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Todd classes of vector bundles
Given: A*: an O.C.T. on Sm/k

e A7(k), i=0,1,...; 9 = 1.

Let 0;(&) := the 7th elementary symmetric function in £1,&o,....



Let fr(t) = 2047t and

FT(€17€27"') = H fT(gz)
1=1

T hen

Fr(€1,62,...) = td; 1 (01(8),02(8),...)
for a unique td-1 € A*(k)[o1,00,...].

Definition Let F — X be a vector bundle. Set

Td 1(E) = td; H(c1(B), ca(B), ...)
fr(t) = 3, 7t* is the Todd genus.

Note. This also works if we only assume 75 € A%(k) is a unit.



Properties:
e For L — X a line bundle: Td™ (L) = £%° 4 mic1 (L)%

e Td-1(-) is functorial: f*Td-1(E) = Td-1(f*E).
e Td-1(—) is multiplicative: Td-1(E) = Td-1(E") Td-1(E")
for each exact sequence
0O—-F —-E—-FE'->0
o Fi— Td;l(E) descends to a group homomorphism

Td-1: Ko(X) — A% (X)X



Twisting a theory

For f:Y — X in Sm/k, set
Ny = [f"Tx] — [Ty] € Ko(Y).

Define:

AZ(X) 1= A*(X)
fri= £

For f .Y — X projective, d = codimf, define
fIA*(Y) — A*T4(X) by

fI(y) := faly - TA7H(Np)).



Proposition (1) X — AX(X) defines an O.C.T. on Sm/k.

(2) Let M\r(t) =2 g7it*TL. Forp: L — X a line bundle,
cI(L) = Ar(c1 (L)) = ex(L) - T H(L).

(3) AX has formal group law

Fi(u,v) = A (FAOFH(w), A7 1 (v)).



Proof: The functoriality of fi« follows from the identity

Nty =g"Np+ Ny
in K, and the multiplicativity of Td-1.

The formula for c](L) follows from the definition:

c1(L) := sE(s[(1))
= s*(s:(1- Td7 1 (L)) = s*[s+(1 - s*p* Td 1(L))]
= s*(p* T H(L) - 5x(1)) = Td-H(L) - s*(sx(1))
= Td; (L) - e1(L) = Ar(e1 (D).



(PB) for A* follows from (PB) for A* and the fact that Td-1(L)
IS a unit.

The formal group law follows from the formula for cJ(L):

FR(E(L), 1 (M) = (L ® M) =

Fi(Ar(e1 (L)), Ar(c1(M))) = A(c1(L @ M))
= A (Fp(c1(L),c1(M))).



Panin’s Riemann-Roch theorem

A*, B*: O.C.T. on Sm/k
¢ . A* — B* a natural transformation of underlying cohomology
theories:

¢(z-4y) = ¢(z) B d(y)
o(fa(z)) = fplo(z)).

By (PB) there is a unique power series td;l(t) =¥, ;t* such
that
(1 (L)) = td (T (1)) - £ (L).
Theorem (Panin) Suppose that mg is a unit. Then ¢ defines
a natural transformation of O.C.T.
¢». A" — Bl



Explicit R-R

In concrete terms: Let td-(t) = 1/td-1(¢). Define Td-(E) using
td,(t) instead of td-1(¢).
Let f:Y — X be a projective morphism. Then

Td N (Np) = Td ([ Tx] — [Ty])
= Td(Ty) (f*(Tdr(Tx))) " .

Thus
o(fi(x) = P (¢(2)) = fP(o(x)  Td™HWV)))

sO we recover the ‘classical’ R-R theorem:

o(fA(x)) - Tdr(Tx) = fB(o(z) - Tdr(Ty)).



Grothendieck-R-R

We take the original example: Let ch : Ko(X) — CH*(X)q be
the Chern character.

ch is characterized (by the splitting principle) as the unique ad-
ditve homomorphism with

ch([L]) = T (L),

CH has the additive group law == ch is a ring homomorphism.

Modify ch to the natural transformation of cohomology theo-
ries

chg : KolB, 87 '] — CH{[8, 87 "]
by chg([L1B™) = P Bgn.



What is td 1 (t)?

()= 0-LYH81 so

ch(ct (L)) = B ehp(1) — chg(L™H)]
= 371 - e_ﬁch(L)].
Thus
1 —e Pt

tdo (0 = —,

Restricting to degree O and sending 3 to 1, we recover the usual
Chern character, Todd class and the Grothendieck-Riemann-
Roch theorem.



Why ch? We can also explain where the Chern character comes
from:

Kp[B, 8~ 1] is the universal multiplicative theory (algebraic Conner-
Floyd theorem).

CH™*™ is an additive theory: use the exponential function to twist
the group law for CH to be multiplicative. Explicitly, twist the
group law in CH*[3,371] by

Ar(t) i=t-td () =1 —e Pl

The universal property of Kg[3,8~ 1] gives a unique map

chg : KolB8, 8711 — CH*[8,57 1]



The formula for {7 (L) yields

ch(L) = ech (L)

sO we recover the Chern character.



Operations



Landweber-Novikov classes
These are the coefficients of the universal inverse Todd class:

Take variables tq,t>,... with deg t; := —i and extend Q* to
Q*[t1,to,...] := Q*[t].

Let £i(t) := 3 t;t* (to = 1) be the universal inverse Todd genus.

For E — X a vector bundle, write

Td H(E) =Y e j(B);  ¢;ell(X).
J

Since Tdt_]L is multiplicative, sending E to c;(F) descends to a
natural map

¢y Ko(X) — QVI(x),

the Jth Landweber-Novikov class.



Examples
(1) ecn(E) =cp0,0,.(E).

(2) The Newton class Sp(E) := cg,..01(F) (n —1 0's). For
L a line bundle

Sn(L) = c1(L)™.
Sy is additive: Sp(E @ E") = Sp(E) 4+ Sh(E").



Landweber-Novikov operations

We using the twisting construction to promote the classes c;
to operations on Q*.

Let Q*[t](t) be the twist of Q2*[t] by the universal Todd genus.

The universality of 2* gives a unique transformation
VLN - Q* — Q*[t](t)
For x € Q"(X), write
vin(@) =3 SEV @), sEN(2) e @nHVI(X).
J

The transformation
SEN . o ol
Is the Jth Landweber-Novikov operation.



T he definition of pushforward in the twisted theory gives the for-
mula for s4V:

For f:Y — X € M(X),
SEN(F) = fales(Np)).

Proposition Sending f 1Y — X € M*(X) to fi(cj(N¢)) €
Q*tlI1(X) descends to a natural homomorphism

SEN ¥ (x) — (X)),

Note.  Let ST (E) = Ycn(cs(E)) € CHYI(X). The classes
J CH\CcJ
cCJjF(E) are the Conner-Floyd Chern classes of E.

EX.: C(n)(E) = cn(F), the usual nth Chern class.



Brosnan/Voevodsky Steenrod operations
Fix a prime p. Let by :=ty;m_1 (deg b, = p" —1).
Extend CH*/p to CH*/p[b] L= CH/p[bl,bQ, .. ]

Form the universal mod p genus
R (1) == 3 bat?" =1 € CH* /p(k) [b][¢] = Fp[b][¢].

Let CH*/p[b](P) be the twisted theory and
V(P CH*/p[b](b)

the canonical map.



Lemma The formal group law of CH*/p[b](b) is the additive
group.

Proof.
SP(L) = gL - fP (TP (L))
=SSPy b,
So '
P m) =Y P (L@ M) by

(TP(L) + TP ()P b

Py 4 SR b,

>
2

=P (L) + P ).



Since CH* = Q7 , v(P) O CH*/p[b](b) descends to

s®) . cH*/p — CH* /p[b] ).
Write
s®) .= 5P/,
J

Definition The homomorphism

S§p) : CH*/p — CH*_HJ'p/p

is the Jth mod p Steenrod operation

(1G1s -5 dr)lp 1= i di(* — 1)).



As for the Landweber-Novikov operations:
S Y — X1) = f(SE(Np)).

(J — J(®) places the ith entry of J in position pi — 1 and fills in
with 0's).

T his shows these Steenrod operations agree with those of Bros-
nan/Voevodsky.



Divisibility results We make the Z-version of our construction:

PP 1) := S bpt?" T € CH*(k)[b][t] = Z[b] [£].
Twist CH*[b] to CH*[b](P).
The universal property gives §(P) : Q* — CH*[b](P),

For each index J, this gives the commutative diagram
QF —CH
59 5
cH*HJlp—CH*tlp /p

So for x € Q*(X):

If vep(z) = 0, then p divides §% in CH*+Hl/lo(X) for all J.



Taking X = Speck and noting CH*(k) = CHO(k) = Z gives

Proposition Let Y be a smooth projective variety over k of
dimension d > 0. Then for all J with |J|p =d,

p| SP(YD) e cHO(R) =2

Example For J = (0,...,0,1) with the 1 in the nth spot, we
have S*Sm = Spn_l, the p™ — 1st Newton class. Thus: For all
smooth projective varieties Y of dimension d =p"™* —1

deg(Spn_1(Ty)) € pZ.



Jndecomposability
Definition p: X — Speck a smooth projective variety over k.

I(X) C Z is the ideal generated by {deg k(xz)}, x a closed point
of X. Equivalently: I(X) C CHp(k) = Z is the image of
px . CHo(X) — CHg(k).

Proposition Y, Z smooth projective varieties over k withdim Z >
O, dmY >0. Let X =Y x Z,d=dmX. Then for all J with
|J|p = d, we have

§P(x)ep-1(2)n(?).

Note. Sgp)(X) = deg ¢ ;) (—Tx)
— 3P (x) e 1(X).



Proof of the proposition.

S . r — CH*[b](b) is a natural transformation of O.C.T.s,
hence respects products. Thus

3P (x) =3P (y). 5P (7).
For fixed index J:

P =¥ sPw-8P@
J/,J/,
J+J"'=J

But p|5%(v) and 5%)(2) e 1(2).



Consequences

Definition J an index and X a smooth projective variety of
dimension d = |J|p. Set

P00 == 5P X))

Proposntlon
(1) ssp (X) is an integer, ps(p)(X) c I(X).

(2) sP(v x 2) 20 mod I(2) N (p) ifdimZ >0, dimY > 0.

(3) X — sSp)(X) descends to a homomorphism

s$P o Vh(k) - 7.



Degree formulas



The degree homomorphism

Recall that the classifying map ¢q @ L« — Qu(k) is an iso-
morphism for any field k& (of characteristic zero).

Let X be an irreducible finite type k-scheme. Restriction to the
generic point n € X defines

i QM (X) — Q(k(n)).

Definition The degree map deg : Q*(X) — Q*(k) is defined by

deg := ¢q 1 © ¢;2}k(n) o i,

For a general X, we have one degree map for each irreducible
component (use Q4 (X) instead of Q*(X)).



The generalized degree formula

For simplicity we give the statement for X irreducible. Let
X — X be a resolution of singularites.

Theorem Takex € Q4«(X). Then there are elements «; € Q2 (k)
and f; . Z; — X in M(X) such that

1. Z;, — f;(Z;) is birational
2. No f;(Z;) contains a generic point of X

3. z—deg(z) [X = X]|=3T_10;[fi 1 Z; — X].



The proof is quite easy:

Essentially by definition
z;;(:c —deg(z) - [X — X]) =0.

Thus there is an open j : U — X such that j*(x — deg(z) - [X —
X]) =o0.

Let W = X \U with i: W — X. The exact localization sequence

QW) 5 Q.(X) L5 Qu(U) — 0
gives us an element w € Q«(W) with
is(w) =z —deg(z) - [X — X].

Then use noetherian induction.



Corollary Let X be in Sm/k. Then

QH(X) = ety L™ (X).

Indeed, [idx] is in Q9(X) and [Z; — X] is in Q"(X) for some n,
1 <n<dmJX.



Degree formulas of Rost and Merkurjev

Theorem (Degree formula) f:Y — X a morphism of smooth
projective k-varieties of dimension d, p a prime. Then

sP(v)=deg - sP(X) mod I1(X).
Proof. The generalized degree formula yields (in Q*(X))
[f:Y > X]=degf [id: X - X]+> olfi: Z; — X];
dimZ; <dmX, k(Z;) = k(f;(Z;)), a; € Q*(k).
Push forward to Speck: [Y] = deg f-[X]+>2;;n;;[Yi; x Z;] € 2% (k).

(a; = Zj n@]D/ZJ]) dim Z; < dimX = dim 3/7/] > 0.



Apply s\ and use the indecomposibility of s'P (4 1(Z;) € I(X)):

sP () = deg £ 5P (X) + 3 nygs P (Vg x Z) mod 1(X)

where Y is over the 7 with dim Z; = 0.

But such Z; are closed points of X, so

(p)( z'j X 7;) = n;;s (p)( ) -deg(Z;) =0 mod I(X).

YR



Examples (1) Let X be a conic over k: Xz = P! but I(X) = (2).
Let Y be a smooth irreducible projective curve over k, and
f:Y — X a morphism. Then deg f and ¢g(Y) have opposite
parity:

Take p=2, J = (1). Then sP (V) = —(1/2)c1(Ty) = g(¥) — 1
and the degree formula vields

g(Y)—1=degf-(g(X)—1)=—degf mod 2.

(2) Take J =1(0,...,0,1) (n—1 zeros). Then Sgp) = (1/p)Syn_1;
write s,n_q for ssp). The degree formula reads:

spn—1(Y) =deg f - s,;n_1(X) mod I(X).

This is Rost’s original degree formula.



Applications



Correspondences and rational maps

Theorem Let X and Y be smooth projective varieties over k,
d = dim X. Suppose there is an index J with |J|p, = d such that

sP)(x) 20 mod I(X).

Let v € CHy (X xY) be an irreducible correspondence. Suppose
that

a) degx v is prime to p
b) vp(I(Y)) > vp(I(X)) (vp the p-adic valuation vp(p™) =n)

T hen

1) dimY >dimX
2) If dimY = dim X then s (Y) 20 mod I(Y),
vp(I(Y)) = vp(I(X)) and degy v is prime to p.



Proof. (Merkurjev)
(2): y=1-Z, Z irreducible. Take a resolution of singularities of

7Y < 79 X (degg.p) = 1.
The degree fomula for ¢ = sgp)(Z) %0 mod I(X), so
s$P(Z)#£0 mod I(Y)
The degree formula for f = deg f - sgp)(Y) %0 mod I(Y).
psP) (Y) =0 mod I(Y) = (deg f,p) = 1 and
sSP(v)y#0 mod I(Y).
(deg f,p) = (degg,p) = 1 == 1p(I(X)) = vp(I(Y)).

(1): IfdimY <dim X, replace Y with Y xP"*, n=dimX —-dimY.
This leaves I(Y) unchanged, but now deg f = 0, contrary to (2).



Corollary (Merkurjev) Let X be a smooth projective k-variety,
J an index with sgp)(X) % 0 mod I(X). LetY be a smooth
projective k-variety such that vp(I(Y)) > vp(I(X)) and dimY <
dim X. Then there is no rational map f: X — Y.

Proof. A rational map f gives I' y € CH(X x Y) of degree 1 over
X, sodmY >dimX (theorem (1)).

Take SSp) = s,n_1. An easy calculation gives

Lemma Let X be a degreep hypersurface inPP". Then spn—1(X) =
pP'~l —p" — 1. If p|I(X), then syn_1 Z0 mod I(X).



Corollary (Hoffmann) Let X1, X» be anisotropic quadrics over
k with X, isotropic over k(X1). Then dmX; > 2" -1 —
dim X, > 2" — 1,

Proof. X, is isotropic over k(X1) == there is a rational map
f : X]_ — XQ.

May assume dim X1 = 2" — 1 (take general hyperplane sections).

X1, X» anisotropic = I(X71) = I(X2) = (2) (Springer’'s theo-
rem).

The lemma for p =2 = son_1(X71) Z#0 mod I(X7).

Merkurjev's corollary = dim X, > 2™ — 1.



Corollary (Izhboldin) Let X1, X» be anisotropic quadrics over
k with X> isotropic over k(Xq1) and with dimX; > dimX, =
2" — 1. If X» is isotropic over k(Xq1), then X4 is isotropic over
k(X5).

Proof. May assume dimX; =dim X, =2" —1.

X5 is isotropic over k(Xq) = there is a rational map
X1 — Xo.

By theorem (2), there is a correspondence v € CH(X7 x X»5) of
odd degree over Xo, i.e.:

X1 has a point over an odd degree extension of k(X»)

By Springer’'s theorem, X3 is isotropic over k(X5).



