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Refined enumerative geometry

Classical enumerative geometry

Enumerative geometry involves

1. Intersection theory on X via the Chow ring CH*(X).

2. Degrees, via the pushforward
deg, = mxy : CHI™X(X) — CH®(Spec k) = Z

for mx : X — Spec k smooth and proper over k.

3. Characteristic classes of an algebraic vector bundles V — X, for
instance the Chern class ¢c,(V) € CH"(X).

We want to describe a “quadratic refinement” of this package.
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Refined enumerative geometry

Quadratic forms

We have the Grothendieck-Witt ring of a field F (of characteristic

7#2),
GW(F) = ({non-degenerate quadratic forms} /isom, 1)"
the hyperbolic form H(x,y) = xy ~ x> — y?, and the Witt ring
W(F) = GW(F)/([H]) = GW(F)/Z- [H].

GW(F) is additively generated by the one-dimensional forms
<u>, u€ FX, <u>(x) = ux?

There is the rank homomorphism rnk : GW(F) — Z and for
F =R, the signature sig : GW(R) — Z.
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Refined enumerative geometry

Milnor K-theory/Milnor-Witt K-theory

For X smooth over k, the Milnor K-theory sheaf KM has the
quadratic refinement JCQ/’W, the Milnor-Witt sheaf, and a twisted
version KMW(L) for L — X a line bundle. There is an element
n € KMW(k) with

3¢ (L)/ () = K.

There are isomorphisms
KW = gw, KMV =W n>o,

with W the sheaf of Witt groups 9W/(H). For n > 0, there is an
exact sequence

0— g MW M 0

J = ker[rnk : GW — Z].



Refined enumerative geometry

Milnor-Witt K-theory and the Chow-Witt ring

The global sections of the Gersten resolution for X" computes
H"(X,XM) as the cohomology in

8 B exon KM (K(X) = k(x)< D By cxin K (K(x)) = Z
giving Kato's isomorphism
CH"(X) = H"(X,XM).
This refines to define the Chow-Witt groups (Barge-Morel, Fasel)
CH"(X; L) :== H"(X, KMW(L)).

For x € X(" twisting by the local orientation line bunde
or, == A"m, /m2 refines the Gersten resolution for XM to the
“Rost-Schmidt" resolution of XMW (L).
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Refined enumerative geometry

The Chow-Witt ring

Tgking global sections in the Rost-Schmidt resolution describes
CH"(X; L) = H"(X,XMWY(L)) as the cohomology in

B8 e KM (L @ o) (k(x))

2 @exn K™ (L ® o) (k(x))
% Bexon KM (Lo on)(k(x) & -+
Via isomorphisms
Ko™ (L ® ory)(k(x)) = GW(L ® or)(k(x)) = GW(k(x)),
this represents Z € CH" (X L) as

Z:Za;-Z;

with the Z; C X codimension n subvarieties and a; € GW(k(Z;)).
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Refined enumerative geometry

Refined degree

For f: Y — X proper, X, Y smooth/k, there is a pushforward
o H™(Y, KW (F L@ wy x)) = H™ (X K(L))

d = relative dimension of f, wy /x; = wy/k @ f*w)_(}k.

This gives the quadratic degree map
degy = mx. : CHY (X, wx /i) — CH(Spec k) = GW (k)

for X smooth and proper of dimension d over k.

This refines the integral degree map via the canonical map

KYW (L) — K1) /() = K.
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Refined enumerative geometry

Euler class

For V — X a rank n vector bundle, we have the Euler class
wn -1
e(V) :=s"s(1x) € CH (X,det(V))

s = zero section, 1x € CNHO(X) = H%(X, GW) the unit section.

The Euler class refines the top Chern class, and e(det V) refines
c1(V) but there are no classes refining the other Chern classes.

For this we pass to classes in W-cohomology.
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Refined enumerative geometry

Pontyagin classes

The map x7n : KMW — XMW is the surjection GW — W for n = 0
and an isomorphism for n < 0.

Inverting n € KMW (k) gives
3 (D)~ = W(L) = SW(L)/(h)
A rank n vector bundle V — X has Pontryagin classes
pi(V) € HY(X,W);2 < 2i < n.
For n = 2m, we have

pm(V) = e(V)?
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Refined enumerative geometry

Borel classes and Pontryagin classes

The Pontryagin classes are defined via the Borel classes
(Panin-Walter).

Let V — X be a rank 2n + 2 symplectic bundle over X with
symplectic form w. Let HP(V) C Gr(2, V) the open subscheme of
2-planes £ C V with wg non-degenerate. & — HP(V) the
tautological symplectic 2-plane bundle.

Set ¢ :=e(&) € H?*(HP(V), W). Then
H*(HP(V), W) = &7_oH* (X, W) - ¢'.

We get Borel classes by(V), ba(V), ..., bi(V) € H* (X, W), by the
Grothendieck method.

For V — X a vector bundle, define p;(V) := byi(V & VV) in

HY (X, W),
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Refined enumerative geometry

The quadratic enumerative package

Refining the classical enumerative package of the Chow ring, the
degree map and Chern classes is the quadratic enumerative
package:

1. (quadratic intersection thNeory) For X smooth over k, the
twisted Chow-Witt groups CH'(X; L)

2. (quadratic degree) For mx : X — Spec k smooth and proper,
the quadratic degree map

degy = mxa : CHO™ (X; wy /) — CH°(Spec k) = GW/(K).

3. (quadratic characteristic classes) For V — X a rank n vector
bundle, the Euler class

e(V) e CH"(X,det™1V) = H"(X, XMW (det~1(V))

and the Pontryagin classes p;(V) € H¥ (X, W).
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Pontyagin classes and the Euler class

Witt cohomology of BSL,

Ananyevskiy has computed H*(BSL,, W).

Let E, — BSL, be the universal vector bundle. We have the
Pontryagin classes p;(E,) € H*(BSL,, W) and the Euler class
e(E,) € H"(BSL,, W) with e? = p, for n =2m, e = 0 for n odd.

Theorem (Ananyevskiy)
1. Forn=2m

H*(BSL,, W) = W(k)[p1,---, Pm—1,€].
2. Forn=2m+1

H*(BSLn, W) = W(K)[p1,- - -, Pm]-
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Pontyagin classes and the Euler class

Ananyevskiy's SL,-splitting principle
Let i : (SL2)™ < SLom be the block-diagonal inclusion, and

e = mie(Ex) € H(B(SLo)™, W); j=1,....m

Theorem (SL,-splitting principle-Ananyevskiy)

i induces an injection

i* + H*(BSLam, W) — H*(B(SL2)™, W) = W(K)[ey,. .., em],

with

Question: What are the characteristic classes of SymeEg?
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Characteristic classes of symmetric powers

The answer

Theorem (Main)
Let E; — BSL; be the tautological rank 2 bundle. Then

for £ > 2 :
e(Sym'Ey) = 0 or{ > 2 even
-(0—2)---3-1-e™ for{=2m—12>1 odd.
The total Pontryagin class p(Sym‘Ey) := 1 + Y1 pi(Sym‘Ey) is
[¢/2]

p(Sym‘Ep) = T (1 + (£ —2))e?).
j=0
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Characteristic classes of symmetric powers

Application

We consider the problem of counting the (finite number of) lines
on a smooth hypersurface X C P9+1 of degree 2d — 1. The
“answer” is given by

degy(e(Sym** 1 (E2))) € GW(k)

where E; — Gr(2,d + 2) is the tautological rank 2 quotient bundle
of ©9*2 The classical computation in the Chow ring gives the
integer count Ny

Ny := degy(c2q(Sym** 1 Ey)) € Z
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Characteristic classes of symmetric powers
Application

By our theorem, we have
e(Sym??~Y(E,)) = (2d—1)lle(Ex)? € H(Gr(2, d+2), W(O(—d))),

" ¥ (e(Sym??1(E))) = (2d — 1)l € W(k).

Thus 7. (e(Sym??~1(E,))) € GW(k) is given by

Ng — (2d — 1)1

m.(e(Sym??~1(E))) = (2d — 1)l<1> + 5

H
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Characteristic classes of symmetric powers

Application

More explicitly,

d-1

Ng=deg | []Jj-(2d —j—1)cf + (2(d —j) — 1)°c
j=0
and o(d |
deg(207)cg) = 202

T (d—a+1)i(d-a)

The W/(k)-part gives a lower bound (2d — 1)!! for the number of
real lines (counted with a positive multiplicity) and a mod 2
congruence for “types” of lines over a finite field.

This recovers and extends work of (Kass-Wickelgren) who discuss
the case of lines on a cubic surface, using a different method.
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Characteristic classes of symmetric powers

The proof of the main theorem-Comparison with the real case

In the case of a topological real SL(R)-bundle, one uses the
homotopy equivalence

S = 50(2) < SLy(R)

and the C-structure on a real S!-bundle to reduce to complex line
bundles:

BSLy(R) ~ BSO(2) = BS! =~ CP*>
E» <+ O(1); e(E2) «» c1(0(1)) € H*(CP*>, 7).

As SO(2)-bundle Sym‘E; splits
Sym‘E, = alSo(e - 2j)

which explains the formula in the theorem.
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Characteristic classes of symmetric powers

The proof of the main theorem-The normalizer as the algebraic circle group

We replace St C SLp(R) with the normalizer Nt of the standard
torus T C SLo.

t 0 0 1
Nr = <{<0 t1>}’ <_1 0>> C SLo.

Nt has (roughly) the same algebraic representation theory as the
real representation theory of S': every irreducible representation is
either 1- or 2-dimensional. We concentrate on the 2-dimenisonal
representations py : Nt — GLy, £ > 1,

s D=5 &) m(% =y b
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Characteristic classes of symmetric powers

The proof of the main theorem-The normalizer as the algebraic circle group

For k = 0, there are two 1-dimensional representations p

Pg((é t91>) = id

p?f((_ol (1)>) = =+id.

Let m : BNt — BSL; be the canonical map,

E(p) — BNt the
bundle associated to a representation p : Ny — GL,. Then

7" Ey = E(p1) and

—
Nl

F E(pg 2j) ¢ odd

E(Pe 2j) ® pg

.
I \

™ Sym‘E, =

m\c\m Nl

/=0 mod4
i—0 (,Og 2))®p, (=2 mod4
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Characteristic classes of symmetric powers

The proof of the main theorem-The N7-splitting principle

The main theorem reduces to

Theorem (N7 -splitting principle)

1. m* : H*(BSL2, W) — H*(BN1, W) is a split injection.
2. e(E(pe)) = £- e(E(p1)) for £ > 1.

3. e(E(pg)) = 0.

(3) is just the vanishing of e(V) in H*(—, W(det~1V)) for odd
rank V.
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Characteristic classes of symmetric powers

The Nr-splitting principle-Sketch of proof

1. BNt is a (Zariski locally trivial) N1\SLy-bundle over BSL, and
N7\SLy 2 [P x PY\ A]/Z/2 = P2\ C

where C C IP? is the conic g := T2 — 4T T, = 0 (chark # 2).
The double cover P! x P! — P2 = Sym?P! is Spec Op2(1/9)-

2. q defines an SL,-invariant section of W over P2\ C. The Leray
spectral sequence gives

H"(BSLz, W) for n >0
H'(BNT, W) = { W(k) @ [q]W(k) =
HO(BSLy, W) & [q]HO(BSLo, W)  for n =0
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Characteristic classes of symmetric powers

The Nr-splitting principle-Sketch of proof

3. The map (x,y) — (x%, y*) gives a fiberwise polynomial map of
bundles m; : E(p1) — E(p¢), and reduces the theorem to showing

mj(si(Len,)) = £ - si(lw))

in H2(E(p1), W) = H2(BNT,W).

4. We have a Thom isomorphism
W(k) @ [q]W(k) = H'(BNT, W) = Hj_, (E(p1), W)
and a surjection

p: H§BNT(E(p1)7W) - HZ(E(P1)7W)
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Characteristic classes of symmetric powers

The Nr-splitting principle-Sketch of proof

5. One computes the kernel of this surjection as
ker p = W(k)(1,[q]).
This is the same as the kernel of the evaluation map
ev, : H(BNT, W) — W(k)
where x = (1:0:1) € P2\ C C BN7(Spec k), because

<g(x)> = <—4> = —1in W(k).

Note: x comes from ((1:i),(1: —i)) € PL x P1\ A.
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Characteristic classes of symmetric powers

The Nr-splitting principle-Sketch of proof

6. This gives: e(E(ps)) = A¢ - e(E(p1)) with
A¢ = the “local degree” at 0 of my, : E(p1)x — E(pe)x,
= the “degree” (in Endgp)(ZFPY)[n 1] = W(k)) of
My x - Pk = Proj(E(p1)x) — Proj(E(pe)x) = Pi'
The map my  is
mZ,X(X : y) = (Re(g)(xay) : Im(e)(ij))

where
(x + i)’ = RO (x,y) + i - ImD(x, y).

It suffices to make the computation for £ = p a prime.
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Characteristic classes of symmetric powers

The Nr-splitting principle-Sketch of proof

7. By Morel's “motivic Brouwer degree formula”,
Ao = Tz 1)) /k() (SOMpx [ OF>)

for y € P1(k) a regular value of k, t a “normalized parameter” at
y.
For y = (0: 1) the cover is

(0: 1) 11 Spec Q[Cap + (4,1 — (0 : 1) = Speck

and an explicit calculation (via a theorem of Serre, with help from
Eva Bayer) gives the trace form as

Ap = [Zp:x?] =p-<1>=pe W(k).

i=1
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