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Prelude: Cohomology of algebraic varieties

T he category of Chow motives is supposed to capture “universal
cohomology’, but:

What is cohomology?



k: a field. Sm/k: smooth quasi-projective varieties over k.
What should ‘“‘cohomology of smooth varieties over k' be?

This should be at least the following

D1. An additive contravariant functor A* from Sm/k to graded
(commutative) rings:
X — A*(X);
(f:Y = X)) ffI AY(X) - A™(Y).

D2. For each projective morphisms f:Y — X in Sm/k, a push-
foward map

fe it AR(Y) — A*TEUX)
d=codimf, e=1,2.



T hese should satisfy some compatibilities and additional axioms:

Al. (fg)x = f«gx;, idx =1d

A2. For f:Y — X projective, f« is A*(X)-linear:
[ (f*(z) - y) =z fx(y).

A3. Let
f/
W-—Y
g,
ZTX
be a cartesian transverse square in Sm/k, with g projective.
Then

frg« = guf"™.



Examples

singular cohomology: (kK C C), X — Hjmg(X((C),Z).
topological K-theory: X — Ki, (X (C))
complex cobordism: X — MU*(X(C)).
étale cohomology: X — HZ (X,Qy).
the Chow ring: X — CH*(X);
or motivic cohomology: X — H*(X,Z(x*))
e algebraic Ky: X — Ko(X)[3, 37 1]

or algebraic K-theory: X — K«(X)[8, 37 1]
e algebraic cobordism: X — MGL**(X)



Chern classes

Once we have f* and fx, we have the 1st Chern class of a line
bundle L — X:

Let s: X — L be the zero-section. Define

c1(L) = s"(sx(1x)) € A(X).

If we want to extend to a good theory of A*-valued Chern classes
of vector bundles, we need two additional axioms.



Axioms for oriented cohomology

PB:

Let £ — X be a rank n vector bundle,

P(E) — X the projective-space bundle,

Or(1) — P(FE) the tautological quotient line bundle.
¢ :=c1(0p(1)) € AY(P(E)).

Then
A*(P(E)) is a free A*(X)-module with basis 1,¢,...,¢&n 1,

EH:
Let p: V — X be an affine-space bundle. Then

p* A*(X) — A*(V) is an isomorphism.



In fact, use Grothendieck’'s method:

Let E — X be a vector bundle of rank n. By (PB), there are
unique elements ¢;(F) € AY(X), 1=0,...,n, with ¢g(E) =1 and

> (-1 (B)e" = 0 € A*(P(E)),

1=0
§ 1= c1(0Op(1)).

This works because the splitting principle holds for A*, so all
computations reduce to the case of a direct sum of line bundles.

Example The Whitney product formula holds: ¢(E) = c¢(E")c(E")
for

0—-E —-E—-E'"—0
exact, c¢(F) := >, ¢i(F).




Outline:

e Recall the main points of complex cobordism

e Describe the setting of “oriented cohomology over a field k"

e Describe the fundamental properties of algebraic cobordism

e Sketch the construction of algebraic cobordism



Complex cobordism

The data D1, D2 and axioms Al1-A3, PB and EV can be inter-
preted for the topological setting:

One replaces Sm/k with the category of differentiable manifolds
One has push-forward maps for “complex oriented proper maps’ .

Quillen showed that complex cobordism, MU™*, is the universal
such theory.



Quillen’s viewpoint

Quillen (following Thom) gave a ‘“geometric’ description of
MU*(X) (for X a C* manifold):

MU™M(X)={(f:Y — X,0)}/ ~

1. f:Y — X is a proper C° map

2. n=dimX —dimY := codimf.

3. 0 is a “C-orientation of the virtual normal bundle of f":

A factorization of f through a closed immersion i : Y — CN x X

plus a complex structure on the normal bundle N; of Y in CNx X
(oron N; R if n is odd).



~ IS the cobordism relation:

For (F:Y — X xR, ©), transverse to X x {0,1}, identify the
fibers over O and 1:

(FO . YO — X, @O) ~ (Fl . Yl — X,@l).

Yo =F (X x0), Vi . =F (X x1).



Properties of MU*
e X — MU*(X) is a contravariant ring-valued functor:

Forg: X' — X and (f:Y — X,0) € MU"(X),
() =X"xxY = X
after moving f to make f and g transverse.
e For (¢ : X — X', 0) a proper C-oriented map, we have
gv 1 MU*(X) — MU*T24(X");
(Y = X)—(g9f Y = X')
with d = codimg¢f.

Definition Let L — X be a C-line bundle with O-section
s: X — L. The first Chern class of L is:

c1(L) = s*s«(1x) € MU?(X).



T hese satisfy:

(99))s = g+gl, ids = id.

projection formula.

Compatibility of g« and f* in transverse cartesian squares.
Projective bundle formula: £ — X a rank r 4+ 1 vector bundle,
¢ = c1(0(1)) € MU?(P(E)).

MU*(P(E)) = @j—qMU*~*(X) - £".
e Homotopy invariance:

MU*(X) = MU*(X x R).



Definition A cohomology theory X — E*(X) with push-forward
maps g« for C-oriented g which satisfy the above properties is
called C-oriented.

Theorem (Quillen) MU* is the universal C-oriented cohomol-
ogy theory

Proof. Given a C-oriented theory E*, let 1y € EO(Y) be the unit.
Map

(f:Y =>X0)e MUMX) — f«(1ly) € E"(X).



The formal group law

E: a C-oriented cohomology theory. The projective bundle for-
mula yields:

E*(CP*) 1= lim E*(CP") = E*(pt)[[u]]

where the variable u maps to ¢1(0O(1)) at each finite level. Sim-
Harly

E*(CP*° x CP*>°) = E*(pt)[[u, v]].
where
u=1c¢1(0(1,0)), v =¢1(0(0,1))

0(1,0) =p10(1); 0(0,1) = p50(1).



Let 0(1,1) = pi0(1) ® p50(1) = O0(1,0) ® O(0,1). There is a
unique

Fg(u,v) € E*(pt)[[u,v]]
with
Fg(c1(0(1,0)),c1(0(0,1))) = ¢1(0(1,1))
in E2(CP>® x CP>).

Since O(1) is the universal C-line bundle, we have
Fp(e1(L),c1(M)) = c1(L ® M) € E*(X)

for any two line bundles L, M — X.



Properties of IF'p(u,v)

o 1 RL=EL=LR]
= Fp(0,u) = u= Fg(u,0).

e LOIM=MQE®L= Fg(u,v) = Fg(v,u).

e (LOIMQN=ZLR(MQKN)
- FE(FE(U7U)7w) — FE(ua FE(vaw))

so Fg(u,v) defines a formal group (commutative, rank 1) over
E*(pt).

Note: cq1 is not necessarily additive!



The Lazard ring and Quillen’s theorem

There is a universal formal group law Fy, with coefficient ring
the Lazard ring L. Let

¢p L — E*(pt); ¢op(F1) = Fg.
be the ring homomorphism classifying Fg.

Theorem (Quillen) ¢y : L — MU*(pt) is an isomorphism,
I.e., Fyry Is the universal group law.

Note. Let ¢ : L = MU*(pt) — R classify a group law Fpg over
R. If ¢ satisfies the “Landweber exactness’ conditions, form the
C-oriented spectrum MU Ny R, with

(MU N R)(X) = MU*(X) ®MU*(pt) R
and formal group law F'p.



Examples
1. H*(—,7Z) has the additive formal group law (u + v,7Z).

2. K{,, has the multiplicative formal group law (u4v—PBuv, Z[3, B~1)),
8 = Bott element in K;,>(pt).

Theorem (Conner-Floyd)
Kiop = MU Ax Z[B, 871, Ki,p, Is the universal multiplicative ori-
ented cohomology theory.



T he construction of the Lazard ring

Take the polynomial ring Z[Az-j] in variables A
F=u4+v+ Zi,jZl AZ]’UJZ’UJ Then

ij 1 <4,9. Let
L = Z[A;;]/ ~

where ~ is the ideal of relations on the coefficients of F' forced
by

1. F(u,v) = F(v,u)
2. F(F(u,v),w) = F(u, F(v,w))

The universal group law Fy € L[[u,v]] is the image of F. Grade
L by

degAij =1—-17—7.



Oriented cohomology over k



We now turn to the algebraic theory.

Definition k£ a field. An oriented cohomology theory A over k
is a functor A* : Sm/k°P — GrRing together with push-forward
maps

gx 1 A*(Y) — A*TIUX)

for each projective morphism g : Y — X, d = codimg, satisfying
the axioms Al1l-3, PB and EV:

e functoriality of push-forward,

projection formula,

compatibility of f* and g« in transverse cartesian squares,
projective bundle formula,

o
[
o
e homotopy.



Examples
1. X — CH*(X).

2. X — KZ(X)[8,871], deg 8 = —1.

3. For k C C, E a (topological) oriented theory: X — E2*(X(C))
4. X — MGL?**(X).

Note. Let & be a Pl-spectrum. The cohomology theory &** has

good push-forward maps for projective g exactly when € is an
MG L-module. In this case

X 82*,*(X)

IS an oriented cohomology theory over k.



The formal group law

Just as in the topological case, each oriented cohomology theory
A over k has a formal group law Fy(u,v) € A*(Speck)[[u,v]] with

Fa(ef (L), e (M) = (L © M)

for each pair L,M — X of algebraic line bundles on some X €&
Sm/k. Let

¢A . L—>A*(k'>

be the classifying map.

Examples
1. Fcy(u,v) = u+wv.

2. FKO[ﬁ,ﬁ—l](u>v) = u 4+ v — Buw.



Algebraic cobordism



T he main theorem

Theorem (L.-Morel) Let k be a field of characteristic zero.
There is a universal oriented cohomology theory 2 over k, called
algebraic cobordism. 2 has the additional properties:

1. Formal group law. The classifying map ¢o : L — Q*(k) is an
isomorphism, so Fq is the universal formal group law.

2. Localization Let:: Z — X be a closed codimension d embed-
ding of smooth varieties with complement 5 : U — X. The
sequence

Q*d(7) 5 Q*(X) L QF(U) — 0

IS exact.



For an arbitrary formal group law ¢ : L = Q*(k) — R, Fr =
»(Fy.), we have the oriented theory

Q*(X)¢ is universal for theories whose group law factors through

Q.

The Conner-Floyd theorem extends to the algebraic setting:

Theorem The canonical map
l _
Q% — K378, 871

is an isomorphism, i.e., Kglg[ﬁ, B~11 is the universal multiplicative
theory over k. Here

QY = Q" @y, Z[8,87].



Not only this but there is an additive version as well:

Theorem The canonical map

Q4 — CH”
is an isomorphism, i.e., CH* is the universal additive theory over
k. Here

Qj‘ = QF 1. 7.
Remark
Define “connective algebraic Ky", kglg = Q* @1 Z[A].
k&) = CH*
lg7 o l _
ko187 = Ko 18,871,

This realizes Kglg[ﬁ,ﬁ—l] as a deformation of CH*.



Relation with motivic homotopy theory

CH™(X) & H?™(X,Z(n)) = H*™"(X)

Ko(X) 2 K*"™(X)
The universality of 2* gives a natural map

vn(X) 1 QX)) — MGL?™™(X).
Conjecture Q™(X) = MGL?™"™(X) for all n, all X € Sm/k.

Note. (1) vp(X) is surjective, and an isomorphism after Q.

(2) vp(k) is an isomorphism.



T he construction of algebraic cobordism



The idea

We build Q*(X) following roughly Quillen’s basic idea, defin-
ing generators and relations. The original description of Levine-
Morel was rather complicated, but necessary for proving all the
main properties of 2*. Following a suggestion of Pandharipande,
we now have a very simple presentation, with the same Kkind of
generators as for complex cobordism. The relations are also
similar, but need to allow for “double-point degenerations’ .

T he simplified presention requires the base-field k£ to have char-
acteristic zero.



Generators

Sch;. := finite type k-schemes.

Definition Take X € Schy.

1. M(X) := the set of isomorphism classes of projective mor-
phisms f:Y — X, with Y € Sm/k.

2. Grade M(X):

Mn(X) i ={f:Y - X e M(X) | n=dim,Y}.

3. M« (X) is a graded monoid under []; let M;"(X) be the group
completion.

Explicitly: Mf,}"(X) is the free abelian group on f : Y — X in
M(X) with Y irreducible and dim,Y = n.



Double point degenerations

Definition Let C be a smooth curve, ¢ € C a k-point. A
morphism =« : Y — C in Sm/k is a double-point degeneration at
c if

1) =SuT
with

1. S and T smooth,
2. S and T intersecting transversely on Y.

Shortly speaking: 7=~ 1(¢) is a reduced strict normal crossing di-
visor without triple points.

The codimension two smooth subscheme D = SN 7T is called
the double-point locus of the degeneration.



The degeneration bundle

Let 7 : Y — C be a double-point degeneration at ¢ € C(k), with
Y )=SuT; D:=SnNT.

Set Np/g := the normal bundle of D in 5.
Set: P(m,c) :=P(Op ® Np/s),

a Pl-bundle over D, called the degeneration bundle.



P(m, c) is well-defined:

Let Np,p = the normal bundle of D in T
Np/s = 0y(T) ® Op; Np,7 = 0y(S) ® Op.
Since Oy (S+T)® O0p = Op,
~ ar—1
Npys = Npjr-

So the definition of P(w,¢) does not depend on the choice of S
or T

P(m,c) =Pp(Op & ND/S) =Pp(Op &P ND/T)°



Double-point cobordisms

Definition Let f:Y — X x Pl be a projective morphism with
Y € Sm/k. Call f a double-point cobordism if

1. piof:Y — Pl is a double-point degeneration at 0 € P!.

2. (p10o f)~1(1) is smooth.



Double-point relations

Let f : Y — X x Pl be a double-point cobordism. Suppose
Y — P1 has relative dimension n. Write

(p1of)7H0)=Yo=SUT, (p1of)~1(1) =V,

giving elements
[S — X],[T — X],[P(p1 0 f,0) — X],[Y1 — X]
of M,(X). The element
Y1 - X] =[S — X] - [T — X] 4+ [P(pp 0 f,0) — X]

IS the double-point relation associated to the double-point cobor-
dism f.



The definition of algebraic cobordism

Definition For X € Schy, Q«(X) is the quotient of J\/[;"(X) by
the subgroup of all double-point relations associated to double-
point cobordisms f:Y — X x P!

Qi (X) 1= MH(X)/[Y1 — X] ~
[S — X]+ [T — X] = [P(p1o f,0) — X]
for all double-point cobordisms f:Y — X x P! with Yo = SUT.



Elementary structures
e For g : X — X' projective, we have

gs : Mi(X) — Ma(X)
g«(f 1Y - X):=(gof:Y - X)
e For g: X’ — X smooth of dimension d, we have
g" T Ma(X) — Mp (X
g (Y - X)i=(p2: Y xx X' — X)

e For L — X a globally generated line bundle, we have the
1st Chern class operator

c1(L) 1 Q24(X) — 2, _1(X)
()Y —-X)=(foip:D— X)

D := the divisor of a general section of f*L.



Concluding remarks

1. These structures extend to give the desired properties of
Q*(X) = Qqdim x—«(X).

2. Smooth degenerations yield a “naive cobordism relation”:

Let F: Y — X x P! be a projective morphism with Y smooth
and with F transverse to X x {0,1}. Then in Q2.(X), we have

[F02Y0—>X><O:X]:[F1ZY1—>X><1:X].

These relations do NO'T suffice to define C2.:

For C a smooth projective curve of genus g, [C] = (1 — ¢)[P1] €
21(k), but this relation is impossible to realize using only naive
cobordisms.



An application: Donaldson-Thomas theory
(with R. Pandharipande)

X: a smooth projective threefold over C

Hilb(X,n) := the Hilbert scheme of “n-points” in X
Io(X,n) € CHo(Hilb(X,n)) the “virtual fundamental class
(Maulik-Nekrasov-Okounkov-Pandharipande, Thomas).

Z(X,q) =1+ > deglp(X,n)- q¢"
n>1

Conjecture (MNOP)
Z(X,q) = M(—q)9e9s(Tx®Kx)

where M (q) :=1],,(1 —q™)~™ is the MacMahon function, i.e., the
generating function of 3-dimensional partitions.



The conjecture is related to Q*(C) by the

Proposition (DT double-point relation) Let m:Y — C be a
projective double-point degeneration over O € C, and suppose
that Ye := 7w~ 1(¢) is smooth for some point ¢ € C. Write

r~1(0)=SUT.
T hen

Z(Ye,q) = Z(S,q)Z(T, q) Z(P(r,0),q) L.

This is proven by MNOP.



To prove the conjecture:
We'll see later that X — degce3(Ty ® Ky ) descends to a homo-
morphism cpr : 273(C) — Z.

Thus, sending X to M(—q)9€9c3(Tx®Kx) descends to a homo-
morphism

M(—q)°r7(=) : Q=3(C) — (1 + qZ[[q]])*.

By the DT double-point relation, sending X to Z(X,q) descends
to a homomorphism

Z(—,q) : Q73(C) — (1 + ¢Z[[gID*.

But Q73(C)g = L@3 has Q-basis [(P1)3], [Pl x P?], [P3], so it
suffices to check the conjecture for these three varieties.

This was done in work of MNOP.



Advertisement

Lecture 2: We'll show how to use Q2* to understand Riemann-
Roch theorems, and how construct the Voevodsky/Brosnan Steen-
rod operations on CH*/p. We'll describe the generalized degree
formula, how to get lot's of interesting degree formulas from
the generalized degree formula and give applications to quadratic
forms and other varieties.



Lecture 3:

Part A is on the extension to singular varieties, with applica-
tions to Riemann-Roch for singular varieties. We'll also discuss
the problem of fundamental classes, and how this relates to the
problem of constructing a cobordism-valued Gromov-Witten the-
ory

Part B is on the category of cobordism motives, its relation
to Chow motives, and applications to the computation of the
algebraic cobordism of Pfister quadrics, due to Vishik-Yagita.



T hank you!



