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These notes correspond to the talk given in the Motives Seminar on Novem-
ber 16 in 2021. The purpose was to give a brief introduction to algebraic spaces
and algebraic stacks, discuss some of their properties and state a theorem of
Totaro, followed by discussing deformations to the normal cone.
Setup: Throughout, we work over a field k and consider the category Schk
of schemes which are quasi-separated and quasi-compact over k. A “scheme”
without further explanation will always mean a scheme in Schk.
Acknowledgment: I wish to thank Chirantan Chowdhury, Manuel Hoff, Alessan-
dro d’Angelo and Dhyan Aranha for the many insights which they provided to
me, their helpful suggestions and reading-tips and their seemingly endless pa-
tience with my naive questions. Of course, any mistakes or other shortcomings
of this text have absolutely nothing to do with those fantastic people, but are
completely on me.

1 Algebraic spaces and a bit of motivation

Suppose we have a scheme X and a group scheme G which acts on it. We
would like to define the quotient scheme X/G corresponding to this situation.
However, this is not always possible.

Example 1.1 (See [12], Tag 02Z0 and [1], Example 2.9.2). Suppose that the
characteristic of k is not equal to 2. Consider the action of {±1} on A1 which
- after choosing coordinates - is defined by −1 · x = −x. The only fixed point
is 0. We can therefore consider the scheme

R = ({±1} × A1) \ {(−1, 0)}

and we find two maps R→ A1: the natural projection p2 and the map σ which
is defined by the action. This defines an equivalence relation on A1.
Claim: The quotient X = A1/R of A1 by the above equivalence relation is not
a scheme.
The reason for this is that for any scheme, the diagonal is a locally closed
immersion (so it can be written as a composition of a closed immersion and an
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open immersion, see also [5]). But from the diagram

(A1 \ {0}) t {0} A1

R A1 ×k A1

X X ×k X

x 7→(x : −x)

(σ : p2)

∆

we see that this is not the case for X. This is also called the “bug eyed cover”
as the fixed point “sticks out of the quotient space like a big bugs eye”.

So morally, the automorphisms are in the way of constructing a quotient
scheme here. However, we can construct a quotient of the above action if we
would allow gluing over étale covers, not Zariski ones, see [[1], Corollary 2.1.9].
This is one motivation for the definition of an algebraic space.
So how can we extend the category of schemes? First, recall that by the Yoneda
lemma, schemes can be identified with their functors of points. And for functors,
we can define gluing, i.e. a sheaf property as follows.

Definition 1.1 (See [1], Definition 1.2.3). A sheaf of sets/groupoids/... on a
site S is a contravariant functor F : S → Sets/Groupoids/... such that for every
object S and covering {Si → S} of S, the diagram

F (S)→
∏
i

F (Si) ⇒
∏
i,j

F (Si ×S Sj)

is an equalizer diagram.

Now even though schemes do not in general allow étale gluing, it is true
that their functors of points satisfy fpqc descent, see [[1], Example 1.2.5]. That
implies in particular that for a scheme X the functor of points Hom(−, X)
defines a sheaf in the étale topology.

Definition 1.2 ([8], Chapter 2, Definition 1.1). An algebraic space is a functor
A : Schopk → Sets such that:

• A is a sheaf in the étale topology.

• (Local representability) There exists a scheme U and a map of sheaves
U → A (where we identify U with its functor of points) such that for all
schemes V and maps V → A the fibre product U×AV is representable and
the map U ×A V → V is induced by an étale surjective map of schemes.

• (Quasi-seperatedness) For U → A as in the second part, the map of
schemes inducing U ×A U → U × U is quasi-compact.

We will spell out the sheaf condition in somewhat more detail once we come
to the definition of stacks.
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Remark 1.1. Algebraic spaces form a category where the morphisms are given
by natural transformations of functors.

Example 1.2. Any scheme X defines an algebraic space. We can take U = X
for the second condition, then the third condition precisely says that the scheme
X is quasi-seperated.

Since the “bad quotient” in Example 1.1 does exist as an algebraic space,
one might start to wonder now whether we can always construct quotients as
algebraic spaces. Unfortunately, this is not true.

Example 1.3 (See [1], Example 2.9.14). Let Gm act on A1 by scalar multi-
plication. The quotient consists of two points, and is neither a scheme nor an
algebraic space.

Moreover, there is another reason to be willing to extend the category of
schemes a little further. In topology, there exists a classifying space BGLn
for any n ∈ Z≥0 such that for any space T , the homotopy classes of maps
f : T → BGLn correspond to isomorphism classes of vector bundles of rank n
on T . It would be great if such a thing could also exist in algebraic geometry.
However, a vector bundle on a scheme is locally trivial, implying that if such a
thing would exist, every vector bundle would be globally trivial, which is not
the case. Somehow passing to isomorphism classes does not seem to be a good
idea.
One way to get around both of those problems is to introduce algebraic stacks.

2 Stacks in general

For a completely formal definition of stacks, using the language of fibered cate-
gories, I can highly recommend reading [14] or [2] (for a shortened version). For
the purpose of this seminar, however, we stick to the following definition from
[6]. Equip the category of schemes with an appropriate Grothendieck topology,
mostly either the étale topology or the fppf topology, or, if we are working over
the complex numbers, even the analytic topology.

Definition 2.1 ([6], Definition 1.1). A stack is a sheaf of groupoids

M : Schopk → Groupoids.

This means that:

• For every scheme T , we obtain a groupoid M(T ).

• For every morphism of schemes f : X → Y , we obtain a corresponding
functor f∗ :M(Y )→M(X).

• For every pair of morphisms X
f−→ Y

g−→ Z, we obtain a natural transfor-
mation φf,g : f∗ ◦ g∗ → (g ◦ f)∗, associative for composition.
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These should satisfy the following gluing conditions:

• Given a covering {Ui → T}i∈I of T , objects Ei ∈M(Ui) and isomorphisms
φij : Ei|Ui×Uj

→ Ej |Ui×Uj
satisfying the usual cocycle condition, there

exists a E ∈ M(T ) together with isomorphisms ψi : E|Ui
→ Ei such that

φij = ψj ◦ ψ−1
i .

• Given a covering {Ui → T}i∈I of T , objects E ,F ∈M(T ) and morphisms
φi : E|Ui

→ F|Ui
such that φi|Ui×Uj

= φj |Ui×Uj
, there is a unique mor-

phism φ : E → F such that φ|Ui
= φi.

Here, we denote E|U for the pull-back of E to U , not specifying all maps for
convenience.

Remark 2.1. To make this definition really precise, one would need to specify
some more data. For example, one needs all pull-backs to be defined functorially,
and this often means one has to make choices. This is why fibered categories
could come into the more formal way of doing this which was mentioned before.
On the other hand, using the language of ∞-categories, this precisely means
we need to specify fillers of certain triangles, so there is some higher structure
going on here.

Definition 2.2 ([6], Remark 1.7). A morphism of stacks F : M → N is a
collection of functors FT : M(T ) → N (T ) for all T together with for every
morphism f : X → Y in Schk a natural transformation Ff : FX ◦ f∗ → f∗ ◦ FY
satisfying some associativity condition.

Remark 2.2. Again, one sees that there is some higher structure going on here:
we do not require the functors FT to respect the pull-backs on the nose, but
rather choose a filler for the corresponding square. In this way one can also
make sense of the associativity condition.

Remark 2.3. Given two morphisms of stacks f :M→ N and f ′ :M′ → N ,
one can define a fibre product M×N M′ which will again be a stack. See [[1],
Section 1.3.5]. Elements of M×N M′ are triples (m,m′, γ) where m : S →M
and m′ : S → M′ are maps from a scheme S and γ : f(m) → f ′(m′) is an
isomorphism in N (S). This has the “usual properties”.

Example 2.1 ([6], Example 1.5). Let X be a scheme. Then Hom(−, X) defines
a stack (also called a representable stack). Here, for a scheme T , we view
Hom(T,X) as a category in which all morphisms are identities and pullbacks
are given by composition.

Example 2.2. Any algebraic space does define a stack.

Example 2.3 ([6], Example 1.3). Let C be a smooth projective curve and let
Bunn,C be the stack given by

Bunn,C(T ) = {vector bundles of rank n on C × T}.
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Morphisms are isomorphisms of vector bundles and the functors f∗ are given
by pull-back. Note that this is a stack precisely because vector bundles can be
defined from gluing locally!

Example 2.4 ([6], Example 1.6). Let X be a scheme and let G be an algebraic
group acting on X. Then there is a quotient stack [X/G] defined by

[X/G](T ) = {T p←− P g−→ X : p is a G-bundle and g is a G-equivariant map}

Here, recall that a G-bundle over T is a scheme P with a map P → T and an
action of G on P , such that there is a covering {Ui → T}i∈I of T such that for
all Ui, there is a G-equivariant isomorphism

P |Ui G×k Ui

Ui

∼=

see also [[11], Definition 7]. Morphisms in [X/G](T ) are isomorphisms of G-
bundles which commute with the map to X. Note that in particular, this covers
Example 1.3.

Remark 2.4. If in the above example, there exists a quotient X/G of X by G
which is a scheme, such that X → X/G is a G-bundle, then one can complete
any diagram

P X

T X/G

p

g

ḡ

in such a way that P becomes isomorphic to X ×X/G T over T . So [X/G](T )
is equivalent to (X/G)(T ) (considered as a category in which all morphisms are
identities again).

3 Algebraic stacks

Understanding stacks somehow becomes easier and more geometric if there ex-
ists a suitable “atlas by schemes”. Stacks which have this property are called
algebraic stacks or Artin stacks. We will now make this definition precise.

Definition 3.1 ([6], Definition 1.10). A stackM is called algebraic or an Artin
stack if:

• For all schemes X and Y and morphisms X →M and Y →M the fibre
product X ×M Y is representable.

• There exists a scheme u : U →M such that for all schemes X →M the
projection X ×M U → X is a smooth surjection.
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• The forgetful map U ×M U → U ×k U is quasi-compact and quasi-
separated.

A map u : U →M is also called an atlas of M.

Remark 3.1. If in the second point of the above definition, one replaces
“smooth” by “étale”, one gets the definition of a Deligne-Mumford stack.

Remark 3.2. There are some variations of the above definition around in the
literature. In the first condition one may require representability by algebraic
spaces rather than schemes, for example. For the purposes of our seminar, both
versions of the definition will work out. Many authors also ask for an atlas
by algebraic spaces rather than schemes. Also, in [6], one asks seperatedness
rather than quasi-seperatednesss in the last condition, but for our purposes, the
definition as above will suffice.

Example 3.1. Schemes are algebraic stacks: an atlas is given by the identity
morphism. Actually, any algebraic space is an algebraic stack, and even a
Deligne-Mumford stack.

Example 3.2 ([6], Example 1.13). Quotient stacks are algebraic, given that
the group scheme G acting on a scheme X is smooth and affine at least. If we
consider the canonical map X → [X/G] which is given by the trivial G-bundle
G×X then this defines an atlas. See also [[1], Theorem 2.1.8] for this.

Example 3.3 ([6], Example 1.14). Let C be a smooth projective curve. Then
Bunn,C is an algebraic stack. See [[1], Theorem 2.1.15] for a proof.

4 Properties of algebraic stacks

We now discuss some basic properties of algebraic stacks.

Definition 4.1 ([6], Definition 2.1). An algebraic stack M is called smooth/
normal/reduced/locally of finite presentation/locally Noetherian/regular if there
exists an atlas u : U → M with U being smooth/normal/reduced/locally of
finite presentation/locally Noetherian/regular (respectively).

Remark 4.1. For schemes, we don’t get anything new, because all the above
properties can be checked locally on a smooth covering, for example the identity,
which we could take as an atlas.

One can do a similar thing when considering properties of morphisms. We
again want to derive these properties from properties of schemes. In order to
do so, the notion of representable morphism is needed.

Definition 4.2 ([6], Definition 1.15). A morphism F : M → N of stacks is
called representable if for all X → N with X ∈ Schk the fibre product X×NM
is representable.
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Definition 4.3 ([6], Definition 2.2). Let P be a property of morphisms of
schemes f : X → Y such that f has P if and only if for some smooth surjective
Y ′ → Y the induced morphism f ′ : X ×Y Y ′ → Y ′ has P . A representable
morphism F : M → N of algebraic stacks has property P if for some (or
equivalently for any) atlas u : U → N the morphism M ×N U → U has P .

Remark 4.2. Examples of such properties P are being a closed or open im-
mersion, as well as being an affine, finite or proper morphism. In particular, it
now makes sense to talk about open substacks.

There are other properties, however, which one can also define for morphisms
which are not necessarily representable.

Definition 4.4 ([6], Definition 2.4). Let P be a property of morphisms of
schemes f : X → Y such that f has P if and only if there exists a commutative
diagram

X ′ Y ′

X Y

f ′

p′ p

f

with p and p′ smooth such that f ′ has P . Then a morphism of algebraic stacks
F :M→ N has P if for some atlases v : V →M and u : U → N there exists
a diagram

V U

M N

F ′

F

such that F ′ has P .

Remark 4.3. Now examples are smooth morphisms, flat morphisms and mor-
phisms which are locally of finite presentation.

Similar to the category of schemes, one can also look at a notion of (quasi-)
coherent sheaves on stacks. These are defined as follows.

Definition 4.5 ([6], Definition 2.8). A (quasi-) coherent sheaf F on an algebraic
stack M is the datum consisting of:

• For all smooth maps x : X → M with X a scheme a (quasi-) coherent
sheaf FX,x on X.

• For all diagrams

V U

M

f

v
u

together with an isomorphism φ : u ◦ f → v, we want an isomorphism
θf,φ : f∗FU,u → FV,v such that these are compatible under composition.
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Remark 4.4. Note that this somehow mimics the definition of quasi-coherent
sheaves on a scheme, which you can define by gluing as well. Also, note that
one can again observe a hint of higher structure going on here.

Remark 4.5. It also makes sense to speak about a vector bundle on a stack
now, meaning all the quasi-coherent sheaves in the above definition are locally
free.

5 Totaro’s theorem

So far the motivating example for defining stacks has been quotient stacks.
There is a local version of this definition as well.

Definition 5.1 ([7], Definition 6.1). An algebraic stack M is called a local
quotient stack if there is a covering {Ui} of M by open substacks such that
Ui ∼= [Ui/Gi] for all i, where Gi is an algebraic group acting on a scheme Ui.

Remark 5.1. That {Ui} is a covering by open substacks means the following:
for any scheme T over M, we have that Ui ×M T is representable (because the
Ui are open substacks) and {Ui ×M T → T}i is an open cover of T .

Remark 5.2. The above definition was first given in [[3], Appendix 2]. I rec-
ommend reading this in full for a completely precise definition (but be aware
they work from groupoids and not directly from stacks, after which they use
that any stack has some sort of groupoid representation). For the purposes of
this talk, however, it will be more convenient to work with the definition as
given above.

Example 5.1. All examples we have seen so far are local quotient stacks.

Given that many interesting stacks are local quotient stacks, one can wonder
under what circumstances a stack is a global quotient stack. The following
theorem of Totaro, the proof of which is quite complicated, gives an answer to
that question.

Theorem 5.1 ([13], Theorem 1.1). Let M be a normal, locally Noetherian
algebraic stack whose stabilizer groups at closed points are affine group schemes.
The following are equivalent:

• M has the resolution property: every coherent sheaf on M is a quotient
of a vector bundle on M.

• M is isomorphic to the quotient stack of some quasi-affine scheme by an
action of GL(n) for some n.

If M is, moreover, of finite type over our ground field k then these are also
equivalent to

• M is isomorphic to the quotient stack of some affine scheme over k by an
action of an affine group scheme of finite type over k.
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Here, we note that for any morphism x : T → M one can form the fibre
product

AutM(T )(x) T

M M×M∆

If T = Spec(K) for some fieldK, i.e. x is a closed point, then we call AutM(T )(x)
the stabilizer of x.

Remark 5.3. Totaro actually works with Noetherian algebraic stacks in his
paper [13], meaning stacks which are locally Noetherian, quasi-compact and
quasi-seperated. However, given that we only work with schemes which are
quasi-compact and quasi-seperated, the last two conditions will be automatic
in our case. See [[12], Tag 04YA] for the definition of quasi-compact algebraic
stacks.

6 Deformation to the normal cone

Deformations to the normal cone are a very useful tool in intersection theory,
and we will also need them later on in this seminar. We recall their construction
in the world of schemes from [[4], Section 5.1]. Suppose that we have a scheme
Y and a closed subscheme X.

Construction 6.1 (See [4], Appendix B.5.1). Recall that if I is the ideal sheaf
of X inside Y , then C = CXY = Spec(

⊕
n≥0 In/In+1) is the corresponding

normal cone (where Spec indicates we are using a relative spectrum now). The
morphism

⊕
n≥0 In/In+1 → OX which is the canonical isomorphism in degree

zero and zero everywhere else determines a morphism X → C called the zero
section embedding.

Construction 6.2 (See [4], Appendix B.5.1 and B.5.2). Let S =
⊕

n≥0 In/In+1

and let C⊕ 1 be the global spectrum of the graded algebra S[z], where the n’th
graded piece is Sn ⊕ Sn−1z ⊕ · · · ⊕ S0zn. The cone P(C ⊕ 1) = Proj(S[z])
(where Proj denotes a relative Proj-construction) is called the projective com-
pletion of C. We have that P(C) embeds into P(C⊕1) as the so-called hyperplane
at infinity. The complement is canonically isomorphic to C.

Construction 6.3 ([4], Appendix B.6.3). The blowup of Y along X is defined
to be

Ỹ = P

⊕
n≥0

In
 .

There is a natural projection π : Ỹ → Y . The exceptional divisor π−1(X) is
now the projective cone of

⊕
n≥0 In⊗OX =

⊕
n≥0 In/In+1, which means it is

precisely P(C).
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Proposition 6.1 (Deformation to the normal cone). One can construct a
scheme M = MXY together with a closed embedding i : X × P1 → M and
a flat morphism σ : M → P1 such that the diagram

X × P1 M

P1

i

σ

commutes and moreover:

• Over P1 \ {∞} = A1 we have that σ−1(A1) ∼= Y × A1 and the embedding
i is the trivial embedding X × A1 → Y × A1.

• Over {∞} the divisor M∞ = σ−1({∞}) can be written as the sum

M∞ = P(C ⊕ 1) + Ỹ

of Cartier divisors. We have that X = X × {∞} embeds into M∞ by
the zero section embedding of X into C followed by the canonical open
embedding of C into P(C ⊕ 1). Furthermore, we have that P(C ⊕ 1) and
Ỹ intersect in P(C) (hyperplane at infinity in P(C ⊕ 1) and exceptional
divisor in Ỹ ).

Remark 6.1. In particular, the image of X inside M∞ is disjoint from Ỹ . If
we let M0 = M \ Ỹ then we have a family of embeddings

X × P1 M0

P1

which deforms the given embedding of X into Y to the zero section embedding
of X into the normal cone C. This explains the name.

Construction 6.4 (Sketch of the construction). For the construction, one de-
fines M to be the blowup of Y ×P1 along the subscheme X ×{∞}. As we have
a sequence of embeddings

X × {∞} → X × P1 → Y × P1

and as X × {∞} is a Cartier divisor on X × P1, there is a closed embedding
X × P1 = BlX(X × P1)→M . And from the sequence

X × {∞} → Y × {∞} → Y × P1

we see that Ỹ also embeds into M . Now we let σ be the composition of the
blown-down map M → Y × P1 followed by the projection to P1. One can then
show that this is flat, and that this setup will have the properties defined above.
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We now claim that a similar construction can be done for algebraic stacks.
Given a closed immersion (which is in particular representable) one defines the
normal cones and blowups in pretty much the same way (but note that they
may be stacks rather than schemes) and then follows the same reasoning. A
good reference to consult for details about this is [9]. For more details about
for example Proj-constructions on stacks, see also [10].

References

[1] Jarod Alper. Introduction to stacks and moduli. Lecture notes for a course
in Washington, version of winter 2021.

[2] Stacks for everybody, Barbara Fantechi, 2001.

[3] Daniel S. Freed, Michael J. Hopkins, and Constantin Teleman. Loop groups
and twisted K -theory. Journal of Topology, 4(4):737–798, 2011.

[4] Intersection Theory, William Fulton, Springer Verlag Heidelberg, 1984.

[5] A helpful question asked on StackExchange, see https://math.

stackexchange.com/questions/3174516/locally-closed-immersion.

[6] Jochen Heinloth. Lectures on the moduli stack of vector bundles on a curve.
In Affine flag manifolds and principal bundles, Trends Math., pages 123–153.
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