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These are the notes for the tropical part of the talk, corresponding to the introduction of
tropical notions used in our resutls, explained in the second part of the talk. For references I
suggest many of the introductory books to the subject, in particular the online book Tropical
Geometry by Mikhalkin and Rau, or to write to any of the speakers, we will be happy to answer
your questions.

1 Toric deformations

Given a polynomial f =
∑

I∈A αIx
i1yi2 ∈ k[x, y], where A ⊂ Z2

≥0 is a finite set and I = (i1, i2),
we consider the family of polynomials given by

ft(x, y) =
∑
I∈A

αIx
i1yi2tφ(I),

where φ : A −→ Q is the restriction of a convex rational function to the set of indices A.
We can think of the variable t as a variable in k∗ whose specialization to t = 1 is our initial

polynomial.
We can consider the family ft as an element of the polynomial ring k{{t}}[x, y] with coefficients

in the field of Puisseux series k{{t}}, since it has a finite amount of monomials and the exponent
in the variable t are rational.

The field of Puisseux series has a valuation given by

ν :
k{{t}}∗ −→ Q∑∞
i=i0

ait
i/N 7−→ −i0/N

.

Such valuation satisfy

ν(x+ y) = max{ν(x), ν(y)} if ν(x) ̸= ν(y),
ν(xy) = ν(x) + ν(y).

Given two polynomials ft, gt ∈ k{{t}}[x, y], we have that the system

ft(x, y) = gt(x, y) = 0

has a solution in k{{t}}2 given by

x(t) = x0t
i0 + higher order terms in t,

y(t) = y0t
j0 + higher order terms in t.

if and only if the term of lowest power in t appears twice in ft(x(t), y(t)) and gt(x(t), y(t)).

2 Tropical curves and tropicalization maps

2.1 Tropical curves

The tropical semifield is the set T = R ∪ {−∞} endowed with the operations (denoted by “·”)

“x+ y” = max{x, y},
“x · y” = x+ y.

is a semifield (satisfies all axioms of a field but the existence of additive inverse).
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A polynomial p ∈ T[x] has the form

p(x) = “

d∑
i=0

aix
i” =

d
max
i=o

{ai + ix}.

A polynomial p ∈ T[x, y] has the form

p(x, y) = “
∑
I∈A

aIx
i1yi2” = max

I∈A
{aI + i1x+ i2y}.

Hence, a polynomial in n variables with coefficients in T defines a function in (T∗)n = Rn that is
piece-wise linear. Its tropical locus is defined as the locus of non-differentiability, i.e., the points in
Rn such that the maximum is obtained at least twice. We denoted it by VTrop, and in two variable
it is expressed by

Vtrop(p) = {(x, y) ∈ R2 | ∃(i, j) ̸= (i′, j′) ∈ A (p(x, y) = ix+ jy + ai,j = i′x+ j′y + ai′,j′)}.

2.2 Tropicalization maps

Using the aforementionned valuation map

ν : k{{t}}∗ −→ Q

we can tropicalize a polynomial by taking the valuation of its coefficients and reinterpreting the
addition and multiplication

“ · ”:
k{{t}}[x, y] −→ T[x, y]∑
I∈A αI(t)x

i1yi2 7−→ “
∑
I∈A

ν(αI(t))x
i1yi2” = max

I∈A
{ν(αI(t)) + i1x+ i2y} .

On the other hand, we can tropicalize the solutions to a polynomial (in two variables in this
example), at the level of sets, by taking the closure in R2 of the image of the valuation taken
point-wise.

Trop: X ⊂ (k{{t}}∗)2 7−→ {(ν(α), ν(β)) | (α, β) ∈ X} ⊂ R2.

If X is an algebraic curve, its tropicalization is a tropical curve, defined by the tropicalization of a
defining polynomial for X, given that k{{t}} is algebraically closed. In other words, we have the
following theorem.

Theorem 2.1 (Kapranov). If k{{t}} is algebraically closed, then

VTrop(“f”) = Trop(V (f)).

3 Combinatorics of tropical curves

We redefine the concept of tropical curve from a combinatorial point of view. The following
definition coincide with a tropical curve defined algebraically as before and it is known in the
literature as an embedded abstract tropical curve.

Definition 3.1. A tropical curve C is a finite weighted graph (V,E, ω) embedded in R2, where
E = E◦∪E∞ is the disjoint union of non-directed edges E◦ ⊂ {e ⊂ V | Card(e) = 2} and univalent
edges E∞ ⊂ V , such that every edge e ∈ E◦ embeds into a segment of the graph of a line given
by aex + bey = ce with ae, be ∈ Z, every edge l ∈ E∞ embeds into a ray of a line aex + bey = ce,
and every vertex v ∈ V satisfies ∑

e∈E,v∈e

ω(e) · ue = 0

where ue =
±1

gcd(ae, be)
(be,−ae) is a primitive vector oriented outwards from v, and ω : E −→ Z is

a non-negative function.
We call the degree of the tropical curve C the multiset of primitives vectors associated to its

legs {ul | l ∈ E∞}, counted with multiplicities.
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Figure 1: The dual subdivision of “(−1)x2 + (−1)y2 + 1xy + x + y + 0. Taken from Tropical
Geometry by Mikhalkin and Rau.

3.1 Dual subdivision

To a polynomial p ∈ T[x, y] given by

p = “
∑
I∈A

aIx
i1yi2”, aI ̸= −∞

we associated a refined integer polygon in R2 constructed in the following way. First, the Newton
polygon NP of p is the convex hull

NP(p) = Conv
(
{(i1, i2) | a(i1,i2) ̸= −∞}

)
= Conv(A),

endowed with the refinement given by the projection to R2 of the edges of the upper faces of the
polyhedron

Conv
(
{(i1, i2, a(i1,i2)) | a(i1,i2) ̸= −∞}

)
.

This refinement produces a graph which we call DS(p) the dual subdivision of p. There is a
one-to-one correspondance of the elements

VTrop(p) DS(p)
vertex v connected component of NP(p) \DS(p)
edge e edge e′

connected component C of R2 \ VTrop(p) vertex vC

Moreover, the corresponding edges e and e′ are perpendicular, and the degree of a curve corresponds
through this duality to the Newton polygon.

3.2 Tropical intersection

We say that two curves intersect tropically transversely if they intersect in finitely many points,
and every point in this intersection is not a vertex of any of the curves. Locally, this intersections
look like the one in Figure 2.

If two such curves intersect transversely at a point p, the multiplicity of the intersection at this
point is given by

multTp(C1, C2) = ω1(e1)ω2(e2) |det(ue1 ,ue2)| ,
where e1 and e2 are the edges of C1 and C2 containing p, ω1 and ω2 are the weight functions, and
ue1 and ue2 are the primitive vectors of e1 and e2, respectively.

Theorem 3.2 (Tropical Bézout, Bernstein–Kushnirenko theorem). Let C1 and C2 be tropical
curves with Newton polygons ∆1 and ∆2, respectively. If C1 and C2 intersect tropically transversely,
then

C1 · C2 =
∑

p∈C1∩C2

ω1(e1)ω2(e2) |det(ue1 ,ue2)| = area(∆1 +∆2)− area(∆1)− area(∆2).

Here, the polygon ∆1 +∆2 is the Minkowski sum of the polygons.
The case when ∆1 = Conv({(0, 0), (d1, 0), (0, d1)}) and ∆2 = Conv({(0, 0), (d2, 0), (0, d2)})

correspond to curves in the projective plane. Where

∆1 +∆2 = Conv({(0, 0), (d1 + d2, 0), (0, d1) + d2})

and

C1 · C2 = area(∆1 +∆2)− area(∆1)− area(∆2) =
(d1 + d2)

2

2
− d1

2
− d22

2
= d1 · d2.
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Figure 2: Tropical transversal intersection

3.3 Enriched tropical curves and Viro Polynomials

Viro’s patchworking is a combinatorial construction yielding topological properties of real algebraic
curves. This is an algorithmic construction whose input is a subdivision of a polygon and a set of
signs σ(I) (either plus or minus) for every integer point I in the polygon (boundary and interior).
The Viro polynomial associated to this data is the polynomial∑

I∈∆∩Z2

σ(I)tφ(I)

where φ is a convex piece-wise linear function inducing the subdivision.
Based on this ideas, we generalized this concept by changing the notion of signs with elements

of k∗/(k∗)2, giving rise to the following definition.

Definition 3.3. An enriched tropical curve C̃ is a tropical curve with an element of k×/(k×)2

assigned to each connected component or equivalently to each vertex in the dual subdivision. We
call such an element of k×/(k×)2 coefficient of the component/vertex of the dual subdivision. We
write C for the underlying (classical) tropical curve.
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