
Triangulated categories of motives

We have defined the triangulated category of effective geometric
motives DMeff

gm(k) as a localization of Kb(Corfin(k)), giving us
motivic cohomology with good structural properties.

It is very difficult to make computations, however, for instance, to
see that one recovers the (co)homology we have defined using
cycle complexes.

For this, we need a sheaf-theoretic extension of DMeff
gm(k).

Marc Levine Tate motives



Sheaves
The Nisnevich topology

Definition
Let X be a k-scheme of finite type. A Nisnevich cover U→ X is
an étale morphism of finite type such that, for each finitely
generated field extension F of k , the map on F -valued points
U(F )→ X (F ) is surjective.

Using Nisnevich covers as covering families gives us the small
Nisnevich site on X , XNis, with underlying category the finite type
étale X -schemes U → X .

Notation ShNis(X ) := Nisnevich sheaves of abelian groups on X
For a presheaf F on Sm/k or XNis, we let FNis denote the
associated sheaf.
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Sheaves
The Nisnevich topology

For the record: A presheaf on C is just a functor P : Cop → Ab. A
presheaf F on XNis is a sheaf if for each U → X in XNis and each
covering family {fα : Uα → U}, the sequence

0→ F (U)
Q

f ∗α−−−→
∏
α

F (Uα)

Q
p∗Uα
−p∗Uβ−−−−−−−→

∏
α,β

F (Uα ×X Uβ)

is exact.

We now return to motives.
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Triangulated categories of motives
Sheaves with transfer

The sheaf-theoretic construction of mixed motives is based on the
notion of a Nisnevich sheaf with transfer.

Definition
(1) The category PST(k) of presheaves with transfer is the
category of presheaves of abelian groups on Corfin(k) which are
additive as functors Corfin(k)op → Ab.

(2) The category of Nisnevich sheaves with transfer on Sm/k ,
ShNis(Corfin(k)), is the full subcategory of PST(k) with objects
those F such that, for each X ∈ Sm/k, the restriction of F to XNis

is a sheaf.

Example. For X ∈ Sm/k, we have the representable presheaf with
transfers Ztr (X ) := Corfin(−,X ). This is in fact a Nisnevich sheaf.
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Triangulated categories of motives
Representable sheaves

For X ∈ Sm/k , Ztr (X ) is the free sheaf with transfers generated
by the representable sheaf of sets Hom(−,X ). Thus:

there is a canonical isomorphism

HomShNis(Corfin(k))(Ztr (X ),F ) = F (X )

In fact: For F ∈ ShNis(Corfin(k)) there is a canonical isomorphism

ExtnShNis(Corfin(k))(Ztr (X ),F ) ∼= Hn(XNis,F )

and for C ∗ ∈ D−(ShNis(Corfin(k))) there is a canonical
isomorphism

HomD−(ShNis(Corfin(k)))(Ztr (X ),C ∗[n]) ∼= Hn(XNis,C
∗).
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Triangulated categories of motives
Homotopy invariant sheaves with transfer

Definition
Let F be a presheaf of abelian groups on Sm/k . We call F
homotopy invariant if for all X ∈ Sm/k , the map

p∗ : F (X )→ F (X × A1)

is an isomorphism.

The main foundational result on homotopy invariant PST’s is:

Theorem (PST)

Let F be a homotopy invariant PST. Then all the Nisnevich
cohomology sheaves H

q
Nis(F ) are homotopy invariant sheaves with

transfers.
Additionally: For X ∈ Sm/k, H∗(XZar,FZar) ∼= H∗(XNis,FNis).
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Triangulated categories of motives
The category of motivic complexes

Definition
Inside the derived category D−(ShNis(Corfin(k))), we have the full
subcategory DMeff

− (k) consisting of complexes whose cohomology
sheaves are homotopy invariant.

Proposition

DMeff
− (k) is a triangulated subcategory of D−(ShNis(Corfin(k))).

This follows from the PST theorem: F a homotopy invariant sheaf
with transfer =⇒ all cohomology sheaves are homotopy invariant
sheaves with transfer, so homotopy invariance “makes sense in the
derived category”.
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Triangulated categories of motives
The Suslin complex

We can promote the Suslin complex construction to an operation
on D−(ShNis(Corfin(k))).

Definition
Let F be a presheaf on Corfin(k). Define the presheaf CSus

n (F ) by

CSus
n (F )(X ) := F (X ×∆n)

The Suslin complex CSus
∗ (F ) is the complex with differential

dn :=
∑

i

(−1)iδ∗i : CSus
n+1(F )→ CSus

n (F ).
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Triangulated categories of motives
The Suslin complex

Remarks (1) If F is a sheaf with transfers on Sm/k , then
CSus
∗ (F ) is a complex of sheaves with transfers.

(2) The homology presheaves hi (F ) := H−i (CSus
∗ (F )) are

homotopy invariant: Triangulating

A1 ×∆n = ∆1 ×∆n = ∪n
i=0∆n+1.

defines a chain homotopy of idCSus
∗ (F )(X×A1) with

CSus
∗ (F )(X × A1)

i∗0−→ CSus
∗ (F )(X )

p∗−→ CSus
∗ (F )(X × A1),

so i∗0 is the homotopy inverse to p∗.
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Triangulated categories of motives
The Suslin complex

Thus, by Voevodsky’s PST theorem, the associated Nisnevich
sheaves hNis

i (F ) are homotopy invariant. We thus have the functor

CSus
∗ : ShNis(Corfin(k))→ DMeff

− (k).

Remark The Suslin complex C Sus
∗ (X ) is just

CSus
∗ (Ztr (X ))(Spec k).

We denote CSus
∗ (Ztr (X )) by CSus

∗ (X ).
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Triangulated categories of motives
The localization theorem

Let A is the localizing subcategory of D−(ShNis(Corfin(k)))
generated by complexes

Ztr (X × A1)
p1−→ Ztr (X ); X ∈ Sm/k,

and let

QA1 : D−(ShNis(Corfin(k)))→ D−(ShNis(Corfin(k)))/A

be the quotient functor.

Since Ztr (X ) = CSus
0 (X ), we have the canonical map

ιX : Ztr (X )→ CSus
∗ (X )

This acts like an “injective resolution” of Ztr (X ), with respect to
the localization QA1 .
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Triangulated categories of motives
The localization theorem

Theorem
1. The functor

CSus
∗ : ShNis(Corfin(k))→ DMeff

− (k).

extends to an exact functor

RCSus
∗ : D−(ShNis(Corfin(k)))→ DMeff

− (k),

left adjoint to the inclusion DMeff
− (k)→ D−(ShNis(Corfin(k))).

2. RCSus
∗ identifies DMeff

− (k) with D−(ShNis(Corfin(k)))/A
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Triangulated categories of motives
The embedding theorem

Theorem
There is a commutative diagram of exact tensor functors

Kb(Corfin(k))
Ztr

−−−−→ D−(ShNis(Corfin(k)))y yRC∗

DMeff
gm(k) −−−−→

i
DMeff

− (k)

such that
1. i is a full embedding with dense image.
2. RCSus

∗ (Ztr (X )) ∼= CSus
∗ (X ).

Marc Levine Tate motives



Triangulated categories of motives
The embedding theorem

Explanation: Sending X ∈ Sm/k to Ztr (X ) ∈ ShNis(Corfin(k))
extends to an additive functor

Ztr : Corfin(k)→ ShNis(Corfin(k))

and then to an exact functor

Ztr : Kb(Corfin(k))→ Kb(ShNis(Corfin(k)))→ D−(ShNis(Corfin(k))).

One shows

1. Sending X to CSus
∗ (X ) sends the complexes

[X × A1]→ [X ]; [U ∩ V ]→ [U]⊕ [V ]→ [U ∪ V ]

to “zero”. Thus i exists.

2. Using results of Ne’eman, one shows that i is a full
embedding with dense image.
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Triangulated categories of motives
Consequences

Corollary

For X and Y ∈ Sm/k,

HomDMeff
gm (k)(m(Y ),m(X )[n])

∼= Hn(YNis,C
Sus
∗ (X )) ∼= Hn(YZar,C

Sus
∗ (X )).

Because:

HomDMeff
gm (k)(m(Y ),m(X )[n])

= HomDMeff
− (k)(CSus

∗ (Y ),CSus
∗ (X )[n])

= HomD−(ShNis(Corfin(k)))(Ztr (Y ),CSus
∗ (X )[n])

= Hn(YNis,C
Sus
∗ (X ))

plus the PST theorem: Hn(YNis,C
Sus
∗ (X )) = Hn(YZar,C

Sus
∗ (X )).
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Triangulated categories of motives
Consequences

Taking Y = Spec k , the corollary yields

Hmot
n (X ,Z) = HomDMeff

gm (k)(Z[n],m(X ))

∼= Hn(CSus
∗ (X )(k)) = Hn(C Sus

∗ (X )) = HSus
n (X ,Z).
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Triangulated categories of motives
Consequences

Since m(Pq) = ⊕q
n=0Z(n)[2n] we have

CSus
∗ (Ztr (q)[2q])(Y ) ∼= C Sus

∗ (Pq/Pq−1)(Y ) = ΓFS(q)(Y )[2q]

Applying the corollary with X = Ztr (q) gives

Hp
mot(Y ,Z(q)) := HomDMeff

gm (k)(m(Y ),Z(q)[p])

∼= Hp(YZar,C
Sus
∗ (Z(q))) = Hp(YZar, ΓFS(q))

∼= Hp(ΓFS(q)(Y )) = Hp(Y ,Z(q)).

Thus, we have identified motivic (co)homology with universal
(co)homology.
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Tate motives
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Duality
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Duality

Let M be an object in a tensor category C. A dual of M is a triple

(M∨, i : 1→ M ⊗M∨, tr : M∨ ⊗M → 1)

such that the composition

M ∼= 1⊗M
i⊗id−−→ M ⊗M∨ ⊗M

id⊗tr−−−→ M ⊗ 1 ∼= M

is the identity.

One can easily show:
if M has a dual (M∨, i , tr), then for each A,B ∈ C there is a
natural isomorphism

HomC(A⊗M,B) ∼= HomC(A,B ⊗M∨)

M∨ has dual (M, i t : 1→ M∨ ⊗M, tr t : M ⊗M∨ → 1).
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Duality

A tensor category such that each object admits a dual is called
rigid: a rigid tensor category has a canonical duality involution

(−)∨ : C→ Cop

since two duals are canonically isomorphic.

If C is a rigid triangulated tensor category the duality involution is
automatically exact.

Suppose C is a triangulated tensor category, containing a collection
of objects S such that

1. each M ∈ S has a dual

2. The smallest full triangulated subcategory of C containing S is
C.

Then C is rigid.
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Duality for motives

Meff
rat(k) is not a rigid tensor category; we need to invert the

Lefschetz motive.

Definition
M∼(k) := Meff

∼ (k)[⊗L−1], that is

M∼(k) has objects M(p), M ∈ Meff
∼ (k), p ∈ Z

HomM∼(k)(M(p),N(q)) :=
lim−→n

HomMeff
∼ (k)(M ⊗ L⊗n+p,N ⊗ L⊗n+q).

Sending M to M(0) defines the functor of tensor categories
Meff
∼ (k)→ M∼(k).

Note. 1. Meff
∼ (k)→ M∼(k) is fully faithful.

2. M(n)⊗ L ∼= M(n + 1).
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Duality for motives

Recall that

CHq(Y )Q ∼= HomMeff
rat (k)(Lq, h(Y )).

Thus, the diagonal ∆X ⊂ X × X corresponds to
δX : LdX → h(X × X ) in Meff

rat(k), i.e.

iX : 1→ h(X )⊗ h(X )(−dX )

in Mrat(k). Similarly

CHq(Y ) ∼= HomMeff
rat (k)(h(Y ),Lq)

so ∆X also gives us

trX : h(X )⊗ h(X )(−dX )→ 1

One computes: (h(X )(−dX ), iX , trX ) is a dual of h(X ) in M∼(k),
hence

Proposition

M∼(k) is a rigid tensor category.
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Duality for motives

Definition
DMgm(k) := DMeff

gm(k)[⊗Z(1)−1]; DMgm(k) is a triangulated

tensor category and DMeff
gm(k)→ DMgm(k) is an exact tensor

functor.

Theorem (Friedlander, Suslin, Voevodsky)

Suppose k has characteristic zero. Then

1. DMeff
gm(k)→ DMgm(k) is fully faithful.

2. DMgm(k) is generated by objects m(X )(n) (and taking
summands), X ∈ SmProj/k, n ∈ Z.

3. DMgm(k) is rigid; for X ∈ SmProj/k, the dual of m(X )(n) is
m(X )(−dX − n).
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Tate motives
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Tate motives

Definition
The triangulated category of Tate motives,
DMT (k) ⊂ DMgm(k)Q, is the full triangulated subcategory of
DMgm(k)Q generated by objects Q(p), p ∈ Z.

Note. HomDMgm(k)Q(Q,Q(m)[n]) = Hn(k ,Q(m)) ∼= K2m−n(k)(n),
so Tate motives contain a lot of information.
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Tate motives
Weight filtration

Let DMT (k)≤n be the full triangulated subcategory generated by
the Q(p), p ≥ −n. DMT (k)≥n is the full triangulated subcategory
generated by the Q(p), p ≤ n.

Proposition

The inclusion in : DMT (k)≤n → DMT (k) admits an exact tensor
right adjoint rn : DMT (k)→ DMT (k)≤n.

Dually, the inclusion i ′n : DMT (k)≥n → DMT (k) admits an exact
tensor left adjoint ln : DMT (k)→ DMT (k)≥n.

Define the weight truncations

W≤n,W≥n : DMT (k)→ DMT (k)

as W≤n := in ◦ rn, W≥n := i ′n ◦ ln.
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Tate motives
Weight filtration

This gives the natural distinguished triangle

W≤nM → M →W≥n+1M →W≤nM[1].

and tower

0 = W≤N−1M →W≤NM → . . .→W≤N′−1M →W≤N′M = M.

Marc Levine Tate motives



Tate motives
t-structure

Define grWn M := W≤nW≥nM.

Note that grWn M is in the triangulated subcategory W=nDMT (k)
generated by Q(−n). In fact

W=nDMT (k) ∼= Db(Q-Vec)

since

HomDTM(k)(Q(−n),Q(−n)[m]) = Hm(k ,Q(0)) =

{
0 if m 6= 0

Q if m = 0

Thus, it makes sense to take Hp(grWn M).
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Tate motives
t-structure

Definition
Let MT (k) be the full subcategory of DMT (k) with objects those
M such that

Hp(grWn M) = 0

for p 6= 0 and for all n ∈ Z.
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Tate motives
t-structure

Theorem
Suppose that k satisfies the Q-Beilinson-Soulé vanishing
conjectures:

Hp(k ,Q(q)) = 0

for q > 0, p ≤ 0. Then MT (k) is an abelian rigid tensor category,
where a sequence 0→ A→ B → C → 0 is exact if and only if
A→ B → C extends to a distinguished triangle in DMT (k). The
tensor structure is induced from DMT (k).
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Tate motives
t-structure

In addition:

1. MT (k) is closed under extensions in DMT (k): if
A→ B → C → A[1] is a distinguished triangle in DMT (k)
with A,C ∈ MT (k), then B is in MT (k).

2. MT (k) contains the Tate objects Q(n), n ∈ Z, and is the
smallest additive subcategory of DMT (k) containing these
and closed under extension.

3. The weight filtration on DMT (k) induces a exact weight
filtration on MT (k), with

grWn M ∼= Q(−n)rn
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Tate motives
The motivic Galois group

Finally: send M ∈ MT (k) to ⊕ngrWn M ∈ Q-Vec defines an exact
faithful tensor functor

ωW : MT (k)→ Q-Vec

i.e. MT (k) is a Tannakian category.

Theorem
Suppose that k satisfies the Q-Beilinson-Soulé vanishing
conjectures. Let G(k) := Aut⊗(ωW ). Then

1. MT (k) equivalent to the category of finite dimensional
Q-representations of G(k).

2. There is a pro-unipotent group scheme U(k) over Q with
G(k) ∼= U(k) n Gm
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Tate motives
The motivic Lie algebra

(1) is Tannakian duality.

G(k)→ Gm is dual to GrQ-Vec→ MT (k) sending ⊕nVn to
⊕nVn ⊗Q(−n).

Gm → G(k) is dual to ⊕ngrWn : MT (k)→ GrQ-Vec.

U(k) := ker[G(k)→ Gm] is uni-potent because G(k) preserves the
weight filtration W∗M for all M and U(k) acts trivially on the
associated graded ⊕ngrWn M.

Let L(k) be the pro-nilpotent Lie algebra of U(k). The Gm-action
gives L(k) a (negative) grading and MT (k) is equivalent to the
category of finite dimensional graded Q-representations of L(k).
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Tate motives
Number fields

Let k be a number field. Borel’s theorem tells us that k satisfies
B-S vanishing.

In fact Hp(k ,Q(n)) = 0 for p 6= 1 (n 6= 0). This implies

Proposition

Let k be a number field. Then L(k) is the free graded
pro-nilpotent Lie algebra on ⊕n≥1H1(k,Q(n))∨, with
H1(k ,Q(n))∨ in degree −n.

Note. H1(k ,Q(n)) = Qdn with dn = r1 + r2 (n > 1 odd) or r2

(n > 1 even).

H1(k ,Q(1)) = ⊕p⊂Ok primeQ.

Let L(k)Z := L(k)/<L(k)(−1)>, MT (k)Z := GrRepL(k)Z.
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Tate motives
Number fields

Example. L(Q) = LieQ<[2], [3], [5], . . . , s3, s5, . . .>, with [p] in
degree -1 and with s2n+1 in degree −(2n + 1).

L(Q)Z = LieQ<s3, s5, . . .>, with s2n+1 in degree −(2n + 1).

LieQ<[2], [3], [5], . . . , s3, s5, . . .>)→→ LieQ<s3, s5, . . .>.

MT (Q) = GrRep(LieQ<[2], [3], [5], . . . , s3, s5, . . .>)

⊃ MT (Q)Z = GrRep(LieQ<s3, s5, . . .>).
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Tate motives
Hodge realization

A Q-mixed Tate Hodge structure (V ,W ,F ) consists of

1. a finite dimenisonal Q vector space with a finite exhaustive
increasing filtration W∗

2. a finite exhaustive decreasing filtration F ∗ on VC

such that, for each n, the filtration induced by F ∗ on grWn VC
satisfies

F m(grnW VC) =

{
0 for m > n

grnW VC for m ≤ n.

Note. The indexing for W∗ disagrees with the usual conventions by
a factor of 2.
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Tate motives
Hodge realization

If we choose a grading VC = ⊕B
n=AVn on VC so that

F pV = ⊕n≥−pVn, then expressing W∗ in terms of the chosen basis
gives the period matrix P(V ,W ,F ), with basis elements for F ∗

the columns of P.

Choosing bases for W∗ appropriately, we can assume that
P(V ,W ,F ) is block lower triangular, with the diagonal block
corresponding to grnW V equal to (2πi)−n times an identity matrix.
The remaining entries of P are the periods of (V ,W ,F ).
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Tate motives
Hodge realization

| ← Wm → |
−
↑

F n

↓
−



(2πi)−B InB
0 . . . 0

∗ (2πi)1−B InB−1
0 . . . 0

∗ ∗ (2πi)2−B InB−2
. . . 0

∗ ∗ ∗ . . . 0
...

...
...

...
...

∗ ∗ ∗ . . . (2πi)−AInA



There is a functor from DMT (k) to the derived category of
Q-mixed Tate Hodge structures.

Thus, each M ∈ MT (k) has a period matrix: how to calculate it?
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Differential graded algebras
and

Hopf algebras
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Modules over a cdga

Let (A, d) be a commutative differential graded algebra over Q:

I A = ⊕nAn as a graded-commutative Q-algebra

I d has degree +1, d2 = 0 and d(xy) = dx · y + (−1)deg xx · dy .

A dg module over A, (M, d) is

I M = ⊕nMn a graded A-module

I d has degree +1, d2 = 0 and
dM(xm) = dAx ·+(−1)deg xx · dMm.

This gives the category d. g.ModA.

Let f : M → N be a map of dg A-modules. Then cone(f ) is a dg
A-module and the cone sequence

M
f−→ N → cone(f )→ M[1]

is a sequence in d. g.ModA.
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Modules over a cdga

Let Dd. g.ModA := d. g.ModA[q-iso−1]: The derived category of
dg A-modules.

Dd. g.ModA is a triangulated category, with distinguished
triangles those triangles isomorphic to a cone sequence.

Define a derived tensor product ⊗L
A: each M admits a

quasi-isomorphism
F (M)→ M

with F (M) a free A-module. Set

M ⊗L
A N := F (M)⊗A F (N).

This makes Dd. g.ModA a triangulated tensor category.
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Adams grading

An Adams graded cdga A(∗) is a cdga with an additional grading:

A(∗) = Q · id⊕⊕q≥1A(q)

such that d(A(q)) ⊂ A(q) and product is bi-graded. The category
of Adams graded dg A(∗)-modules is defined similarly  the
triangulated tensor category Dd. g.ModA(∗)

|m| = Adams degree, deg m = cohomological degree.

Definition
An Adams graded cdga A(∗) is c-connected if Hn(A(q)) = 0 for
n < 0 and q > 0. A(∗) is connected if An(q) = 0 for n ≤ 0, q > 0.

A morphism of Adams graded cdgas φ : A(∗)→ B(∗) induces an
exact functor

φ∗ : Dd. g.ModA(∗) → Dd. g.ModB(∗)

by φ∗(M) = M ⊗L
A(∗) B(∗).
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Finite modules

Definition
A dg module (M(∗), dM) over A(∗) is cell finite if M(∗) is a free,
finitely generated bi-graded A(∗) module. (N(∗), dN) is a finite dg
A(∗) module if N(∗) ∼= M(∗) in Dd. g.ModA(∗) for some cell finite
M(∗).

Dd. g.Modf
A(∗) is the full subcategory of Dd. g.ModA(∗) with

objects the finite dg A(∗) modules, a triangulated tensor
subcategory.

Note. If M(∗) is a cell finite dg A(∗) module, N(∗) any dg A(∗)
module, then

HomDd.g.ModA(∗)
(M,N) = Homd.g.ModA(∗)

(M,N)/homotopy.
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Tate modules

Let QA(n) := A(∗) · e, with |e| = −n, deg e = 0 and de = 0.

HomDd.g.ModA(∗)
(QA(n),QA(n′)[m])

= Homd.g.ModA(∗)
(QA(n),QA(n′)[m])/homotopy

= Hm(A(n′ − n)).

Since A(0) = Q · id

HomDd.g.ModA(∗)
(QA(n),QA(n)[m]) =

{
0 for m 6= 0

Q · id for m = 0.

Since A(q) = 0 for q < 0,

HomDd.g.ModA(∗)
(QA(n),QA(n′)[m]) = 0

for n > n′
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Weight filtration

Let M(∗) be a cell finite dg A(∗) module, with basis {eα}. Write

deα =
∑
β

aαβeβ; aαβ ∈ A(∗)∗.

Then |eα| = |deα| = |aαβeβ| = |aαβ|+ |eβ|. As |aαβ| ≥ 0, we have

|eβ| ≤ |eα|

if aαβ 6= 0.

Let
W≤nM(∗) := ⊕α,|eα|≤nA(∗)eα ⊂ M(∗),

a dg A(∗)-submodule of M(∗), and

W≥nM(∗) := ⊕α,|eα|≥nA(∗)eα,

a dg A(∗)-quotient module of M(∗).
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Weight filtration

The operations W≤n, W≥n pass to Hf
A(∗), we have the functorial

distinguished triangle

W≤nM → M →W≥n+1M →W≤nM[1]

and the (finite) tower

0 = W≤N−1M →W≤NM → . . .→W≤N′−1M →W≤N′M = M

in Hf
A(∗).

grWn M := W≤nW≥nM ∼= ⊕iQA(−n)ri [mi ]:

W=nDd. g.ModA(∗)
∼= Db(Q-Vec).
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Abelian subcategory

Definition
Let ε : A(∗)→ Q be the augmentation, so we have

ε∗ : Dd. g.Modf
A(∗) → Dd. g.Modf

Q
∼= ⊕n∈ZDb(Q-Vec)

Let Hf
A(∗) ⊂ Dd. g.Modf

A(∗) be the full subcategory with objects
those M such that

Hp(ε∗(M)) = 0

for p 6= 0.

Note. ε∗ = grW∗ .
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Abelian subcategory

Theorem
If A(∗) is c-connected, then Hf

A(∗) is a rigid tensor abelian

category, closed under extensions in Dd. g.Modf
A(∗). The weight

filtration on Dd. g.Modf
A(∗) induces an exact weight filtration on

Hf
A(∗), with graded pieces finite dimensional Q-vector spaces.

Hf
A(∗) contains all Tate modules QA(n) and is the smallest additive

subcategory of Dd. g.Modf
A(∗) containing all QA(n) and closed

under extensions in Dd. g.Modf
A(∗).

ε∗ induces the fiber functor

ε∗ : Hf
A(∗) → Q-Vec.

making Hf
A(∗) a Tannakian category.
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Abelian subcategory
Note.

The Tannaka group GA of Hf
A(∗) is a semi-direct product

GA = UA n Gm

with UA pro-nilpotent. Let LA be the pro-nilpotent graded Lie
algebra of UA.
We can write down LA in two ways:

I Using the 1-minimal model of A(∗)
I Using the Hopf algebra χA(∗) := H0(B̄A(∗)).
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The bar construction

Form the (double) complex

B̃A(∗) := A(∗)⊗n+2 ∂n−1−−−→ A(∗)⊗n+1 ∂n−2−−−→ . . .A(∗)⊗3 ∂0−→ A(∗)⊗2

with

∂n−1(a0 ⊗ a1 ⊗ . . .⊗ an+1) =
n∑

i=0

a0 ⊗ . . . aiai+1 ⊗ . . .⊗ an+1

∂n−1 is an A(∗)⊗ A(∗) module map: let

B̄A(∗) := Tot[B̃A(∗)⊗A(∗)⊗A(∗) Q].

B̄A(∗) is an Adams graded differential Hopf algebra, giving us the
graded (commutative) Hopf algebra χA(∗) := H0(B̄A(∗))
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The bar construction

Theorem
UA
∼= Spec (χA) and LA

∼= [mχA
/m2

χA
]∨.

In particular Hf
A(∗) is equivalent to the category of graded χA

co-modules which are finite dimensional as Q-vector spaces.
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Bloch’s cycle algebra

We modify Bloch’s cycle complex to form a cdga whose dg
modules are Tate motives.
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The cubical complex

We want to construct a strictly commutative dg algebra, so it’s
better to use cubes instead of simplices.
�1 := (A1, 0, 1), �n := (A1, 0, 1)n. �n has faces
ti1 = ε1 . . . ttr = εr .

Definition
z̃q(k, n)c := the free abelian group on the irreducible codimension
q closed W ⊂ �n which intersect each face in codimension q.

zq(k, n)c := z̃q(k , n)/
∑n

i=1 p∗i (z̃q(k , n − 1)), pi : �n → �n−1 the
projections.

zq(k, ∗)c is a complex with differential the alternating sum of
restrictions to faces:

dn−1 :=
n∑

j=1

(−1)j i∗tj =1 −
n∑

j=1

(−1)j i∗tj =0.

Proposition

zq(k, ∗)c is quasi-isomorphic to zq(k, ∗)
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The cubical complex

External product gives a well-defined product

zq(k, ∗)c ⊗ zq′(k , ∗)c → zq+q′(k, ∗)c

which we make graded-commutative by taking Q-coefficients and
taking the alternating projection.

Definition
Sn acts on �n by permuting the coordinates. Let ΠAlt ∈ Q[Sn] be
the alternating idempotent (1/n!)

∑
σ sgn(σ)σ. Let

zq(k , n)Alt := ΠAlt
n (zq(k , n)c

Q).

This gives us the complex zq(k, ∗)Alt.

Bloch’s cycle algebra is

Nk := Q⊕⊕q≥1zq(k , 2q − ∗)Alt
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The cycle algebra

Proposition

1. Nk is an Adams graded cdga over Q

2. Nk is c-connected iff k satisfies the Q-Beilinson-Soule’
vanishing conjectures

In fact Hp(Nk(q)) = Hp(k,Q(q)).
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The cycle algebra and Tate motives

Theorem (Spitzweck)

Let k be a field.

1. There is a natural equivalence of triangulated tensor categories

Dd. g.Modf
Nk
∼ DMT (k)

compatible with the weight filtrations.

2. If k satisfies the Q-Beilinson-Soule’ vanishing conjectures, then
the equivalence in (1) induces an equivalence of (filtered)
Tannakian categories

Hf
Nk
∼ MT (k)

and U(k) ∼= Spec (χNk
).
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The cycle algebra and Tate motives
Idea of proof.

One writes down a tilting module Nmot(∗) in
GrC−(ShNis(Corfin(k)))Q:

I Nmot(q) ∼= Q(q) in DMeff
− (k)

I Nmot(∗) is a dg Nk module

Sending a finite cell module M ∈ d. g.ModNk
to Nmot(∗)⊗Nk

M
defines the functor

φ : Dd. g.Modf
Nk
→ DMT (k).

By calculation, the Hom’s agree on Tate objects  φ is an
equivalence.
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The cycle algebra and Tate motives

We can use this result to

I construct interesting Tate motives

I compute the Hodge realization of these Tate motives
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The polylog motive
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The Kummer motive

As a warm-up, we construct the “Kummer motive” associated to a
unit t ∈ k× = H1(k ,Z(1)).

Lift t to an element t̃ ∈ N1
k(1) with dt̃ = 0. Let log(t) be the dg

Nk module with basis e0, e1, |e1| = −1, |e0| = 0, deg ei = 0 and

de1 = 0, de0 = t̃ · e1

We have the exact sequence of dg Nk modules

0→ Q(1)→ logmot(t)→ Q(0)→ 0

If k satisfies the B-S vanishing conjectures, this is a short exact
sequence in Hf

Nk
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The motive of a unit

The same construction applied to a class α ∈ H1(k ,Q(n)) gives us
exact sequence of dg Nk modules

0→ Q(n)→ logmot
n (α)→ Q(0)→ 0

Note that (assume A(∗) c-connected)

Ext1
Hf

A(∗)
(Q(0),Q(n)) ∼= H1(A(n))

via a similar construction.
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The Hodge realization of log1

We work over A1 − {0} with canonical unit t.
We have the local system given by the trivial rank two vector
bundle with basis e0, e1 and connection

∇e1 = 0

∇e0 = −dt

t
e1

The flat sections are f (t) = A(e0 + log(t)e1) + Be1.
This gives us the variation of MHS over A1 − {0}

t 7→
(

1 0
log(t) 2πi

)
This fits into the exact sequence

0→ Q(1)→ log(t)→ Q(0)→ 0

Evaluating at t = a gives the Hodge realization of logmot(a).
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polylog cycles

To make the formulas simpler, we identify
(�1, 0, 1) ∼= (P1 − 1, 0,∞), and express our formulas using the
standard coordinate x on P1 as (rational) coordinate for �1.

Definition
Let ρ̂n be the cycle on A1 ×�2n−1 given in parametric form as the
locus (in parameters t, x1, . . . , xn−1)

(t, x1, . . . , xn−1, 1− x1, 1−
x2

x1
, . . . , 1− xn−1

xn−2
, 1− t

xn−1
),

and let
ρn := (−1)n(n−1)/2ΠAlt(ρ̂n) ∈ NA1

Q
(n)1

Let [1− t] = ρ1 := locus(t, 1− t), [t] := locus(t, t).
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polylog cycles

Let ρn(a) ∈ Nk(a)(n)1 be the restriction of ρn to a×�n. One
computes:

dρn = ρn−1 · [t]

for n ≥ 2 and d [t] = d [1− t] = 0.
Since [t] ∅ as t → 1, we have

dρn(1) = 0

giving us a class ρn(1) ∈ H1(Q,Q(n)).
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The polylog motive

Let Polyn be the dg NA1
Q

-module with basis e0, . . . , en, |ei | = −i ,

deg ei = 0 and

den = 0

dei = [t]ei+1 for i = 1, . . . n − 1

de0 = [1− t]e1 + ρ2e2 + . . .+ ρnen

Note that grWi Polyn(t) = Q(i) for i = 0, . . . , n, and the first
extension data

0→ grW−i−1Polyn(t)→W≤−iW≥−i−2Polyn(t)→ grW−iPolyn(t)→ 0

is log(t)⊗Q(i) for i = 1, . . . , n − 1 and log(1− t) for i = 0.

So, for each a Polyn(a) gives an object in MT (k(a)).
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The Polylog local system

We transform Polyn to a flat connection on P1 \ {0, 1,∞}.
If L is the corresponding flat connection, then L is uni-potent with
first extension data

[0→ Q(1)→ log(t)→ Q→ 0]⊗Q(i)

except for i = 0, where we have log(1− t). This characterizes L,
giving us the rank n + 1 flat connection with basis e0, . . . , en and
with

∇en = 0

∇ei = −dt

t
ei+1 for i = 1, 2, . . . , n − 1

∇e0 = − dt

1− t
e1

Marc Levine Tate motives



The Polylog local system

The flat sections are given by the columns of the matrix

1 0 . . .
Li1(t) 2πi 0 . . .
Li2(t) 2πi log(t) (2πi)2 . . .

Li3(t) 2πi 1
2 log2(t) (2πi)2 log(t) . . .

...
...

...
...

Lin(t) 2πi 1
(n−1)! logn−1(t) (2πi)2 1

(n−2)! logn−2(t) . . . (2πi)n


Lin(t) :=

∞∑
i=1

t i

in
.

This gives us a variation V of MHS. The underlying vector bundle
is the trivial bundle with basis e0, . . . , en, the F -filtration is

F−mV = span of e0, . . . , em

and the weight filtration is W−mV = the span of the columns
m,m + 1, . . . , n.
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The Polylog local system

Thus the limit MHS V(1) has period matrix

1 0 . . .
0 2πi 0 . . .

Li2(1) 0 (2πi)2 . . .
Li3(1) 0 0 . . .

...
...

...
...

Lin(1) 0 0 . . . (2πi)n


so W≤−2V(1) = ⊕n

i=1Q(i) and V(1) fits in a short exact sequence

0→ ⊕n
m=1Q(m)→ V(1)→ Q→ 0.
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The Polylog local system

The individual extensions

0→ Q(m)→ V(1)m → Q→ 0 ∈ Ext1
MHS(Q,Q(m)) ∼= C/(2πi)mQ

give the mixed Hodge realization of ρm(1) ∈ H1(k,Q(m)). This is
thus given by

ζQ(m) = Lim(1) ∈ C/(2πi)mQ.

As ζQ(m) 6= 0 mod (2πi)mQ for m odd, this implies:

Corollary

The cycle ρm(1) is an explicit generator for
H1(Q,Q(m)) = K2m−1(Q)Q for m odd.
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