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@ Node polynomials
© Gromov-Witten invariants
© Tropical curves

@ Refined invariants
@ Refined polynomiality



Tropical Let d be a positive integer and let § be an integer such that

methods in
enumerative

geometry — —
0<é6< (dl)zﬂ

Put n= 993 5,

polynomials

Let us define the function
N§:(CP?)" — Nu {0},

where NV9(P) is the number of nodal curves C c CP?
o of degree d,
@ with exactly § non-degenerate double points,

@ containing the points set P c C
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enumerative

geometry For d = 1, we have that § = 0 and n=2.
P f P = (p1,p2) € (CP?)?, then

o) 1 p#Ep
polynomials Nd (P) B { (0.¢] p]_ = p2

Example d =2

For d = 2, we have that § =0 and n=5.
If P e (CP?), then

% pj=pj
NS(P) =4 0 pi,pj, pk are colinear
1  otherwise
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Andr Given any 5 different (any two) points in the plane, there is one
conic passing through them.

Node
polynomials

Ax? + Bxyyy + Cy2 + Dxy + Eyy + F =0

3 xayi yioxa oy 1 g
X5 xoy2 ys X2 ya 1 c
A= xys v x3 y3 1[; =15l Ax=0
Xo Xaya Yi Xa ya 1 £
X2 xsys Y2 x5 ys 1 F
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enumerative d(d o 3)

gemet Given any B pairwise different points in the plane, there
Andrés

Joramile is one curve of degree d passing through them.

Moreover, if the point are in a generic configuration or in
general position, there is exactly one curve of degree d
passing through them.

polynomials

pairwise different points

no three colinear points

o
o
@ no six points belonging to a conic
@ no ten points belonging to a cubic
o
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Node N(S(d) = Ng(P)
polynomials

where P is a generic configuration of points.

Example § =0

N°(d)=1,vd > 1.
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d(d+3)
space Cyg:=CP™ 2 .
Pu The discriminant of the space of degree d curves is the set
Node . .
polynomials Dd = {C € Cd | C 1S S|ngu|ar}.

i.e., if f€C[x,y,z]"°™ such that C = {f =0}, then there exist
a point p € CP? such that

af |ax(p) = 0

of [dy(p) =0
af 9z(p) = 0



Tropical
methods in
enumerative

geometry

@ The discriminant Dy is an algebraic subvariety of C4 of

Nod codimension 1.
ode

olynomials e . . I . ”
o @ Dy has a stratification given by “how singular’ a curve can
be, where the open strata correspond to curves having

exactly one singular point of nodal type.

This means that a generic point of Dy represents a nodal curve
of degree d with § = 1!.
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Now, if L= CP! is the projective line given by the restriction of
the M —1 points in P, then we have that

PL

Node N=1(d) = number of curves in the intersection of L and Dy.
polynomials

=L-Dy

= deg(Dy)

=3(d-1)?

given that d > 3.

NO(d) is also know as a Severi degree. J
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Node
polynomials

Is there a polynomial Ny e Q[d] such that

N°(d) = Ns(d) for d >>0?

@ 0=1,2,3 19th-century (§ =1 J. Steiner 1848).
@ 5 =4,5,6|. Vainsencher 1995.
@ §=7,8S. Kleiman and R. Piene in 2001.

S. Fomin and G. Mikhalkin showed that for every § > 1, there
exists a node polynomial Ns(d) of degree 26 which satisfies
NO(d) = Ns(d) for d > 24.

Computations and more recent proofs show that this holds for
d>0+2.



Examples of node polynomials
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Na(d) =
Na(d) =

polynomials

Na(d) =
Ns(d) =

No(d) =1,
Ni(d) = 3(d—1)?,

g(d— 1)(d — 2)(3d” — 3d — 11),

a2

9 9 423 . 829
5ct‘i —27d° + 54‘ + 7d“ —2294% — =& +525,

%d" —27d" 4+ %dﬁ — 642d* — 2529d° + 4881 + @d, 8865,

81 81 27 2349 127071 128859 59097 3528381
0 —g? — % 4 — 104445 — d® + d? & —

40 4 8 4 20 8 2 40
946929

d 4153513
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19683 55 10683 op G961 g LTBLTRT op 4520277 5y 562059 5

= 35a7584000 128128000 2362500 | 3042400°  1971200° 9856
BOBTSSE00 oy  B2L4288411 o 4860008991 o 63174205080 1o 33287284467 i

788480 it 1254400 89600 358400 89600
Node 3103879378581 ;,  4913807521304691 ¢ 8991788(KK}lGS()Td15 2790864380503594153 qt
polynomials 985600 27596800 8968960 ) ) 44844800
_ A68967272863997483 43 318443311640108577 a2 328351365725506869 |
51251200 1971200 985600
1120586814080571923 o 9448861028448843949d9 il 30880785216736406143d8
358400 1254400 689920
444525313669622586903 a7+ 11429038221675466251.}“ _ 269709254062572016617
3942400 24640 246400
_ T4660630664748878665353 4 p 140531359469510983018159 5y 16863931195154225977601 ,
22422400 22422400 1121120
_ 6431445448682534908541—3264-4—422296329680.

4004

Ni4(d)




Tropical Given X a projective complex surface

methods in
enumerative

cometry @ can we define the invariant N;s((d)?
Andrés Yes, but we need to redefine the degree.
Pucntes @ can we still define sequences Nx(d)?
Node Why not, multiples of the new degree may work.
@ are these sequences polynomials?

In some cases, we can proof they are!

@ Is there a One polynomial to rule them all, One polynomial
to find them, One polynomial to bring them all and in the
computations bind them?

Wouldn't it be nice!

N&(L) = Ps(L2, £ K, K3, &2(X)) ]




Gromov-Witten invariants
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C2+C'Kx+2

+4 =
& >

Gromov-
Witten

invariants We call the Gromov-Witten invariant of a surface X the number

Definition

GWx(g,0,d,P)=#({Cc X|g(C)=g,[C]=d,Pc C})

where C is a nodal curve, d ¢ Hy(X,Z), P is a generic
configuration of points in X.
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Theorem

If X is a smooth projective complex surface, then the number

GWX(gv 57 C77 P)
Gromov-
imvarionts is independent of P as long as P is a generic configuration of

points.

GW?((J) = GWX(g7 57 J: P)



Gromov-Witten invariants examples
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Examples:

o GW2,»(1)=1
° va‘J 0p(2) =1
Gromov-
i\/l:/\i';:?:nts ° CP2(3) - 1
(d-1)(d-2)
o GW ., ° (d)=1

GWp2(3) =12=3(3-2)?
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Setting Ny = GW(%PQ(d), we have that

3d-4\ 5 (3d-4
Ny = Ng, Ny (dfdg( ) ~ d; d2( ))

dl"zd2=d ! 2 3d1 - 2 3d1 - ].
Gromov-

Witten

invariants To get all the Ny, we only need to know Nj, the number of
lines through two points.

@ generalized to higher genus by Caporaso and Harris.

@ generalized to easy toric surfaces using Tropical geometry.



Rational plane curves
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Ny =1
N; =12

Ny = 620

. Ns = 87304

_Witte_:n N6 = 26312976

Ny = 14616808192

Ng = 13525751027392

Ny = 19385778269260800

Nio = 40739017561997799680

Nyp = 120278021410937387514880
Nio = 482113680618029292368686080




Welschinger invariants

Tropical
methods in

WU Over the reals it is a different story.

geometry

GWpp2(g=0,6=1,d = 3,P) = 8,10, or 12

Theorem

Gromov-
Witten . h(C
invariants WR]Pz(d) T Z(_l) ( )
C
is invariant with respect to configurations of points P ¢ RP? in

general position.
The sum runs over all curves C of degree d and genus 0

containing P. h(C) is the number of hyperbolic nodes.




Hyperbolic nodes
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—_—— Real genus 0 curves of degree 5.

Gromov-
Witten
invariants

h(C) =0 h(C') =1



Welschinger invariants for non-totally real

configurations

Tropical

methods in
enu:nerative Let S, te N Such that 25 + 1 = 3d - 1

geometry

e Let P a configuration of points in CP? such that exactly ¢
Puentes points belong to RP? and s couples of points are complex
conjugated.
Witten
invariants . . h(C
Wip2 (d; 5) = 3 (-1)(©)

C

is invariant with respect to configurations of points P c RPP? in
general position.

The sum runs over all curves C of degree d and genus 0
containing P. h(C) is the number of hyperbolic nodes.
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Wep(1) =1
o WRPZ(Q) =1

o Wip2(4;0) =240
Wiz (d;0) = Wipe (d RP
® Woeee(d:0) = W () o Wopa(4;1) = 144
Gr_omov— o W 4,2 :80
i\/l:/\:';:?:nts [ WR]PZ(?), O) = 8 R]Pz( )
o Wip2(4;3) =40
° Wpp2(3;1) =6
o Wpype(4;4) =16
° Wgp2(3;2) =4
o Wpgp2(4;5) =0
o Wpp2(3:3) =2
© Wep2(3;4) =0
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Wip2 (6;0) = 2845440
Wip2 (6; 1) = 1209600
Wip2 (6 2) = 490368
Wip2 (6;3) = 188544
Wip2 (6;4) = 67968
Wip2(6;5) = 22400
Wip2 (6;6) = 6400
Wep2 (6;7) = 1536
Wep2(6;8) = 1024

Wpp2 (5;0) = 18264
W2 (5:1) = 9096
Wpa (5;2) = 4272
Wp2 (5;3) = 1872
Wp2 (5: 4) = 744
W2 (5;5) = 248
Wep2(5;6) = 64
Wigp (5:7) = 64

Gromov-
Witten
invariants
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@ Are these invariants always positive?
Wip2(7;10) = 14336

— Wip2 (8; 11) = —280576

imvarionts @ Are these decreasing sequences?

Wip2(9;12) = 3932160

Whp2(9;13) = 17326080



Examples of tropical curves in RIP?
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Tropical
curves
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Consider the function

. (C 0 — R?

Log:
& (z1,2) — (logl|zi,log|2])

If C c CP? is a curve, we define its amoeba by

Tropical ‘AC = Log( C)
curves {l_og(z7 W) | [Z: w 1] € C and (Z, W) € (C A 0)2} .

This amoeba contains a spine, that we would define as the
tropicalization of the curve Trop(C).



Examples of amoebas in R?
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322+45zw+wd +1
w-2z-1

Tropical
curves

2 3 2W3 3

l+z+Z22+22+ 22w +10zw +  502% +832°w + 24zw? + wi +
1222w + 1022 w2 39272 + 414zw + 50w? — 28z +
59w — 100
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Let

T=Ru{-oo}

endowed with the operations

a® b=max{a, b}, a®b=a+b.

Tropical
GIIRGE Tropical polynomials are piecewise linear functions.

n .
Paiex® = m%x{a,- +1i-x}
i=0 i=



Examples of a tropical polynomial
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le2ex00ex?e (-1)®x®
max{1,2 + x,2x, -1 + 3x}

The roots of the polynomials
are the points were the graph is
not linear, i.e., the values x
Tropical ’ where the maximum f(x) is
e achieved at least twice.
/ The multiplicity of the root is
the change of slope of the
adjacent linear pieces.




Examples of a tropical roots
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Tropical
curves

1920x000x° 0 (-1)®x’ 1020x00020x°e (-1)®x>
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geometry Let f € R[x,y] be a polynomial. We define

Viiop(f) = {(x,y) e R? | f(x,y) is achieved at least twice}

0oxdyd(-1)xy®—-2x>@—2y>

Oeoxoy
Tropical
curves

Yy

2y—2
T+y—1
0 X i 2x—2
0 X




Connection to classical algebraic geometry

Tropical
methods in
enumerative

geometry

Andrés

B Let K be algebraically closed field with a non-trivial valuation

val: K — RuU {oo}. Let =3 ye aijx'y) € K[x,y] be a
polynomial. We define

Trop(f) = €@ val(a;)) ®x® @ y®
(idyel

Tropical
curves

Kapranov’s theorem

Trop (V(f)) = V1iop (Trop(f))




Enumeration of tropical curves |

Tropical
methods in

enumerative Gngg(d,g] = number of tropical curves of degree d and genus g
ECiELY passing through 3d + g — 1 given points in R2.

Example
d = 1. How many lines through 2 points?

Tropical

curves



Enumeration of tropical curves |

Tropical
methods in GW[,.(d, g) = number of tropical curves of degree d and genus g

enumerative

geometry passing through 3d + g — 1 given points in R2,

Example
d = 1. How many lines through 2 points?

Tropical

curves

GW,(1,0) =1




Enumeration of tropical curves |l

Tropical
methods in GWng(d.g) = number of tropical curves of degree d and genus g

enumerative

geometry passing through 3d + g — 1 given points in R?.

Example
d = 2. How many conics through 2 points?

Tropical [

curves



Enumeration of tropical curves |l

Tropical
e iy GWEP2(d.g) = number of tropical curves of degree d and genus g

enumerative

geometry passing through 3d + g — 1 given points in R2.

Example
d = 2. How many conics through 2 points?

Tropical

curves

GWZ,.(2,0)=1



Enumeration of tropical curves IlI
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geometry
2 _— 1(

:?? GWCPQ(S,O) = 12

Tropical #C:4 I—LC—I :#/;%ﬁ( [J.C—]_
pc =1 pue =1 pc =1 S pc =12




Tropical invariants
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Theorem (Mikhalkin)

GWep2(d, g) = number of tropical curves counted with multiplicity

wey= I nw)

v vertex

Tropical ,U'C(V) ] |W1W2 det(V]_} 72>)|

curves



Refined invariants

e uc(v) = |wyw, det(vi, ¥3))

enumerative

geometry 73)
po(v) _pc(v)
2 —_ q Vo
pe(v) = 1 -1
q 2 - q 2

Theorem (Block-Gottsche, ltenberg-Mikhalkin)
Counting tropical curves with multiplicity 1c(C) yields an
invariant Ggp2(d, g) € Q[g*!]

Remark
Refined GCI:PQ(CL g){l) = GW(CPQ(d? g)

invariants

Example
Gep2(1,0)=1  Gep(2,0)=1  Gepa(3,0)=q¢ ' +10+g

Gep2(4,0) = g2 + 13g72 + 94g™! + 404 4 94q + 13¢° + ¢°



Examples of tropical curves in RIP?
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Refined
invariants
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Systematic study of graphs: floor diagrams
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Floor diagram of a cubic curve
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Marked floor diagram of a rational cubic curve
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Rational cubics
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Floor diagrams rational cubics
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GW'(d,g)= 3 pc(D)
(D,m)

where the sum runs over all marked floor diagrams of degree d
and genus g, and

pe= I (w(e))?.

ecEdge(D)

In the same fashion,

G(dg)a)= > I (ql—q).

(D,m) ecEdge(D)




Refined invariants for rational curves
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For genus 0 curves we have

Gepa (d, g = 0)(~1) = Wepa(d).

For a partition 2s + t = 3d — 1 we can define purely
combinatorially

Gep2(d, g = 0;5)(q)

as refine invariant satisfying

Refined
invariants

Gep2(d, g =0;5)(-1) = Wyp2(d;s).
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Pairs of complex conjugated points are represented by a set S
of couples of consecutive marked points {/, i+ 1} that can be
infinitely close without changing the genus of the diagram.

Refined
invariants
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defined by

us(D,m)(q) = [T [w(e)](q) [T [w(e)](¢?)

EEEQ eeE1

[w(e)] x [W(e’)]Qx [w(e) +w(e)] (@)

{e,e’}eE> [

if (D, m) is compatible with S, and by

Refined
invariants

ps(D,m)(q) =0

otherwise.
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S-multiplicities of floor diagrams rational cubics
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Refined
invariants

S-multiplicities of floor diagrams rational cubics |l




Refined node polynomiality
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methods in
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eometry If we fix § the number of nodal points of the curves, we can
calcute for every degree d:

o Ns-o(d) =1
o Ny =3(d-1)?

The polynomiality property holds for the refined version
o GWip2(0=0)(d) =1
Refined ° GW(C]PZ(6 = 1)(q)(d) =

(d-1)(d-2)

> q+(c/—1)(2c/—1)+wq*1

2



Polynomiality with respect to the degree
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GEZ(d=1)(q)=1

° GE2(d=2)(q)=1
o G50(d=3)(q)=q+10+q!
o GEV(d=4)(q) = g3 +13¢2 +04q " +404+94q+13¢>+¢°

For a fixed genus, the coefficient of fixed codegree are
Refined polynomial with respect to the degree.

polynomiality




Polynomiality with respect to s
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Gp,(0;0) =g +13¢7°+ 94g7'+ 404 +94g+ 13¢° +¢°
Gp,(0;1) =g +11g7%+ 7097'+ 264 +70q+ 11¢° +¢°
Gp,(0;2)=q2 +9¢7%2+ 50g '+ 164 +50q+ 9¢*> +q°
Gp,(0;3) =g +7g7%+ 34g7'+ 96 +34g+ 7> +¢°
Gp,(0;4) =g +5¢g72+ 22971+ 52 +22g+ 5¢* +q°
Gp,(0;5) =g +3¢g72+ 1l4g7'+ 24 +l4g+ 3¢> +¢°

For a genus 0 and degree d, the coefficient of fixed codegree
are polynomial with respect to the number of complex
conjugated pairs s.

Refined
polynomiality




Examples of polynomials for CPP?

Tropical
methods in
enumerative

geometry

Yd >3, (Ga,(0;8)), =t+2

12+ 4t 11
Va2 4, (Ga,(0;8))y= — LT

2
t* + 612 + (3y + 35)t + 6y + T2
VA2 5, (G, (0:8); = Gy L3926
. 4+ Bt + (6y + T4)t2 + (24y + 304)t + 3y° + T2y + 621
Vd 26, (Ga,(0:9)),; = Gy + 15 + (B4 + 304) + 3y + T2y
1 .
Vd 27, (Ga,(0:8))5= g x (£° + 10¢* + (10y + 130)8° + (60y + 800)t% + (153° + 380y + 3349)¢
430y + 780y + 6030)

Refined
polynomiality
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Universal polynomials




Examples of polynomials for CPP?

Tropical
methods in
enumerative

geometry

pofa bm) =1,
pifo,bm) = 3b"m 4 Gab  bm da db+d,

prla,bm) = ab"m‘ + 18ab'm — 65'm” < 1Ha®b® — Mab'm — 126"m + 28" m” — 24a”b — 24ab” + Babm — b m + Ha®

— ab 4+ 8bF 4 S bm o+ 2da + 235 — 30,
pala b,m) = abf‘nﬁ + 2Tab’m? — 0b°m® 4 540”6 m — Bdabtm® — 188°m? 4 65 'm® 4+ 36a’B® — 10807 m — T2ab'm
137 132

2

E 4 o P - - - ? .
+ 36ab®m? — 216'm? — .-;b’w‘ — 72276 — 72070 4+ T2 m — Bdab'm — Hab m? 4 246'm
+ 48a"b — 840*b® — 16a%bm + 480b* + 2T4ab m + 1370%m — 316%m* — Tu" + 274a%b + 2T4ab” — 124abm
T4 T48

bm — -2 TIH- 452

a2 ; ; N
= Tb“ — G8b*m — 1240” — 136ab — 1245° —

Refined
polynomiality
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