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Todd classes of vector bundles

Given: A∗: an O.C.T. on Sm/k

τi ∈ A−i(k), i = 0,1, . . .; τ0 = 1.

Let σi(ξ) := the ith elementary symmetric function in ξ1, ξ2, . . ..



Let fτ(t) =
∑∞

i=0 τit
i and

Fτ(ξ1, ξ2, . . .) :=
∞∏

i=1

fτ(ξi).

Then

Fτ(ξ1, ξ2, . . .) = td−1
τ (σ1(ξ), σ2(ξ), . . .)

for a unique td−1
τ ∈ A∗(k)[σ1, σ2, . . .].

Definition Let E → X be a vector bundle. Set

Td−1
τ (E) := td−1

τ (c1(E), c2(E), . . .)

fτ(t) =
∑

i τit
i is the Todd genus.

Note. This also works if we only assume τ0 ∈ A0(k) is a unit.



Properties:

• For L→ X a line bundle: Td−1(L) =
∑∞

i=0 τic1(L)i.

• Td−1
τ (−) is functorial: f∗Td−1

τ (E) = Td−1
τ (f∗E).

• Td−1
τ (−) is multiplicative: Td−1

τ (E) = Td−1
τ (E′)Td−1

τ (E′′)
for each exact sequence

0→ E′ → E → E′′ → 0

• E 7→ Td−1
τ (E) descends to a group homomorphism

Td−1
τ : K0(X)→ A0(X)×



Twisting a theory

For f : Y → X in Sm/k, set

Nf := [f∗TX]− [TY ] ∈ K0(Y ).

Define:

A∗τ(X) := A∗(X)

f∗τ := f∗

For f : Y → X projective, d = codimf , define

fτ
∗ : A∗(Y )→ A∗+d(X) by

fτ
∗ (y) := f∗(y ·Td−1

τ (Nf)).



Proposition (1) X 7→ A∗τ(X) defines an O.C.T. on Sm/k.

(2) Let λτ(t) =
∑∞

i=0 τit
i+1. For p : L→ X a line bundle,

cτ
1(L) = λτ(c1(L)) = c1(L) ·Td−1

τ (L).

(3) A∗τ has formal group law

F τ
A(u, v) = λτ(FA(λ−1

τ (u), λ−1
τ (v))).



Proof: The functoriality of f∗ follows from the identity

Nfg = g∗Nf + Ng

in K0, and the multiplicativity of Td−1
τ .

The formula for cτ
1(L) follows from the definition:

cτ
1(L) := s∗τ(s

τ
∗(1))

= s∗(s∗(1 ·Td−1
τ (L))) = s∗[s∗(1 · s∗p∗Td−1

τ (L))]

= s∗(p∗Td−1
τ (L) · s∗(1)) = Td−1

τ (L) · s∗(s∗(1))

= Td−1
τ (L) · c1(L) = λτ(c1(L)).



(PB) for A∗τ follows from (PB) for A∗ and the fact that Td−1
τ (L)

is a unit.

The formal group law follows from the formula for cτ
1(L):

F τ
A(cτ

1(L), cτ
1(M)) = cτ

1(L⊗M) =⇒

F τ
A(λτ(c1(L)), λτ(c1(M))) = λτ(c1(L⊗M))

= λτ(FA(c1(L), c1(M))).



Panin’s Riemann-Roch theorem

A∗, B∗: O.C.T. on Sm/k
φ : A∗ → B∗ a natural transformation of underlying cohomology
theories:

φ(x ·A y) = φ(x) ·B φ(y)

φ(f∗A(x)) = f∗B(φ(x)).

By (PB) there is a unique power series td−1
φ (t) =

∑∞
i=0 τit

i such
that

φ(cA
1 (L)) = td−1

φ (cB
1 (L)) · cB

1 (L).

Theorem (Panin) Suppose that τ0 is a unit. Then φ defines
a natural transformation of O.C.T.

φ : A∗ → B∗τ .



Explicit R-R

In concrete terms: Let tdτ(t) = 1/ td−1
τ (t). Define Tdτ(E) using

tdτ(t) instead of td−1
τ (t).

Let f : Y → X be a projective morphism. Then

Td−1
τ (Nf) = Td−1

τ ([f∗TX]− [TY ])

= Tdτ(TY )(f∗(Tdτ(TX)))−1.

Thus

φ(fA
∗ (x)) = fBτ

∗ (φ(x)) = fB
∗ (φ(x) ·Td−1(Nf))

so we recover the “classical” R-R theorem:

φ(fA
∗ (x)) ·Tdτ(TX) = fB

∗ (φ(x) ·Tdτ(TY )).



Grothendieck-R-R

We take the original example: Let ch : K0(X) → CH∗(X)Q be
the Chern character.
ch is characterized (by the splitting principle) as the unique ad-
ditve homomorphism with

ch([L]) = ecCH
1 (L).

CH has the additive group law =⇒ ch is a ring homomorphism.

Modify ch to the natural transformation of cohomology theo-
ries

chβ : K0[β, β−1]→ CH∗Q[β, β−1]

by chβ([L]βn) = eβcCH
1 (L)βn.



What is td−1
ch (t)?

cK
1 (L) = (1− L−1)β−1, so

chβ(c
K
1 (L)) = β−1[chβ(1)− chβ(L

−1)]

= β−1[1− e−βcCH
1 (L)].

Thus

td−1
ch (t) =

1− e−βt

βt
.

Restricting to degree 0 and sending β to 1, we recover the usual

Chern character, Todd class and the Grothendieck-Riemann-

Roch theorem.



Why ch? We can also explain where the Chern character comes

from:

K0[β, β−1] is the universal multiplicative theory (algebraic Conner-

Floyd theorem).

CH∗ is an additive theory: use the exponential function to twist

the group law for CH to be multiplicative. Explicitly, twist the

group law in CH∗[β, β−1] by

λτ(t) := t · td−1
ch (t) = 1− e−βt.

The universal property of K0[β, β−1] gives a unique map

chβ : K0[β, β−1]→ CH∗[β, β−1]



The formula for cCHτ

1 (L) yields

ch(L) = ecCH
1 (L)

so we recover the Chern character.



Operations



Landweber-Novikov classes
These are the coefficients of the universal inverse Todd class:

Take variables t1, t2, . . . with deg ti := −i and extend Ω∗ to
Ω∗[t1, t2, . . .] := Ω∗[t].

Let ft(t) :=
∑

i tit
i (t0 = 1) be the universal inverse Todd genus.

For E → X a vector bundle, write

Td−1
t (E) =

∑
J

cJ(E)tJ; cJ ∈ Ω|J |(X).

Since Td−1
t is multiplicative, sending E to cJ(E) descends to a

natural map

cJ : K0(X)→ Ω|J |(X),

the Jth Landweber-Novikov class.



Examples

(1) cn(E) = cn,0,0,...(E).

(2) The Newton class Sn(E) := c0,...,0,1(E) (n − 1 0’s). For

L a line bundle

Sn(L) = c1(L)n.

Sn is additive: Sn(E ⊕ E′) = Sn(E) + Sn(E′).



Landweber-Novikov operations

We using the twisting construction to promote the classes cJ
to operations on Ω∗.

Let Ω∗[t](t) be the twist of Ω∗[t] by the universal Todd genus.

The universality of Ω∗ gives a unique transformation

νLN : Ω∗ → Ω∗[t](t).

For x ∈ Ωn(X), write

νLN(x) =
∑
J

SLN
J (x)tJ; SLN

J (x) ∈ Ωn+|J |(X).

The transformation

SLN
J : Ω∗ → Ω∗+|J |

is the Jth Landweber-Novikov operation.



The definition of pushforward in the twisted theory gives the for-

mula for sLN
J :

For f : Y → X ∈M(X),

SLN
J (f) = f∗(cJ(Nf)).

Proposition Sending f : Y → X ∈ M∗(X) to f∗(cJ(Nf)) ∈
Ω∗+|J |(X) descends to a natural homomorphism

SLN
J : Ω∗(X)→ Ω∗+|J |(X).

Note. Let cCF
J (E) := ϑCH(cJ(E)) ∈ CH|J |(X). The classes

cCF
J (E) are the Conner-Floyd Chern classes of E.

Ex.: c(n)(E) = cn(E), the usual nth Chern class.



Brosnan/Voevodsky Steenrod operations

Fix a prime p. Let bn := tpn−1 (deg bn = pn − 1).

Extend CH∗/p to CH∗/p[b] := CH/p[b1, b2, . . .].

Form the universal mod p genus

f
(p)
b (t) :=

∑
n

bntp
n−1 ∈ CH∗/p(k)[b][t] = Fp[b][t].

Let CH∗/p[b](b) be the twisted theory and

ν(p) : Ω∗ → CH∗/p[b](b)

the canonical map.



Lemma The formal group law of CH∗/p[b](b) is the additive
group.

Proof.

c
(b)
1 (L) = c

CH/p
1 (L) · f(p)(c

CH/p
1 (L))

=
∑
n

c
CH/p
1 (L)pn

bn.

So

c
(b)
1 (L⊗M) =

∑
n

c
CH/p
1 (L⊗M)pn

bn

=
∑
n

(c
CH/p
1 (L) + c

CH/p
1 (M))pn

bn

=
∑
n

(c
CH/p
1 (L)pn

+ c
CH/p
1 (M)pn

)bn

= c
(b)
1 (L) + c

(b)
1 (M).



Since CH∗ = Ω∗+, ν(p) : Ω∗ → CH∗/p[b](b) descends to

S(p) : CH∗/p→ CH∗/p[b](b).

Write

S(p) :=
∑
J

S
(p)
J bJ .

Definition The homomorphism

S
(p)
J : CH∗/p→ CH∗+|J |p/p

is the Jth mod p Steenrod operation

(|(j1, . . . , jr)|p :=
∑

i ji(p
i − 1)).



As for the Landweber-Novikov operations:

S
(p)
J ([f : Y → X]) = f∗(cCF

J(p)(Nf)).

(J 7→ J(p) places the ith entry of J in position pi − 1 and fills in

with 0’s).

This shows these Steenrod operations agree with those of Bros-

nan/Voevodsky.



Divisibility results We make the Z-version of our construction:

f̃
(p)
b (t) :=

∑
n

bntp
n−1 ∈ CH∗(k)[b][t] = Z[b][t].

Twist CH∗[b] to CH∗[b](b).

The universal property gives S̃(p) : Ω∗ → CH∗[b](b).

For each index J, this gives the commutative diagram

Ω∗
νCH //

S̃
(p)
J ��

CH∗

S
(p)
J��

CH∗+|J |p // CH∗+|J |p/p

So for x ∈ Ω∗(X):

If νCH(x) = 0, then p divides S̃
(p)
J in CH∗+|J |p(X) for all J.



Taking X = Spec k and noting CH∗(k) = CH0(k) = Z gives

Proposition Let Y be a smooth projective variety over k of

dimension d > 0. Then for all J with |J |p = d,

p | S̃
(p)
J ([Y ]) ∈ CH0(k) = Z.

Example For J = (0, . . . ,0,1) with the 1 in the nth spot, we

have S̃
(p)
J = Spn−1, the pn − 1st Newton class. Thus: For all

smooth projective varieties Y of dimension d = pn − 1

deg(Spn−1(TY )) ∈ pZ.



Jndecomposability

Definition p : X → Spec k a smooth projective variety over k.

I(X) ⊂ Z is the ideal generated by {degk k(x)}, x a closed point
of X. Equivalently: I(X) ⊂ CH0(k) = Z is the image of
p∗ : CH0(X)→ CH0(k).

Proposition Y , Z smooth projective varieties over k with dimZ >

0, dimY > 0. Let X = Y × Z, d = dimX. Then for all J with
|J |p = d, we have

S̃
(p)
J (X) ∈ p · I(Z) ∩ (p2).

Note. S̃
(p)
J (X) = deg c

J(p)(−TX)

=⇒ S̃
(p)
J (X) ∈ I(X).



Proof of the proposition.

S̃(p) : Ω∗ → CH∗[b](b) is a natural transformation of O.C.T.s,

hence respects products. Thus

S̃(p)(X) = S̃(p)(Y ) · S̃(p)(Z).

For fixed index J:

S̃
(p)
J (X) =

∑
J ′,J ′′

J ′+J ′′=J

S̃
(p)
J ′ (Y ) · S̃(p)

J ′′ (Z)

But p|S̃(p)
J ′ (Y ) and S̃

(p)
J ′′ (Z) ∈ I(Z).



Consequences

Definition J an index and X a smooth projective variety of
dimension d = |J |p. Set

s
(p)
J (X) :=

1

p
· S̃(p)

J ([X])

Proposition
(1) s

(p)
J (X) is an integer, ps

(p)
J (X) ∈ I(X).

(2) s
(p)
J (Y × Z) ∼= 0 mod I(Z) ∩ (p) if dimZ > 0, dimY > 0.

(3) X 7→ s
(p)
J (X) descends to a homomorphism

s
(p)
J : Ω−|J |p(k)→ Z.



Degree formulas



The degree homomorphism

Recall that the classifying map φΩ,k : L∗ → Ω∗(k) is an iso-

morphism for any field k (of characteristic zero).

Let X be an irreducible finite type k-scheme. Restriction to the

generic point η ∈ X defines

i∗η : Ω∗(X)→ Ω∗(k(η)).

Definition The degree map deg : Ω∗(X)→ Ω∗(k) is defined by

deg := φΩ,k ◦ φ−1
Ω,k(η) ◦ i∗η.

For a general X, we have one degree map for each irreducible

component (use Ω∗(X) instead of Ω∗(X)).



The generalized degree formula

For simplicity we give the statement for X irreducible. Let

X̃ → X be a resolution of singularites.

Theorem Take x ∈ Ω∗(X). Then there are elements αi ∈ Ω∗(k)
and fi : Zi → X in M(X) such that

1. Zi → fi(Zi) is birational

2. No fi(Zi) contains a generic point of X

3. x− deg(x) · [X̃ → X] =
∑r

i=1 αi · [fi : Zi → X].



The proof is quite easy:

Essentially by definition

i∗η(x− deg(x) · [X̃ → X]) = 0.

Thus there is an open j : U → X such that j∗(x− deg(x) · [X̃ →
X]) = 0.

Let W = X \U with i : W → X. The exact localization sequence

Ω∗(W )
i∗−→ Ω∗(X)

j∗−→ Ω∗(U)→ 0

gives us an element w ∈ Ω∗(W ) with

i∗(w) = x− deg(x) · [X̃ → X].

Then use noetherian induction.



Corollary Let X be in Sm/k. Then

Ω∗(X) = ⊕dimX
n=0 LΩn(X).

Indeed, [idX] is in Ω0(X) and [Zi → X] is in Ωn(X) for some n,

1 ≤ n ≤ dimX.



Degree formulas of Rost and Merkurjev

Theorem (Degree formula) f : Y → X a morphism of smooth

projective k-varieties of dimension d, p a prime. Then

s
(p)
J (Y ) ≡ deg f · s(p)J (X) mod I(X).

Proof. The generalized degree formula yields (in Ω∗(X))

[f : Y → X] = deg f · [id : X → X] +
∑
i

αi[fi : Zi → X];

dimZi < dimX, k(Zi) = k(fi(Zi)), αi ∈ Ω∗(k).

Push forward to Spec k: [Y ] = deg f ·[X]+
∑

ij nij[Yij×Zi] ∈ Ω∗(k).

(αi =
∑

j nij[Yij]) dimZi < dimX =⇒ dimYij > 0.



Apply s
(p)
J and use the indecomposibility of s

(p)
J (+ I(Zi) ⊂ I(X)):

s
(p)
J (Y ) ≡ deg f · s(p)J (X) +

∑′
nijs

(p)
J (Yij × Zi) mod I(X)

where
∑′ is over the i with dimZi = 0.

But such Zi are closed points of X, so

nijs
(p)
J (Yij × Zi) = nijs

(p)
J (Yij) · deg(Zi) ≡ 0 mod I(X).



Examples (1) Let X be a conic over k: Xk̄
∼= P1 but I(X) = (2).

Let Y be a smooth irreducible projective curve over k, and

f : Y → X a morphism. Then deg f and g(Y ) have opposite

parity:

Take p = 2, J = (1). Then s
(2)
J (Y ) = −(1/2)c1(TY ) = g(Y ) − 1

and the degree formula yields

g(Y )− 1 ≡ deg f · (g(X)− 1) = −deg f mod 2.

(2) Take J = (0, . . . ,0,1) (n−1 zeros). Then s
(p)
J = (1/p)S̃pn−1;

write spn−1 for s
(p)
J . The degree formula reads:

spn−1(Y ) = deg f · spn−1(X) mod I(X).

This is Rost’s original degree formula.



Applications



Correspondences and rational maps

Theorem Let X and Y be smooth projective varieties over k,
d = dimX. Suppose there is an index J with |J |p = d such that

s
(p)
J (X) 6≡ 0 mod I(X).

Let γ ∈ CHd(X × Y ) be an irreducible correspondence. Suppose
that
a) degX γ is prime to p

b) νp(I(Y )) ≥ νp(I(X)) (νp the p-adic valuation νp(pn) = n)

Then

1) dimY ≥ dimX

2) If dimY = dimX then s
(p)
J (Y ) 6≡ 0 mod I(Y ),

νp(I(Y )) = νp(I(X)) and degY γ is prime to p.



Proof. (Merkurjev)
(2): γ = 1 ·Z, Z irreducible. Take a resolution of singularities of

Z: Y
f←− Z̃

g−→ X, (deg g, p) = 1.

The degree fomula for g =⇒ s
(p)
J (Z̃) 6≡ 0 mod I(X), so

s
(p)
J (Z̃) 6≡ 0 mod I(Y )

The degree formula for f =⇒ deg f · s(p)J (Y ) 6≡ 0 mod I(Y ).

ps
(p)
J (Y ) ≡ 0 mod I(Y ) =⇒ (deg f, p) = 1 and

s
(p)
J (Y ) 6≡ 0 mod I(Y ).

(deg f, p) = (deg g, p) = 1 =⇒ νp(I(X)) = νp(I(Y )).

(1): If dimY < dimX, replace Y with Y ×Pn, n = dimX−dimY .
This leaves I(Y ) unchanged, but now deg f = 0, contrary to (2).



Corollary (Merkurjev) Let X be a smooth projective k-variety,

J an index with s
(p)
J (X) 6≡ 0 mod I(X). Let Y be a smooth

projective k-variety such that νp(I(Y )) ≥ νp(I(X)) and dimY <

dimX. Then there is no rational map f : X → Y .

Proof. A rational map f gives Γf ∈ CH(X × Y ) of degree 1 over

X, so dimY ≥ dimX (theorem (1)).

Take s
(p)
J = spn−1. An easy calculation gives

Lemma Let X be a degree p hypersurface in Ppn
. Then spn−1(X) =

ppn−1 − pn − 1. If p|I(X), then spn−1 6≡ 0 mod I(X).



Corollary (Hoffmann) Let X1, X2 be anisotropic quadrics over

k with X2 isotropic over k(X1). Then dimX1 ≥ 2n − 1 =⇒
dimX2 ≥ 2n − 1.

Proof. X2 is isotropic over k(X1) =⇒ there is a rational map

f : X1 → X2.

May assume dimX1 = 2n−1 (take general hyperplane sections).

X1, X2 anisotropic =⇒ I(X1) = I(X2) = (2) (Springer’s theo-

rem).

The lemma for p = 2 =⇒ s2n−1(X1) 6≡ 0 mod I(X1).

Merkurjev’s corollary =⇒ dimX2 ≥ 2n − 1.



Corollary (Izhboldin) Let X1, X2 be anisotropic quadrics over
k with X2 isotropic over k(X1) and with dimX1 ≥ dimX2 =
2n − 1. If X2 is isotropic over k(X1), then X1 is isotropic over
k(X2).

Proof. May assume dimX1 = dimX2 = 2n − 1.

X2 is isotropic over k(X1) =⇒ there is a rational map
f : X1 → X2.

By theorem (2), there is a correspondence γ′ ∈ CH(X1 ×X2) of
odd degree over X2, i.e.:

X1 has a point over an odd degree extension of k(X2)

By Springer’s theorem, X1 is isotropic over k(X2).


