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Oriented Borel-Moore homology



Regular embeddings and l.c.i. morphisms Recall:

A regular embedding of codimension d is a closed immersion
v . Z — X such that J, is locally generated by a regular sequence
of length d.

Example A regular embedding of codimension 1 is a Cartier
divisor

Definition A morphism f:Y — X in Schy is an [.c.i. morphism
if f can be factored as po, with 2:Y — P a regular embedding
and p: P — X smooth and quasi-projective.

X € Schy, is an [.c.i. scheme if X — Speck is an |.c.i. morphism.

Lci;, C Schy, is the full subcategory of I.c.i. schemes.
Sch§€ ;= the subcategory of projective morphisms in Schy,.



Oriented homology

An oriented Borel-Moore homology theory A« on Sch; consists
of the following data:

(D1) An additive functor A4 : Sch) — Ab., X — A«(X).

(D2) For f:Y — X an I.c.i. morphism in Schy, a homomorphism
of graded groups f*: A«(X) — A,_4(Y),
d .= the codimension of f.

(D3) For each pair (X,Y) in Schy, a (commutative, associative)
bilinear graded pairing A«(X) ® A«(Y) — A«(X X, Y)

UV r—uXuv,

and a unit element 1 € Ap(Spec(k)).



T hese satisfy six conditions:

(BM1) idy = idA*(X). For composable I.c.i. morphism f and g,
(fog)" =g o f*

(BM2) Given a Tor-independent cartesian square in Schy: WwW-2-Xx

with f projective, g I.c.i. . Then g*f« = flg'*.

(BM3) For f and g morphisms in Schy: If f and g are projective,

then (f x g)«(u x v) = fi(u) X gx(v).
If f and g are l.c.i. , then (f x ¢)*(u x v) = f*(u) x g*(u)).



(PB) For a line bundle L on Y € Sch; with zero section s:Y — L
define ¢1(L) : A«(Y) — A1 (Y) by ¢1(L)(n) = s*(sx(n)).

Let £ — X be a rank n 4+ 1 vector bundle, with associated
projective space bundle ¢ : P(F) — X. Then

S22 (0(1) g)iog*

Di=0Asti—n(X) . A4 (P(E))

IS an isomorphism.

(EH) Let p:V — X be an affine space bundle. Then
p* i Ax(X) — Aqr (V)
IS an isomorphism.

(CD) **x*.



Examples (1) The Chow group functor

X — CHx(X)
with projective push-forward and |.c.i. pull-back given by Fulton.

(2) The Grothendieck group of coherent sheaves

X — Go(X)[8,871].

(deg8 = 1). L.c.i. pull-back exists because an I.c.i. morphism
has finite Tor-dimension.

(3) Algebraic cobordism (chark =0) X — Q4 (X).
L.c.i. pull-backs are similar to Fulton’'s, but require a bit more
work.

Note. There are ‘refined intersections’ for 2, similar to
Fulton’s refined intersection theory for CH..



Homology and cohomology
Every morphism in Sm/k is |.c.i., hence:

Proposition Let Ax be an O.B.M.H.T. on Sch,. Then the
restriction of A to Sm/k, with

AM(X) 1= Adim x —n(X),
defines an O.C.T. A* on Sm/k:

e The product U on A*(X) iszUy = 0% (z x y).
o 1x =p5(1) for px : X — Speck in Sm/k.

e c1(L)=¢1(L)(1yx) for L — X a line bundle.



Consequence:

Let Ax be an O.B.M.H.T. on Sch;. There is a unique formal
group law Fy4 € A«(k)[[u,v]] with

Fa(e1(L),c1(M))(f«(ly)) = a1 (L @ M)(f«(1y))
for all X € Schy, all (f:Y — X) € M(X).

Examples
(1) CH4« has the additive formal group law: Fcny(u,v) = u+ v

(2) GplB, 8~1] has the multiplicative formal group law:
Fao(u,v) = u—+ v — Buv.

(3) Q4 has the universal formal group law: (Fq,Q+«(k)) = (FL,L«)



Universality and Riemann-Roch



Universality

Theorem Algebraic cobordism S2« is the universal O.B.M.H. T.
on Schy..

Also:

Theorem The canonical morphism 9cpy : Q2 ®p Z — CHy is an
isomorphism, so CHy is the universal additive theory on Schy..

A new result (due to S. Dai) is

Theorem T he canonical morphism

I, 1 2 @1 Z[B, 7] — GolB, 571
is an isomorphism, so Ggl8,8~1] is the universal multiplicative
theory on Schy..



Twisting

T he m-twisting construction is modified: one leaves fi alone and
twists f* by Td1(Ny):

fry =Tz (Np) o f7.
Here f 1Y — X is an l.c.i. morphism and Ny € Kg(Y) is the

virtual normal bundle: If we factor f as poz, p smooth, 7 a
regular embedding, then:

p has a relative tangent bundle Tj
¢ has a normal bundle N, and

Ny = [N;] — [*Tp).

Td;l(Nf) is the inverse Todd class operator, defined as we did
Td;l, using the operators ¢y instead of the classes c;.



Riemann-Roch for singular varieties

Twisting CHx ® Q[3, 37 1] to give it the multiplicative group law
and using Dai's theorem, we recover the Fulton-MacPherson
Riemann-Roch transformation 7 : Gg — CH, @

Using the universal property of Gg[8, 8~ 1] gives

5 : GolB, 71 — CH« ® Q[8, 37 1]1);

7 IS the restriction of 75 tO degree O.



Adams operations

J. Malagon-Lopez has used the twisting construction to define
Adams operations
Y+ s — Qi [1/k]

satisfying an “Adams-Riemann-Roch” formula. These recover
the classical Adams operations on Kg and Gg (after inverting k

for ;).



Fundamental classes



Fundamental classes for I.c.i. schemes

Definition Let pyxy : X — Speck be an l|.c.i. scheme. For an
O.B.M.H.T. A on Schg, set

15 1= pi (1)
If X has pure dimension d over k, then 14 is in Az(X). 1y is the
fundamental class of X.

Properties:

e For X = X4 II X5 € Lciy,
1x =i1.(1x;) +124(1x,).

e For f:Y — X an l.c.i. morphism in Lcig, f*(1x) = 1y.



Fundamental classes of non-Il.c.i. schemes

Some theories have more extensive pull-back morphisms, and
thus admit fundamental classes for more schemes.

Example Both CH, and Gg[3, 3~ 1] admit pull-back for arbitrary
flat maps, still satisfying all the axioms. Thus, functorial funda-
mental classes in CH4x and Gg[8, 5~ 1] exist for all X € Schy,.

This is NOT the case for all theories.

We give an example for Q2.



Let S; C P® be P2 embedded by O(2).
Let S5 C P° be P1 x P1 embedded by O(2,1).

Let R1 C 51, Ro C S» be smooth hyperplane sections. Note:
1. degc1(0(2))2 =degec1(0(2,1))2 =4
2. R1 and R, are both Pl's

So: Ri and R, are both rational normal curves of degree 4 in
P4,

We may assume R = R> = R.



Let C(S1), C(S2) and C(R) be the projective cones in PP.

Proposition Let A bea O.B.M.H.T. on Schy. If we can extend
fundamental classes in A for Sm/k to C(S1), C(S») and C(R),
functorial for I.c.i. morphisms, then

[P2] = [P x P1] in As(k)

This is NOT the case for A = €2, since

cr(P?) = 3, (P x P = 4.



Consequence for Gromov-W.itten theory

The formalism of Gromov-Witten theory can be extended to a
cobordism valued version, at least if the relevant moduli stack is
an Lci stack.

One needs a theory of algebraic cobordism for (Deligne-Mumford)
stacks: one can make a cheap version with Q-coefficients by the
universal twisting of CH,q.

BUT: there may be problems in defining the virtual fundamental
class for a perfect deformation theory if the intrinsic normal cone
of the moduli stack is not Lci.



Part B: Cobordism motives



Outline: Part B

e Motives over an O.C.T.

e Cobordism motives

e Motivic computations

e Algebraic cobordism of Pfister quadrics



Motives over an O.C.T.

We follow the discussion of Nenashev-Zainoulline.



A-correspondences

Definition A* an O.C.T. on Sm/k. X, Y smooth projective
k-varieties. Set

CorQ(X,Y) := A9MY (x x v).

CorY, is the category with

objects: smooth projective k-varieties SmProj/k,
morphisms:

Hom o (X,Y) := CorQ(X,Y)

0
CorA
and composition law:

v,z o vxy ‘= px,z«Px yv(rx,y) - py.z(vv,2))



e CorY is a tensor category: X@Y = XI1IY and X®Y := X xY.

e Sending f: X — Y to the “graph”

I‘f L= (idX,f)*(lx) c AdimY(X XY)

gives the functor

m 4 : SmProj/k — CorY.

Definition M is the pseudo-abelian hull of Cor§:

Obects are pairs (X,a), a € End-_0(X), a® = a.
A

HomM%ff((Xa Oé)a (Y7 6)) L= 6Homcor9‘(X7 Y)Oé

with the evident composition.



Definition Let Cor(X,Y) := AdMY (X x V).
Cor 4 is the category with objects pairs (X,n), X a smooth pro-
jective k-variety n € Z, morphisms

HomévorA((X, n), (Y,m)) ;= Cory7"(X,Y)

Cor 4 is the additive category generated by Cor4 and M, is the
pseudo-abelian hull of Cory.

For M = (X,a) € MET, write M(m) := ((X,a),m).

a € Corj(X,Y) acts as a homomorphism
s T AN (X) — AFT(Y).
We have ta € CorntdimX—dimY (y x7): set
ot = ta,  AN(Y) — AFFdimX—dimY+n yy



e \We have m4 : SmProj/k — Cory,.
e Cory is a tensor category, 1 = m4(Speck) and

Homcor ,(1(n), mA(X)) = An(X).

e Sending X to (X,0) defines tensor functors

Cor% — Cory

e A natural transformation of O.C.T.'s on Sm/k, v : A — B,
induces tensor functors

94 : Cory — Cor%



We add the ground field k¥ to the notation when necessary:
Cor9 (k), M(k), etc.

If R is a commutative ring, set

Corj pi=Cor} ®R
Coryp:=Cory®R

MET, and M4 g are the respective pseudo-abelian hulls.



Examples
(1) For A* = CH*, we have the well-known categories:

Cor%H(k) IS the category of correspondences mod rational equiv-
alence, M8, (k) is the category of effective Chow motives, Mcp (k)
is the category of Chow motives (all over k).

(2) For A* = Q*, we call Cor%(k) the category of cobordism cor-
respondences, M&' (k) the category of effective cobordism mo-
tives, Mo (k) the category of cobordism motives (over k).

(3) We can also take e.g. A* = Ky[3,871]; we write Cor?{o,
M?}cg, etc.



Cobordism motives

Vishik-Yagita have considered the category Mgf(k) and discussed
its relation with Chow motives.



Remarks
(1) Since Q* is universal, there are canonical functors

94« Cord (k) — Cord (k)

92 MET (k) — MY (k)
etc. Thus, identities in M&'(k) or Mq(k) yield identities in
MET (k) or M (k) for all O.C.T.’s A on Sm/k.

(2) 2*®Q is isomorphic to the “universal twist” of CH*@L® Q,
SO one can hope to understand Mg, o by modifying Mcy Lgg bY
a twisting construction, i.e., a deformation of the composition
law. We will see that Mq, g is NOT equvalent to McH Lg-

(3) The work of Vishik-Yagita allows one to lift identies in M&[, (k)
or Mcp(k) to MET (k) or Mq (k)



Example [The Lefschetz motive in M Let's compare End (P1)

- 1
with EndCOr%H (PP4)

Cord
QP! x Py = Z[0 x P1] @ Z[P! x 0] ® Z[P'] x [(0,0)]
Set: a = [0 x P1]; B =[Pl x0];y=[P!]-[(0,0)].

Cor?2 — CorCC)H just sends ~v to zero. We have the composition
laws:

1
EndC 0 (Pl) EndCOr%(P)
ore,, . o 3 5
0 Qo I]
o o 0] 0
o o 0
G 0 ; B | v | B |
vy 1 1 010




So

EndCOr%(IP’l) — End PHY=7ZxZ

Cor%H (

is @ non-commutative extension with square-zero kernel (7).
Hence:

e The Lefschetz Chow motive L := (P!, a) lifts to “the Lefschetz
2-motive”

La(\) == (P a+ \y)
for any choice of A € Z. Since [Ap1] =a+ 8 —7:
(PLid) = (PLa+ )@ PLA- Q4+ M) =2 Lo(V) @ 1.

Also: Lo(X\) £ Lo()\) for all A\, X, but are not equal as summands
of (P1,id).



Remark We have seen that

Eﬂdmgr(mQ(Pl)) — EndM%ﬁZ (mCH(Pl))

IS surjective with kernel a square zero ideal. A similar computa-
tion shows that

n
Endmgr(mg(ﬂmn)) — EndMeCfL(mCH(IP”)) = H 7.
=1

is surjective for all n with ker”tl =0, but ker™ # 0.



Definition Let A be an O.C.T. on Sm/k, 9,4 : ME" (k) — MY (k)
the canonical functor. Define the Lefschetz A-motive

La=94(Lg).
Proposition For M = (X,a), N = (Y, 8) in MY (k),

HOmMZfr(M X L%m’N &) L%n)
= (id x a)* (83 x id),AdMY—m+nx o y).

Hence

Theorem The inclusion functor M (k) — Mu(k) identifies
M 4(k) with the localization of Meff(k) with respect to — ® L 4.

Also
(X,0)(m) = (X,a,m) = (X,0) ® L%m.



The nilpotence theorem

Theorem Take X,Y € SmProj/k. Then

Och : Cord(X,Y) — Cor2 (X,Y)

is surjective. If X =Y, then the kernel ker(X) of 9cy is nilpo-
tent.

Proof. Surjectivity: Since CH* = Q* ®@p Z, Q*(T) — CH*(T) is
surjective for all T € Sm/k.



Nilpotence of the kernel: CH* = Q*®p Z = Q* ® (L/L*<0) =—

ker(X) = Y L7QIMA+n(x x X).
n>0

Composition is L-linear, hence operates as:

L_”Qdim X—I—n(X X X) R L_deim X—I—m(X X X)
N L—n—deim X—I—n—l—m(X x X).

Also: Q%(T) =0 for d > dimT. Thus

k’fﬁ’l"(X)o dimX-+41 — O



Proposition (Vishik-Yagita)
(1) For X € SmProj/k, each idempotent in Corl (X, X) lifts to
an idempotent in Cor (X, X).

(2) For M, N in M&T(k), each isomorphism f: 9cu(M) — IcH(N)
lifts to an isomorphism f : M — N.

Theorem (Isomorphism) dcy @ MET (k) — MYl (k) and 9cy :
Ma (k) — Mcny(k) both induce bijections on the set of isomor-
phism classes of objects.

Proof. For M& this follows from the proposition. For M, this
follows by localization.

Note. These result are also valid for motives with R-coefficients,
R a commutative ring.



Motivic computations



Elementary computations

o my(P") =@, ®Z = O n14(3).
e let F — B be a vector bundle of rank n+ 1, P(E) — B the
projective-space bundle. Then

mA(P(E)) = ®j=qma(B)(i).
o Let u: Xp — X be the blow-up of X along a codimension d
closed subscheme F'. Then

mA(Xp) = ma(X) ® S Tma(F) ().
So:
A*(Xp) 2 A*(X) @ @l A~ I R).

Indeed, we have all these isomorphisms in Mcy, hence in Mq by
the isomorphism theorem, and thus in M 4 by applying 9 4.



Cellular varieties

Definition X € SmProj/k is called cellular if there is a filtration
by closed subsets

X=x>x'o...0x%> x¥! =¢; d=dimX,
such that codimyX? > i and either X*\ X¢T1 = 1% A4 or
X' = X1 If X7 is cellular, call X geometrically cellular.

e For X cellular as above, we have

ma(X) = @l gl ()™
because we have this isomorphism for A = CH.

Examples Projective spaces and Grassmannians are cellular. A
smooth quadric over k is geometrically cellular.



Quadratic forms
First some elementary facts about quadratic forms:

e Each quadratic form over k£ can be diagonalized. If ¢ =
S a;x?, let Qq C PP~1 be the quadric ¢ = 0. The dimension

/L’
of q is n.

o For g1 = Y0 az7, go = = 1b]y]

sum

we have the orthogonal

n
nLa=> azf+> j=1"by;
i=1

and tensor product

q1 ®qo = ZZQ”L]’L]

1=17=1



Pfister forms and Pfister quadrics

e For a € k* we have ((a)) := 2 —ay? and for ay,...,an € k* the
n-fold Pfister form

o= ((a1,...,an)) = ((a1)) ® ... ® ((an))
The quadric Qo C P2"-1 is the associated Pfister quaderic.

e The isomorphism class of a = {{(a1,...,an)) depends only on
the symbol

{a1,...,an} € kn(k) .= KM (k)/2.

({a1,...,an))) is isomorphic to a hyperbolic form if and only if Qq
is isotropic, i.e. ({a1,...,an)) = 0 has a non-trivial solution in k.



T he Rost motive

Proposition (Rost) (1) Let a = {({a1,...,an)) and let Q. be
the associated Pfister quadric. Then there is a motive M, €
ML (k) with

mcn(Qa) =2 Mo ®@ mep(P2 ).
(2) Let k be the algebraic closure. There are maps
@21 M, — 1
which induce

M ,€_1@L®2 Lin MEL ().

«

M, is the Rost motive.



T he Rost cobordism-motive

Applying the Vishik-Yagita bijection, there is a unique (up to
isomorphism) cobordism motive

Mg’ € M&' (k)
with 9cy (M) &2 M,. In addition:

~Y n—1_
1. mo(Qa) = M3 @ mq(P?" —1).

n—1
2. There are maps L2 ! — M$? — 1 which induce

n—1 —
ME =19 L3 in MG (k).



Algebraic cobordism of Pfister quadrics

Vishik-Yagita use the Rost cobordism motive to compute Q2*(Qa).
The computation is in two parts:

1. Compute the image of base-change Q*(Qa) — Q2°(Q_z)-
Q*(Q,z) is easy because Q 7 is cellular.

2. Show that Q*(Qa) — Q2%(Q,z) is injective.



Structure of LL
We need some information on L to state the main result.

Recall the Conner-Floyd Chern classes c¢; and the Landweber-
Novikov operations s;. Let s;(xz) be the image of s;j(x) in CH*.
For X € SmProj/k of dimension |I|

57([X]) = degc;(—Tx) € Z = CHO(k).

Since the sy are indexed by the monomials in tq,to,..., degt; =1,
we have

5. Q% (k) = L* — Z[t]

with 5([X]) = ¥;5/(X)t! =X e(=Tx)t!.



Theorem (Quillen) s5: Q*(k) = L* — Z[t] is an injective ring
homomorphism with image of finite index in each degree.

Definition I(p) C L* is the prime ideal

I(p) :=5 ' (pZ[t]).

I(p,n) C I(p) is the sub-ideal generated by elements of degree
<p"-—-1.

In words: I(p) C L is the ideal generated by [X], X € SmProj/k
all of whose Chern numbers degc;(—Tyx) are divisible by p.

Note. The fact that son_1(Qon_1) = 1 mod 2 for Qon_q1 a
quadric of dimension 2™ — 1 implies that I(2,r) is the ideal gen-
erated by the classes [Qon_1], 0 < 2" —1 <7 ([Qo] = 2 € L9).



The main theorem
Fix o := {{aq,...,an)), Qa C P2"~1 the associated Pfister quadric.

Let th € Qi(QaE) be the class of a codimension ¢ linear section,
Let 2% € ©,(Q,z) be the class of a linear P! C Q.
ht, ¢;: the images of hi, and £:% in CH?, CH;.
Since Q_z is cellular
QH(Qup) = By L-hhOL- 62

Theorem The base-change map p* : Q*(Qa) — Q*(Q_z) Is in-
jective and the image of p* is

2" L by @ 1(2,n — 2) - £

1=



Idea of proof:

Use the isomorphisms

~U n—1__ ~ n—1__
mo(Qa) = M5! ® ma(P? L, MO?;; =1 ng '

n_

1 .
to show that the image of base-change is &;_, -1, he @ J - E,L-Q
for some ideal J C L.

A result of Rost on MOS:H plus Vishik-Yagita lifting shows that
P,: a linear section of (), of dimension on—1_ 1,

The “small” dimension (< 2"~1 — 1) of P, allows one to show
that J =1(2,n — 2).

The injectivity is handled by the fact that P, splits M.



