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The Deligne-Grothendieck conjecture

o (Grothendieck, Récoltes et Semailles)
For X a regular scheme, there exists a “Chern
homomorphism”

chx : Ko(DE¢(Xet, N)) — CH*(X) @ Ko(A)

such that for f : X — Y a proper morphism between regular

schemes,
chy (Rf.F) = fi(chx F - ¢(f))

where c(f) is the total Chern class of
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The Deligne-Grothendieck conjecture

o (Grothendieck, Récoltes et Semailles)
For X a regular scheme, there exists a “Chern
homomorphism”

chx : Ko(DE¢(Xet, N)) — CH*(X) @ Ko(A)

such that for f : X — Y a proper morphism between regular
schemes,
chy (Rf.F) = f(chxF - c(f))
where c(f) is the total Chern class of
@ This is a Riemann-Roch type formula, where the Todd class is
replaced by the total relative Chern class
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The Deligne-Grothendieck conjecture

o (Grothendieck, Récoltes et Semailles)
For X a regular scheme, there exists a “Chern
homomorphism”

chx : Ko(DE¢(Xet, N)) — CH*(X) @ Ko(A)

such that for f : X — Y a proper morphism between regular
schemes,
chy (Rf.F) = f(chxF - c(f))

where c(f) is the total Chern class of

@ This is a Riemann-Roch type formula, where the Todd class is
replaced by the total relative Chern class

@ For schemes of finite type over the field of complex numbers,
the Deligne-Grothendieck conjecture is solved and extended to
singular schemes by MacPherson
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Constructible functions

@ For X a scheme, let Cons(X) be the ring of (Z-valued)
constructible functions on X, i.e. functions f : X — Z such
that there exists a finite stratification X = LLX; into
constructible subsets such that fx. is constant
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Constructible functions

@ For X a scheme, let Cons(X) be the ring of (Z-valued)
constructible functions on X, i.e. functions f : X — Z such
that there exists a finite stratification X = LLX; into
constructible subsets such that fx. is constant
& For any i € Z, f~({i}) is constructible, and non-empty
only for finitely many i's
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Constructible functions

@ For X a scheme, let Cons(X) be the ring of (Z-valued)
constructible functions on X, i.e. functions f : X — Z such
that there exists a finite stratification X = LLX; into
constructible subsets such that fx. is constant
& For any i € Z, f~({i}) is constructible, and non-empty
only for finitely many i's

o As abelian group, Cons(X) ~ @, Z -1z, where Z runs
through irreducible closed subsets of X
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Constructible functions

@ For X a scheme, let Cons(X) be the ring of (Z-valued)
constructible functions on X, i.e. functions f : X — Z such
that there exists a finite stratification X = LLX; into
constructible subsets such that fx. is constant
& For any i € Z, f~({i}) is constructible, and non-empty
only for finitely many i's

o As abelian group, Cons(X) ~ @, Z -1z, where Z runs
through irreducible closed subsets of X

@ We have a canonical map

X : Ko(Dbs(Xer, N)) = Cons(X) @z Ko(N)
F = (x = [Fx])
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MacPherson’s theorem holds for schemes of finite type over C
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MacPherson's theorem

MacPherson’s theorem holds for schemes of finite type over C
@ Theorem 1: there exists a unique functor

Cons : Sch/C — Ab
X +— Cons(X)

f: X = Y proper = £, : 1y — (y = X2P(F1(y) N W))
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MacPherson's theorem

MacPherson’s theorem holds for schemes of finite type over C
@ Theorem 1: there exists a unique functor

Cons : Sch/C — Ab
X +— Cons(X)

f: X = Y proper = £, : 1y — (y = X2P(F1(y) N W))

@ Theorem 2 (MacPherson): there exists a unique natural

transformation of additive functors c®M : Cons(—) — CH,(-)
such that

o f proper, f,c°M = cSMf,
o For X smooth, c*M(1x) = c(Tx) N[X]
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MacPherson's theorem

MacPherson’s theorem holds for schemes of finite type over C
@ Theorem 1: there exists a unique functor

Cons : Sch/C — Ab
X +— Cons(X)
top

f:X — Y proper — f, : 1y = (y = x2P(F 1 (y) N W))

@ Theorem 2 (MacPherson): there exists a unique natural
transformation of additive functors c®M : Cons(—) — CH,(-)
such that

o f proper, f,.cM = cSMf,
o For X smooth, c*M(1x) = c(Tx) N[X]

@ Theorem 2 implies the Deligne-Grothendieck conjecture by
multiplying by ¢(Tx) and by composing with x
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Whitney conditions

@ M smooth manifold over C or R, X C M closed subset
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Whitney conditions

@ M smooth manifold over C or R, X C M closed subset

@ Xo:0=X_1C Xy C---C X, =X nested closed subsets,
such that each X; — X;_1 is either a smooth manifold of
dimension i or empty
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Whitney conditions

@ M smooth manifold over C or R, X C M closed subset

@ Xo:0=X_1C Xy C---C X, =X nested closed subsets,
such that each X; — X;_1 is either a smooth manifold of
dimension i or empty

@ A stratum is a connected component of some X; — X;_1
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Whitney conditions

@ M smooth manifold over C or R, X C M closed subset

@ Xy :0=X_1C Xy C---C X, =X nested closed subsets,
such that each X; — X;_1 is either a smooth manifold of
dimension i or empty

@ A stratum is a connected component of some X; — X;_1

o Setting: S,, S two strata, x; € So, yi € S, x € Su N Sz
such that x; — x, y; — x, and the lines X;y; — £ in some
projective space, and T,,53 — V in some Grassmannian
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Whitney conditions

M smooth manifold over C or R, X C M closed subset

Xe :0=X_1CXgC---CX,=X nested closed subsets,
such that each X; — X;_1 is either a smooth manifold of
dimension i or empty

A stratum is a connected component of some X; — X;_1

Setting: S,, S two strata, x; € Su, yi € S, x € Su N Sz
such that x; — x, y; — x, and the lines X;y; — £ in some
projective space, and T,,53 — V in some Grassmannian

Conditions: (A) T,5, C V (B){C V
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Whitney conditions

M smooth manifold over C or R, X C M closed subset

Xe :0=X_1CXgC---CX,=X nested closed subsets,
such that each X; — X;_1 is either a smooth manifold of
dimension i or empty

A stratum is a connected component of some X; — X;_1

Setting: S,, S two strata, x; € Su, yi € S, x € Su N Sz
such that x; — x, y; — x, and the lines X;y; — £ in some
projective space, and T,,53 — V in some Grassmannian
Conditions: (A) T,5, C V (B){C V

We have (B) = (A)
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Whitney stratification

© Any algebraic or analytic variety over R or C, any
semi-algebraic or semi-analytic variety, any subanalytic set has
a stratification satisfying (B) (Whitney stratification)
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Whitney stratification

© Any algebraic or analytic variety over R or C, any
semi-algebraic or semi-analytic variety, any subanalytic set has
a stratification satisfying (B) (Whitney stratification)

@ If Z C X is a locally finite union of algebraic or analytic
subvarieties, then there is a Whitney stratification such that Z
is a union of strata
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Whitney stratification

© Any algebraic or analytic variety over R or C, any
semi-algebraic or semi-analytic variety, any subanalytic set has
a stratification satisfying (B) (Whitney stratification)

@ If Z C X is a locally finite union of algebraic or analytic
subvarieties, then there is a Whitney stratification such that Z
is a union of strata

© Iff: X — Y is an algebraic or analytic map, then there are
Whitney stratifications such that for any stratum S of X, the
map S — f(S) induced by f is a submersion to a stratum
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Proof of Theorem 1

@ The map is well-defined and unique since the 1's form a
basis of Cons(X)
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Proof of Theorem 1

@ The map is well-defined and unique since the 1's form a
basis of Cons(X)
o Let X =US;, Y = UT; be Whitney stratifications such that
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Proof of Theorem 1

@ The map is well-defined and unique since the 1's form a
basis of Cons(X)
o Let X =US;, Y = UT; be Whitney stratifications such that
@ W is a union of strata
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Proof of Theorem 1

@ The map is well-defined and unique since the 1's form a
basis of Cons(X)
o Let X =US;, Y = UT; be Whitney stratifications such that

@ W is a union of strata
Q HT}) = Ukes, Sk
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Proof of Theorem 1

@ The map is well-defined and unique since the 1's form a

basis of Cons(X)
o Let X =US;, Y = UT; be Whitney stratifications such that
@ W is a union of strata

Q (Tj) = Ukes, Sk
© The induced map f : Xx — T; is submersive, and in particular

a topological locally trivial fibration
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Proof of Theorem 1

@ The map is well-defined and unique since the 1's form a
basis of Cons(X)
o Let X =US;, Y = UT; be Whitney stratifications such that
@ W is a union of strata
Q HT}) = Ukes, Sk
© The induced map f : Xx — T; is submersive, and in particular
a topological locally trivial fibration

Then forany y € T}, Xe(FHy) N W) =3 xe(F1(y) N Sk)
is constant = f.1y is constructible
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Proof of Theorem 1

@ The map is well-defined and unique since the 1's form a
basis of Cons(X)
o Let X =US;, Y = UT; be Whitney stratifications such that
@ W is a union of strata
Q HT}) = Ukes, Sk
© The induced map f : Xx — T; is submersive, and in particular
a topological locally trivial fibration

Then forany y € T}, Xe(FHy) N W) =3 xe(F1(y) N Sk)
is constant = f.1y is constructible

@ The functoriality follows from a similar argument, using the
fact that x. is multiplicative along fiber bundles
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Proof of Theorem 1

@ The map is well-defined and unique since the 1's form a
basis of Cons(X)
o Let X =US;, Y = UT; be Whitney stratifications such that
@ W is a union of strata
Q HT}) = Ukes, Sk
© The induced map f : Xx — T; is submersive, and in particular
a topological locally trivial fibration

Then for any y € Tj, xe(F~1(y) N W) = X, xe(F1(y) N Sk)
is constant = f.1y is constructible
@ The functoriality follows from a similar argument, using the

fact that x. is multiplicative along fiber bundles
Uniqueness in Theorem 2: let o € Cons(X). By resolution of
singularities and induction, there exists (n;) € Z and proper
morphisms f; : W; — X with W; smooth such that o = ) nifi, 1y,
= cM(a) = 3 nific(Tw,).



The Chern-Schwartz-MacPherson class

The Chern-Schwartz-MacPherson class

MacPherson’s construction:
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MacPherson’s construction:

e Z.(X) = group of algebraic cycles on X
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MacPherson’s construction:
e Z.(X) = group of algebraic cycles on X
o cM: Z,(X) — CH.(X) Mather-Chern class
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MacPherson’s construction:
e Z.(X) = group of algebraic cycles on X
o cM: Z,(X) — CH.(X) Mather-Chern class
e Eu: Z,(X) ~ Cons(X) local Euler obstruction
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The Chern-Schwartz-MacPherson class

MacPherson’s construction:

Z.(X) = group of algebraic cycles on X

cM: Z,(X) — CH.(X) Mather-Chern class
Eu: Z,(X) ~ Cons(X) local Euler obstruction
M= Mo (Eu)!
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The Chern-Schwartz-MacPherson class

MacPherson’s construction:
e Z.(X) = group of algebraic cycles on X
o cM: Z,(X) — CH.(X) Mather-Chern class
e Eu: Z,(X) ~ Cons(X) local Euler obstruction
o M :=cMo (Eu)™t
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Nash blow-up

@ Let M be a smooth scheme over a perfect field and let
i+ X — M be a closed immersion, with X of dimension n.
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Nash blow-up

@ Let M be a smooth scheme over a perfect field and let
i+ X — M be a closed immersion, with X of dimension n.
We have p : Gr,(i*Ty) — X
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Nash blow-up

@ Let M be a smooth scheme over a perfect field and let
i+ X — M be a closed immersion, with X of dimension n.
We have p : Gr,(i*Ty) — X

@ Over the smooth locus X9, p has a section
s: X0 — Gry(i* Tym)
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Nash blow-up

@ Let M be a smooth scheme over a perfect field and let
i+ X — M be a closed immersion, with X of dimension n.
We have p : Gr,(i*Ty) — X

@ Over the smooth locus X9, p has a section
s: X% = Gry(i*Tw)

@ The Nash blow-up X is the closure of the image of s, with a
canonical morphism v : X — X by restriction of p. There is a
canonical vector bundle TX — X by restriction of the
universal bundle on Gr,(i* Tp)
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Nash blow-up

@ Let M be a smooth scheme over a perfect field and let
i+ X — M be a closed immersion, with X of dimension n.
We have p : Gr,(i*Ty) — X

@ Over the smooth locus X9, p has a section
s: X% = Gry(i*Tw)

@ The Nash blow-up X is the closure of the image of s, with a
canonical morphism v : X — X by restriction of p. There is a
canonical vector bundle TX — X by restriction of the
universal bundle on Gr,(i* Tp)

@ These data only depend on X and are independent of i
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The Mather-Chern class

@ The Mather-Chern class

M(X) = vu(c(TX) N [X]) € CH.(X)
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The Mather-Chern class

@ The Mather-Chern class

M(X) = vu(c(TX) N [X]) € CH.(X)

o Extends by linearity
M Z(X) = CH.(X)
Z n,-Z,- — Z n,'L,'*CM(Z,')

where ¢; : Z; — X is the closed immersion
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Local Euler obstruction: transcendental definition

@ M smooth C-scheme, Z C M closed subscheme, P € Z point
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Local Euler obstruction: transcendental definition

@ M smooth C-scheme, Z C M closed subscheme, P € Z point
o Let (z1,---,z,) be local coordinates of M at P, z(P) =0
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Local Euler obstruction: transcendental definition

@ M smooth C-scheme, Z C M closed subscheme, P € Z point

o Let (z1,---,z,) be local coordinates of M at P, z(P) =0

o ||z|[2=3;zZz € R = d||z||?> € (M, T*M), where T*M is
the cotangent bundle viewed as a real vector bundle
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Local Euler obstruction: transcendental definition

@ M smooth C-scheme, Z C M closed subscheme, P € Z point

o Let (z1,---,z,) be local coordinates of M at P, z(P) =0

o ||z|[2=3;zZz € R = d||z||?> € (M, T*M), where T*M is
the cotangent bundle viewed as a real vector bundle

o r e (Z, T*Z) restriction of d||z||?
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Local Euler obstruction: transcendental definition

@ M smooth C-scheme, Z C M closed subscheme, P € Z point
o Let (z1,---,z,) be local coordinates of M at P, z(P) =0
o ||z|[2=3;zZz € R = d||z||?> € (M, T*M), where T*M is
the cotangent bundle viewed as a real vector bundle
o r e (Z, T*Z) restriction of d||z||?
Lemma 3: There exists ¢ > 0 such that for any 0 < [|z|| < e
Nv-1(z) # 0, where v : Z—7
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Local Euler obstruction: transcendental definition

@ M smooth C-scheme, Z C M closed subscheme, P € Z point
o Let (z1,---,z,) be local coordinates of M at P, z(P) =0
o ||z|[2=3;zZz € R = d||z||?> € (M, T*M), where T*M is
the cotangent bundle viewed as a real vector bundle
o r e (Z, T*Z) restriction of d||z||?
Lemma 3: There exists ¢ > 0 such that for any 0 < [|z|| < e
Nv-1(z) # 0, where v : Z—7

° Th|s can be proved using Whitney condition (A) and the
Bruhat-Whitney lemma
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Local Euler obstruction: transcendental definition (1)

o Let B. :={]|z]| < ¢}, Se :={l|z]| = €}, so rj,—15, # 0

The Chern-Schwartz-MacPherson class



The Chern-Schwartz-MacPherson class

Local Euler obstruction: transcendental definition (1)

o Let B. :={]|z]| < ¢}, Se :={l|z]| = €}, so rj,—15, # 0

o Let Eu(T*Z,r) € H*(v~1B.,v 1S, Z) be the obstruction
class to extending r to a non-vanishing section of T*Z from
v~1S, to v 1B,
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Local Euler obstruction: transcendental definition (1)

o Let B. :={]|z]| < ¢}, Se :={l|z]| = €}, so rj,—15, # 0

o Let Eu(T*Z,r) € H*(v~1B.,v 1S, Z) be the obstruction
class to extending r to a non-vanishing section of T*Z from
v~1S, to v 1B,

o O € Hyy(v1B.,vtS,; Z) orientation class
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Local Euler obstruction: transcendental definition (1)

Let B. := {||z]| <€}, Sc :={]|z|| = €}, so 15, #0

Let Eu(T*Z,r) € H24(v1B.,v!S,; Z) be the obstruction
class to extending r to a non-vanishing section of T*Z from
v~1S, to v 1B,

O € Hog(v1B.,v71S,; Z) orientation class

Eu(Z)(P) = (Eu(T*Z,r),O) € 7Z local Euler obstruction
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Local Euler obstruction: transcendental definition (1)

Let B. := {||z]| <€}, Sc :={]|z|| = €}, so 15, #0

Let Eu(T*Z,r) € H24(v1B.,v!S,; Z) be the obstruction
class to extending r to a non-vanishing section of T*Z from
v~1S, to v 1B,

O € Hog(v1B.,v71S,; Z) orientation class

Eu(Z)(P) = (Eu(T*Z,r),O) € 7Z local Euler obstruction

Using stratification one show that P — Eu(Z)(P) is
constructible
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Local Euler obstruction: transcendental definition (II1)

It satisfies the following properties:
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Local Euler obstruction: transcendental definition (II1)

It satisfies the following properties:
e Eu(Z)(P) =1if Pis a regular point of Z
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Local Euler obstruction: transcendental definition (II1)

It satisfies the following properties:
e Eu(Z)(P)=1if Pis a regular point of Z
e If Zis a curve, then Eu(Z)(P) is the multiplicity of Z at P. If

Z is the cone on a smooth plane curve of degree d and P is
the vertex, then Eu(Z)(P) = 2d — d?
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Local Euler obstruction: transcendental definition (II1)

It satisfies the following properties:
e Eu(Z)(P) =1if Pis a regular point of Z
e If Zis a curve, then Eu(Z)(P) is the multiplicity of Z at P. If
Z is the cone on a smooth plane curve of degree d and P is
the vertex, then Eu(Z)(P) = 2d — d?
o Eu(Z x Z")((P,P") = Eu(Z)(P) x Eu(Z")(P")
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Local Euler obstruction: transcendental definition (II1)

It satisfies the following properties:

e Eu(Z)(P) =1if Pis a regular point of Z

e If Zis a curve, then Eu(Z)(P) is the multiplicity of Z at P. If
Z is the cone on a smooth plane curve of degree d and P is
the vertex, then Eu(Z)(P) = 2d — d?

o Eu(Z x Z")((P,P") = Eu(Z)(P) x Eu(Z")(P")

o If Z is reducible at P with Z; the irreducible components,
then Eu(Z)(P) = )", Eu(Z)(P)
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Local Euler obstruction: transcendental definition (II1)

It satisfies the following properties:
e Eu(Z)(P) =1if Pis a regular point of Z
e If Zis a curve, then Eu(Z)(P) is the multiplicity of Z at P. If
Z is the cone on a smooth plane curve of degree d and P is
the vertex, then Eu(Z)(P) = 2d — d?

o Eu(Z x Z")((P,P") = Eu(Z)(P) x Eu(Z")(P")
o If Z is reducible at P with Z; the irreducible components,
then Eu(Z)(P) = )", Eu(Z)(P)
By linearity we define the following map Eu

Eu: Z,(X) = Cons(X)
Za,-Z,- — (P = ZaiEU(Zi)(P))

which we can show to be an isomorphism by induction
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Gonzalez-Sprinberg’s algebraic formula

Theorem (Gonzalez-Sprinberg)
Eu(Z)(P) = deg(c(TZ) N s(v~(P), 2))

s(v=1(P), Z) = Segre class of the normal cone of vY(P) in Z
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Gonzalez-Sprinberg’s algebraic formula

Theorem (Gonzalez-Sprinberg)
Eu(Z)(P) = deg(c(TZ) N s(v~(P), 2))

s(v=1(P), Z) = Segre class of the normal cone of vY(P) in Z

Alternatively: Z' = BIV—I(P)Z, D = exceptional divisor, £ = NpZ'

Eu(Z)(P) = deg(cg—1(TZ — £) N [D])
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Proof of Gonzalez-Sprinberg's formula

Sketch of proof: let d be the dimension of Z
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Proof of Gonzalez-Sprinberg's formula

Sketch of proof: let d be the dimension of Z

e We may assume Z C C" and P =0. Let E be the restriction
of TC"to Z via Z % Z — C", so TZ is a subbundle of E
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Proof of Gonzalez-Sprinberg's formula

Sketch of proof: let d be the dimension of Z

e We may assume Z C C" and P =0. Let E be the restriction
of TC"to Z via Z % Z — C", so TZ is a subbundle of E

@ Choose s a Hermitian form on E. s induces T*Z ~ TZ
which sends r to an (analytic) section o5 € ['(Z, TZ)
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Proof of Gonzalez-Sprinberg's formula

Sketch of proof: let d be the dimension of Z

e We may assume Z C C" and P =0. Let E be the restriction
of TC"to Z via Z % Z — C", so TZ is a subbundle of E

@ Choose s a Hermitian form on E. s induces T*Z ~ TZ
which sends r to an (analytic) section o5 € ['(Z, TZ)

o Let V=v"Y(B) p: TZ — Z. The universal obstruction
class in H2d(TZ) given by the canonical section of p*TZ

restricts to w € H\2/d(TZ|V)
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Proof of Gonzalez-Sprinberg's formula

Sketch of proof: let d be the dimension of Z

e We may assume Z C C" and P =0. Let E be the restriction
of TC"to Z via Z % Z — C", so TZ is a subbundle of E

@ Choose s a Hermitian form on E. s induces T*Z ~ TZ
which sends r to an (analytic) section o5 € ['(Z, TZ)

o Let V=v"Y(B) p: TZ — Z. The universal obstruction
class in H2d(TZ) given by the canonical section of p*TZ

restricts to w € H\2/d(TZ|V)

@ For e small, V is a neighborhood of »~1(0) and V — v 1(0)
retracts to 0V, so 0} (w) = Eu(TZ,05) € H**(V,0V), and
we have Eu(Z)(0) = deg(ok(w) N [Z])
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Proof of Gonzalez-Sprinberg's formula (II)

e Find W C Gr(n—d, E) open and an (algebraic) section
o € T[(W, TZy) such that the restriction s, : V — W
satisfies 05 = mo 0 o 5 and 5\*v is an inverse of p* on
cohomology, where 7 : TZIW — TZ and p:W— Z are the
canonical maps
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Proof of Gonzalez-Sprinberg's formula (II)

e Find W C Gr(n—d, E) open and an (algebraic) section
o € T[(W, TZy) such that the restriction s, : V — W
satisfies 05 = mo 0 o 5 and 5\*v is an inverse of p* on

cohomology, where 7 : TZIW — TZ and p:W— Z are the
canonical maps

o It follows that

deg(of(w) N [Z]) = deg(o*m*w N [W]) = deg[W -, W]
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The Chern-Schwartz-MacPherson class

Proof of Gonzalez-Sprinberg's formula (II)

e Find W C Gr(n—d, E) open and an (algebraic) section
o € T[(W, TZy) such that the restriction s, : V — W
satisfies 05 = mo 0 o 5 and 5\*v is an inverse of p* on

cohomology, where 7 : TZIW — TZ and p:W— Z are the
canonical maps

o It follows that

deg(of(w) N [Z]) = deg(o*m*w N [W]) = deg[W -, W]

@ Use Fulton’s intersection theory to give an algebraic formula
for deg[W -, W]
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The CSM class and the characteristic cycle

The CSM class reinterpreted

@ For X/C quasi projective, MacPherson's Chern class gives rise
to a map

{constructible sheaves on X} <% CH,(X)

called the (total) characteristic class
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The CSM class and the characteristic cycle

The CSM class reinterpreted

@ For X/C quasi projective, MacPherson's Chern class gives rise
to a map

{constructible sheaves on X} <% CH,(X)

called the (total) characteristic class

e If X is smooth and if we multiply by ¢(Tx), then this answers
the Deligne-Grothendieck conjecture
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The CSM class and the characteristic cycle

The CSM class reinterpreted

@ For X/C quasi projective, MacPherson's Chern class gives rise
to a map

{constructible sheaves on X} <% CH,(X)

called the (total) characteristic class

e If X is smooth and if we multiply by ¢(Tx), then this answers
the Deligne-Grothendieck conjecture

@ This map can actually be decomposed into two steps:
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The CSM class and the characteristic cycle

The CSM class reinterpreted

@ For X/C quasi projective, MacPherson's Chern class gives rise
to a map

{constructible sheaves on X} <% CH,(X)

called the (total) characteristic class

e If X is smooth and if we multiply by ¢(Tx), then this answers
the Deligne-Grothendieck conjecture

@ This map can actually be decomposed into two steps:

{constructible sheaves on X} << {Lagrangian cycles on T*M}
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The CSM class and the characteristic cycle

The CSM class reinterpreted

@ For X/C quasi projective, MacPherson's Chern class gives rise
to a map

{constructible sheaves on X} <% CH,(X)

called the (total) characteristic class

e If X is smooth and if we multiply by ¢(Tx), then this answers
the Deligne-Grothendieck conjecture

@ This map can actually be decomposed into two steps:

{constructible sheaves on X} << {Lagrangian cycles on T*M}
{conic Lagrangian cycles on T*M} <5 CH,(X)
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The CSM class and the characteristic cycle

The CSM class reinterpreted

@ For X/C quasi projective, MacPherson's Chern class gives rise
to a map

{constructible sheaves on X} <% CH,(X)

called the (total) characteristic class

e If X is smooth and if we multiply by ¢(Tx), then this answers
the Deligne-Grothendieck conjecture

@ This map can actually be decomposed into two steps:

{constructible sheaves on X} << {Lagrangian cycles on T*M}

{conic Lagrangian cycles on T*M} <5 CH,(X)

where X — M is a closed immersion into a smooth C-scheme
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The CSM class and the characteristic cycle

The CSM class reinterpreted (I1)

@ The characteristic cycle map is defined for real analytic
manifolds

{constructible sheaves on X} < {Lagrangian cycles on T*M}
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The CSM class and the characteristic cycle

The CSM class reinterpreted (I1)

@ The characteristic cycle map is defined for real analytic
manifolds

{constructible sheaves on X} < {Lagrangian cycles on T*M}

It has several equivalent constructions
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The CSM class and the characteristic cycle

The CSM class reinterpreted (I1)

@ The characteristic cycle map is defined for real analytic
manifolds

{constructible sheaves on X} < {Lagrangian cycles on T*M}

It has several equivalent constructions
o Via stratified Morse theory (Goresky-MacPherson)
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The CSM class and the characteristic cycle

The CSM class reinterpreted (I1)

@ The characteristic cycle map is defined for real analytic
manifolds

{constructible sheaves on X} < {Lagrangian cycles on T*M}

It has several equivalent constructions

o Via stratified Morse theory (Goresky-MacPherson)
o Via microlocal analysis (Kashiwara-Schapira)
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The CSM class and the characteristic cycle

The CSM class reinterpreted (I1)

@ The characteristic cycle map is defined for real analytic
manifolds

{constructible sheaves on X} < {Lagrangian cycles on T*M}

It has several equivalent constructions

o Via stratified Morse theory (Goresky-MacPherson)
o Via microlocal analysis (Kashiwara-Schapira)
o (over C) Via D-modules (Kashiwara, Ginsburg, Sabbah)
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The CSM class and the characteristic cycle

The CSM class reinterpreted (I1)

@ The characteristic cycle map is defined for real analytic
manifolds

{constructible sheaves on X} < {Lagrangian cycles on T*M}

It has several equivalent constructions

o Via stratified Morse theory (Goresky-MacPherson)
o Via microlocal analysis (Kashiwara-Schapira)
o (over C) Via D-modules (Kashiwara, Ginsburg, Sabbah)

@ Ginsburg's Chern class:

¢« : {conic Lagrangian cycles on T*"M} — CH,(X)
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The CSM class and the characteristic cycle

The CSM class reinterpreted (I1)

@ The characteristic cycle map is defined for real analytic
manifolds

{constructible sheaves on X} < {Lagrangian cycles on T*M}

It has several equivalent constructions

o Via stratified Morse theory (Goresky-MacPherson)
o Via microlocal analysis (Kashiwara-Schapira)
o (over C) Via D-modules (Kashiwara, Ginsburg, Sabbah)

@ Ginsburg's Chern class:
¢« : {conic Lagrangian cycles on T*"M} — CH,(X)

Variants in the real case: Stiefel-Whitney classes
(Fu-McCrory)
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The CSM class and the characteristic cycle

Constructible sheaves

e Constructible sheaves: X = R-/C-manifold
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The CSM class and the characteristic cycle

Constructible sheaves

e Constructible sheaves: X = R-/C-manifold

o D2(X) C DP(X) is the full subcategory of complexes F such
that
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The CSM class and the characteristic cycle

Constructible sheaves

e Constructible sheaves: X = R-/C-manifold

o D2(X) C DP(X) is the full subcategory of complexes F such
that

o There is a locally finite cover X = UX; by subanalytic/complex
analytic subsets such that H/(F)x, are locally constant
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The CSM class and the characteristic cycle

Constructible sheaves

e Constructible sheaves: X = R-/C-manifold

o DE(X) c DP(X) is the full subcategory of complexes F such
that
o There is a locally finite cover X = UX; by subanalytic/complex
analytic subsets such that H/(F)x, are locally constant
o The stalks of F are perfect complexes
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The CSM class and the characteristic cycle

Constructible sheaves

e Constructible sheaves: X = R-/C-manifold

o DE(X) c DP(X) is the full subcategory of complexes F such
that
o There is a locally finite cover X = UX; by subanalytic/complex
analytic subsets such that H/(F)x, are locally constant
o The stalks of F are perfect complexes

@ Over C it agrees with constructible étale sheaves
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The CSM class and the characteristic cycle

Constructible sheaves

e Constructible sheaves: X = R-/C-manifold

o D2(X) C DP(X) is the full subcategory of complexes F such
that

o There is a locally finite cover X = UX; by subanalytic/complex
analytic subsets such that H/(F)x, are locally constant
o The stalks of F are perfect complexes

@ Over C it agrees with constructible étale sheaves

@ Local Euler-Poincaré index

The Chern-Schwartz-MacPherson class



The CSM class and the characteristic cycle

Constructible sheaves

e Constructible sheaves: X = R-/C-manifold

o DE(X) c DP(X) is the full subcategory of complexes F such
that
o There is a locally finite cover X = UX; by subanalytic/complex
analytic subsets such that H/(F)x, are locally constant
o The stalks of F are perfect complexes

@ Over C it agrees with constructible étale sheaves

@ Local Euler-Poincaré index

x : Ko(D2(X)) — Cons(X)
F = (x = x(Fx))
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The CSM class and the characteristic cycle

Lagrangian cycles and stratified Morse theory

@ M smooth manifold, X C M closed subset
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The CSM class and the characteristic cycle

Lagrangian cycles and stratified Morse theory

@ M smooth manifold, X C M closed subset
@ Xo:0=X_1CXpoC---C X, =X Whitney stratification
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The CSM class and the characteristic cycle

Lagrangian cycles and stratified Morse theory

@ M smooth manifold, X C M closed subset
@ Xo:0=X_1CXpoC---C X, =X Whitney stratification

o N:=UT¢M C T*M disjoint union of the conormal spaces to
the strata
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The CSM class and the characteristic cycle

Lagrangian cycles and stratified Morse theory

@ M smooth manifold, X C M closed subset
@ Xo:0=X_1CXpoC---C X, =X Whitney stratification

o N:=UT¢M C T*M disjoint union of the conormal spaces to
the strata

e Whitney condition (A) < A C T*M is closed
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The CSM class and the characteristic cycle

Lagrangian cycles and stratified Morse theory

M smooth manifold, X C M closed subset
Xe:0=X_1CXpC---C X, =X Whitney stratification

N :=UTEM C T*M disjoint union of the conormal spaces to
the strata

Whitney condition (A) < A C T*M is closed

For S stratum, A := TEM \ U5,¢SW

(]
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The CSM class and the characteristic cycle

Lagrangian cycles and stratified Morse theory

M smooth manifold, X C M closed subset
Xe:0=X_1CXpC---C X, =X Whitney stratification

N :=UTEM C T*M disjoint union of the conormal spaces to
the strata

Whitney condition (A) < A C T*M is closed
For S stratum, A := TEM \ Usizs TeM

AO = l_Isl\% is a union of connected components A° = I_J/\?

(]
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The CSM class and the characteristic cycle

Lagrangian cycles and stratified Morse theory (I1)

e Cons(X,) C Cons(X) group of functions X — Z constant on
each stratum
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The CSM class and the characteristic cycle

Lagrangian cycles and stratified Morse theory (I1)

e Cons(X,) C Cons(X) group of functions X — Z constant on
each stratum

e For a € Cons(X,), the stratified Morse theory gives an integer
i(A), @) € Z, such that = i(A,a)[A9] is a homology cycle
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The CSM class and the characteristic cycle

Lagrangian cycles and stratified Morse theory (I1)

e Cons(X,) C Cons(X) group of functions X — Z constant on
each stratum

e For a € Cons(X,), the stratified Morse theory gives an integer
i(A), @) € Z, such that = i(A,a)[A9] is a homology cycle

@ This defines

CC : Cons(Xs) = HW (N) = L(Xe, M)
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The CSM class and the characteristic cycle

Lagrangian cycles and stratified Morse theory (I1)

e Cons(X,) C Cons(X) group of functions X — Z constant on
each stratum

e For a € Cons(X,), the stratified Morse theory gives an integer
i(A), @) € Z, such that = i(A,a)[A9] is a homology cycle
@ This defines

CC : Cons(Xs) = HW (N) = L(Xe, M)

@ Since Cons(X) = colimy, Cons(X,), we obtain
CC : Cons(X) — L(X, M)
where L(X, M) = colimy, L(Xe, M)
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The CSM class and the characteristic cycle

The microlocal approach

e X smooth manifold, 7 € D?(X), x € X, p € T;X
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The CSM class and the characteristic cycle

The microlocal approach

e X smooth manifold, 7 € D?(X), x € X, p € T;X

o We say F propagates at (x, p) if for any R-valued C!-function
¢ defined in a neighborhood of x with ¢(x) =0, d¢(x) = p,
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The CSM class and the characteristic cycle

The microlocal approach

e X smooth manifold, 7 € D?(X), x € X, p € T;X

o We say F propagates at (x, p) if for any R-valued C!-function
¢ defined in a neighborhood of x with ¢(x) =0, d¢(x) = p,

colim H'(U, F) ~ colim H'(U N {¢ < 0}, F)

where the limit runs over open neighborhoods U of x
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The CSM class and the characteristic cycle

The microlocal approach

e X smooth manifold, 7 € D?(X), x € X, p € T;X

o We say F propagates at (x, p) if for any R-valued C!-function
¢ defined in a neighborhood of x with ¢(x) =0, d¢(x) = p,

colim H'(U, F) ~ colim H'(U N {¢ < 0}, F)

where the limit runs over open neighborhoods U of x

@ The singular support (or micro-support) SS(F) C T*X is
the closure of (x, p) € T*X such that F does not propagate

at (x, p)
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The CSM class and the characteristic cycle

The microlocal approach

e X smooth manifold, 7 € D?(X), x € X, p € T;X

o We say F propagates at (x, p) if for any R-valued C!-function
¢ defined in a neighborhood of x with ¢(x) =0, d¢(x) = p,

colim H'(U, F) ~ colim H'(U N {¢ < 0}, F)

where the limit runs over open neighborhoods U of x

@ The singular support (or micro-support) SS(F) C T*X is
the closure of (x, p) € T*X such that F does not propagate
at (x, p)

o For F € D5(X), SS(F) is closed conic subanalytic Lagrangian
(in the complex case it is in addition C*-invariant)
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The CSM class and the characteristic cycle

The microlocal approach (I1)

The characteristic cycle CC(F) is an element of

Hgs(f)(T*X,wX‘T*X) constructed via microlocalization
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The CSM class and the characteristic cycle

The microlocal approach (I1)

The characteristic cycle CC(F) is an element of

Hgs(f)(T*X,wX‘T*X) constructed via microlocalization

It is a Lagrangian cycle which satisfies the following properties:
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The CSM class and the characteristic cycle

The microlocal approach (I1)

The characteristic cycle CC(F) is an element of
Hgs(f)(T*X,wX‘T*X) constructed via microlocalization

It is a Lagrangian cycle which satisfies the following properties:

@ additivity along distinguished triangles
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The CSM class and the characteristic cycle

The microlocal approach (I1)

The characteristic cycle CC(F) is an element of
Hgs(f)(T*X,wX‘T*X) constructed via microlocalization

It is a Lagrangian cycle which satisfies the following properties:
@ additivity along distinguished triangles

@ proper push-forward
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The CSM class and the characteristic cycle

The microlocal approach (I1)

The characteristic cycle CC(F) is an element of
Hgs(f)(T*X,wX‘T*X) constructed via microlocalization
It is a Lagrangian cycle which satisfies the following properties:
@ additivity along distinguished triangles
@ proper push-forward

@ pullback for non-characteristic maps
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The CSM class and the characteristic cycle

The microlocal approach (I1)

The characteristic cycle CC(F) is an element of
Hgs(f)(T*X,wX‘T*X) constructed via microlocalization

It is a Lagrangian cycle which satisfies the following properties:

additivity along distinguished triangles
@ proper push-forward

@ pullback for non-characteristic maps
o

microlocal index formula: if F has compact support (for
example if X is proper), then

X(X, F) = #(CC(F), TxX)1-x
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The CSM class and the characteristic cycle

The microlocal approach (I1)

The characteristic cycle CC(F) is an element of

HO

SS(]_-)(T*X,WX‘T*X) constructed via microlocalization

It is a Lagrangian cycle which satisfies the following properties:

additivity along distinguished triangles
proper push-forward
pullback for non-characteristic maps

microlocal index formula: if F has compact support (for
example if X is proper), then

X(X, F) = #(CC(F), TxX)1-x

More generally this holds for any section of T*X instead of
the zero section
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The CSM class and the characteristic cycle

D-modules

@ X smooth C-scheme, the characteristic variety of a
Dx-module M is the support of the graded sheaf associated
to a good filtration on M
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The CSM class and the characteristic cycle

D-modules

@ X smooth C-scheme, the characteristic variety of a
Dx-module M is the support of the graded sheaf associated
to a good filtration on M

@ M holonomic < its characteristic variety is Lagrangian
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The CSM class and the characteristic cycle

D-modules

@ X smooth C-scheme, the characteristic variety of a
Dx-module M is the support of the graded sheaf associated
to a good filtration on M

@ M holonomic < its characteristic variety is Lagrangian

@ The characteristic cycle is the linear conbination of the
irreducible components of the characteristic variety counted
with multiplicities
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The CSM class and the characteristic cycle

D-modules

@ X smooth C-scheme, the characteristic variety of a
Dx-module M is the support of the graded sheaf associated
to a good filtration on M

@ M holonomic < its characteristic variety is Lagrangian

@ The characteristic cycle is the linear conbination of the
irreducible components of the characteristic variety counted
with multiplicities

@ Riemann-Hilbert correspondence:

DR(M) : Q°(M) — QY(M) — - - — QImX) ()

DR establishes an equivalence between (regular) holonomic
D-modules and (perverse) constructible sheaves
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The CSM class and the characteristic cycle

D-modules

@ X smooth C-scheme, the characteristic variety of a
Dx-module M is the support of the graded sheaf associated
to a good filtration on M

@ M holonomic < its characteristic variety is Lagrangian

@ The characteristic cycle is the linear conbination of the
irreducible components of the characteristic variety counted
with multiplicities

@ Riemann-Hilbert correspondence:

DR(M) : Q°(M) — QY(M) — - - — QImX) ()

DR establishes an equivalence between (regular) holonomic
D-modules and (perverse) constructible sheaves

@ The characteristic cycle construction agrees with the
microlocal approach, and can be interpreted in terms of
vanishing cycles
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The CSM class and the characteristic cycle

Ginsburg Chern class

@ M smooth C-scheme, i : X — M closed immersion,
T P(T*"M @A) x — X

The Chern-Schwartz-MacPherson class



The CSM class and the characteristic cycle

Ginsburg Chern class

@ M smooth C-scheme, i : X — M closed immersion,
T P(T*"M @A) x — X

e For L conic C*-invariant cycle on T*M, P(L © Al) :=
projective completion of L. The Segre class of L

5.(L) = m(c(O(~1)) N [B(L @ AY)]) € CH.(X)
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The CSM class and the characteristic cycle

Ginsburg Chern class

@ M smooth C-scheme, i : X — M closed immersion,
T P(T*"M @A) x — X

e For L conic C*-invariant cycle on T*M, P(L © Al) :=
projective completion of L. The Segre class of L

5.(L) = m(c(O(=1) " N [B(L & AY)]) € CH.(X)
@ Ginsburg Chern class

¢ 1 L(X, M) = CH.(X)
L c(T*"M)Ns.(L)
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The CSM class and the characteristic cycle

Ginsburg Chern class

@ M smooth C-scheme, i : X — M closed immersion,
T P(T*"M @A) x — X

e For L conic C*-invariant cycle on T*M, P(L © Al) :=
projective completion of L. The Segre class of L

5.(L) = m(c(O(=1) " N [B(L & AY)]) € CH.(X)
@ Ginsburg Chern class
¢ L(X, M) — CH.(X)
L c(T*"M)Ns.(L)

o Example (Sabbah): c.([T£mM]) = cM(X)
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The CSM class and the characteristic cycle

Ginsburg Chern class

@ M smooth C-scheme, i : X — M closed immersion,
T P(T*"M @A) x — X

e For L conic C*-invariant cycle on T*M, P(L © Al) :=
projective completion of L. The Segre class of L

5.(L) = m(c(O(~1)) N [B(L @ AY)]) € CH.(X)

@ Ginsburg Chern class
¢ L(X, M) — CH.(X)
L c(T*"M)Ns.(L)

o Example (Sabbah): c.([T£mM]) = cM(X)
@ We have cc = ¢, o CC, and the proper covariance of cc
reduces to that of ¢, and CC
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The characteristic cycle in positive characteristic

Towards a theory in positive characteristic

@ In characteristic 0, by the theory of characteristic cycles, the
Euler characteristic x(X,F) of a constructible sheaf F over a
smooth proper scheme X only depends on the local
Euler-Poincaré index x(F) € Cons(X)
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The characteristic cycle in positive characteristic

Towards a theory in positive characteristic

@ In characteristic 0, by the theory of characteristic cycles, the
Euler characteristic x(X,F) of a constructible sheaf F over a
smooth proper scheme X only depends on the local
Euler-Poincaré index x(F) € Cons(X)

@ This fails in positive characteristic, by virtue of the
Grothendieck-Ogg-Shafarevich formula
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The characteristic cycle in positive characteristic

Towards a theory in positive characteristic

@ In characteristic 0, by the theory of characteristic cycles, the
Euler characteristic x(X,F) of a constructible sheaf F over a
smooth proper scheme X only depends on the local
Euler-Poincaré index x(F) € Cons(X)

@ This fails in positive characteristic, by virtue of the
Grothendieck-Ogg-Shafarevich formula

@ In positive characteristic, the singular support need not be
Lagrangian (Deligne)
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The characteristic cycle in positive characteristic

Towards a theory in positive characteristic

@ In characteristic 0, by the theory of characteristic cycles, the
Euler characteristic x(X,F) of a constructible sheaf F over a
smooth proper scheme X only depends on the local
Euler-Poincaré index x(F) € Cons(X)

@ This fails in positive characteristic, by virtue of the
Grothendieck-Ogg-Shafarevich formula

@ In positive characteristic, the singular support need not be
Lagrangian (Deligne)

@ Nevertheless, it is expected that there is an algebraic cycle
CC(F) associated to a constructible étale sheaf F, which
satisfies a generalized Milnor formula (SGA7, Deligne) and the
index formula
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The characteristic cycle in positive characteristic

Beilinson’s singular support

@ X smooth scheme over a perfect field k, 7 € D%.(X, )
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The characteristic cycle in positive characteristic

Beilinson’s singular support

@ X smooth scheme over a perfect field k, 7 € D%.(X, )

e weak singular support: SSY(F) is the closure in T*X of the
set of all points (x, df(x)), where x € X is a closed point and
f: U — Al is a function on a Zariski neighborhood of x,
which is not locally acyclic relative to F at x
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The characteristic cycle in positive characteristic

Beilinson’s singular support

@ X smooth scheme over a perfect field k, 7 € D%.(X, )

e weak singular support: SSY(F) is the closure in T*X of the
set of all points (x, df(x)), where x € X is a closed point and
f: U — Al is a function on a Zariski neighborhood of x,
which is not locally acyclic relative to F at x

e f: X—=>YeSm/k=df : T"Y xy X = T*X
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The characteristic cycle in positive characteristic

Beilinson's singular support (I1)

e X/k smooth, F € D5(X,A), C C T*X closed conic (i.e.

ctf
k*-invariant) subset
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The characteristic cycle in positive characteristic

Beilinson's singular support (I1)

o X/k smooth, F € D5.(X,N), C C T*X closed conic (i.e.
k*-invariant) subset

e U/k smooth, u € U geometric point, h: U — X is
C-transversal (i.e. non-characteristic) at u if
ker(dhy,) N Ch(u) c {0}
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The characteristic cycle in positive characteristic

Beilinson's singular support (I1)

o X/k smooth, F € D5.(X,N), C C T*X closed conic (i.e.
k*-invariant) subset

e U/k smooth, u € U geometric point, h: U — X is
C-transversal (i.e. non-characteristic) at u if
ker(dhy,) N Ch(u) c {0}

o If this is the case, h°C := image of dh¢c, : C xx U = T*U is
closed conic subset of T*U
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The characteristic cycle in positive characteristic

Beilinson's singular support (I1)

o X/k smooth, F € D5.(X,N), C C T*X closed conic (i.e.
k*-invariant) subset

e U/k smooth, u € U geometric point, h: U — X is
C-transversal (i.e. non-characteristic) at u if
ker(dhy,) N Ch(u) c {0}

o If this is the case, h°C := image of dh¢c, : C xx U = T*U is
closed conic subset of T*U

e x € X geometric point, f : X — Y € Sm/k is C-transversal
at x if (df,)"1(Cy) C {0}
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The characteristic cycle in positive characteristic

Beilinson's singular support (I1)

o X/k smooth, F € D5.(X,N), C C T*X closed conic (i.e.
k*-invariant) subset

e U/k smooth, u € U geometric point, h: U — X is
C-transversal (i.e. non-characteristic) at u if

ker(dhy,) N Ch(u) c {0}

o If this is the case, h°C := image of dh¢c, : C xx U = T*U is
closed conic subset of T*U

e x € X geometric point, f : X — Y € Sm/k is C-transversal
at x if (df,)"1(Cy) C {0}

o A test pair (h,f): X Lutivis F-acyclic if f is locally
acyclic relative to h* F
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The characteristic cycle in positive characteristic

Beilinson's singular support (I1)

o X/k smooth, F € D5.(X,N), C C T*X closed conic (i.e.
k*-invariant) subset

e U/k smooth, u € U geometric point, h: U — X is
C-transversal (i.e. non-characteristic) at u if
ker(dhy,) N Ch(u) c {0}

o If this is the case, h°C := image of dh¢c, : C xx U = T*U is
closed conic subset of T*U

e x € X geometric point, f : X — Y € Sm/k is C-transversal
at x if (df,)"1(Cy) C {0}

o A test pair (h,f): X Lutivis F-acyclic if f is locally
acyclic relative to h* F

e u € U geometric point, (h, ) is C-transversal at u if
U,Y € Sm/k, his C-transversal at u and f is
h° C,-transversal at u
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The characteristic cycle in positive characteristic

Beilinson’s singular support (I11)

o We say that F is micro-supported on C if every C-transversal
test pair is F-acyclic
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The characteristic cycle in positive characteristic

Beilinson’s singular support (I11)

o We say that F is micro-supported on C if every C-transversal
test pair is F-acyclic

@ The singular support SS(F) of F, if it exists, is the smallest
such C on which F is micro-supported
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The characteristic cycle in positive characteristic

Beilinson’s singular support (I11)

o We say that F is micro-supported on C if every C-transversal
test pair is F-acyclic

@ The singular support SS(F) of F, if it exists, is the smallest
such C on which F is micro-supported

Theorem (Beilinson)

@ The singular support SS(F) exists
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The characteristic cycle in positive characteristic

Beilinson’s singular support (I11)

o We say that F is micro-supported on C if every C-transversal
test pair is F-acyclic

@ The singular support SS(F) of F, if it exists, is the smallest
such C on which F is micro-supported

Theorem (Beilinson)

@ The singular support SS(F) exists

@ For X connected, each irreducible component of SS(F) has
the same dimension as X
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The characteristic cycle in positive characteristic

Beilinson’s singular support (I11)

o We say that F is micro-supported on C if every C-transversal
test pair is F-acyclic

@ The singular support SS(F) of F, if it exists, is the smallest
such C on which F is micro-supported

Theorem (Beilinson)

@ The singular support SS(F) exists

@ For X connected, each irreducible component of SS(F) has
the same dimension as X

@ The canonical inclusion SS"(F) C SS(F) is an equality
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The characteristic cycle in positive characteristic

Beilinson’s singular support (I11)

o We say that F is micro-supported on C if every C-transversal
test pair is F-acyclic

@ The singular support SS(F) of F, if it exists, is the smallest
such C on which F is micro-supported

Theorem (Beilinson)

@ The singular support SS(F) exists

@ For X connected, each irreducible component of SS(F) has
the same dimension as X

@ The canonical inclusion SS"(F) C SS(F) is an equality

The proof uses Brylinski's Radon transform
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The characteristic cycle in positive characteristic

Saito's characteristic cycle

e C C T*X closed conic subset, (h,f): X L UL Y test pair
with h étale and Y a smooth curve
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The characteristic cycle in positive characteristic

Saito's characteristic cycle

e C C T*X closed conic subset, (h,f): X L UL Y test pair
with h étale and Y a smooth curve

@ A closed point u € U is at most isolated C-characteristic
point if there exists an open neighborhood V C U of u such

that the test pair X < V — {u} — Y is C-transversal
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The characteristic cycle in positive characteristic

Saito's characteristic cycle

e C C T*X closed conic subset, (h,f): X L UL Y test pair
with h étale and Y a smooth curve

@ A closed point u € U is at most isolated C-characteristic
point if there exists an open neighborhood V C U of u such
that the test pair X < V — {u} — Y is C-transversal

Theorem (Saito)
There is a unique Z-linear combination CC(F) of irreducible
components of SS(F)
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The characteristic cycle in positive characteristic

Saito's characteristic cycle

e C C T*X closed conic subset, (h,f): X L UL Y test pair
with h étale and Y a smooth curve

@ A closed point u € U is at most isolated C-characteristic
point if there exists an open neighborhood V C U of u such
that the test pair X < V — {u} — Y is C-transversal

Theorem (Saito)

There is a unique Z-linear combination CC(F) of irreducible
components of SS(F) such that for every test pair

(h,f): X L UL v with h étale and Y a smooth curve and every
at most isolated SS(F)-characteristic point u € U
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The characteristic cycle in positive characteristic

Saito's characteristic cycle

e C C T*X closed conic subset, (h,f): X L UL Y test pair
with h étale and Y a smooth curve

@ A closed point u € U is at most isolated C-characteristic
point if there exists an open neighborhood V C U of u such
that the test pair X < V — {u} — Y is C-transversal

Theorem (Saito)

There is a unique Z-linear combination CC(F) of irreducible
components of SS(F) such that for every test pair

(h,f): X L UL v with h étale and Y a smooth curve and every
at most isolated SS(F)-characteristic point u € U we have

—dimtot ®,(h*F, f) = (CC(F), df ) r-u.u

where the left-hand side is the total dimension of vanishing cycles
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The characteristic cycle in positive characteristic

Saito’s characteristic cycle (II)

Saito's characteristic cycle generalizes Deligne's Milnor formula
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The characteristic cycle in positive characteristic

Saito’s characteristic cycle (II)

Saito's characteristic cycle generalizes Deligne's Milnor formula

Theorem (Saito)

e X smooth projective over an algebraically closed field

X(X, F) = (CC(F), TxX)T-x
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The characteristic cycle in positive characteristic

Saito’s characteristic cycle (II)

Saito's characteristic cycle generalizes Deligne's Milnor formula

Theorem (Saito)

e X smooth projective over an algebraically closed field

X(X, F) = (CC(F), TxX)T-x

e CC(F) is compatible with pullbacks by properly
SS(F)-transversal morphisms
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The characteristic cycle in positive characteristic

Saito’s characteristic cycle (I1)

Saito's characteristic cycle generalizes Deligne's Milnor formula

Theorem (Saito)
e X smooth projective over an algebraically closed field

X(X, F) = (CC(F), TxX)T-x

e CC(F) is compatible with pullbacks by properly
SS(F)-transversal morphisms

@ The index formula gives a generalization of the
Grothendieck-Ogg-Shafarevich formula
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The characteristic cycle in positive characteristic

Saito’s characteristic cycle (I1)

Saito's characteristic cycle generalizes Deligne's Milnor formula

Theorem (Saito)
e X smooth projective over an algebraically closed field

X(X, F) = (CC(F), TxX)T-x

e CC(F) is compatible with pullbacks by properly
SS(F)-transversal morphisms

@ The index formula gives a generalization of the
Grothendieck-Ogg-Shafarevich formula
@ Conjecture: CC is compatible with proper push-forwards
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The characteristic cycle in positive characteristic

Saito’s characteristic cycle (I1)

Saito's characteristic cycle generalizes Deligne's Milnor formula

Theorem (Saito)

e X smooth projective over an algebraically closed field

X(X, F) = (CC(F), TxX)T-x

e CC(F) is compatible with pullbacks by properly
SS(F)-transversal morphisms

@ The index formula gives a generalization of the
Grothendieck-Ogg-Shafarevich formula

@ Conjecture: CC is compatible with proper push-forwards

@ Recently Saito proved this conjecture assuming that the
dimension of the image of the singular support is bounded by
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The characteristic cycle in positive characteristic

The (total) characteristic class

Analogous to Ginsburg's construction
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The characteristic cycle in positive characteristic

The (total) characteristic class

Analogous to Ginsburg's construction
o M Sm/k, i: X — M closed immersion, F € D% (X, )

ctf
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The characteristic cycle in positive characteristic

The (total) characteristic class

Analogous to Ginsburg's construction
o M e Sm/k,i: X — M closed immersion, F € D5.(X,A)
o cc(F) :=P(CC(iF) ® Ak) € CH.(X)
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The characteristic cycle in positive characteristic

The (total) characteristic class

Analogous to Ginsburg's construction
o M e Sm/k,i: X — M closed immersion, F € D5.(X,A)
o cc(F) :=P(CC(iF) ® Ak) € CH.(X)

(X,N)) = CH.(X)

e This induces a map cc : Ko(D%
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The characteristic cycle in positive characteristic

The (total) characteristic class

Analogous to Ginsburg's construction

M € Sm/k, i : X — M closed immersion, F € D%.(X, )
cc(F) :=P(CC(i.F) ® Ak) € CH.(X)

This induces a map cc : Ko(D54(X,N)) — CH.(X)

Fails to be proper covariant in general, except possibly the
0-dimensional part
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The characteristic cycle in positive characteristic

The (total) characteristic class

Analogous to Ginsburg's construction

M € Sm/k, i : X — M closed immersion, F € D%.(X, )
cc(F) :=P(CC(i.F) ® Ak) € CH.(X)

This induces a map cc : Ko(D54(X,N)) — CH.(X)

Fails to be proper covariant in general, except possibly the
0-dimensional part

Example: F : IP’]’F’q — IP’{Elq Frobenius map, cc(A) is non-zero on
every degree, F.\ = A since F is radicial, and F, = q' on CH;
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The characteristic cycle in positive characteristic

The (total) characteristic class

Analogous to Ginsburg's construction

M € Sm/k, i : X — M closed immersion, F € D%.(X, )
cc(F) :=P(CC(i.F) ® Ak) € CH.(X)

This induces a map cc : Ko(D54(X,N)) — CH.(X)

Fails to be proper covariant in general, except possibly the
0-dimensional part

Example: F : IP’]’F’q — IP’{Elq Frobenius map, cc(A) is non-zero on

every degree, F,A = A since F is radicial, and F, = g’ on CH;

Theorem (Umezaki-Yang-Zhao)

Over finite fields, the 0-dimensional characteristic class is
compatible with proper push-forwards between smooth projective
schemes

The Chern-Schwartz-MacPherson class



The characteristic cycle in positive characteristic

The (total) characteristic class

Analogous to Ginsburg's construction

M € Sm/k, i : X — M closed immersion, F € D%.(X, )
cc(F) :=P(CC(i.F) ® Ak) € CH.(X)

This induces a map cc : Ko(D54(X,N)) — CH.(X)

Fails to be proper covariant in general, except possibly the
0-dimensional part

Example: F : IP’]’F’q — IP’{Elq Frobenius map, cc(A) is non-zero on

every degree, F,A = A since F is radicial, and F, = g’ on CH;

Theorem (Umezaki-Yang-Zhao)

Over finite fields, the 0-dimensional characteristic class is
compatible with proper push-forwards between smooth projective
schemes

The proof uses the theory of e-factors

The Chern-Schwartz-MacPherson class



	The Chern-Schwartz-MacPherson class
	The CSM class and the characteristic cycle
	The characteristic cycle in positive characteristic

