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e k perfect field, X/k quasi-projective
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Recall from last week

e k perfect field, X/k quasi-projective
@ Via the theory of characteristic cycles, one construct

cc : Ko(D5s(Xet, N)) — CH.(X)

by choosing a closed immersion i/ : X — M with M smooth of
dimension n and letting

cc(F) :=P(CC(i.F) @ Al)
ECH,(P(X xp T*"M @ A')) ~ @ CH;(X)
i=0

which is independent of the choice of .
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Recall from last week

e k perfect field, X/k quasi-projective
@ Via the theory of characteristic cycles, one construct

cc : Ko(D5s(Xet, N)) — CH.(X)

by choosing a closed immersion i/ : X — M with M smooth of
dimension n and letting

cc(F) :=P(CC(i.F) @ Al)
ECHa(P(X xm T*M @& A1) ~ @5 CH;(X)
i=0
which is independent of the choice of /. The map cc is called
the (total) characteristic class (Ginsburg/Saito)
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Recall from last week

e k perfect field, X/k quasi-projective
@ Via the theory of characteristic cycles, one construct

cc : Ko(D5s(Xet, N)) — CH.(X)

by choosing a closed immersion i/ : X — M with M smooth of
dimension n and letting
cc(F) :=P(CC(i.F) @ Al)
n
ECHa(P(X xm T*M @& A1) ~ @5 CH;(X)
i=0
which is independent of the choice of /. The map cc is called
the (total) characteristic class (Ginsburg/Saito)
@ In characteristic 0, cc is proper covariant, and gives a solution
of the Deligne-Grothendieck conjecture
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Recall from last week

e k perfect field, X/k quasi-projective
@ Via the theory of characteristic cycles, one construct

cc : Ko(D5s(Xet, N)) — CH.(X)

by choosing a closed immersion i/ : X — M with M smooth of
dimension n and letting
cc(F) :=P(CC(i.F) @ Al)
n
ECHa(P(X xm T*M @& A1) ~ @5 CH;(X)
i=0
which is independent of the choice of /. The map cc is called
the (total) characteristic class (Ginsburg/Saito)
@ In characteristic 0, cc is proper covariant, and gives a solution
of the Deligne-Grothendieck conjecture
@ In positive characteristic, cc fails to be proper covariant,
except possibly the 0-dimensional part
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Goal of today

e Construction of a cohomological trace map (Verdier pairing)
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e Construction of a cohomological trace map (Verdier pairing)

@ The trace map is always proper covariant (Lefschetz-Verdier
formula/Gauss-Bonnet formula)
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Goal of today

e Construction of a cohomological trace map (Verdier pairing)

@ The trace map is always proper covariant (Lefschetz-Verdier
formula/Gauss-Bonnet formula)

@ In characteristic 0 it agrees with the 0-dimensional part of cc
(Kashiwara-Schapira); in positive characteristic this is a
conjecture (Saito)
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Goal of today

e Construction of a cohomological trace map (Verdier pairing)

@ The trace map is always proper covariant (Lefschetz-Verdier
formula/Gauss-Bonnet formula)

@ In characteristic 0 it agrees with the 0-dimensional part of cc
(Kashiwara-Schapira); in positive characteristic this is a
conjecture (Saito)

@ Related to Behrend's construction on DT-type invariants
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Goal of today

Construction of a cohomological trace map (Verdier pairing)

The trace map is always proper covariant (Lefschetz-Verdier
formula/Gauss-Bonnet formula)

In characteristic 0 it agrees with the 0-dimensional part of cc
(Kashiwara-Schapira); in positive characteristic this is a
conjecture (Saito)

(]

Related to Behrend's construction on DT-type invariants

@ This construction also works in SH, and is related to
Al-enumerative geometry
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Thom spaces in motivic homotopy

@ We work in the stable motivic homotopy category SH, but the
construction works for any motivic co-categories, as SH is the
universal such co-category (Robalo, Drew-Gallauer)
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Thom spaces in motivic homotopy

@ We work in the stable motivic homotopy category SH, but the
construction works for any motivic co-categories, as SH is the
universal such co-category (Robalo, Drew-Gallauer)

@ For a vector bundle V over a scheme X, the Thom space
Th(V) is the pointed presheaf V/V — {0}
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Thom spaces in motivic homotopy

@ We work in the stable motivic homotopy category SH, but the
construction works for any motivic co-categories, as SH is the
universal such co-category (Robalo, Drew-Gallauer)

@ For a vector bundle V over a scheme X, the Thom space
Th(V) is the pointed presheaf V' /V — {0}

@ This construction passes through the P!-stabilization, and
induces a map

Th: K(X) — Pic(SH(X))

from the K-theory space to the Picard groupoid of SH(X),
sending a virtual vector bundle v on X to a ®-invertible
object Th(v)
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(Twisted) bivariant groups in motivic homotopy

@ For f: X — S a separated morphism of finite type and v a
virtual vector bundle on X, define the mapping spectrum

H(X/S, v) := Mapssu(x)(Th(v), f'Ls)

whose homotopy groups m,H(X/S, v) define the twisted
bivariant groups or twisted Borel-Moore theory groups
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(Twisted) bivariant groups in motivic homotopy

@ For f: X — S a separated morphism of finite type and v a
virtual vector bundle on X, define the mapping spectrum

H(X/S, v) := Mapssu(x)(Th(v), f'Ls)

whose homotopy groups m,H(X/S, v) define the twisted
bivariant groups or twisted Borel-Moore theory groups

e Examples: in DM(X), for r = virtual rank of v

moH(X /k,v) = CH,(X)
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(Twisted) bivariant groups in motivic homotopy

@ For f: X — S a separated morphism of finite type and v a
virtual vector bundle on X, define the mapping spectrum

H(X/S, v) := Mapssu(x)(Th(v), f'Ls)

whose homotopy groups m,H(X/S, v) define the twisted
bivariant groups or twisted Borel-Moore theory groups

e Examples: in DM(X), for r = virtual rank of v

moH(X /k,v) = CH,(X)

@ In the category of Milnor-Witt motives,
ToH(X/k,v) = CH,(X,det(v))

is the (Borel-Moore type) Chow-Witt group
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(Twisted) bivariant groups in motivic homotopy

@ For f: X — S a separated morphism of finite type and v a
virtual vector bundle on X, define the mapping spectrum

H(X/S, v) := Mapssu(x)(Th(v), f'Ls)

whose homotopy groups m,H(X/S, v) define the twisted
bivariant groups or twisted Borel-Moore theory groups

e Examples: in DM(X), for r = virtual rank of v

moH(X /k,v) = CH,(X)

@ In the category of Milnor-Witt motives,
ToH(X/k,v) = CH,(X,det(v))

is the (Borel-Moore type) Chow-Witt group
@ In the category of KGL-modules, m,H(X/S,v) = G,(X)



Functoriality of bivariant groups

@ Base change:

lw |-

A" H(T/S,v) —

I

(Y/X,g"v)
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Functoriality of bivariant groups

@ Base change:
X

A H(T/S,v) — H(Y /X, g"V)

lw |-

@ Proper push-forward: f : X — Y proper
fo: H(X/S,f*v) — H(Y/S,v)
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Functoriality of bivariant groups

@ Base change:
X

A H(T/S,v) — H(Y /X, g"V)

lw |-

@ Proper push-forward: f : X — Y proper
fo: H(X/S,f*v) — H(Y/S,v)

@ Ici pullback: f: X — Y lci with virtual tangent bundle 7¢
" H(Y/S,v) = H(X/S, s + V)
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Functoriality of bivariant groups

@ Base change:
X

A H(T/S,v) — H(Y /X, g"V)

lw |-

@ Proper push-forward: f : X — Y proper
fo: H(X/S,f*v) — H(Y/S,v)

@ Ici pullback: f: X — Y lci with virtual tangent bundle 7¢
" H(Y/S,v) = H(X/S, s + V)

@ Product: X i> y&s

HX/Y,w)® H(Y/S,v) = H(X/S,w+ f*v
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Local acyclicity

o In étale cohomology, for f : X — S and F € Db (Xer, N), F
is locally acyclic over S
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o In étale cohomology, for f : X — S and F € Db (Xer, N), F
is locally acyclic over S
< R®¢F =0, where R®¢ = vanishing cycle functor
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Local acyclicity

o In étale cohomology, for f : X — S and F € Db (Xer, N), F
is locally acyclic over S
< R®¢F =0, where R®¢ = vanishing cycle functor

@ Definition: for f : X — S and K € SH(X), K is strongly
locally acyclic over S if for any Cartesian square

y L x

gy Vf
T?S
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Local acyclicity

o In étale cohomology, for f : X — S and F € Db (Xer, N), F

is locally acyclic over S
< R®¢F =0, where R®¢ = vanishing cycle functor

@ Definition: for f : X — S and K € SH(X), K is strongly
locally acyclic over S if for any Cartesian square

y L x

g\ Vf

T?S
and any object L € SH(T), the canonical map
K® f*pLl — g.(¢"K ® g*L)

is an isomorphism.
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Local acyclicity

o In étale cohomology, for f : X — S and F € Db (Xer, N), F
is locally acyclic over S
< R®¢F =0, where R®¢ = vanishing cycle functor

@ Definition: for f : X — S and K € SH(X), K is strongly
locally acyclic over S if for any Cartesian square

y L x
gy Vf
T?S

and any object L € SH(T), the canonical map
K® f*p.l — q.(¢"K @ g*L)

is an isomorphism.

@ We say that K is universally strongly locally acyclic
(abbreviated as USLA) over S if for any morphism T — S,
the base change K|x . is strongly locally acyclic over T.
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Examples of local acyclicity

@ The USLA property is preserved by smooth pullbacks and
proper push-forwards
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Examples of local acyclicity

@ The USLA property is preserved by smooth pullbacks and
proper push-forwards

e If X is smooth over S, then every dualizable object in SH(X)
is USLA over S
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Examples of local acyclicity

@ The USLA property is preserved by smooth pullbacks and
proper push-forwards

e If X is smooth over S, then every dualizable object in SH(X)
is USLA over S

@ The case where S is the spectrum of a field is interesting:
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Examples of local acyclicity

@ The USLA property is preserved by smooth pullbacks and
proper push-forwards

e If X is smooth over S, then every dualizable object in SH(X)
is USLA over S

@ The case where S is the spectrum of a field is interesting:

Theorem (J.-Yang)

Let k be a field of exponential characteristic p and let X be a
separated k-scheme of finite type.
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Examples of local acyclicity

@ The USLA property is preserved by smooth pullbacks and
proper push-forwards

e If X is smooth over S, then every dualizable object in SH(X)
is USLA over S

@ The case where S is the spectrum of a field is interesting:

Theorem (J.-Yang)

Let k be a field of exponential characteristic p and let X be a
separated k-scheme of finite type. Assume that either k is a
perfect field which satisfies strong resolution of singularities, or we
work with Z[1/ p]-coefficients.
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Examples of local acyclicity

@ The USLA property is preserved by smooth pullbacks and
proper push-forwards

e If X is smooth over S, then every dualizable object in SH(X)
is USLA over S

@ The case where S is the spectrum of a field is interesting:

Theorem (J.-Yang)

Let k be a field of exponential characteristic p and let X be a
separated k-scheme of finite type. Assume that either k is a
perfect field which satisfies strong resolution of singularities, or we

work with Z[1/p|-coefficients. Then every object of SH(X) is
USLA over k.
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Examples of local acyclicity

@ The USLA property is preserved by smooth pullbacks and
proper push-forwards

e If X is smooth over S, then every dualizable object in SH(X)
is USLA over S

@ The case where S is the spectrum of a field is interesting:

Theorem (J.-Yang)

Let k be a field of exponential characteristic p and let X be a
separated k-scheme of finite type. Assume that either k is a
perfect field which satisfies strong resolution of singularities, or we

work with Z[1/p|-coefficients. Then every object of SH(X) is
USLA over k.

@ This was first proved by Olsson in DM(X, Q) for k
algebraically closed, and recently by Cisinski in étale motives
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Examples of local acyclicity

@ The USLA property is preserved by smooth pullbacks and
proper push-forwards

e If X is smooth over S, then every dualizable object in SH(X)
is USLA over S

@ The case where S is the spectrum of a field is interesting:

Theorem (J.-Yang)

Let k be a field of exponential characteristic p and let X be a
separated k-scheme of finite type. Assume that either k is a
perfect field which satisfies strong resolution of singularities, or we

work with Z[1/p|-coefficients. Then every object of SH(X) is
USLA over k.

@ This was first proved by Olsson in DM(X, Q) for k
algebraically closed, and recently by Cisinski in étale motives

@ The proof uses generation of SH(X) by Chow motives
(Ayoub, Bondarko-Déglise, ElImanto-Khan)
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Kunneth formula over a base

@ For f : X — S a separated morphism of finite type, denote
Kx/s = f'1s and Dx,s(—) = Hom(—,Kx/s)
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Kunneth formula over a base

@ For f : X — S a separated morphism of finite type, denote
Kx/s = f'1s and Dx,s(—) = Hom(—,Kx/s)

@ Let X,Y be two separated S-schemes of finite type, and let
px : X XsY = X and py : X Xxs Y — Y be the projections,
and denote AXs B = py A® py B
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Kunneth formula over a base

@ For f : X — S a separated morphism of finite type, denote
Kx/s = f'1s and Dx,s(—) = Hom(—,Kx/s)

@ Let X,Y be two separated S-schemes of finite type, and let
px : X XsY = X and py : X Xxs Y — Y be the projections,
and denote AXs B = py A® py B

Theorem (Kiinneth formula)

For any L € SH.(X) constructible and any M € SH(Y') be USLA
over S, there is a canonical isomorphism

Dx/s(L) ®s M ~ Hom(pxL, py M)
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Kiinneth formula over a base (Il)

@ When § is a field, this is proved in SGA 4.5 and SGA 5 for
étale sheaves, and J.-Yang for SH
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Kiinneth formula over a base (Il)

@ When § is a field, this is proved in SGA 4.5 and SGA 5 for
étale sheaves, and J.-Yang for SH

@ The relative case was first proved by Yang-Zhao and J.-Yang
under some smooth and transversality conditions, similar to
the ones related to the singular support in the last lecture
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Kiinneth formula over a base (Il)

@ When § is a field, this is proved in SGA 4.5 and SGA 5 for
étale sheaves, and J.-Yang for SH

@ The relative case was first proved by Yang-Zhao and J.-Yang
under some smooth and transversality conditions, similar to
the ones related to the singular support in the last lecture

@ These results are extended to singular schemes by Lu-Zheng
for étale sheaves, and the arguments also work for SH with
minor changes
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Correspondences

@ For X — § a morphism, denote by p1,p2 : X x5 X — X the
projections
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Correspondences

@ For X — § a morphism, denote by p1,p2 : X x5 X — X the
projections

e A (geometric) correspondence is a morphism of the form
c:C—o>XxsX
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Correspondences

@ For X — § a morphism, denote by p1,p2 : X x5 X — X the
projections

e A (geometric) correspondence is a morphism of the form
c:C—o>XxsX

@ Example: any S-endomorphism f : X — X is viewed as a
corrrespondence via the transpose of the graph
(fyid): X = X xs X
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Correspondences

@ For X — § a morphism, denote by p1,p2 : X x5 X — X the
projections

e A (geometric) correspondence is a morphism of the form
c:C—o>XxsX

@ Example: any S-endomorphism f : X — X is viewed as a
corrrespondence via the transpose of the graph
(fyid): X = X xs X

@ Denote by c1,c : C — X the compositions of ¢ with p; and
p2. Given K € SH.(X) USLA over S, a (cohomological)
correspondence over c is a map of the form u: c;K — ;K
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o Consider the following Cartesian diagram

l

Fix(c) —= X

| foxss
C—> X x5 X.
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o Consider the following Cartesian diagram

l

Fix(c) —= X

y wx/s
C—> X x5 X.

. |
@ Given a correspondence u : ¢ K — ¢, K, we have the
composition

v 1¢S5 Hom(ci K, cyK) ~ c' Hom(pi K, pyK)
Kii nneth
= (D5 (K) Bs K)
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o Consider the following Cartesian diagram

l

Fix(c) —= X

y wx/s
C—> X x5 X.

o Given a correspondence u : ¢ K — c5K, we have the

composition

v 1¢S5 Hom(ci K, cyK) ~ c' Hom(pi K, pyK)
Kii nneth
= (Dxys(K) Bs K)
which gives rise to the following map
C!,]lFix(c) ~ 5;/5C11C u—) (S;/SC[C!(DX/S(K) &k K)
—0x/s(K Wk Dx/s(K)) = Dx,s(K) @ K ~ K@ Dx,s(K) = Kx/s

o The trace of u is the map Tr(u/S) : 1ry(c) = Krix(c)/s
obtained by adjunction



o Consider the following Cartesian diagram

l

Fix(c) —= X

y wx/s
C—> X x5 X.

o Given a correspondence u : ¢ K — c5K, we have the

composition

v 1¢S5 Hom(ci K, cyK) ~ c' Hom(pi K, pyK)
Kii nneth
= (Dxys(K) Bs K)
which gives rise to the following map
C!,]lFix(c) ~ 5;/5C11C u—) (S;/SC[C!(DX/S(K) &k K)
—0x/s(K Wk Dx/s(K)) = Dx,s(K) @ K ~ K@ Dx,s(K) = Kx/s

o The trace of u is the map Tr(u/S) : 1ry(c) = Krix(c)/s
obtained by adjunction
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The trace map (Il)

@ The trace map gives rise to the canonical map

Tr(=/9)

Map(c; K, c3K) H(Fix(c)/S).

Trace maps in motivic homotopy



The trace map (Il)

@ The trace map gives rise to the canonical map

Tr(=/9)

Map(c; K, c3K) H(Fix(c)/S).

@ If all schemes are equal to S, then this is the usual trace map
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The trace map (Il)

@ The trace map gives rise to the canonical map

H(Fix(c)/S).

Map(c; K, c3K) Tr=/),

@ If all schemes are equal to S, then this is the usual trace map
@ There is a twisted variant: given v is a virtual vector bundle
on C, there is a canonical map

Map(c; K, K @ Th(v)) =L H(Fix(c)/S, —ViFi(e))-
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The trace map (Il)

@ The trace map gives rise to the canonical map

H(Fix(c)/S).

Map(c; K, c3K) Tr=/),

@ If all schemes are equal to S, then this is the usual trace map
@ There is a twisted variant: given v is a virtual vector bundle
on C, there is a canonical map

Map(c; K, K @ Th(v)) =L H(Fix(c)/S, —ViFi(e))-

@ More generally, Verdier pairing (SGAB): given two S-schemes
X1, Xo, X120 := X1 x5 X5, C = X12, D = X10, K € SHC(X,')
USLA over S, u: ¢f K1 — cyKa, v : diKa — djKi,

E := C X x,, D then we have a pairing (u,v) : 1g — Kg/s
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The trace map (Il)

@ The trace map gives rise to the canonical map

Map(ci K, bK) T2 H(Fix()/S).

@ If all schemes are equal to S, then this is the usual trace map
@ There is a twisted variant: given v is a virtual vector bundle
on C, there is a canonical map

Map(c; K, K @ Th(v)) =L H(Fix(c)/S, —ViFi(e))-

@ More generally, Verdier pairing (SGAB): given two S-schemes
X1, Xo, X120 := X1 x5 X5, C = X12, D = X10, K € SHC(X,')
USLA over S, u: ¢f K1 — cyKa, v : diKa — djKi,

E := C X x,, D then we have a pairing (u,v) : 1g — Kg/s

@ The Verdier pairing can always be reduced to the trace map,

via the identity (u, v) = (vu, 1)

Trace maps in motivic homotopy



Properties of the trace map

e If X/S smooth, C = X, c = 0x/s, then Tr(idy,) = e(Tx/s)
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Properties of the trace map

e If X/S smooth, C = X, c = 0x/s, then Tr(idy,) = e(Tx/s)
Follows from the self-intersection formula (Déglise-J.-Khan)
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Properties of the trace map

e If X/S smooth, C = X, c = 0x/s, then Tr(idy,) = e(Tx/s)
Follows from the self-intersection formula (Déglise-J.-Khan)

@ Proper covariance (Lefschetz-Verdier formula): given a proper
morphism f : X — Y and

C£>XX5X

Py A | fxsf
DY xsY.

commutative with p also proper, which induce
q : Fix(c) — Fix(d) proper.
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Properties of the trace map

e If X/S smooth, C = X, c = 0x/s, then Tr(idy,) = e(Tx/s)
Follows from the self-intersection formula (Déglise-J.-Khan)

@ Proper covariance (Lefschetz-Verdier formula): given a proper
morphism f : X — Y and

C£>X ><5X
Py A | fxsf
DY xsY.

commutative with p also proper, which induce
q : Fix(c) — Fix(d) proper. Then given K € SH.(X) USLA
over S and u: ¢fK — 4K, we have q. Tr(u/S) = Tr(f.u/S)
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Properties of the trace map

e If X/S smooth, C = X, c = 0x/s, then Tr(idy,) = e(Tx/s)
Follows from the self-intersection formula (Déglise-J.-Khan)

@ Proper covariance (Lefschetz-Verdier formula): given a proper
morphism f : X — Y and

C£>X ><5X
Py A | fxsf
DY xsY.

commutative with p also proper, which induce

q : Fix(c) — Fix(d) proper. Then given K € SH.(X) USLA

over S and u: ¢fK — 4K, we have q. Tr(u/S) = Tr(f.u/S)
@ In particular, for X/S smooth proper, K = 1x and u = idk,

one recovers the motivic Gauss-Bonnet formula
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Properties of the trace map

e If X/S smooth, C = X, c = 0x/s, then Tr(idy,) = e(Tx/s)
Follows from the self-intersection formula (Déglise-J.-Khan)

@ Proper covariance (Lefschetz-Verdier formula): given a proper
morphism f : X — Y and

C£>X ><5X
Py A | fxsf
DY xsY.

commutative with p also proper, which induce
q : Fix(c) — Fix(d) proper. Then given K € SH.(X) USLA
over S and u: ¢fK — 4K, we have q. Tr(u/S) = Tr(f.u/S)

@ In particular, for X/S smooth proper, K = 1x and u = idk,
one recovers the motivic Gauss-Bonnet formula

@ Etale contravariance: similar formulation
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Additivity of traces

@ Ferrand: the trace map is not additive in symmetric monoidal
triangulated categories
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Additivity of traces

@ Ferrand: the trace map is not additive in symmetric monoidal
triangulated categories

@ Deligne/lllusie: additivity in the filtered derived category
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Additivity of traces

@ Ferrand: the trace map is not additive in symmetric monoidal
triangulated categories
@ Deligne/lllusie: additivity in the filtered derived category

e May: additivity for triangulated categories with “good”
triangulations
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Additivity of traces

@ Ferrand: the trace map is not additive in symmetric monoidal
triangulated categories

@ Deligne/lllusie: additivity in the filtered derived category

e May: additivity for triangulated categories with “good”
triangulations

@ Groth-Ponto-Shulman: additivity in symmetric monoidal
stable derivators
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Additivity of traces

@ Ferrand: the trace map is not additive in symmetric monoidal
triangulated categories

@ Deligne/lllusie: additivity in the filtered derived category

e May: additivity for triangulated categories with “good”
triangulations

@ Groth-Ponto-Shulman: additivity in symmetric monoidal
stable derivators

o Gallauer: generalization to finite homotopy colimits
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Additivity of traces (Il)

Theorem (J.-Yang)

Let L - M — N be a cofiber sequence in SH:(X) of USLA
objects over S, and let

g L—-=ciM—ciN
u,_i/ *uM i/uN

CQ!L%- céM»céN

be a morphism of cofiber sequences (in the co-categorical sense).
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Additivity of traces (Il)

Theorem (J.-Yang)

Let L - M — N be a cofiber sequence in SH:(X) of USLA
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Theorem (J.-Yang)

Let L - M — N be a cofiber sequence in SH:(X) of USLA
objects over S, and let

g L—-=ciM—ciN
u,_i/ *uM i/uN

eyl — csM — 5N

be a morphism of cofiber sequences (in the co-categorical sense).
Then there is a canonical homotopy between Tr(up/S) and
Tr(u/_/S) T TF(UN/S).

@ Here the higher-categorical structure is crucial
e If S is a field, follow the May-Groth-Ponto-Shulman approach
and write down a big commutative diagram, using local duality
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Additivity of traces (Il)

Theorem (J.-Yang)

Let L - M — N be a cofiber sequence in SH:(X) of USLA
objects over S, and let

g L—-=ciM—ciN
u,_i/ *uM i/uN

eyl — csM — 5N

be a morphism of cofiber sequences (in the co-categorical sense).
Then there is a canonical homotopy between Tr(up/S) and
Tr(u/_/S) T TF(UN/S).

@ Here the higher-categorical structure is crucial

e If S is a field, follow the May-Groth-Ponto-Shulman approach
and write down a big commutative diagram, using local duality

@ The general case reduces to S a field by conservativity of the
restriction to points
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Application to Al-enumerative geometry

@ Local terms: if 3 is an open subscheme of Fix(c), let
Trg(u/S) € H(B/S) be the restriction of Tr(u/S)
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Trg(u/S) € H(B/S) be the restriction of Tr(u/S)

e If B is in addition proper over S, let LTg(u/S) € End(1s) be
its degree (i.e. proper direct image)

@ g: X — S be a smooth morphism with a section s: S — X,
c1 : € — X morphism of smooth S-schemes,
:=soqoc:C—X

Trace maps in motivic homotopy



Application to Al-enumerative geometry

@ Local terms: if 3 is an open subscheme of Fix(c), let
Trg(u/S) € H(B/S) be the restriction of Tr(u/S)

e If B is in addition proper over S, let LTg(u/S) € End(1s) be
its degree (i.e. proper direct image)

@ g: X — S be a smooth morphism with a section s: S — X,
c1 : € — X morphism of smooth S-schemes,
:=soqoc:C—X
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Application to Al-enumerative geometry

@ Local terms: if 3 is an open subscheme of Fix(c), let
Trg(u/S) € H(B/S) be the restriction of Tr(u/S)

e If B is in addition proper over S, let LTg(u/S) € End(1s) be
its degree (i.e. proper direct image)

° q : X — 5 be a smooth morphism with a section s: § — X,
: C — X morphism of smooth S-schemes,
cz '=soqgoc;:C— X

=S
sy A ¢
C—=>X
@ The trace of the fundamental class of ¢
u:cly =1c¢ < Slx ® Th(—7¢,)

agrees with A*n., € H(Gs/S, 7¢c.)



Application to Al-enumerative geometry (I1)

e If C = X and ( is an open subscheme of C proper over S,
then LT5(u/S) recovers the local Al-Brouwer degree
(Kass-Wickelgren, Bachmann-Wickelgren)
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then LT5(u/S) recovers the local Al-Brouwer degree
(Kass-Wickelgren, Bachmann-Wickelgren)

e If C =S, X is a vector bundle over S and /3 is an open
subscheme of Cs proper over S, then LT3(u/S) recovers the
local contribution of the Euler class with support of the
section s : S — X (Levine)
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Application to Al-enumerative geometry (I1)

e If C = X and ( is an open subscheme of C proper over S,
then LT5(u/S) recovers the local Al-Brouwer degree
(Kass-Wickelgren, Bachmann-Wickelgren)

e If C =S, X is a vector bundle over S and /3 is an open
subscheme of Cs proper over S, then LT3(u/S) recovers the
local contribution of the Euler class with support of the
section s : S — X (Levine)

In the case where ¢ = (c1, ) satisfies the condition of being
contracting near (3, then the local terms can be computed by some
simpler invariants called the naive local terms
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Application to Al-enumerative geometry (l11)

@ The computation of local terms is hard in general (SGA 5 IlIb)
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easier of one compose with the Frobenius sufficiently many
times. This is proved by Pink assuming resolution of
singularities, and Fujiwara unconditionally using rigid geometry
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Application to Al-enumerative geometry (l11)

@ The computation of local terms is hard in general (SGA 5 IlIb)

@ Over finite fields, Deligne conjectured that the situation is
easier of one compose with the Frobenius sufficiently many
times. This is proved by Pink assuming resolution of
singularities, and Fujiwara unconditionally using rigid geometry

@ In topology, Goresky-MacPherson proved useful formulas for
weakly hyperbolic maps, for which contracting maps are a
particular case

@ The proof of the theorem follows the ideas of an analogous
result of Varshavsky for étale sheaves, where the key
ingredients are the deformation to the normal cone and the
additivity of traces.

@ The proof in SH additionally uses the Fulton-style
specialization map on bivariant groups (Déglise-J.-Khan)
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