β(P )− π(i)
rn
− σ

Since the index is never negative, we can replace this estimate by

Indr,β(∂(d(i),π(i))P ) ≥ max{Indr,β(P )− π(i)
rn
− σ, 0} ≥ max{Indr,β(P )− π(i)

rn
, 0} − σ (3.24)

for all i ∈ {0, . . . , s}. The last technicality that we will need is the following lemma.

Lemma 3.4.8. Let k ∈ N0 and δ ∈ R be arbitrary, then
k∑
i=0

max{δ − i

k
, 0} ≥ (k + 1) ·min{1

2δ,
1
2δ

2}.

Now, we have

Indr,β(W )
(3.23)
≥ min

π∈Ss+1

{
s∑
i=0

Indr,β(∂(d(i),π(i))P )
}

(3.24)
≥ min

π∈Ss+1

{
s∑
i=0

(
max{Indr,β(P )− π(i)

rn
, 0} − σ

)}

=
s∑
i=0

(
max{Indr,β(P )− i

rn
, 0}
)
− (s+ 1)σ

3.4.8
≥ (s+ 1) min{1

2 Indr,β(P ), 1
2 Indr,β(P )2} − (s+ 1)σ. (3.25)

We are almost done! Comparing the upper bound (3.22) with the lower bound (3.25), gives

2(n− 1)σ1/2n−2 + σ ≥ min{1
2 Indr,β(P ), 1

2 Indr,β(P )2} − σ

=⇒ 4(n− 1)σ1/2n−2 + 4σ ≥ min{Indr,β(P ), Indr,β(P )2}

Thus, we have
Indr,β(P )2 ≤ 4(n− 1)σ1/2n−2 + 4σ,

or
Indr,β(P )2

(3.15)
≤ n Indr,β(P ) ≤ 4n(n− 1)σ1/2n−2 + 4n σ︸︷︷︸

≤σ1/2n−2

.

So, this latter estimate holds in any case. Taking the square root gives

Indr,β(P ) ≤
(
4n(n− 1)σ1/2n−2 + 4nσ1/2n−2)1/2

= 2nσ1/2n−1
,

proving Roth’s Lemma 3.4.1.
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Exercises
Exercise 3.6. Let F ⊆ C be a field, and let F [x1, . . . , xn] be the polynomial ring in n variables
over F . Moreover, let r ∈ Nn and β ∈ Fn be arbitrary. Prove that for all f, g ∈ F [x1, . . . , xn]
we have

Indr,β(f + g) ≥ min{Indr,β(f), Indr,β(g)}.

Exercise 3.7. Let k ∈ N0 and δ ∈ R be arbitrary. Prove that

k∑
i=0

max{δ − i

k
, 0} ≥ (k + 1) ·min{1

2δ,
1
2δ

2}.

3.5 The Proof
Now, we will finally prove Roth’s Theorem. We will follow the outline from [1].

Remark 3.5.1. To ease notation, we will replace 2 + ε, for some ε > 0, by an κ > 2 (I only
introduce a new variable κ, since writing “let ε > 2 ...” sounds like a bad math-joke.)

From now on, we assume that there are infinitely many β ∈ K satisfying
∏
v∈S

min{|α− β|v′ , 1}
dv ≤ 1

H(β)dκ , (3.26)

for some fixed κ > 2. This will eventually lead to a contradiction.

3.5.1 Comparing Different Approximations

The first difficulty arises right away from allowing more then one absolute value. This enables
good approximations of the same α to have arithmetically nothing in common.

Example 3.5.2. Let α =
√

17, K = Q, and S = {∞, 2}. We remark, that
√

17 is in Q2.
Hence, there are good 2-adic approximations of

√
17. If our α would not be in Q2, the

information that 2 ∈ S would be irrelevant (see Remark 3.0.3).
The fact that

√
17 ∈ Q2 means that the ideal 2OQ(

√
17) splits into two different prime ideals.

Luckily, OQ(
√

17) = 1 · Z + 1+
√

17
2 · Z is a principle ideal domain, and hence factorial. The

element
√

17−5
2 has norm 2. Therefore, the ideal generated by this element is a prime ideal,

and the associated absolute value is an extension of |.|2 – hence it takes the role of 2′. For ∞′
we take the usual archimedean absolute value on Q(

√
17).

We give three examples of approximations of α:
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•
∣∣∣√17− 4

∣∣∣
∞′

= 0, 1231 . . ., and
∣∣∣√17− 4

∣∣∣
2′

= 1 (the norm of this element is odd, and
hence, it has nothing to do with our chosen prime ideal).

•
∣∣∣√17− 1

∣∣∣
∞′

= 3, 1231 . . ., and

∣∣∣√17− 1
∣∣∣
2′

=

∣∣∣∣∣∣
(√

17− 5
2

)3

·
(
−37− 9

√
17

2

)∣∣∣∣∣∣
2′

=
(1

2

)3
.

•
∣∣∣√17− 433

105

∣∣∣
∞′

= 0, 00073 . . ., and

∣∣∣∣√17− 433
105

∣∣∣∣
2′

=

∣∣∣∣∣∣ 2
105 ·

(√
17− 5

2

)4
∣∣∣∣∣∣
2′

= |2|2 ·
∣∣∣∣∣
√

17− 5
2

∣∣∣∣∣
4

2′
=
(1

2

)5
.

In all cases
∏
v∈{∞,2}min{

∣∣∣√17− β
∣∣∣dv
v′
, 1} < 1, but somehow the reason why the product

is less than 1 is different in all three cases. One could say, that the approximations lie in
different approximation classes. We will make this precise in the following.

Definition 3.5.3. A β ∈ K is called non-trivial approximation if

Λ(β) =
∏
v∈S

min{|α− β|v′ , 1}
dv < 1.

The set of non-trivial approximations different from α will be denoted with B = {β ∈ K|0 6=
Λ(β) < 1}.

We recall, that everything in this section, will depend on our fixed data α, S, and K.
We consider the map

L : B −→ (0, 1]|S| ; β 7→
(

log(min{1, |α− β|dvv′ })
log(Λ(β))

)
v∈S

.

This map is well defined by the definition of Λ(β) and B. For any N ∈ N, we cut the cube
(0, 1]|S| into subcubes of side-length 1

N . More precisely, for all (iv)v∈S ∈ {0, 1, . . . , N − 1}|S|
we define

I((iv)v∈S) =
∏
v∈S

( iv
N
,
iv + 1
N

] ⊆ (0, 1]|S|.

Definition 3.5.4. For all N ∈ N, and (iv)v∈S ∈ {0, . . . , N − 1}|S| we set

C(N, (iv)v∈S) = {β ∈ B|L(β) ∈ I((iv)v∈S)},

and call this an approximation class of size 1/N .

Lemma 3.5.5. Let N ∈ N and (iv)v∈S ∈ {0, . . . , N − 1}|S| be as above. If there is some
β ∈ C(N, (iv)v∈S), then

(i) Λ(β)(iv+1)/N < min{1, |α− β|dvv′ } ≤ Λ(β)iv/N for all v ∈ S, and
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(ii) 1− |S|N ≤
∑
v∈S

iv
N ≤ 1.

Proof. By definition of the approximation class C(N, (iv)v∈S), we have for all v ∈ S

iv
N
≤ log(min{1, |α− β|dvv′ })

log(Λ(β)) <
iv + 1
N

. (3.27)

Since log(Λ(β)) is always negative, this is equivalent to

iv
N

log(Λ(β)) ≥ log(min{1, |α− β|dvv′ }) >
iv + 1
N

log(Λ(β)).

Applying the exponential function proves part (i). By definition of Λ(β), we have that the
sum over all v ∈ S of the middle term in (3.27) is equal to 1. Hence, summing up (3.27) over
all v ∈ S gives ∑

v∈S

iv
N
≤ 1 ≤

∑
v∈S

iv + 1
N

= |S|
N

+
∑
v∈S

iv
N
.

This proves part also (ii).

For any N ∈ N there are only finitely many approximation classes of size 1/N . Hence, by the
box principle, we know for all N there is an C(N, (iv)v∈S) containing infinitely many β which
satisfy (3.26). This means, that we can restrict to approximations of α of the same type. By
Northcott’s Theorem 2.3.8, among these infinitely many β’s there are elements of arbitrary
large height.

3.5.6. Hence, for all n,L,M,N ∈ N there are β1, . . . , βn satisfying (3.26), such that

(A) β1, . . . , βn lie in the same approximation class C(N, (iv)v∈S) of size 1/N ,

(B) h(β1) ≥ L, and

(C) h(βi+1) ≥Mh(βi) for all i ∈ {1, . . . , n− 1}.

Throughout the proof, we need to collect some restrictions on these (and other) constants.
At the end, we have to choose the constants such that we derive a contradiction. Part (C)
should remind you on the assumptions of Roth’s Lemma 3.4.1. In order to be able to apply
Roth’s Lemma, our first restriction is

(C’) M ≥ 2.

Applying these assumptions, gives in particular

n∑
j=1

1
h(βj)

≤
n∑
j=1

1
LM j−1 ≤

∞∑
j=0

1
LM j

= 1
L

(
M

M − 1

)
≤ 2
L
, (3.28)

and hence for any D ∈ N

n∑
j=1

⌊
D

h(βj)

⌋
≤ D

n∑
j=1

1
h(βj)

≤ 2D
L
. (3.29)
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3.5.2 Construction of the Polynomial

As noted several times before, we aim to use an auxiliary polynomial. This was constructed
in Theorem 2.6.5. Looking into the assumptions of this theorem, we see that we need an
ε ∈ (0, 1), and we need to bound the local degrees of the polynomial that we want to construct.

(D) We choose a real number ε ∈ (0, 1/2), and assume that n > 4 log(2[Q(α):Q])
ε2 .

(E) For some D > h(βn) we set ri = bD/h(βi)c for all i ∈ {1, . . . , n}.

Then by Theorem 2.6.5, there exists a polynomial P ∈ Z[x1, . . . , xn] \ {0} such that

• degxi(P ) ≤ ri for all i ∈ {1, . . . , n},

• Ind(α,r)(P ) ≥ n
2 (1− ε) where α = (α, . . . , α), and

• hP(P ) ≤
(∑n

j=1 rj
)

(log(4) + h(α))
(3.29)
≤ 2D

L (log(4) + h(α))︸ ︷︷ ︸
=C1

.

In the formulation of Theorem 2.6.5 we have an estimate for h(P ) instead of hP(P ). But we can
safely assume that the coefficients of P are coprime, and in that case we have h(P ) = hP(P ).
Next, we want to apply Roth’s Lemma 3.4.1. To do this, we have to check the assumptions.
Hence, let σ ∈ (0, 1) be a real number. We start with ri+1 ≤ riσ for all i ∈ {1, . . . , n − 1}.
Roughly, ri is almost equal to D/h(βi), and asymptotically this statement becomes more and
more precise, with increasing D. So we should think of D as a very large integer. With
ri ≈ D

h(βi) , we find that in order to verify ri+1 ≤ riσ, we should assume M > σ−1. To keep
things simple, we thus assume

M ≥ 2σ−1.

If D is large enough to satisfy

D

D − h(βi)
≤ 2 ∀ i ∈ {1, . . . , n},

then for all i ∈ {1, . . . , n− 1}, our choice of M implies

D

M(D − h(βi))
≤ σ (C)=⇒ Dh(βi)

h(βi+1)(D − h(βi))
≤ σ

⇐⇒ D

h(βi+1) ≤ σ ·
(

D

h(βi)
− 1

)
=⇒ bD/h(βi+1)c︸ ︷︷ ︸

=ri+1

≤ σ · bD/h(βi)c︸ ︷︷ ︸
=ri

.

Similarly, if D is large enough to satisfy

D

D − h(βi)
≤ 5

4 ∀ i ∈ {1, . . . , n}, (3.30)

then
L ≥ σ−1 · (5

2C1 + 5n)
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implies rih(βi) ≥ σ−1(hP(P ) + 4nr1) for all i ∈ {1, . . . , n}. Now we can indeed apply Roth’s
Lemma 3.4.1, and we conclude that Ind(β,r)(P ) ≤ 2nσ1/2n−1 . This means, that for some ∂d,
with

d1
r1

+ . . .+ dn
rn
≤ 2nσ1/2n−1

, (3.31)

we have ∂dP (β) 6= 0. Moreover, we conclude

Ind(α,r)(∂dP ) ≥ Ind(α,r)(P )− 2nσ1/2n−1
. (3.32)

We want that this index is still “large”. Therefore, we fix σ = (ε5
4)2n−1 , which leads to the

following estimates for M and L:

(F) M ≥ 2 ·
(
ε5

4

)−2n−1

, and

(G) L ≥ (ε5
4)−2n−1 · (5

2C1 + 5n).

Under these assumptions, we get:

Lemma 3.5.7. For all D ∈ N satisfying

(H) D ≥ 5h(βn)

there exists a polynomial Q ∈ Z[x1, . . . , xn] such that

(i) degxi(Q) ≤ ri for all i ∈ {1, . . . , n},

(ii) Ind(α,r)(Q) ≥ (1
2 − 3ε)n,

(iii) Q(β) 6= 0, and

(iv) hP(Q) ≤ 4C1
D
L .

Proof. First we note that condition (H) implies (3.30). We set Q = ∂dP , with d as in
(3.31). Then we immediately see that (i) and (iii) are satisfied. Moreover, we know that
Ind(α,r)(P ) ≥ n

2 (1− ε), and σ = (ε5
4)2n−1 . Plugging this into (3.32) gives (ii). By the Leibniz

rule (cf. (2.34)), we know that the coefficients of Q are increased compared to the coefficients

of P at most by a factor of
∏n
i=1

( ri
bri/2c

)
< 2r1+...+rn

(3.29)
≤ 22D/L. Hence,

hP(Q) ≤ log(22D/L) + hP(P ) ≤ 2D
L

log(2) + C1︸︷︷︸
≥log(2)

2D
L
≤ 4C1

2D
L
,

proving the lemma.

3.5.3 Bounding the Size of the Polynomial Value

We want to measure the “size” of the non-negative value Q(β). We will do this, by estimating∑
v∈MK

dv log(
∣∣∣Q(β)

∣∣∣
v
). Since Q(β) 6= 0, the product formula 2.2.16 gives us the precise value,

namely ∑
v∈MK

dv log(
∣∣∣Q(β)

∣∣∣
v
) = 0. (3.33)
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The aim is to find a contradiction to this equality.
For any v ∈ MK the maximum of all summands in the representation of Q(β) is less then
|Q|v ·

∏n
j=1 max{1, |βj |v}

degxj (Q). Moreover, there are at most
∏n
j=1(degxj (Q)+1) summands.

Since degxj (Q) ≤ rj for all j ∈ {1, . . . , n} we conclude that

log(
∣∣∣Q(β)

∣∣∣
v
) ≤ log(|Q|v) +

n∑
j=1

rj

(
log(max{1, |bj |v}) + δv

log(rj + 1)
rj

)
∀ v ∈MK , (3.34)

where

δv =
{

0 if v -∞
1 if v | ∞.

Next, we are going to improve this bound for all v ∈ S. Hence, from now on we will assume

v ∈ S.

Keep in mind, that vaguely spoken the βj ’s are chosen such that |α− βj |v is small. Hence,
we want to represent Q(β) using terms of the form α− βj . But there is a well-known way to
do this. We just use the Taylor expansion of Q centred at α. Since our differential operators
∂d already take care of the correct normalization. This Taylor expansion reads

Q(β) =
∑
d∈Nn0

∂dQ(α)(α− β1)d1 · · · (α− βn)dn . (3.35)

We have to estimate two things. First we will estimate
∣∣∂dQ(α)

∣∣
v′
, and then we will use our

assumption (3.26) to estimate the v′-absolute value of the other factors. By construction of
Q (see Lemma 3.5.7), we have

∂dQ(α) = 0 ∀ d ∈ Nn0 such that d1
r1

+ . . .+ dn
rn

< (1
2 − 3ε)n. (3.36)

Moreover, by elementary properties of the derivatives ∂dQ(α) = 0 if we have dj > rj for some
j ∈ {1, . . . , n}. Hence, we may assume that dj ≤ rj for all j ∈ {1, . . . , n}.
Again, we use the standard way of estimating

∣∣∂dQ(α)
∣∣
v′

from above, by multiplying the
maximal size of a summand with the number of non-zero summands. This gives

∣∣∂dQ(α)
∣∣
v′
≤ |Q|v′ ·

n∏
j=1

(
rj
dj

)δv
max{1, |α|v′}

rj−dj (rj − dj + 1)δv

≤ |Q|v′ ·
n∏
j=1

2δvrj max{1, |α|v′}
rj−dj (rj + 1)δv ,

which implies

log(
∣∣∂dQ(α)

∣∣
v′

) ≤ log(|Q|v) + log(max{1, |α|v′)
n∑
j=1

(rj − dj) +
n∑
j=1

(
log(2) + log(rj + 1)

rj

)
δvrj

(3.29)
≤ log(|Q|v) + 2D

L
log(max{1, |α|v′)

− log(max{1, |α|v′)
n∑
j=1

dj +
n∑
j=1

(
log(2) + log(rj + 1)

rj

)
δvrj . (3.37)
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As in Lemma 2.1.25 we have for all j ∈ {1, . . . , n} the estimate

|α− βj |v′ ≤ min{1, |α− βj |v′}2
δv max{1, |α|v′}max{1, |βj |v′}.

This yields

∣∣∣∣∣∣∂dQ(α)
n∏
j=1

(α− βj)dj
∣∣∣∣∣∣
v′

≤
∣∣∂dQ(α)

∣∣
v′

n∏
j=1

(
min{1, |α− βj |v′}2

δv max{1, |α|v′}max{1, |βj |v′}
)dj

dj≤rj
≤

∣∣∂dQ(α)
∣∣
v′

 n∏
j=1

min{1, |α− βj |v′}
dj

 2δv
∑

j=1 rj

·

 n∏
j=1

max{1, |βj |v′}
rj

max{1, |α|v′}
∑n

j=1 dj .

Taking the logarithm, and combining this with (3.37) gives

log(

∣∣∣∣∣∣∂dQ(α)
n∏
j=1

(α− βj)dj
∣∣∣∣∣∣
v′

)

≤ log(|Q|v) + 2D
L

log(max{1, |α|v′)− log(max{1, |α|v′)
n∑
j=1

dj

+
n∑
j=1

(
log(2) + log(rj + 1)

rj

)
δvrj +

n∑
j=1

dj log(min{1, |α− βj |v′}) + log(2)δv
n∑
j=1

rj

+
n∑
j=1

rj log(max{1, |βj |v′}) + log(max{1, |α|v′})
n∑
j=1

dj

= log(|Q|v) + 2D
L

log(max{1, |α|v′}) +
n∑
j=1

rj log(max{1, |βj |v})

+
n∑
j=1

(
log(4) + log(rj + 1)

rj

)
δvrj +

n∑
j=1

dj log(min{1, |α− βj |v′})

(3.29)
≤ log(|Q|v) + 2D

L
log(max{1, |α|v′}) +

n∑
j=1

rj

(
log(max{1, |βj |v}) + log(rj + 1)

rj
δv

)

+ 2D
L

log(4)δv +
n∑
j=1

dj log(min{1, |α− βj |v′}) (3.38)

We almost got rid of the dependence on d. This is good, because we want to estimate
∣∣∣Q(β)

∣∣∣
v
,

and hence (keeping the Taylor expansion (3.35) in mind) we need to find the maximum of all
the non-zero

∣∣∣∂dQ(α)
∏n
j=1(α− βj)dj

∣∣∣
v′
. Since such a term is zero if some dj > rj , there are
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at most
∏n
j=1(rj + 1) non zero terms. Hence, (3.38) and (3.36) imply

log(
∣∣∣Q(β)

∣∣∣
v
) ≤ max

d∈Nn0
d1/r1+...+dn/rn≥( 1

2−3ε)n

log(

∣∣∣∣∣∣∂dQ(α)
n∏
j=1

(α− βj)dj
∣∣∣∣∣∣
v′

) +
n∑
j=1

log(rj + 1)δv

≤ log(|Q|v) + 2D
L

log(max{1, |α|v′}) +
n∑
j=1

rj

(
log(max{1, |βj |v}) + 2 log(rj + 1)

rj
δv

)

+ 2D
L

log(4)δv + max
d∈Nn0

d1/r1+...+dn/rn≥( 1
2−3ε)n

{
n∑
j=1

dj log(min{1, |α− βj |v′})}

(3.39)

Let us abbreviate
′max = max

d∈Nn0
d1/r1+...+dn/rn≥( 1

2−3ε)n

and
′

min = min
d∈Nn0

d1/r1+...+dn/rn≥( 1
2−3ε)n

.

Then, with (3.34) and (3.39), we conclude∑
v∈MK

dv log(
∣∣∣Q(β)

∣∣∣
v
)

≤
∑
v∈MK

dv log(|Q|v) +
n∑
j=1

rj

 ∑
v∈MK

(
dv log(max{1, |βj |}) + 2 log(rj + 1)

rj
δvdv

)
+

∑
v∈MK

δvdv
2D
L

log(4) +
∑
v∈S

2D
L
dv log(max{1, |α|v′})

+
∑
v∈S

′max{
n∑
j=1

djdv log(min{1, |α− βj |v′})}

=dhP(Q) +
n∑
j=1

rjd

(
h(βj) + 2 log(rj + 1)

rj

)
+ d

2D
L

log(4)

+
∑
v∈S

2D
L
dv log(max{1, |α|v′}) +

∑
v∈S

′max{
n∑
j=1

djdv log(min{1, |α− βj |v′})}.

Here we have used that the sum of all δvdv’s is the sum of all the local degrees over ∞, which
is equal to [K : Q] = d. We know a bound for hP(Q) from Lemma 3.5.7. Moreover, we have
rjh(βj) = bD/h(βj)ch(βj) ≤ D. We define

C2 = 4C1 + log(16) + 2
∑
v∈S

dv log(max{1, |α|v′}),

which is a constant only depending on the data α, S,K. Then the last formula reads

∑
v∈MK

dv log(
∣∣∣Q(β)

∣∣∣
v
) ≤ d ·

(
(n+ C2

L
)D + n max

1≤j≤n
{2 log(rj + 1)

rj
}
)

+
∑
v∈S

′max{
n∑
j=1

djdv log(min{1, |α− βj |v′})}. (3.40)
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All that is left to do, is to find an upper bound for

∑
v∈S

′max{
n∑
j=1

djdv log(min{1, |α− βj |v′})}.

Luckily, we have come across these minima before, while we were studying the approximation
classes. Hence, here we need our assumption (A) that the approximations β1, . . . , βj all lie in
the same approximation class C(N, (iv)v∈S). With this information, we get

∑
v∈S

′max{
n∑
j=1

djdv log(min{1, |α− βj |v′})}
3.5.5
≤

∑
v∈S

′max{
n∑
j=1

dj
iv
N

log(Λ(βj))}

3.26
≤
∑
v∈S

′max{
n∑
j=1

dj
iv
N
· (−κdh(βj))} = −κd

(∑
v∈S

iv
N

)
′

min{
n∑
j=1

djh(βj)}

3.5.5
≤ − κd

(
1− |S|

N

) ′
min{

n∑
j=1

djh(βj)}

As an exercise you can conclude

∑
v∈S

′max{
n∑
j=1

djdv log(min{1, |α− βj |v′})} ≤ −κd
(

1− |S|
N

)
(D − h(βn))(1

2 − 3ε)n.

We plug this into (3.40), and use the brutal estimate max1≤j≤n{2 log(rj+1)
rj

} ≤ 2 log(D), to
finally get ∑

v∈MK

dv log(
∣∣∣Q(β)

∣∣∣
v
) ≤ d ·

(
(n+ C2

L
)D + n2 log(D)

)

− κd
(

1− |S|
N

)
(D − h(βn))(1

2 − 3ε)n. (3.41)

This obviously depends on all the chosen parameters n,L, ε,D,N , and more hidden it also
depends on M . All these values have to be chosen according to (A)-(H). However, there is
no further dependence on any other values not among the given data S, α,K.

3.5.4 Conclusion

For elements n,N,M,L, ε,D that satisfy the conditions (A)-(H), we combine (3.41) and (3.33)
to achieve

κd

(
1− |S|

N

)
(D − h(βn))(1

2 − 3ε)n ≤ d ·
(

(n+ C2
L

)D + n2 log(D)
)
,

which is equivalent to

κ

(
1− |S|

N

)
D − h(βn)

D
(1
2 − 3ε) ≤ (1 + C2

nL
) + 2log(D)

D
. (3.42)

Now it is time to fix the parameters. Since we assume κ > 2, there is an ε ∈ (0, 1/2), and
and a positive integer N such that κ(1

2 − 3ε)(1 − |S|N ) > 1. We fix such elements ε and N .
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Then we fix an integer n that satisfies (D), and an M that satisfies (F). Lastly, we let D and
L tend to infinity, so that the left hand side of (3.42) is greater than 1 and the right hand
side is equal to 1. This is finally a contradiction, which proves that our assumption (3.26)
was incorrect. This finally proves Roth’s theorem 3.0.1.

Remark 3.5.8. Although it seems to be impossible to derive with these methods an effective
lower bound for Λ(β) · H(β)dκ, it is possible to calculate an effective upper bound for the
number of β ∈ K satisfying (3.26).

Exercises
We use the notation from the previous section!

Exercise 3.8. Prove that for any N ∈ N there are strictly less than 2N+|S| non-empty
approximation classes of size 1/N .

Exercise 3.9. Set α =
√

7, K = Q, and S = {∞, 3}. Choose extensions of∞ and 3 to Q(α),
and find β1, β2, β3 ∈ Q such that

• |α− β1|∞′ < 1, and |α− β1|3′ ≥ 1.

• |α− β1|∞′ ≥ 1, and |α− β1|3′ < 1.

• |α− β1|∞′ < 1, and |α− β1|3′ < 1.

Exercise 3.10. Prove the inequality

′
min


n∑
j=1

djh(βj)

 ≥ (D − h(βn))(1
2 − 3ε)n.

Exercise 3.11. We consider the linear equations

L1(x) = x1 +
√

2x2 +
√

3x3,

L2(x) = x1 −
√

2x2 +
√

3x3,

L3(x) = x1 −
√

2x2 −
√

3x3.

Prove that for any δ ∈ (0, 1) there are infinitely many triples a = (a1, a2, a3) ∈ Z3 such that

0 < |L1(a) · L2(a) · L3(a)| ≤ H(a)−δ.

Hint: You don’t need Roth’s Theorem for this exercise.

3.6 Generalizations
The version of Roth’s theorem that we have just proved is already quite general compared to
Roth’s original result (Theorem 1.1.17). But a beautiful (and sometimes scary) property of
mathematics is that you can almost always generalize further. However, we will concentrate
on generalizing the concept and therefore we will stick to the setting of the usual archimedean
absolute value |.| on the field Q.
The “multi-dimensional” version of Roth’s theorem is Schmidt’s subspace theorem, which we
will not prove here.
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Definition 3.6.1. Let K be any field and n ∈ N. A linear form over K is just a homogeneous
polynomial of degree 1 with coefficients in K.
A hyperplane in Kn is a subvector-space of Kn of dimension n− 1.

Theorem 3.6.2. Let n ≥ 2 be an integer, and let L1, . . . , Ln ∈ Q[x1, . . . , xn] be linearly
independent linear forms. For all ε > 0 there are finitely many hyperplanes T1, . . . , Tr of Qn

such that all p = (p1, . . . , pn) ∈ Zn with∣∣∣L1(p) · · ·Ln(p)
∣∣∣ < 1

max{|p1| , . . . , |pn|}ε
(3.43)

lie in the union T1 ∪ . . . ∪ Tr.

Remark 3.6.3. The statement that theses vectors p ∈ Zn lie in a finite number of hyperplanes
means that there are very few of them. All solutions of (3.43) lie in something of dimension
less then n. Hence, if n = 2 then all these vectors lie on a finite number of lines.
But we may wonder nevertheless whether there are indeed only finitely many vectors p ∈ Zn
satisfying satisfying (3.43). But if there is a p 6= 0 such that Li(p) = 0 for some i ∈ {1, . . . , n},
then Li vanishes for every element in Z·p. Hence, in this case (3.43) is satisfied for the infinitely
many integral vectors from Z · p. But this is not the only obstruction! In the exercises you
have shown that there is an example such that also the equation

0 <
∣∣∣L1(p) · · ·Ln(p)

∣∣∣ < 1
max{|p1| , . . . , |pn|}ε

is satisfied for infinitely many p ∈ Zn.

Remark 3.6.4. As in Remark 3.0.2, we may multiply the right hand side of (3.43) by any
constant without violating the statement.

This may not look like a direct generalization of Roth’s theorem. The connection becomes
more obvious if we look at the following corollary.

Corollary 3.6.5. Let n ∈ N be arbitrary and let α1, . . . , αn ∈ Q such that 1, α1, . . . , αn
are Q-linearly independent. Then, for every ε > 0 there are at most finitely many tuples
(p1, . . . , pn, q) ∈ Zn × N such that∣∣∣∣αi − pi

q

∣∣∣∣ < 1
q1+ 1

n
+ε

∀ i ∈ {1, . . . , n}. (3.44)

Proof. Let (p1, . . . , pn, q) ∈ Zn × N satisfy (3.44). Then we have(
n∏
i=1
|αiq − pi|

)
· |q| =

(
n∏
i=1

∣∣∣∣αi − pi
q

∣∣∣∣
)
· qn+1 <

1
qnε

. (3.45)

Moreover, we know that for all i ∈ {1, . . . , n} we have

1 ≥
∣∣∣∣αi − pi

q

∣∣∣∣ ≥ ∣∣∣∣piq
∣∣∣∣− |αi| =⇒ |pi| ≤ q · (1 + |αi|).

If we define C = max1≤i≤n(1 + |αi|), then this implies

max{|p1| , . . . , |pn| , |q|} ≤ C · q (3.46)



106 CHAPTER 3. ROTH’S THEOREM

Combining (3.46) with (3.45) shows that we have(
n∏
i=1
|αiq − pi|

)
· |q| < Cnε

max{|p1| , . . . , |pn| , |q|}nε
.

Hence, for all i ∈ {1, . . . , n} we define the linear forms Li(x) = αixn+1−xi ∈ Q[x1, . . . , xn+1],
and set Ln+1(x) = xn+1 ∈ Q[x1, . . . , xn+1]. Since any of the linear forms L1, . . . , Ln has
a variable that does not appear in the others, they are linearly independent. The linear
independence of x1, . . . , xn+1 then implies that also L1, . . . , Ln+1 are linearly independent.
Therefore, the subspace Theorem 3.6.2 (for nε) implies that there are finitely many hyper-
planes T1, . . . , Tr ⊆ Qn+1 such that (p1, . . . , pn, q) ∈ Zn × N lies in T1 ∪ . . . ∪ Tr. Here we
have also applied Remark 3.6.4. So by now we know that there are very few tuples satisfying
(3.44). We are left to prove that all of the hyperplanes T ∈ {T1, . . . , Tr} contain at most
finitely many of such tuples.
By basic linear algebra, we know that every such T is given by a single linear form; i.e. there
is a linear form L ∈ Q[x1, . . . , xn+1] \ {0} such that

T = {a ∈ Qn+1|L(a) = 0}

(just choose as a coefficient vector for L a non-zero vector in the orthogonal complement of
T ). We write L(x) = c1x1 + . . .+ cn+1xn+1. Then for any (p1, . . . , pn, q) ∈ Zn ×N, in T that
satisfies (3.44), we have

c1(α1q − p1) + . . .+ cn(αnq − pn) + cn+1qn+1

=L(qα1 − p1, . . . , qαn − pn, q)
=q(c1α1 + . . .+ cnαn + cn+1)− (c1p1 + . . .+ cnpn)︸ ︷︷ ︸

=−cn+1q

.

We subtract cn+1q on both sides and take the absolute value to conclude

q |c1α1 + . . .+ cnαn + cn+1 · 1| = |c1(α1q − p1) + . . .+ cn(αnq − pn)|
(3.44)
<

(
n∑
i=1
|ci|
)
· q−

1
n
−ε.

But since α1, . . . , αn, 1 are Q-linearly independent and not all of the ci’s are equal to zero, we
know that |c1α1 + . . .+ cnαn + cn+1 · 1| 6= 0. Hence, q is bounded from above. But now (3.46)
implies that max{|p1| , . . . , |pn| , q} is bounded from above. This means that there are at most
finitely many (p1, . . . , pn, q) ∈ Zn × N in T satisfying (3.44). This proves the corollary.

Remark 3.6.6. The case n = 1 in Corollary 3.6.5 is precisely Roth’s Theorem 1.1.17. This is
due to the assumption that α1, . . . , αn, 1 are Q-linearly independent. This implies in partic-
ular, that non of the αi’s is a rational number. Hence, the subspace Theorem 3.6.2 is indeed
a generalization of Roth’s theorem.
We will not state the general subspace theorem for arbitrary number fields and a finite set
of absolute values. But still we mention that such a generalized theorem does exist. As an
application of this result one can prove the finiteness of the generalized unit equation.
Theorem 3.6.7. Let K be a number field, and n ∈ N be arbitrary. There are at most finitely
many α1, . . . , αn ∈ O∗K such that

α1 + . . .+ αn = 1,

and
∑
i∈I αi 6= 0 for all non-empty subsets I ⊆ {1, . . . , n}.
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Since we have already skipped the formulation of the Subspace theorem, we skip the proof
of this application as well. Note that the assumption on the non-vanishing of any subsum is
necessary. Otherwise you could for instance take the infinitely many solutions α+(−α)+1 = 1,
α ∈ O∗K , for n = 3.
As a last part in this Chapter on Roth’s theorem, we will discuss the abc-conjecture.

Definition 3.6.8. The radical of an integer n ∈ Z \ {0} is the product of all different prime
numbers which are divisors of n. We denote the radical of n by rad(n). Formally:

rad(n) =
∏
p|n

p prime

p.

abc-Conjecture 3.6.9. For all ε > 0 there exists a constant C(ε) such that for all coprime
a, b, c ∈ N, with a+ b = c, we have

c ≤ C(ε) rad(abc)1+ε.

It is tempting to fix an ε and a constant C(ε), to get a special (but effective) conjecture. The
following version is the most prominent.

abc-Conjecture 3.6.10. (weak version) For all coprime a, b, c ∈ N satisfying a + b = c we
have

c ≤ rad(abc)2.

Remark 3.6.11. In both versions of the abc-conjecture you may replace a+b = c for natural
numbers a, b, c, by a + b + c = 0 for non-zero integers. Then the abc-conjecture bounds
max{|a| , |b| , |c|} from above in terms of rad(abc).

Example 3.6.12. A reformulation of the weak abc-conjecture is, that log(c)/ log(rad(abc)) ≤
2. Hence, in order to search for a counterexample to the weak abc-conjecture, we have to find
positive integers a, b, c, with a+ b = c, such that log(c)/ log(rad(abc)) is large.

(a) 1 + 23 = 32 gives log(c)/ log(rad(abc)) = log(9)/ log(6).

(b) 2 + 310 · 109 = 235 gives log(c)/ log(rad(abc)) = 5 log(23)/ log(2 · 3 · 109 · 23) = 1, 6299...
This is the currently largest known value for log(c)/ log(rad(abc)). It was constructed by
Eric Reyssat.

Let us shortly give the idea how to construct examples of triples with log(c)/ log(rad(abc)) ≥ 1:
If we take a positive integer A and a convergent pn

qn
of k
√
A. Then

k
√
A = pn

qn
+ (error term of absolute value <

1
qnqn+1

).

But this means that qknA− pkn is roughly of size pk−1
n /qn+1, which is small compared with pkn

and qkn. This is, using a, b, c ∈ N among ±(qknA− pkn), ±pkn, and ±qknA to satisfy a+ b = c, we
expect

log(c)/ log(rad(abc)) > log(qknA)/ log(pnqnApk−1
n /qn+1) > 1.

Moreover, if pn, qn or qknA− pkn has any prime power factors or qn+1 is large, we expect that
the left hand side is much larger than the right hand side. To give things names, we note
that 5√109 = 〈2, 1, 1, 4, 77733, . . .〉. The third convergent of 5√109 is 23

9 . Hence, 235, 95109,
and −(235 − 95109) = 2 gives the example above. This example is that good, since we have
the huge term 77733, and 9 is a prime power.
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Remark 3.6.13. This is a very popular conjecture in number theory. It was in the news
for quite some time since a very well established mathematician, Shinichi Mochizuki, claims
since 2012 to have found a proof of (a generalized version of) the abc conjecture. His work
contains roughly 500 pages, and most mathematicians do not understand too much of what
is going on there. However, in 2018 Peter Scholze and Jakob Stix (also most respected
mathematicians) reported to have found a fundamental error in Mochizuki’s proof. They
give an precise explanation on where this error occurs. It exists a written answer to this by
Mochizuki, which unfortunately does not shed any light on the issue. I will deliberately not
take any position concerning the correctness of the proof. But what I can certainly claim,
and give you as an advice: A mathematical proof is worthless, if it is not written in a way
that experts in the field can understand it. (In your case you should replace “experts in the
field” by “your lecturer”.)
However! Why on earth does this number theoretical conjecture appear in a chapter on Roth’s
theorem? The answer is the following rule of thumb:

abc =⇒ everything

Example 3.6.14. The weak abc-conjecture 3.6.10 implies Fermat’s last theorem; i.e. for any
integer n ≥ 3 there are no integral solutions (a, b, c) ∈ N3 to the equation xn + yn = zn.
Assume there are a, b, c ∈ N such that an + bn = cn. Then the weak abc-conjecture tells us

cn < rad(anbncn)2 ≤ (abc)2 < c3·2.

Hence, we must have n < 6. Now the statement follows from the fact that Fermat’s last
theorem for n = 3, n = 4, and n = 5 is well known. The cases are due to Euler, Fermat, and
Dirichlet and Legendre.

You can guess what we are going to prove next:

Theorem 3.6.15. The abc-Conjecture 3.6.9 implies Roth’s Theorem 1.1.17.

To prove this we need some results concerning ramified morphisms. Some of you have already
visited courses on algebraic geometry, others not. Hence, we will only recall the basic defini-
tions in the special setting we are going to use. The results from algebraic geometry will be
used as a black box.

Definition 3.6.16. Let F be a subfield of C. A morphism of degree d from PN (C) −→
PM (C) is given by homogeneous polynomials f0, . . . , fM ∈ F [x0, . . . , xN ] of degree d, such
that f0, . . . , fM have no non-trivial common root. The morphism is defined over F , if the
polynomials f0, . . . , fM can be chosen from F [x0, . . . , xN ].

Remark 3.6.17. Let F be subfield of C. If [a : b] ∈ P1(F ) with b 6= 0, then we have
[a : b] = [a/b : 1]. Hence, we can regard P1(F ) as the set F ∪ {∞}, by identifying [a : b] with
a/b if b 6= 0, and [1 : 0](= [a : 0]) for all a 6= 0) with ∞.
Then any rational function u(x)/v(x) ∈ F (x) of degree d can uniquely be identified with a
morphism from P1 to P1. We first cancel out common factors, so that u and v are coprime
and d = max{deg(u),deg(v)}. This implies that U(X,Y ) = Y du(X/Y ) and V (X,Y ) =
Y dv(X/Y ) are homogeneous polynomials of degree d without a non-trivial root. Hence the
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map ϕ([a : b]) = [U(a, b) : V (a, b)] is a morphism. Moreover, we have for all a, b ∈ Q with
b 6= 0

ϕ([a : b]) = [U(a, b) : V (a, b)]=̂


u(a/b)
v(a/b) if v(a/b) 6= 0
∞ if v(a/b) = 0.

Hence, this morphism is compatible with our identification of P1(F ) with F∪{∞} and extends
the rational function u(x)/v(x) to the point at infinity.
This transformation works in both directions. This is, given any morphism [U(X,Y ) :
V (X,Y )] defined over F , there are u, v ∈ F (x) such that the morphism coincides with the
map u(x)/v(x). In particular, when working with a morphism on P1 to P1 at a point different
from [1 : 0], we can safely regard the morphism as a well known rational function in a single
variable. Using this conceptions, it is clear that the composition ϕ ◦ Ψ of two morphisms
ϕ,Ψ : P1 −→ P1 is again a morphism.

In the exercises we have already come across the generalization of Theorem 3.1.1, which we
recall here:

Theorem 3.6.18. Let ϕ : PN (Q) −→ PM (Q) be a morphism of degree d. Then there is a
constant cϕ only depending on ϕ such that for all P ∈ PN (Q) we have

c−1
ϕ H(P )d ≤ H(ϕ(P )) ≤ cϕH(P )d.

Definition 3.6.19. A morphism ϕ : P1(C) −→ P1(C) of degree d is ramified at a point
P ∈ P1(C), if

∣∣{Q ∈ P1(C)|ϕ(Q) = P}
∣∣ < d. Consequently, ϕ is unramified at a point P , if∣∣{Q ∈ P1(C)|ϕ(Q) = P}

∣∣ = d.

Note that by the preceding remark and the fundamental theorem of Algebra it is obvious that
for all P ∈ P1(C) we have

∣∣{Q ∈ P1(C)|ϕ(Q) = P}
∣∣ ≤ d. Moreover, one can prove that there

are at most finitely many points in P1(C) at which ϕ is ramified.

Lemma 3.6.20. Let ϕ : P1(C) −→ P1(C) be a morphism of degree d defined over Q given by
[X : Y ] 7→ [U(X,Y ) : V (X,Y )]. We set W (X,Y ) = V (X,Y )− U(X,Y ), and factor U, V,W
over Q[X,Y ] into

U(X,Y ) = U1(X,Y )a1 · · ·Ur(X,Y )ar

V (X,Y ) = V1(X,Y )b1 · · ·Vs(X,Y )bs

W (X,Y ) = W1(X,Y )c1 · · ·Wt(X,Y )ct ,

where the factors U1, . . . , Ur are irreducible in Q[X,Y ] and pairwise distinct, and so are the
V1, . . . , Vs and the W1, . . . ,Wt. Then

(i) the factors U1, . . . , Ur, V1, . . . , Vs,W1, . . . ,Wt are pairwise distinct,

(ii)
∣∣{Q ∈ P1(C)|ϕ(Q) = [0 : 1]}

∣∣ =
∑r
i=1 deg(Ui),

(iii)
∣∣{Q ∈ P1(C)|ϕ(Q) = [1 : 0]}

∣∣ =
∑s
i=1 deg(Vi), and

(iv)
∣∣{Q ∈ P1(C)|ϕ(Q) = [1 : 1]}

∣∣ =
∑t
i=1 deg(Wi).

Proof. U and V have no common factor by the definition of a morphism. Since W = V −U ,
also W and V , resp. W and U cannot have a common factor. This proves part (i). For the
other parts, we only have to note that
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• ϕ([a : b]) = [0 : 1] if and only if U(a, b) = 0,

• ϕ([a : b]) = [1 : 0] if and only if V (a, b) = 0,

• ϕ([a : b]) = [1 : 1] if and only if W (a, b) = V (a, b)− U(a, b) = 0.

Since any irreducible binary form (homogeneous polynomial in two variables )of degree k has
precisely k different roots in P1(C), the lemma is proved.

Now we present two results for which we need all of this.

Theorem 3.6.21 (weak Riemann-Hurwitz Formula). Let ϕ : P1(C) −→ P1(C) be a morphism
of degree d. Then we have

2d− 2 =
∑

P∈P1(C)

(
d−

∣∣∣{Q ∈ P1(C)|ϕ(Q) = P}
∣∣∣) .

The proof should be part of any algebraic geometry course. Otherwise, you can find this
special version in [12].

Lemma 3.6.22 (Belyi’s Lemma). Let ϕ : P1(Q) −→ P1(Q) be a morphism of degree d ≥ 1
defined over a number field K, and let S ⊆ P1(Q) be finite. There exists a morphism Ψ :
P1(Q) −→ P1(Q) defined over K such that the morphism Ψ ◦ ϕ : P1(Q) −→ P1(Q) satisfies

(i) Ψ ◦ ϕ is unramified outside {[0 : 1], [1 : 1], [1 : 0]}, and

(ii) Ψ ◦ ϕ(S) ⊆ {[0 : 1], [1 : 1], [1 : 0]}.

Note that the set {[0 : 1], [1 : 1], [1 : 0]} is the same as {0, 1,∞} if we use rational functions
in Q(x). The proof of this result can be found in [1], Lemma 12.2.7.
With these two black-boxes we can prove that the abc-conjecture 3.6.9 implies Roth’s Theorem
1.1.17.

Proof of Theorem 3.6.15. We fix an algebraic number α of degree d ≥ 2 and an ε > 0.
Moreover we assume ε < d which is of course no restriction at all. We have to prove that
there is a constant c(α, ε) such that

∣∣∣α− p
q

∣∣∣ ≥ c(α,ε)
|q|2+ε for all coprime p, q ∈ Z.

We denote the minimal polynomial of α over Z by f(x). This polynomial is in particular
a morphism from P1(Q) to P1(Q), defined by [a : b] 7→ [F (X,Y ) : Y d], with F (X,Y ) =
Y df(X/Y ). Let S ⊆ P1(Q) be the finite set of roots of f(x). By Belyi’s Lemma 3.6.22 there
is a morphism Ψ : P1(Q) −→ P1(Q), such that ϕ = Ψ ◦ f is defined over Q, and

(i) ϕ is unramified outside {[0 : 1], [1 : 1], [1 : 0]}, and

(ii) ϕ(S) = Ψ(f(S)) = Ψ([0 : 1]) ∈ {[0 : 1], [1 : 1], [1 : 0]}.

Let τ be any of the morphisms [a : b] 7→ [b : a] or [a : b] 7→ [b−a : b]. Then τ ◦ τ is the identity
map. Hence, for all P ∈ P1(Q) we have∣∣∣{Q ∈ P1(Q)|τ ◦ ϕ(Q) = P}

∣∣∣ =
∣∣∣{Q ∈ P1(Q)|ϕ(Q) = τ(P )}

∣∣∣ .
Since we have also

τ(P ) ∈ {[0 : 1], [1 : 1], [1 : 0]} ⇐⇒ P ∈ {[0 : 1], [1 : 1], [1 : 0]},
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we may replace Ψ by τ ◦Ψ without violating assumptions (i) and (ii). Hence, we may assume
that

Ψ([0 : 1]) = [0 : 1]. (3.47)

Let n ≥ d be the degree of ϕ, and let U(X,Y ), V (X,Y ) ∈ Z[X,Y ] be homogeneous polyno-
mials of degree n such that ϕ is given by [a : b] 7→ [U(a, b) : V (a, b)]. Moreover, we define
W (X,Y ) = V (X,Y ) − U(X,Y ) ∈ Z[X,Y ], which is still homogeneous of degree n. The
associated “dehomogenized” polynomials in one variable, are u, v, w ∈ Z[x] such that

u(X/Y ) = 1
Y n

U(X,Y ), v(X/Y ) = 1
Y n

V (X,Y ), w(X/Y ) = 1
Y n

W (X,Y ).

Since α is a root of f , we have ϕ([α : 1]) (ii)= Ψ([0 : 1]) = [0 : 1]. Moreover, u(x) and v(x) have
no common factor in C[x]. We conclude

u(α) = 0, v(α) 6= 0, w(α) = v(α)− u(α) 6= 0. (3.48)

As in Lemma 3.6.20 we factor

U(X,Y ) = u0U1(X,Y )a1 · · ·Ur(X,Y )ar

V (X,Y ) = v0V1(X,Y )b1 · · ·Vs(X,Y )bs

W (X,Y ) = w0W1(X,Y )c1 · · ·Wt(X,Y )ct ,

with Ui(X,Y ), Vi(X,Y ),Wi(X,Y ) ∈ Z[X,Y ] irreducible, and u0, v0, w0 ∈ Z. Since ϕ is
unramified outside of {[0 : 1], [1 : 1], [1 : 0]}, the Riemann-Hurwitz Formula 3.6.21 tells us

2n− 2 =
∑

P∈{[0:1],[1:1],[1:0]}

(
n−

∣∣∣{Q ∈ P1(C)|ϕ(Q) = P}
∣∣∣)

3.6.20=
(
n−

r∑
i=1

deg(Ui)
)

+
(
n−

s∑
i=1

deg(Vi)
)

+
(
n−

t∑
i=1

deg(Wi)
)
.

Thus,

n+ 2 =
r∑
i=1

deg(Ui) +
s∑
i=1

deg(Vi) +
t∑
i=1

deg(Wi). (3.49)

By (3.48) we have U(α, 1) = u(α) = 0. In particular, since F (X,Y ) = Y df(X/Y ) ∈ Z[X,Y ]
is irreducible (recall that f is the minimal polynomial of α), we may assume

U1(X,Y ) = Y df(X/Y ).

Now, where the black-boxes have been applied, we can start with the construction of the
lower bound for rational approximations of α. Since Roth’s theorem is trivial for α /∈ R we
may assume α ∈ R. Hence, let p, q ∈ Z be coprime, and consider the approximation

∣∣∣α− p
q

∣∣∣,
which we want to bound from below. To this end, we may assume right from the start that
p, q ∈ Z are chosen such that

∣∣∣α− p
q

∣∣∣ is small. More precisely, we will assume that
∣∣∣α− p

q

∣∣∣ is
small enough to satisfy

(A)
∣∣∣α− p

q

∣∣∣ < 1, which implies |p| ≤ (1 + |α|)︸ ︷︷ ︸
=c0(α)

|q| (see (3.46)).



112 CHAPTER 3. ROTH’S THEOREM

(B) |v(p/q)| ≥ c1(α) > 0, which is possible since v(α) 6= 0 by (3.48).

(C) |f ′(ζ)| > 0 for all ζ ∈ R with |α− ζ| ≤
∣∣∣α− p

q

∣∣∣, which is possible since f ′(α) 6= 0.

(D) U(p, q)V (p, q)W (p, q) 6= 0, which is possible since uvw only have finitely many roots.

These c0(α), c1(α) are constants only depending on α. There will come some more of these
constants, all denoted by ci(α). For instance we define c2(α) = max|α−ζ|<1 |f ′(ζ)|. By the
mean value theorem, we have |f(p/q)| = |f(p/q)− f(α)| =

∣∣∣α− p
q

∣∣∣ · |f ′(ζ)| for some ζ ∈ R

such that |ζ − α| ≤
∣∣∣α− p

q

∣∣∣ (A)
≤ 1. Hence, by assumption (C) we can conclude that

c2(α)
∣∣∣∣α− p

q

∣∣∣∣ ≥ f(p
q

).1 (3.50)

Hence, we have to bound f(p/q) from below. We will come back to this observation at the
end of the proof.
Since U(X,Y ), V (X,Y ),W (X,Y ) have no common factor (see Lemma 3.6.20), we have a
morphism

Φ : P1(Q) −→ P2(Q) ; [a : b] 7→ [U(a, b) : V (a, b) : W (a, b)]
of degree n defined over Q. By Theorem 3.6.18 there is a constant c4(α) > 0 only depending
on Φ (and Φ only depends on ϕ, and ϕ only depends on Ψ and f , and Ψ only depends on f ,
and f only depends on α) such that

H([p : q])n ≤ c4(α)H(Φ([p : q])) = c4(α)H([U(p, q) : V (p, q) : W (p, q)]).

Since p, q are coprime and U(p, q), V (p, q),W (p, q) ∈ Z, this is nothing but

max{|p| , |q|}n ≤ c4(α)max{|U(p, q)| , |V (p, q)| , |W (p, q)|}
gcd(U(p, q), V (p, q),W (p, q)) .

The usual estimate

|U(p, q)| ≤ (maximal coefficient of U) · (number of non-zero coefficients of U)︸ ︷︷ ︸
≤n+1

·max{|p| , |q|}n

(3.51)
(and for V and W as well) yield that there is some constant c5(α) > 0 only depending on α
such that

max{|p| , |q|}n ≤ c5(α) max{|p| , |q|}n

gcd(U(p, q), V (p, q),W (p, q)) ,

and hence
gcd(U(p, q), V (p, q),W (p, q)) ≤ c5(α). (3.52)

We set

a = U(p, q)
gcd(U(p, q), V (p, q),W (p, q))

b = − V (p, q)
gcd(U(p, q), V (p, q),W (p, q))

c = W (p, q)
gcd(U(p, q), V (p, q),W (p, q)) .

1Note that this inequality leads to Liouville’s theorem 1.1.12.
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These are coprime non-zero (see (D)) integers satisfying a + b + c = 0. We can apply the
bound (3.51) for every factor Ui, Vi, Wi to conclude

|Ui(p, q)| ≤ c6(α) max{|p| , |q|}deg(Ui)
(A)
≤ c6(α)c0(α)deg(Ui) |q|deg(Ui)

(3.49)
≤ c6(α)c0(α)n+2 |q|deg(Ui)

(and the same holds for Vi and Wi). Since taking the radical of an integer means to erase all
exponents from the prime-factorization, we know that

rad(abc) ≤

∣∣∣∣∣∣∣∣u0v0w0 U1(p, q)︸ ︷︷ ︸
=F (p,q)

· · ·Ur(p, q) · V1(p, q) · · ·Vs(p, q) ·W1(p, q) · · ·Wt(p, q)

∣∣∣∣∣∣∣∣
≤ |F (p, q)| · c7(α) |q|− deg(F )+

∑r

i=1 deg(Ui)+
∑s

i=1 deg(Vi)+
∑t

i=1 deg(Wi)

(3.49)= c7(α) |F (p, q)| |q|−d+2+n . (3.53)

Now it is finally time to apply the abc-conjecture 3.6.9 for ε′ = ε
n−ε > 0. This tells us, that

there is a constant C(ε′) > 0 such that

max{|a| , |b| , |c|} ≤ C(ε) rad(abc)1+ε′
(3.53)
≤ C(ε)c7(α)1+ε′ |F (p, q)|1+ε′ |q|(−d+2+n)(1+ε′) .

But we already know that

|b| =
∣∣∣∣ V (p, q)
gcd(U(p, q), V (p, q),W (p, q))

∣∣∣∣ (3.52)
≥ c5(α)−1 |V (p, q)| = c5(α)−1 |q|n |v(p/q)|

(B)
≥ c5(α)−1c1(α) |q|n .

Hence, plugging this into the last displayed formula and combine all constants, gives

|q|n ≤ C0(ε, α) |F (p, q)|1+ε′ |q|(−d+2+n)(1+ε′)

=⇒ |q|d |f(p/q)| = |F (p, q)| ≥ C1(ε, α) |q|d−2−n ε′
1+ε′ = C1(ε, α) |q|d−2−ε

(3.50)=⇒ |q|d c2(α)
∣∣∣∣α− p

q

∣∣∣∣ ≥ C1(ε, α) |q|d−2−ε

=⇒ c2(α)
∣∣∣∣α− p

q

∣∣∣∣ ≥ C1(ε, α) |q|−2−ε . (3.54)

for some constant C1(ε, α) > 0 only depending on α and ε. Noting that c2(α)−1C1(α, ε) is
still a positive constant only depending on α and ε, proves Roth’s Theorem 1.1.17.

Remark 3.6.23. In the proof we tried to keep track of how to build the final constant. All
these constants are perfectly effective, once you know that the map Ψ can be constructed
effectively. This is, if one would know the constant C(ε) in the abc-conjecture for all ε > 0,
then one gets an effective bound in Roth’s theorem!

We conclude by stating an abc-conjecture for arbitrary number fields.
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abc-Conjecture 3.6.24 (for number fields). Let K be a number field, and chose for every
v ∈ Mfin

K an uniformizer πv. For every ε ∈ (0, 1) there exists a constant cK(ε) such that for
every α ∈ K \ {0, 1} we have

(1− ε)[K : Q]h(α) ≤
∑
|α|v<1
v∈Mfin

K

log |1/πv|dvv +
∑

|1−α|v<1
v∈Mfin

K

log |1/πv|dvv +
∑

|1/α|v<1
v∈Mfin

K

log |1/πv|dvv + cK(ε).

This is unfortunately not as neat as the abc-conjecture over Q (in the exercises you will show
that for K = Q, both abc-conjectures coincide). The statement is incredibly strong. It not
only implies the general form of Roth’s theorem 3.0.1 we have proved in the last section, it
also implies a far reaching generalization of the subspace theorem 3.6.2 (and much more, but
let us focus on applications to Diophantine Approximation).

Exercises
Exercise 3.12. Prove that the subspace theorem implies the following: Let α1, . . . , αn+1 ∈ Q
be arbitrary. Then for any ε > 0 there are at most finitely many p = (p1, . . . , pn+1) ∈ Zn+1

such that
0 < |α1p1 + . . .+ αn+1pn+1| ≤ H(p)−n−ε.

Exercise 3.13. Show that the abc-conjecture for number fields 3.6.24, with K = Q, is
equivalent to the abc-conjecture 3.6.9.

Exercise 3.14. We know that 23 and 32 are successive integers. The Catalan conjecture,
proved in 2002 by Preda Mihailescu, predicts that no other perfect powers of two integers
can differ only by 1. This is, for any m,n ≥ 2 the equation xm + 1 = yn has no integral
solution with |x| , |y| ≥ 2 if (m,n) 6= (3, 2). If (m,n) = (3, 2), then the only integral solutions
with |x| , |y| ≥ 2 are x = 2, y = ±3. Prove that the weak abc-conjecture implies Catalan’s
conjecture.
Hint: You may use that Catalan’s conjecture is known in the following cases:

• m = 2,

• n = 2,

• (m,n) ∈ {(3, 5), (5, 3)}.

Exercise 3.15. Prove that the abc-conjecture is false for ε = 0.
Hint: You could play around a bit with 32n − 1.



Chapter 4

Linear Forms in Logarithms

This chapter can only serve as an outlook on another important topic in Diophantine Ap-
proximations. As the name suggests, we want to study “the” logarithm function. However,
our (at least my) favourite objects are algebraic numbers. Hence, we want to study log(α) for
an arbitrary α ∈ Q ⊆ C. However, there is no unique logarithm on C. I will briefly describe
what we mean by log(z) for a z ∈ C∗. If for some reason this is new for you, please take your
favourite book on complex analysis and learn things properly.
The usual exponential map x 7→ ex for all x ∈ R has a unique analytic continuation to C.
Hence, the map z 7→ ez is an entire function on C. It is defined by the usual power series:

ez =
∑
n≥0

zn

n! ∀ z ∈ C.

You should know the beautiful Euler’s formula eiπ + 1 = 0. More generally, for any z ∈ C
we have eiz = cos(z) + i sin(z) (just compare the potential series of cos and sin with the
definition of ez). A logarithm should be an inverse of this exponential function. So, writing
a non-zero complex number in polar coordinates z = |z| eiθ for some θ ∈ R, which indicates
the angle of z with the positive real axes, we want to have log(z) = log(|z| eiθ) = log(|z|) + iθ.
Unfortunately, this θ is not uniquely determined, since we have eiθ = ei(θ+2π) (rotating an
angle by 2π further, does not change anything). Hence log(z) = log(|z|) + i(θ + 2π) is an
equally good choice for the logarithm of z. The same is true for log(z) = log(|z|) + i(θ+ 2kπ)
for all k ∈ Z. Hence, the inverse of the exponential map is multi-valued.
For the rest of this chapter we fix any real semi-open interval I of length 2π, and assume that
log(z) has imaginary part in I for all z ∈ C∗. (This is, we fix one branch of this multi-valued
function.) The results are independent on this choice of I, but nevertheless you should keep
in mind that some choice is involved. In particular, for z, w ∈ C, with z 6= 0, we set

zw = elog(z)·w

for our choice of the logarithm.

4.1 The Gelfond-Schneider Theorem
We have started this lecture with some results on transcendence theory, and we aim to finish
it by such results. Maybe the most prominent example is the following.

115



116 CHAPTER 4. LINEAR FORMS IN LOGARITHMS

Theorem 4.1.1 (Lindemann-Weierstraß). Let α1, . . . , αn ∈ Q be pairwise distinct, then the
elements eα1 , . . . , eαn are Q-linearly independent.

We will not present the proof of the theorem.

Example 4.1.2. We will give the main examples of transcendental numbers:

(i) For any α ∈ Q∗ the number eα is transcendental. Simply chose α1 = 0 and α2 = α. Then
the Lindemann-Weierstraß theorem gives that 1 and eα are Q-linearly independent. In
particular, eα is not in Q since otherwise eα · 1− 1 · eα = 0 would give a contradiction.

(ii) π is transcendental, since otherwise i · π would be in Q∗, and hence 1 and eiπ = −1
would be Q-linearly independent.

(iii) The same argument as in (ii) proves that log(α) is transcendental for all α ∈ Q∗ \ {1}.

(iv) If α ∈ Q∗, then sin(α) and cos(α) are transcendental. Let α ∈ Q∗ be arbitrary. Then
we set α1 = 0, α2 = iα, α3 = −iα, and conclude that eiα = cos(α) + i · sin(α),
e−iα = cos(α)−i·sin(α), 1 are Q-linearly independent. Hence cos(α) /∈ Q since otherwise
we had the contradictory statement

1 · eiα + 1 · e−iα − 2 cos(α) · e0 = 0.

The fact that sin(α) is transcendental follows in the same way.

Since we still want to prove something, let us prove the next big theorem in transcendental
number theory.

Theorem 4.1.3 (Gelfond-Schneider). Let α, β ∈ Q such that α /∈ {0, 1} and β /∈ Q. Then
αβ is transcendental.

Keep in mind, that αβ depends on a choice of the logarithm of α. The validity of the
statement, however, does not depend on this choice.
Now you can construct an arbitrary number of transcendental numbers. For instance Gelfond-
Schneider constant 2

√
2 is transcendental, and so is the Gelfond constant eπ = (−1)−i. Before

we start with the proof, we give two corollaries (actually the second is just a rewording of the
first one).

Corollary 4.1.4. Let α, β ∈ Q∗, with α 6= 1, then either log(β)
log(α) ∈ Q or log(β)

log(α) is transcendental.

Proof. Assume that there are α, β ∈ Q∗, with α 6= 1, such that log(β)
log(α) ∈ Q \ Q. Then the

Gelfond-Schneider theorem 4.1.3 states that

α
log(β)
log(α) =

(
elog(α)

) log(β)
log(α) = elog(β) = β

is transcendental, which is nonsense. This contradiction proves the corollary.

Corollary 4.1.5. Let α, β ∈ Q∗. If log(α) and log(β) are Q-linearly independent, and γ1, γ2 ∈
Q not both equal to zero, then

γ1 log(α) + γ2 log(β) 6= 0.
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Proof. Since log(α), log(β) are Q-linearly independent, we have log(α) 6= 0 6= log(β), and
log(β)
log(α) 6∈ Q. Hence, if γ1 log(α) + γ2 log(β) = 0 for some γ1, γ2 ∈ Q and at least one is 6= 0,
then actually γ1 6= 0 6= γ2. This implies log(β)

log(α) = −γ1
γ2
∈ Q \ Q, which is a contradiction to

Corollary 4.1.4.

Remark 4.1.6. In Corollary 4.1.5 (which is actually equivalent to Theorem 4.1.3) we have
considered the homogeneous polynomial of degree one x1 log(α) + x2 log(β). But we called
a homogeneous polynomial of degree one a linear form. So this is where the name of this
chapter comes from.

As you may guess, the proof of the Gelfond-Schneider Theorem 4.1.3 requires some analysis.
In particular, since we mix algebraic numbers α and β with αβ = eβ log(α), we may have to
mix polynomials with the exponential function.

Definition 4.1.7. An exponential polynomial is a function on C of the form

R(z) = f1(z)eθ1z + . . .+ fN (z)eθNz,

where f1, . . . , fN ∈ C[x] are polynomials and θ1, . . . , θN ∈ C.

As a finite sum of finite products of (the nicest) entire functions, any exponential polynomial
is an entire function. It will turn out that for our purposes it is enough to consider exponential
polynomials where all the polynomials are constant. We will make some easy observations.

Lemma 4.1.8. Let θ1, . . . , θN ∈ C∗ be pairwise distinct, and b1, . . . , bN ∈ C be arbitrary. We
consider the function R(z) = b1e

θ1z + . . .+ bNe
θNz. Then

(i) Some derivative of R(z) is constantly zero if and only if bi = 0 for all i ∈ {1, . . . , N}.

(ii) If R(z) is not constantly zero, then for all s ∈ C there is some derivative R(k)(z) of R
such that R(k)(s) 6= 0.

Proof. For completeness we mention that R(z) (and all its derivatives) are constantly zero if
all the bi’s are zero. For any k ∈ N0 the kth derivative of R is

R(k)(z) = b1θ
k
1e
θ1z + . . .+ bNθ

k
Ne

θNz (4.1)

= b1θ
k
1
∑
j≥0

1
j!θ

j
1z
j + . . .+ bNθ

k
N

∑
j≥0

1
j!θ

j
Nz

j

=
∑
j≥0

1
j!

(
N∑
i=1

biθ
k+j
i

)
zj .

By uniqueness of the power series representation of an entire function, if R(k) is constantly
zero, then

∑N
i=1 biθ

k+j
i = 0 for all j ∈ N0. In this case we have

θk+N−1
1 · · · θk+N−1

N
... . . . ...
θk1 · · · θkN

 ·
 b1...
bN

 =

0
...
0

 .
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Since θ1, . . . , θN are pairwise distinct and non-zero, we know that the matrix on the left has
full rank (Vandermonde!). Hence, this equality implies b1 = . . . = bN = 0, which proves part
(i).
Part (ii) is true for all entire functions. The Taylor expansion of R around s ∈ C is

R(z) =
∑
j≥0

1
j!R

(j)(s)(z − s)j . (4.2)

Hence, if R(k)(s) = 0 for all k ∈ N0, then R(z) is constantly zero, proving part (ii).

We also want to apply Cauchy’s Interal Formula, which we recall here.

Theorem 4.1.9 (Cauchy’s Integral Formula). Let f : C→ C be an entire function. For any
real r > 0, and a complex number w we set Dr(w) = {z ∈ C| |z − w| ≤ r} and its boundary is
denoted by Br(w) = {z ∈ C| |z − w| = r}. Then for any v ∈ Dr(w) we have

f(v) = 1
2πi

∫
Br(w)

f(z)
z − v

dz.

The last lemma that we source out of the proof is the following.

Lemma 4.1.10. Let β ∈ Q and u, k ∈ N be arbitrary. Then we have for any number field K
of degree d containing β the estimate∏

v∈MK

max
0≤a,b≤u

{1, |a+ bβ|kv}
dv/d ≤ (2u)kH(β)k.

Proof. This is just a combination of the usual estimates for absolute values. If v ∈ MK is
non-archimedean, we have

|a+ bβ|v ≤ max{|a|v , |b|v |β|v} ≤ max{1, |β|v}.

If v ∈MK is archimedean, then for all a, b ∈ {0, . . . , u} we have

|a+ bβ|v ≤ 2 max{|a|v , |b|v |β|v} ≤ 2umax{1, |β|v}.

Using these estimates gives∏
v∈MK

max
0≤a,b≤u

{1, |a+ bβ|kv}
dv/d

≤
∏

v∈MK
v|∞

max{1, (2u)k max{1, |β|kv}}
dv/d ·

∏
v∈MK
v-∞

max{1,max{1, |β|kv}}
dv/d

≤(2u)k
∏

v∈MK

max{1,
∣∣∣βk∣∣∣

v
}dv/d = (2u)kH(β)k.

Now we finally start the proof of the Gelfond-Schneider Theorem 4.1.3. Maybe you can
recognize the strategy of the proof...



4.1. THE GELFOND-SCHNEIDER THEOREM 119

Proof of Theorem 4.1.3. We assume that α, β, and αβ are algebraic, with α /∈ {0, 1} and
β /∈ Q. This will eventually lead to a contradiction. If all these elements are algebraic, there
is some number field K containing all three elements. We set

d = [K : Q],

and for computational reasons towards the end of the proof, we set

m = 6d+ 2.

Next we fix an integer u, which is divisible by 2dm, and define

N = u2 and n = u2

2dm > u.

This value of n will eventually tend to infinity. For all (a, b) ∈ {0, . . . , u− 1} × {1, . . . , u} we
define

θau+b = log(α)(a+ bβ) (4.3)

(for the bare definition, we need α 6= 0). This gives N = u2 values θ1, . . . , θN , which are
pairwise distinct, since

θau+b = log(α)(a+ bβ) = log(α)(a′ + b′β) = θa′u+b′

⇐⇒ a+ bβ = a′ + b′β

⇐⇒ a = a′ and b = b′.

The first equivalence sign follows since α 6= 1 (and hence log(α) 6= 0), and the last equivalence
sign follows since β 6∈ Q. So, already now we have used all our assumptions on α and β.
In the following, the values c1, c2, . . . denote absolute positive constants, which only depend
on our given data α, β, αβ, and K (and on our choice of logarithm). We will several times
use that m is given by these data, and hence we can use cmi = ci+1. We begin with

u = c1
√
n.

Let us now start with the interesting stuff!

1. step: the auxiliary (exponential) polynomial R.

We claim that there are b1, . . . , bN ∈ Z, not all zero, such that the function

R(z) = b1e
θ1z + . . .+ bNe

θNz

satisfies

(i) log(α)−kR(k)(s) = 0 for all (k, s) ∈ {0, . . . , n− 1} × {1, . . . ,m}, and

(ii) |γi| ≤ cn−1
3 nn+1/2 for all i ∈ {1, . . . , N}.
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We replace the coefficients b1, . . . , bN by variables x1, . . . , xN . We note that then the equations
log(α)−kR(k)(s) = 0 are linear equations defined over K. Indeed, for any (k, s) ∈ {0, . . . , n−
1} × {1, . . . ,m} we define

L(k,s)(x) = log(α)−k(x1θ
k
1e
θ1s + . . .+ xNθ

k
Ne

θNs)

Def. of θi=
u−1∑
a=0

u∑
b=1

xau+b(a+ bβ)ke(a+bβ) log(α)s =
u−1∑
a=0

u∑
b=1

xau+b(a+ bβ)kαas(αβ)bs,

which is defined over K, since we assume α, β, αβ ∈ K. Moreover, (i) is satisfied, whenever
b1, . . . , bN is a solution of all the equations L(k,s)(x) = 0 for (k, s) ∈ {0, . . . , n−1}×{1, . . . ,m}
(cf. (4.1)). Hence, we are left with the problem of finding a small integral solution for the
nm linear equations defined over K in N variables!
By our choices we have N = 2dmn, hence we can apply Siegel’s Lemma 2.4.6. All that is left
to do is to estimate the height of L(k,s). This is equal to∏

v∈MK

max
0≤a≤u−1

1≤b≤u

{1,
∣∣∣(a+ bβ)kαas(αβ)bs

∣∣∣
v
}dv/d

≤
∏

v∈MK

max
0≤a≤u−1

1≤b≤u

{1, |a+ bβ|kv}
dv/d ·

∏
v∈MK

max
0≤a≤u−1

max{1, |α|asv }
dv/d ·

∏
v∈MK

max
1≤b≤u

{1,
∣∣∣αβ∣∣∣bs

v
}dv/d

4.1.10
≤ (2u)kH(β)k ·H(α)(u−1)s ·H(αβ)us

≤(2u)n−1H(β)n−1(H(α)H(αβ))um
u<n
≤ (2c1)n−1n

n−1/2H(β)n−1((H(α)H(αβ))m)n−1 = cn−1
2 n

n−1/2.

By Siegel’s Lemma 2.4.6 we conclude, that there are b1, . . . , bN ∈ Z, not all zero, such that
(i) is satisfied and such that

max
1≤i≤N

|bi| ≤ (Ncn−1
2 n

n−1/2)
dmn

N−dmn = c2
1nc

n−1
2 n

n−1/2 ≤ cn−1
3 n

n+1/2.

This proves the claim.

From now on we set R(z) = b1e
θ1z + . . .+ bNe

θNz such that (i) and (ii) from above are
satisfied!

2. step: the helpful value λ.

We know from Lemma 4.1.8 that for any s ∈ C there is some derivative of R which does
not vanish at s. Hence, using the first step, we know that there is some r ≥ n and some
s′ ∈ {1, . . . ,m} such that

R(r)(s′) 6= 0 and R(k)(s) = 0 ∀(k, s) ∈ {1, . . . , r − 1} × {1, . . . ,m}.

This just means that r is the smallest integer for which R(r) vanishes at some point s′ ∈
{1, . . . ,m}. From the first step, we know indeed that

r ≥ n.
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We conclude that

λ = (log(α))−rR(r)(s′) =
u−1∑
a=0

u∑
b=1

bau+b(a+ bβ)rαas′(αβ)bs′ (4.4)

is a non-zero element in K.

3. step: bounding the size of λ from below.

As we know there are several different ways of measuring the size of an algebraic number.
This time, we use the norm of λ. To this end, we let c4 ∈ N be such that c4β ∈ OK , c4α ∈ OK ,
and c4α

β ∈ OK . In particular, we have

cr4(a+ bβ)r ∈ OK ∀ (a, b) ∈ {0, . . . , u− 1} × {1, . . . , u}.

Using s′ ≤ m, we also find

c2um
4 αas

′(αβ)bs′ ∈ OK ∀ (a, b) ∈ {0, . . . , u− 1} × {1, . . . , u}.

Hence, cr+2um
4 λ ∈ OK . This implies

c
d(r+2um)
4

∣∣∣NK/Q(λ)
∣∣∣ =

∣∣∣NK/Q(cr+2um
4 λ)

∣∣∣ ≥ 1.

Since c4 ≥ 1 and r ≥ n ≥ u, this implies∣∣∣NK/Q(λ)
∣∣∣ ≥ c−d(r+2um)

4 ≥ c−d(r+2mr)
4 = cr5. (4.5)

4. step: bounding the size of λ from above.

Let us first calculate a bound for any factor appearing in the product defining NK/Q(λ). We
chose any archimedean v ∈MK and get

|λ|v ≤ N · max
0≤a≤u−1

1≤b≤u

∣∣∣bau+b(a+ bβ)rαas′(αβ)bs′
∣∣∣
v

= N · max
1≤i≤N

|bi|· max
0≤a≤u−1

1≤b≤u

∣∣∣(a+ bβ)rαas′(αβ)bs′
∣∣∣
v
.

A bound for the absolute value of bi has been calculated in the first step, and the last factor
can be bounded by the same methods as in Lemma 4.1.10. This yields (using once again
s′ ≤ m)

|λ|v ≤ Nc
n−1
3 n

n+1/2(2u)r max{1, |β|v}
r
(
max{1, |α|v}

m max{1,
∣∣∣αβ∣∣∣

v
}m
)u

N=u2
= cn−1

3 n
n+1/2ur+2cr6c

u
7

r≥n≥u
≤ cr8r

r+1/2ur+2 u≤c1
√
r= cr9r

2r+3/2.

In particular, we have that the largest factor appearing in NK/Q is less or equal to this value.
Hence ∣∣∣NK/Q(λ)

∣∣∣ ≤ (cr9r2r+3/2
)d−1

· |λ| = cr10r
(d−1)(2r+3)/2 · |λ| . (4.6)
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We are left to prove that |λ| is very small.
The function R(z) has order at least r at all points in {1, . . . ,m}. Hence the function

T (z) = r! R(z)
(z − s′)r

∏
j∈{1,...,m}\{s′}

(
s′ − j
z − j

)r

has no poles. Thus T is an entire function. That T might be helpful becomes clear if we
consider the Taylor expansion of R around s′. This is

R(z) =
∑
j≥0

1
j!R

(j)(s′)(z − s′)j =
∑
j≥r

1
j!R

(j)(s′)(z − s′)j

=⇒ T (z) = r!

∑
j≥r

R(j)(s′)(z − s′)j−r
 ∏
j∈{1,...,m}\{s′}

(
s′ − j
z − j

)r

=⇒ T (s′) = r! 1
r!R

(r)(s′) (4.4)= log(α)rλ. (4.7)

We apply the Cauchy Integral Formula 4.1.9 for T , Dm(1+ r
u

)(0), and s′ (note that indeed
s′ ∈ Dm(1+ r

u
)(0)) to get

λ
(4.7)= log(α)−rT (s′) = log(α)−r 1

2πi

∫
Bm(1+ r

u )(0)

T (z)
z − s′

dz. (4.8)

From now on let z ∈ Bm(1+ r
u

)(0); i.e. |z| = m(1 + r
u). Then we have

|R(z)| ≤ N · max
1≤i≤N

|bi| ·
∣∣∣eθiz∣∣∣ ≤ u2cn−1

3 n
n+1/2 max

1≤i≤N
e|θiz|

(ii)
≤ u2cn−1

3 n
n+1/2

(
max

1≤i≤N
e|θi|

)m(1+ r
u

)

u2=c21n
≤ cn−1

11 n
n+3/2

(
max

1≤i≤N
e|log(α)||a+bβ|

)m(1+ r
u

)

≤ cn−1
11 n

n+3/2
(

max
1≤i≤N

e|log(α)|max{1,|β|}
)mu(1+ r

u
)

≤ cn−1
11 n

n+3/2cu+r
12

u≤n≤r
≤ c2r

13r
r+3/2,

and

|z − k| ≥ |z| − k = m(1 + r

u
)− k ≥ rm

u
∀ k ∈ {1, . . . ,m}. (4.9)
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Combining these two estimates with the definition of T , gives

|T (z)| ≤ r! |R(z)|
|z − s′|r

∏
j∈{1,...,m}\{s′}

( |s′ − j|
|z − j|

)r

≤ r!c2r
13r

r+3/2
(
rm

u

)−r ∏
j∈{1,...,m}\{s′}

(
m

rm/u

)r

= r!c2r
13r

r+3/2 ur

rrmr

ur(m−1)

rr(m−1)
r!≤rr
≤ c2r

14r
r+3/2urmr−r(m−1)

u≤c1
√
r

≤ c2r
15r

r+3/2−r(m−1)+rm/2 = c2r
15r

r(3−m)+3/2. (4.10)

Plugging this into (4.8) yields

|λ| ≤ |log(α)|−rm(1 + r

u
)c2r

15r
r(3−m)+3/2 · u

rm
≤ cr16 (u

r
+ 1)︸ ︷︷ ︸

≤u≤c1
√
r

r
r(3−m)+3/2

≤ cr17r
r(3−m)+4/2,

and with the aid of (4.6) we conclude∣∣∣NK/Q(λ)
∣∣∣ ≤ cr10r

(d−1)(2r+3)/2 · cr17r
r(3−m)+4/2.

Now finally our weird choice of m (which was up to now completely irrelevant) comes into
play. Note that for large m the norm of λ becomes particularly small. However, we cannot let
m tend to infinity, since throughout we have used heavily, thatm is a constant only depending
on K. However, we have chosen m right at the beginning so that the following bound is true:∣∣∣NK/Q(λ)

∣∣∣ ≤ cr18r
−r. (4.11)

5. step: Comparison.

By (4.5) and (4.11), we have

cr5 ≤ cr18r
−r =⇒ r ≤ c18/c5

for positive constants c5 and c18 only depending on K. In particular, c5 and c18 are inde-
pendent on n. Now, if we perform all these computations with some n ≥ c18/c5, then also
r ≥ n ≥ c18/c5, which gives a contradiction!
Hence, we must have made a wrong assumption. This means that αβ cannot be algebraic!

A deep generalization of the Gelfond-Schneider Theorem 4.1.3 is the following theorem due
to Alan Baker.

Theorem 4.1.11 (Baker, 1966). Let α1, . . . , αn ∈ Q∗. If log(α1), . . . , log(αn) are Q-linearly
independent, and γ0, γ1, . . . , γn ∈ Q are not all equal to zero, then

γ0 + γ1 log(α1) + . . .+ γn log(αn) 6= 0.
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This is, not only log(α1), . . . , log(αn) are Q-algebraic independent as soon as they are Q-
linearly independent, but also 1, log(α1), . . . , log(αn) are Q-linearly independent. At this
point you should ask yourself whenever something is not equal to zero: Is it bounded away
from zero?
The following effective version of the last theorem is also due to Alan Baker and it answers
this question.

Theorem 4.1.12. Let α1, . . . , αn ∈ Q∗. If log(α1), . . . , log(αn) are Q-linearly independent,
and γ0, γ1, . . . , γn ∈ Q are not all equal to zero, then

|γ0 + γ1 log(α1) + . . .+ γn log(αn)| ≥ (eB)−c,

where B = max0≤i≤n(2H(γi))deg(γi) and c ≥ 1 only depends on n and α1, . . . , αn.

4.2 Applications

4.2.1 Transcendence

As seen in the last section, these linear forms in logarithms are closely related to results on
transcendental number.

Proposition 4.2.1. Let α1, . . . , αn ∈ Q∗ and γ1, . . . , γn ∈ Q. Then

γ1 log(α1) + . . .+ γn log(αn)

is either zero or transcendental.

Proof. We want to prove this by induction on n. So we start with n = 1, and let α1 ∈ Q∗

and γ1 ∈ Q be arbitrary. If α1 = 1 or γ1 = 0, then γ1 log(α1) = 0. Hence, we assume that
α1 ∈ Q∗ \ {1} and γ1 ∈ Q∗, and show that γ1 log(α1) is transcendental. But, since γ1 ∈ Q∗,
this last number is transcendental, if and only if log(α1) is transcendental. But this follows
from the Lindemann-Weierstraß Theorem (see Example 4.1.2). This proves the Proposition
for n = 1.
Now we fix some n ∈ N and assume that the statement is correct for n. Then we have to
prove the statement for n+ 1.
Assume the statement is incorrect for n+ 1. Then there are elements α1, . . . , αn+1 ∈ Q∗ and
γ1, . . . , γn+1 ∈ Q∗ such that

γ1 log(α1) + . . .+ γn+1 log(αn+1) = γ0 ∈ Q∗ (4.12)
⇐⇒ (−γ0) + γ1 log(α1) + . . .+ γn+1 log(αn+1) = 0.

By Theorem 4.1.11 we know that log(α1), . . . , log(αn+1) are Q-linearly dependent. This is,
there are rational numbers c1, . . . , cn+1 not all zero, such that

c1 log(α1) + . . .+ cn+1 log(αn+1) = 0.

After possibly renumbering the elements, we may assume that cn+1 6= 0. Then we get

log(αn+1) = − c1
cn+1

log(α1)− . . .− cn
cn+1

log(αn). (4.13)
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We plug (4.13) into (4.12) and get

(γ1 −
c1
cn+1

γn+1)︸ ︷︷ ︸
∈Q

log(α1) + . . .+ (γn −
cn
cn+1

γn+1)︸ ︷︷ ︸
∈Q

log(αn) = γ0 ∈ Q∗.

This contradicts our induction hypothesis, which states that (γ1 − c1
cn+1

γn+1) log(α1) + . . .+
(γn − cn

cn+1
γn+1) log(αn) is either zero or transcendental. This proves the proposition.

Remark 4.2.2. The very same induction also proves that γ1 log(α1) + . . . + γn log(αn) is
always non-zero (and thus transcendental), when α1, . . . , αn ∈ Q∗ \ {1} and γ1, . . . , γn ∈ Q∗

are Q-linearly independent.

We want to derive a multiplicative version of Proposition 4.2.1. Before we give the statement,
we should once again mention that our logarithm log depends on a choice. In particular, the
expected equality log(z · w) = log(z) + log(w) may not be true. This is due to the fact that
although elog(z) = z for all z ∈ C∗, the equality log(ez) = z is only true up to some element
in (2πi)Z. This essentially proves the next lemma.

Lemma 4.2.3. The following statements hold true.

(a) For all z, w ∈ C∗ there exists a k ∈ Z such that log(zw) = log(z) + log(w) + (2πi)k.

(b) For all z, w ∈ C, with z 6= 0, there exists a k′ ∈ Z such that log(zw) = w log(z) + (2πi)k′.

(c) We have log(−1) = πi(1 + 2`) for some ` ∈ Z.

Proof. We start with proving (a). It is

log(zw) = log(elog(z)elog(w)) = log(elog(z)+log(w)) = (log(z) + log(w)) + (2πi)k

for some k ∈ Z.
Part (b) comes from the definition of zw, since this gives

log(zw) = log(ew log(z)) = w log(z) + (2πi)k′

for some k′ ∈ Z.
Finally, part (c) follows from Euler’s formula −1 = eπi, since this yields

log(−1) = log(eπi) = (πi) + 2πi` = (πi)(1 + 2`)

for some ` ∈ Z.

Corollary 4.2.4. Let γ0, α1, . . . , αn ∈ Q∗ and γ1, . . . , γn ∈ Q be arbitrary. Then

eγ0αγ1
1 · · ·α

γn
n

is transcendental.
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Proof. Our assumptions guarantee that αn+1 = eγ0αγ1
1 · · ·αγnn is non-zero. From Lemma 4.2.3

we conclude

log(αn+1) = γ0 + γ1 log(α1) + . . .+ γn log(αn) + (2πi)k

= γ0 + γ1 log(α1) + . . .+ γn log(αn) + 2k
1 + 2` log(−1)

for some k, ` ∈ Z. Reformulating this gives

γ1 log(α1) + . . .+ γn log(αn) + 2k
1 + 2` log(−1) + (−1) log(αn+1) = −γ0 ∈ Q∗.

Now Proposition 4.2.1 tells us that at least one of −1, α1, . . . , αn+1 is transcendental (other-
wise, the last equation would be either zero or a transcendental number, what is not the case).
But we know that α1, . . . , αn are algebraic (and so is −1). Hence, αn+1 = eγ0αγ1

1 · · ·αγnn is
transcendental.

Remark 4.2.5. Note that in the last corollary it is essential that γ0 6= 0. Otherwise, you
can easily construct counterexamples. For instance, if γ1, . . . , γn are all rational numbers,
then surely αγ1

1 · · ·αγnn ∈ Q∗. Or, if α1 = α2 ∈ Q∗, then for all γ ∈ Q∗ we have αγ1 · α
−γ
2 =

1 ∈ Q∗. However, with some mild extra restrictions on the αi’s and/or the γi’s, one can
prove that αγ1

1 · · ·αγnn is transcendental. A sloppy (but true) formulation of this reads: For
α1, . . . , αn, γ1, . . . , γn ∈ Q, the number αγ1

1 · · ·αγnn is either algebraic for trivial reasons, or it
is transcendental.

Now, you have some tools at hand to write down arbitrarily many complex numbers, which
are transcendental. For instance: e2 ·3

√
5, 7π+ log(11), 13 log(17) + 19 log(23) + 29 log(31), ...

Speaking about prime numbers, let us move from transcendental number theory to other
applications of linear forms in logarithms. The rest of this section will be mainly a summary
of results, without giving the proofs. All proofs and many more information on this topic can
be found in [3] and [9].

4.2.2 Prime Divisors of Polynomial Values

I indicated, that we now want to speak about prime numbers. So let us use the following
notation.

Notation 4.2.6. For any n ∈ Z \ {−1, 0, 1} we denote with P [n] the largest prime number
that divides n. Moreover, we set P [−1] = P [0] = P [1] = 1.

Using linear forms in logarithms one can prove the following theorem.

Theorem 4.2.7. Let f(x) ∈ Z[x]\{0} be a polynomial with at least two different roots. Then
there exists a constant C(f) only depending on f , such that for all k ≥ 100 we have

P [f(k)] ≥ C(f) log log(k). (4.14)

Before we explain the connection to linear forms in logarithms, let us try to understand this
result. It tells us in particular that the largest prime divisor of f(n) tends to infinity, as n
tends to infinity (if f has at least two distinct roots).
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Remark 4.2.8. The assumption on the number of roots is indeed necessary: If f(x) ∈ Z[x]
has only one root, then f(x) = a(bx+ c)d for a, b, c, d ∈ Z, with a 6= 0, and b, d ≥ 1. Assume
first that c = 0, then for all n ∈ N we have

P [f(2n)] = P [abd2dn] = max{P [a], P [b], 2}.

In particular, (4.14) cannot be satisfied. Similarly, if c > 0 for all n ∈ N we can plug ((b+1)n−1)c
b

(which is in N) into f and get

P [f(((b+ 1)n − 1)c
b

)] = P [a(b+ 1)dncd] = max{P [a], P [b+ 1], c}.

Since ((b+1)n−1)c
b tends to infinity, if n tends to infinity, again (4.14) cannot be satisfied. A

similar counterexample works if c < 0.

We want to apply a multiplicative version of Baker’s Theorem 4.1.12. To ease notation we
will only consider the special case where the numbers γ0, . . . , γn are rational integers, and
also that α1, . . . , αn ∈ Q are positive real numbers. Then we may assume that the logarithm
is the usual logarithm on the positive real numbers. We recall the Mercator series.

Lemma 4.2.9. Let log be the usual natural logarithm on the positive real numbers. Then for
all x ∈ (−1, 1) we have log(1 + x) =

∑
n≥1

(−1)n+1

n xn.

Proof. All we have to do is to calculate the Taylor expansion of log(1 + x) around 0. The
first derivative of log(1 + x) is log(1 + x)(1) = 1

1+x . The other derivatives are of course
easily calculated: log(1 + x)(2) = (−1) 1

(1+x)2 , log(1 + x)(3) = (−1)(−2) 1
(1+x)3 , log(1 + x)(4) =

(−1)(−2)(−3) 1
(1+x)4 , and hence log(1 + x)(n) = (−1)n+1(n− 1)! 1

(1+x)n for all n ∈ N. Now the
Taylor expansion of log(1 + x) around 0 is

log(1 + x) = log(1 + 0) + 1
1!x+ (−1)1!

2! x2 + 2!
3!x

3 + . . . =
∑
n≥1

(−1)n+1

n
xn.

The radius of convergence is limn→∞
∣∣∣ 1/n
1/(n+1)

∣∣∣ = limn→∞
∣∣∣n+1
n

∣∣∣ = 1. This proves the lemma.

Theorem 4.2.10. Let α1, . . . , αn ∈ Q∗ be positive real numbers such that log(α1), . . . , log(αn)
are Q-linearly independent, and γ1, . . . , γn ∈ Z be not all zero. Then

|αγ1
1 · · ·α

γn
n − 1| ≥ (eB)−c′ ,

where B = max1≤i≤n(2H(γi))deg(γi) and c′ ≥ 1 only depends on n and α1, . . . , αn.

Proof. Since we are working on the positive real numbers, for this proof we use the usual
logarithm instead of an arbitrarily chosen branch. If |αγ1

1 · · ·αγnn − 1| ≥ 1/2, then the
statement of the theorem is trivially satisfied. Hence, we may assume from now on that
|αγ1

1 · · ·αγnn − 1| < 1/2. We abbreviate x = αγ1
1 · · ·αγnn − 1. Then, by the preceding lemma,

we have

|log(1 + x)| =

∣∣∣∣∣∣
∑
n≥1

(−1)n+1

n
xn

∣∣∣∣∣∣ <
∑
n≥1

1
n
|x|n = |x|

∑
n≥1

1
n
|x|n−1 < |x|

∑
n≥0

(1
2)n = 2 |x| .
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On the other hand we have

|log(1 + x)| = |log(αγ1
1 · · ·α

γn
n )| =

∣∣∣∣∣
n∑
i=1

γi log(αi)
∣∣∣∣∣ 4.1.12
≥ (eB)−c,

with B, c as in the statement of the theorem. Combining these estimates, we find

|x| ≥ 1
2(eB)−c ≥ (eB)−(c+log(2)).

Thus, the theorem follows with c′ = c+ log(2).

Remark 4.2.11. A constant c′ that satisfies the statement of Theorem 4.2.10 can actually
perfectly explicit be written down. I will not bother you with the long expression for the
best possible choice, but we will need some further knowledge on how c′ depends on n and
α1, . . . , αn. To this end, we will give a possible choice for c′ if α1, . . . , αn ∈ N\{1}, and n ≥ 2.
Then, a possible choice for c′ such that Theorem 4.2.10 is fulfilled is

c′ = 300000n log(α1) · · · log(αn).

The general bound looks similar, but there is a further dependence on the degree of the
number field Q(α1, . . . , αn).

4.2.12. Let us now finally come back to Theorem 4.2.7. We will only prove the theorem for
the specific polynomial f(x) = x(x + 1). This is somehow the simplest polynomial with at
least two different roots. However, it should give us an idea on how linear forms in logarithms
are involved.
Denote by pi the ith prime number; i.e. p1 = 2, p2 = 3, p3 = 5, and so on. By the prime
number theorem 2.5.5 we know that pi is essentially of size i log(i) for all i ∈ N. More
concretely, there is an absolute constant c1 such that pi ≤ c1i log(i) for all i ≥ 2.
Let k ∈ N be any large integer, and let

f(k) = k(k + 1) = pe11 · · · p
en
n

be the prime power factorization of f(k), with e1, . . . , en ∈ N0, and en 6= 0. This implies
in particular that P [f(k)] = pn. Since k and k + 1 are coprime, there is a proper subset
I ⊂ {1, . . . , n} such that

k =
∏
i∈I

peii and (k + 1) =
∏

i∈{1,...,n}\I
peii .

For all i ∈ {1, . . . , n} we define

εi =
{
−1 if i ∈ I
1 if i /∈ I.

Then we have
1
k

= k + 1
k
− 1 = |pε1e11 · · · pεnenn − 1| . (4.15)

Haven’t we seen this just now? So here comes the theory of linear forms in logarithms into
play. We apply Theorem 4.2.10 with the bound given in Remark 4.2.11, to conclude

1
k
≥
(

2e max
1≤i≤n

ei

)−300000n log(p1)··· log(pn)
. (4.16)
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Note that surely we have n ≥ 2. Now, for any i ∈ {1, . . . , n} we either have peii | k or
peii | k + 1. Hence, in any case we have

2ei ≤ peii ≤ k + 1 =⇒ log(2) max
1≤i≤n

ei ≤ log(k + 1) ≤ 2 log(2) log(k).

The last inequality easily follows by noting that k ≥ 100. By plugging this into (4.16), taking
logarithms, and multiply by −1 we get

log(k) ≤ 300000n log(p1) · · · log(pn) · log(4e log(k))
≤ 300000n log(pn)n · log(4e log(k))
≤ 300000n log(c1n log(n))n · log(4e log(k))
≤ 300000n log(c1n log(n))n · 2 log log(k).

Note that if k increases, then also n has to increase! But, recall that P [f(k)] = pn is the nth
prime number. Hence, if k tends to infinity, then P [f(k)] tends to infinity as well.
In order to justify the claimed bound P [f(k)] ≥ C(f) log log(n), we get rid of all explicit
constants. Note that for some absolute constant c2 we have log(c1n log(n)) ≤ c

log log(n)
2 for

n ≥ 3 (the case n = 2 can be handled, by either introduce another constant, or by choosing
k large enough). Hence, the last inequality, may be written as

log(k) ≤ cn log log(n)
4 log log(k).

for some absolute constant c4. This implies

n log(n) ≥ n log log(n) ≥ 1
log(c4)(log log(k)− log log log(k)) ≥ 1

2 log(c4) log log(k).

Since again by the prime number theorem 2.5.5 we have that n log(n) is essentially equal to
pn, Theorem 4.2.7 (for f(x) = x(x+ 1)) is proved.

4.2.3 Differences of Perfect Powers

Example 4.2.13. How many pairs of powers of 2 and powers of 3 have a difference of at
most 10? Of course we can trivially answer this question for any fixed power of 3 (or fixed
power of 2).

• the only powers of 2 which differ from 31 by at most 10 are: 21, 22, 23.

• the only powers of 2 which differ from 32 by at most 10 are: 21, 22, 23, 24.

• the only power of 2 which differ from 33 by at most 10 is: 25.

• there are no powers of 2 which differ from 34 by at most 10.

Using this trivial approach one can never answer this question in general, since there might
be a ridiculously large n such that there is a power of 2 close to 3n. We use linear forms in
logarithms, to explain why there is actually no such large n.



130 CHAPTER 4. LINEAR FORMS IN LOGARITHMS

Let n ∈ N be arbitrary and assume that there is some m ∈ N such that |2m − 3n| ≤ 10. Then
there exists a k ∈ Z \ {0}, with |k| ≤ 10, such that 2m + k = 3n. Hence, we are actually
dealing with Diophantine equations.
The polynomial fk(x) = x(x− k) has two distinct roots, and therefore by Theorem 4.2.7 we
have for all n ≥ 5 (since this implies 3n ≥ 100).

P [fk(3n)] ≥ C(fk) log log(3n).

But on the other hand

P [fk(3n)] = P [3n(3n − k)] = P [3n2m] = 3.

Hence, C(fk) log log(3n) ≤ 3 for an explicitly given constant Ck(f). This gives

log(n) ≤ 3
C(fk)

− log log(3).

This is nothing but an upper bound for n only depending on k. By considering this inequality
for all k ∈ Z\{0} with |k| ≤ 10, gives an upper bound for n only depending on 10. According
to Example 4.2.13 there are only finitely many further cases to check. Making the calculations
explicit (calculating C(fk) and checking the finitely many possible powers of 3) gives, that
there is no further pair of powers of 2 and powers of 3 which differ by at most 10.
Of course, we can replace 2, 3, and 10 by essentially any numbers. Then we get.

Theorem 4.2.14. Let a, b, k ∈ N be such that an 6= bm for all m,n ∈ N. Then the number
of pairs (m,n) ∈ N2 such that |an − bm| ≤ k is finite and can be explicitly determined.

4.2.4 The Thue Equation

The last application of the theory of linear forms in logarithms which we mention, is an
effective solution of Thue equations (see Theorem 3.1.3). This claimed effectiveness is a
bound on the size of a solution to a given Thue equation. We restrict to the case of an
integral solution.

Theorem 4.2.15. Let F ∈ Z[x, y] be homogeneous with pairwise distinct linear factors, of
degree d ≥ 3, and let m ∈ Z \ {0}. Then there exists a positive real number C, which can be
calculated only in terms of F , such that all pairs (a, b) ∈ Z2 that satisfy F (a, b) = m, also
satisfy max{|a| , |b|} ≤ |2m|C .

This result obviously implies that the equation F (x, y) = m has at most finitely many solu-
tions. But it is actually much better than that. In principle, one (okay: a PC) could test
all pairs (a, b) ∈ Z2 with max{|a| , |b|} ≤ |2m|C , whether it is a solution to the equation
F (x, y) = m or not. Then, we would have found indeed all integral solutions to a Thue
equation. Nowadays, it is actually not hard for a PC to give all solutions to a given Thue
equation, but the algorithm used is of course a bit smarter, than just checking tons of integer
pairs.
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