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Oriented Borel-Moore homology



Regular embeddings and l.c.i. morphisms Recall:

A regular embedding of codimension d is a closed immersion
i : Z → X such that IZ is locally generated by a regular sequence
of length d.

Example A regular embedding of codimension 1 is a Cartier
divisor

Definition A morphism f : Y → X in Schk is an l.c.i. morphism
if f can be factored as p ◦ i, with i : Y → P a regular embedding
and p : P → X smooth and quasi-projective.

X ∈ Schk is an l.c.i. scheme if X → Spec k is an l.c.i. morphism.

Lcik ⊂ Schk is the full subcategory of l.c.i. schemes.
Sch′k := the subcategory of projective morphisms in Schk.



Oriented homology
An oriented Borel-Moore homology theory A∗ on Schk consists
of the following data:

(D1) An additive functor A∗ : Sch′k → Ab∗ , X 7→ A∗(X).

(D2) For f : Y → X an l.c.i. morphism in Schk, a homomorphism
of graded groups f∗ : A∗(X) → A∗−d(Y ),
d := the codimension of f .

(D3) For each pair (X,Y ) in Schk, a (commutative, associative)
bilinear graded pairing A∗(X)⊗A∗(Y ) → A∗(X ×k Y )

u⊗ v 7→ u× v,

and a unit element 1 ∈ A0(Spec(k)).



These satisfy six conditions:

(BM1) id∗X = idA∗(X). For composable l.c.i. morphism f and g,

(f ◦ g)∗ = g∗ ◦ f∗.

(BM2) Given a Tor-independent cartesian square in Schk: W
g′

//

f ′
��

X
f

��

Y g
//Z ,

with f projective, g l.c.i. . Then g∗f∗ = f ′∗g
′∗.

(BM3) For f and g morphisms in Schk: If f and g are projective,

then (f × g)∗(u× v) = f∗(u)× g∗(v).
If f and g are l.c.i. , then (f × g)∗(u× v) = f∗(u)× g∗(u′).



(PB) For a line bundle L on Y ∈ Schk with zero section s : Y → L
define c̃1(L) : A∗(Y ) → A∗−1(Y ) by c̃1(L)(η) = s∗(s∗(η)).

Let E → X be a rank n+ 1 vector bundle, with associated
projective space bundle q : P(E) → X. Then

⊕ni=0A∗+i−n(X)
Σn−1
i=0 c̃1(O(1)E)i◦q∗

−−−−−−−−−−−−−−→ A∗(P(E))

is an isomorphism.

(EH) Let p : V → X be an affine space bundle. Then

p∗ : A∗(X) → A∗+r(V )

is an isomorphism.

(CD) ***.



Examples (1) The Chow group functor

X 7→ CH∗(X)

with projective push-forward and l.c.i. pull-back given by Fulton.

(2) The Grothendieck group of coherent sheaves

X 7→ G0(X)[β, β−1].

(degβ = 1). L.c.i. pull-back exists because an l.c.i. morphism
has finite Tor-dimension.

(3) Algebraic cobordism (chark = 0) X 7→ Ω∗(X).
L.c.i. pull-backs are similar to Fulton’s, but require a bit more
work.

Note. There are “refined intersections” for Ω∗, similar to
Fulton’s refined intersection theory for CH∗.



Homology and cohomology

Every morphism in Sm/k is l.c.i., hence:

Proposition Let A∗ be an O.B.M.H.T. on Schk. Then the
restriction of A to Sm/k, with

An(X) := AdimX−n(X),

defines an O.C.T. A∗ on Sm/k:

• The product ∪ on A∗(X) is x ∪ y = δ∗X(x× y).

• 1X = p∗X(1) for pX : X → Spec k in Sm/k.

• c1(L) = c̃1(L)(1X) for L→ X a line bundle.



Consequence:

Let A∗ be an O.B.M.H.T. on Schk. There is a unique formal
group law FA ∈ A∗(k)[[u, v]] with

FA(c̃1(L), c̃1(M))(f∗(1Y )) = c̃1(L⊗M)(f∗(1Y ))

for all X ∈ Schk, all (f : Y → X) ∈ M(X).

Examples

(1) CH∗ has the additive formal group law: FCH(u, v) = u+ v

(2) G0[β, β
−1] has the multiplicative formal group law:

FG0
(u, v) = u+ v − βuv.

(3) Ω∗ has the universal formal group law: (FΩ,Ω∗(k)) = (FL,L∗)



Universality and Riemann-Roch



Universality

Theorem Algebraic cobordism Ω∗ is the universal O.B.M.H.T.
on Schk.

Also:

Theorem The canonical morphism ϑCH : Ω∗ ⊗L Z → CH∗ is an
isomorphism, so CH∗ is the universal additive theory on Schk.

A new result (due to S. Dai) is

Theorem The canonical morphism

ϑG0
: Ω∗ ⊗L Z[β, β−1] → G0[β, β

−1]

is an isomorphism, so G0[β, β
−1] is the universal multiplicative

theory on Schk.



Twisting

The τ-twisting construction is modified: one leaves f∗ alone and

twists f∗ by T̃d−1
τ (Nf):

f∗(τ) = T̃d−1
τ (Nf) ◦ f∗.

Here f : Y → X is an l.c.i. morphism and Nf ∈ K0(Y ) is the
virtual normal bundle: If we factor f as p ◦ i, p smooth, i a
regular embedding, then:

p has a relative tangent bundle Tp
i has a normal bundle Ni and

Nf := [Ni]− [i∗Tp].

T̃d−1
τ (Nf) is the inverse Todd class operator, defined as we did

Td−1
τ , using the operators c̃1 instead of the classes c1.



Riemann-Roch for singular varieties

Twisting CH∗ ⊗ Q[β, β−1] to give it the multiplicative group law

and using Dai’s theorem, we recover the Fulton-MacPherson

Riemann-Roch transformation τ : G0 → CH∗,Q:

Using the universal property of G0[β, β
−1] gives

τβ : G0[β, β
−1] → CH∗ ⊗Q[β, β−1](×);

τ is the restriction of τβ to degree 0.



Adams operations

J. Malagon-Lopez has used the twisting construction to define

Adams operations

ψk : Ω∗ → Ω∗[1/k]

satisfying an “Adams-Riemann-Roch” formula. These recover

the classical Adams operations on K0 and G0 (after inverting k

for ψk).



Fundamental classes



Fundamental classes for l.c.i. schemes

Definition Let pX : X → Spec k be an l.c.i. scheme. For an
O.B.M.H.T. A on Schk, set

1AX := p∗X(1)

If X has pure dimension d over k, then 1AX is in Ad(X). 1X is the
fundamental class of X.

Properties:

• For X = X1 qX2 ∈ Lcik,
1X = i1∗(1X1

) + i2∗(1X2
).

• For f : Y → X an l.c.i. morphism in Lcik, f
∗(1X) = 1Y .



Fundamental classes of non-l.c.i. schemes

Some theories have more extensive pull-back morphisms, and

thus admit fundamental classes for more schemes.

Example Both CH∗ and G0[β, β
−1] admit pull-back for arbitrary

flat maps, still satisfying all the axioms. Thus, functorial funda-

mental classes in CH∗ and G0[β, β
−1] exist for all X ∈ Schk.

This is NOT the case for all theories.

We give an example for Ω∗.



Let S1 ⊂ P5 be P2 embedded by O(2).

Let S2 ⊂ P5 be P1 × P1 embedded by O(2,1).

Let R1 ⊂ S1, R2 ⊂ S2 be smooth hyperplane sections. Note:

1. deg c1(O(2))2 = deg c1(O(2,1))2 = 4

2. R1 and R2 are both P1’s

So: R1 and R2 are both rational normal curves of degree 4 in
P4.

We may assume R1 = R2 = R.



Let C(S1), C(S2) and C(R) be the projective cones in P6.

Proposition Let A be a O.B.M.H.T. on Schk. If we can extend

fundamental classes in A for Sm/k to C(S1), C(S2) and C(R),

functorial for l.c.i. morphisms, then

[P2] = [P1 × P1] in A2(k)

This is NOT the case for A = Ω, since

c2(P2) = 3, c2(P1 × P1) = 4.



Consequence for Gromov-Witten theory

The formalism of Gromov-Witten theory can be extended to a

cobordism valued version, at least if the relevant moduli stack is

an Lci stack.

One needs a theory of algebraic cobordism for (Deligne-Mumford)

stacks: one can make a cheap version with Q-coefficients by the

universal twisting of CH∗Q.

BUT: there may be problems in defining the virtual fundamental

class for a perfect deformation theory if the intrinsic normal cone

of the moduli stack is not Lci.



Part B: Cobordism motives



Outline: Part B

• Motives over an O.C.T.

• Cobordism motives

• Motivic computations

• Algebraic cobordism of Pfister quadrics



Motives over an O.C.T.

We follow the discussion of Nenashev-Zainoulline.



A-correspondences

Definition A∗ an O.C.T. on Sm/k. X, Y smooth projective

k-varieties. Set

Cor0A(X,Y ) := AdimY (X × Y ).

Cor0A is the category with

objects: smooth projective k-varieties SmProj/k,

morphisms:

HomCor0A
(X,Y ) := Cor0A(X,Y )

and composition law:

γY,Z ◦ γX,Y := pX,Z∗(p
∗
X,Y (γX,Y ) · p∗Y,Z(γY,Z))



• Cor0A is a tensor category: X⊕Y = XqY and X⊗Y := X×Y .

• Sending f : X → Y to the “graph”

Γf := (idX , f)∗(1X) ∈ AdimY (X × Y )

gives the functor

mA : SmProj/k → Cor0A.

Definition Meff
A is the pseudo-abelian hull of Cor0A:

Obects are pairs (X,α), α ∈ EndCor0A
(X), α2 = α.

Hom
Meff
A

((X,α), (Y, β)) := βHomCor0A
(X,Y )α

with the evident composition.



Definition Let Cor∗A(X,Y ) := AdimY+∗(X × Y ).

C̃orA is the category with objects pairs (X,n), X a smooth pro-
jective k-variety n ∈ Z, morphisms

Hom
C̃orA

((X,n), (Y,m)) := Corm−nA (X,Y )

CorA is the additive category generated by C̃orA and MA is the
pseudo-abelian hull of CorA.

For M = (X,α) ∈ Meff
A , write M(m) := ((X,α),m).

α ∈ CornA(X,Y ) acts as a homomorphism

α∗ : A∗(X) → A∗+n(Y ).

We have tα ∈ Corn+dimX−dimY (Y,X); set

α∗ := tα∗ : A∗(Y ) → A∗+dimX−dimY+n(X).



• We have mA : SmProj/k → CorA.
• CorA is a tensor category, 1 = mA(Spec k) and

HomCorA(1(n),mA(X)) = An(X).

• Sending X to (X,0) defines tensor functors

Cor0A → CorA
Meff
A → MA

• A natural transformation of O.C.T.’s on Sm/k, ϑ : A → B,
induces tensor functors

ϑ∗ : Cor0A → Cor0B
ϑ∗ : Meff

A → Meff
B

ϑ∗ : MA → MB



We add the ground field k to the notation when necessary:

Cor0A(k), MA(k), etc.

If R is a commutative ring, set

Cor0A,R := Cor0A ⊗R

CorA,R := CorA ⊗R

Meff
A,R and MA,R are the respective pseudo-abelian hulls.



Examples

(1) For A∗ = CH∗, we have the well-known categories:

Cor0CH(k) is the category of correspondences mod rational equiv-

alence, Meff
CH(k) is the category of effective Chow motives, MCH(k)

is the category of Chow motives (all over k).

(2) For A∗ = Ω∗, we call Cor0Ω(k) the category of cobordism cor-

respondences, Meff
Ω (k) the category of effective cobordism mo-

tives, MΩ(k) the category of cobordism motives (over k).

(3) We can also take e.g. A∗ = K0[β, β
−1]; we write Cor0K0

,

Meff
K0

, etc.



Cobordism motives

Vishik-Yagita have considered the category Meff
Ω (k) and discussed

its relation with Chow motives.



Remarks

(1) Since Ω∗ is universal, there are canonical functors

ϑA∗ : Cor0Ω(k) → Cor0A(k)

ϑA∗ : Meff
Ω (k) → Meff

A (k)

etc. Thus, identities in Meff
Ω (k) or MΩ(k) yield identities in

Meff
A (k) or MA(k) for all O.C.T.’s A on Sm/k.

(2) Ω∗⊗Q is isomorphic to the “universal twist” of CH∗⊗L⊗Q,

so one can hope to understand MΩ,Q by modifying MCH,L⊗Q by

a twisting construction, i.e., a deformation of the composition

law. We will see that MΩ,Q is NOT equvalent to MCH,L⊗Q.

(3) The work of Vishik-Yagita allows one to lift identies in Meff
CH(k)

or MCH(k) to Meff
Ω (k) or MΩ(k)



Example [The Lefschetz motive in Meff
Ω ] Let’s compare EndCor0Ω

(P1)

with EndCor0CH
(P1)

Ω1(P1 × P1) = Z[0× P1]⊕ Z[P1 × 0]⊕ Z[P1]× [(0,0)]

Set: α = [0× P1]; β = [P1 × 0]; γ = [P1] · [(0,0)].

Cor0Ω → Cor0CH just sends γ to zero. We have the composition

laws:

EndCor0CH
(P1)

◦ α β
α α 0
β 0 β

EndCor0Ω
(P1)

◦ α β γ
α α 0 0
β γ β γ
γ γ 0 0



So

EndCor0Ω
(P1) → EndCor0CH

(P1) = Z× Z

is a non-commutative extension with square-zero kernel (γ).

Hence:

• The Lefschetz Chow motive L := (P1, α) lifts to “the Lefschetz

Ω-motive”

LΩ(λ) := (P1, α+ λγ)

for any choice of λ ∈ Z. Since [∆P1] = α+ β − γ:

(P1, id) = (P1, α+ λγ)⊕ (P1, β − (1 + λ)γ) ∼= LΩ(λ)⊕ 1.

Also: LΩ(λ) ∼= LΩ(λ′) for all λ, λ′, but are not equal as summands

of (P1, id).



Remark We have seen that

End
Meff

Ω
(mΩ(P1)) → End

Meff
CH

(mCH(P1))

is surjective with kernel a square zero ideal. A similar computa-

tion shows that

End
Meff

Ω
(mΩ(Pn)) → End

Meff
CH

(mCH(Pn)) =
n∏
i=1

Z

is surjective for all n with kern+1 = 0, but kern 6= 0.



Definition Let A be an O.C.T. on Sm/k, ϑA : Meff
Ω (k) → Meff

A (k)
the canonical functor. Define the Lefschetz A-motive

LA := ϑA(LΩ).

Proposition For M = (X,α), N = (Y, β) in Meff
A (k),

Hom
Meff
A

(M ⊗ L⊗mA , N ⊗ L⊗nA )

= (id× α)∗(β × id)∗AdimY−m+n(X × Y ).

Hence

Theorem The inclusion functor Meff
A (k) → MA(k) identifies

MA(k) with the localization of Meff
A (k) with respect to − ⊗ LA.

Also

(X,α)(m) := (X,α,m) ∼= (X,α)⊗ L⊗mA .



The nilpotence theorem

Theorem Take X,Y ∈ SmProj/k. Then

ϑCH : Cor0Ω(X,Y ) → Cor0CH(X,Y )

is surjective. If X = Y , then the kernel ker(X) of ϑCH is nilpo-

tent.

Proof. Surjectivity: Since CH∗ = Ω∗ ⊗L Z, Ω∗(T ) → CH∗(T ) is

surjective for all T ∈ Sm/k.



Nilpotence of the kernel: CH∗ = Ω∗ ⊗L Z = Ω∗ ⊗ (L/L∗<0) =⇒

ker(X) =
∑
n>0

L−nΩdimX+n(X ×X).

Composition is L-linear, hence operates as:

L−nΩdimX+n(X ×X)⊗ L−mΩdimX+m(X ×X)
◦−→ L−n−mΩdimX+n+m(X ×X).

Also: Ωd(T ) = 0 for d > dimT . Thus

ker(X)◦dimX+1 = 0.



Proposition (Vishik-Yagita)
(1) For X ∈ SmProj/k, each idempotent in Cor0CH(X,X) lifts to
an idempotent in Cor0Ω(X,X).

(2) ForM,N in Meff
Ω (k), each isomorphism f : ϑCH(M) → ϑCH(N)

lifts to an isomorphism f̃ : M → N .

Theorem (Isomorphism) ϑCH : Meff
Ω (k) → Meff

CH(k) and ϑCH :
MΩ(k) → MCH(k) both induce bijections on the set of isomor-
phism classes of objects.

Proof. For Meff, this follows from the proposition. For M, this
follows by localization.

Note. These result are also valid for motives with R-coefficients,
R a commutative ring.



Motivic computations



Elementary computations

• mA(Pn) ∼= ⊕ni=0L
⊗i
A

∼= ⊕ni=01A(i).
• Let E → B be a vector bundle of rank n + 1, P(E) → B the
projective-space bundle. Then

mA(P(E)) ∼= ⊕ni=0mA(B)(i).

• Let µ : XF → X be the blow-up of X along a codimension d

closed subscheme F . Then

mA(XF ) ∼= mA(X)⊕⊕d−1
i=1mA(F )(i).

So:

A∗(XF ) ∼= A∗(X)⊕⊕d−1
i=1A

∗−d+i(F ).

Indeed, we have all these isomorphisms in MCH, hence in MΩ by
the isomorphism theorem, and thus in MA by applying ϑA.



Cellular varieties

Definition X ∈ SmProj/k is called cellular if there is a filtration
by closed subsets

X = X0 ⊃ X1 ⊃ . . . ⊃ Xd ⊃ Xd+1 = ∅; d = dimX,

such that codimXX
i ≥ i and either Xi \ Xi+1 ∼=

∐ni
i=1 Ad−i or

Xi = Xi+1. If Xk̄ is cellular, call X geometrically cellular.

• For X cellular as above, we have

mA(X) ∼= ⊕di=01A(i)ni

because we have this isomorphism for A = CH.

Examples Projective spaces and Grassmannians are cellular. A
smooth quadric over k is geometrically cellular.



Quadratic forms

First some elementary facts about quadratic forms:

• Each quadratic form over k can be diagonalized. If q =∑n
i=1 aix

2
i , let Qq ⊂ Pn−1 be the quadric q = 0. The dimension

of q is n.

• For q1 =
∑n
i=1 aix

2
i , q2 =

∑m
j=1 bjy

2
j , we have the orthogonal

sum

q1 ⊥ q2 :=
n∑
i=1

aix
2
i +

∑
j = 1mbjy

2
j

and tensor product

q1 ⊗ q2 :=
n∑
i=1

m∑
j=1

aibjz
2
ij.



Pfister forms and Pfister quadrics

• For a ∈ k× we have 〈〈a〉〉 := x2− ay2 and for a1, . . . , an ∈ k× the

n-fold Pfister form

α := 〈〈a1, . . . , an〉〉 := 〈〈a1〉〉 ⊗ . . .⊗ 〈〈an〉〉

The quadric Qα ⊂ P2n−1 is the associated Pfister quadric.

• The isomorphism class of α = 〈〈a1, . . . , an〉〉 depends only on

the symbol

{a1, . . . , an} ∈ kn(k) := KM
n (k)/2.

〈〈a1, . . . , an〉〉) is isomorphic to a hyperbolic form if and only if Qα
is isotropic, i.e. 〈〈a1, . . . , an〉〉 = 0 has a non-trivial solution in k.



The Rost motive

Proposition (Rost) (1) Let α = 〈〈a1, . . . , an〉〉 and let Qα be

the associated Pfister quadric. Then there is a motive Mα ∈
Meff

CH(k) with

mCH(Qα) ∼= Mα ⊗mCH(P2n−1−1).

(2) Let k̄ be the algebraic closure. There are maps

L⊗2n−1−1 →Mα → 1

which induce

Mαk̄
∼= 1⊕ L⊗2n−1−1 in Meff

CH(k̄).

Mα is the Rost motive.



The Rost cobordism-motive

Applying the Vishik-Yagita bijection, there is a unique (up to

isomorphism) cobordism motive

MΩ
α ∈ Meff

Ω (k)

with ϑCH(MΩ
α ) ∼= Mα. In addition:

1. mΩ(Qα) ∼= MΩ
α ⊗mΩ(P2n−1−1).

2. There are maps L⊗2n−1−1
Ω →MΩ

α → 1 which induce

MΩ
αk̄

∼= 1⊕ L⊗2n−1−1
Ω in Meff

Ω (k̄).



Algebraic cobordism of Pfister quadrics

Vishik-Yagita use the Rost cobordism motive to compute Ω∗(Qα).
The computation is in two parts:

1. Compute the image of base-change Ω∗(Qα) → Ω∗(Qαk̄).
Ω∗(Qαk̄) is easy because Qαk̄ is cellular.

2. Show that Ω∗(Qα) → Ω∗(Qαk̄) is injective.



Structure of L

We need some information on L to state the main result.

Recall the Conner-Floyd Chern classes cI and the Landweber-

Novikov operations sI. Let s̄I(x) be the image of sI(x) in CH∗.
For X ∈ SmProj/k of dimension |I|

s̄I([X]) = deg cI(−TX) ∈ Z = CH0(k).

Since the s̄I are indexed by the monomials in t1, t2, . . ., deg ti = i,

we have

s̄ : Ω∗(k) = L∗ → Z[t]

with s̄([X]) =
∑
I s̄I(X)tI =

∑
I c(−TX)tI.



Theorem (Quillen) s̄ : Ω∗(k) = L∗ → Z[t] is an injective ring

homomorphism with image of finite index in each degree.

Definition I(p) ⊂ L∗ is the prime ideal

I(p) := s̄−1(pZ[t]).

I(p, n) ⊂ I(p) is the sub-ideal generated by elements of degree

≤ pn − 1.

In words: I(p) ⊂ L is the ideal generated by [X], X ∈ SmProj/k

all of whose Chern numbers deg cI(−TX) are divisible by p.

Note. The fact that s2n−1(Q2n−1) ≡ 1 mod 2 for Q2n−1 a

quadric of dimension 2n − 1 implies that I(2, r) is the ideal gen-

erated by the classes [Q2n−1], 0 ≤ 2n − 1 ≤ r ([Q0] = 2 ∈ L0).



The main theorem
Fix α := 〈〈a1, . . . , an〉〉, Qα ⊂ P2n−1 the associated Pfister quadric.

Let hiΩ ∈ Ωi(Qαk̄) be the class of a codimension i linear section,

Let `Ωi ∈ Ωi(Qαk̄) be the class of a linear Pi ⊂ Qαk̄.

hi, `i: the images of hiΩ and `Ωi in CHi, CHi.

Since Qαk̄ is cellular

Ω∗(Qαk̄) = ⊕2n−1−1
i=0 L · hiΩ ⊕ L · `Ωi .

Theorem The base-change map p∗ : Ω∗(Qα) → Ω∗(Qαk̄) is in-
jective and the image of p∗ is

⊕2n−1−1
i=0 L · hiΩ ⊕ I(2, n− 2) · `Ωi



Idea of proof:

Use the isomorphisms

mΩ(Qα) ∼= MΩ
α ⊗mΩ(P2n−1−1), MΩ

αk̄
∼= 1⊕ L2n−1−1

Ω

to show that the image of base-change is ⊕2n−1−1
i=0 L · hiΩ ⊕ J · `Ωi

for some ideal J ⊂ L.

A result of Rost on MCH
α plus Vishik-Yagita lifting shows that

MΩ
α ⊕? = mΩ(Pα),

Pα: a linear section of Qα of dimension 2n−1 − 1.

The “small” dimension (≤ 2n−1 − 1) of Pα allows one to show
that J = I(2, n− 2).

The injectivity is handled by the fact that Pα splits Mα.


