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Prelude: From homotopy theory to
Al-homotopy theory



A basic object in homotopy theory is a generalized cohomology
theory E*

X — E*(X)

A generalized cohomology theory E* has a unique representation
as an object E (a spectrum) in the stable homotopy category SH.

SH can be thought of as a linearization of the category of pointed
topological spaces Sp,:

> > :Sp, — S8H
which inverts the suspension operator 2, and

E"(X) = Homgg{(ZooX_l_, >"E); nelZ.



Examples

SH is the homotopy category of spectra.

e Singular cohomology H*(—, A) is represented by the Eilenberg-
Maclane spectrum HA

e Topological K-theory Kj,, is represented by the K-theory
spectrum Kigp

e Complex cobordism MU™* is represented by the Thom spec-
trum MU.



Al-homotopy theory
Morel and VVoevodsky have defined a refinement of 8H in the
setting of algebraic geometry.

k: a field. Sm/k: smooth varieties over k.

There is a sequence of functors:

ZOO
Sm /k — Sp(k)sx —s SH (k).

Sp(k)x = pointed spaces over k,
SH(k) = the homotopy category of Pl-spectra,
localized by Al-homotopy.



Two circles
In Sp,, the circle St is fundamental: X := S1 A X.

In Sp(k)« D Sp,., there are two Sl's:

The usual circle §1.0 := g1
and
The Tate circle Sb1:= (AL \ {0}, {1}).

Set SP4 := (S11)Na A (§1.0)Ap—q

Note. 1. (Pl ,00) =2 81O AL =521

ZOO
2. Sp(k)« N SH(k) inverts all the operators > P4,



Cohomology for varieties over k
Because of the two circles, SH(k) represents bi-graded cohomol-
ogy theories on Sm/k: For € € 8H(k), have

X — EPUX) = [ZIOP)?X_F,ZP’QE]; p,q € 7.

e Motivic cohomology H**(—, A) is represented by the Eilenberg-
Maclane spectrum HA

e Algebraic K-theory K;‘l’; is represented by the K-theory spec-
trum K

e Algebraic cobordism MGL*™* is represented by the Thom
spectrum MGL.



Remarks

1. Bott periodicity yields K&9(X) = Kgl';Qm’m(X) for all m.

2. K" (X) = K§9(X)[8,87Y], deg 8 = —1

3. The Chow ring CH*(X) of cycles modulo rational equiva-
lence is the same as H2**(X, 7).

Main goal

To give an algebro-geometric description of the ‘classical part”
MGL?** of algebraic cobordism.



Outline:

e Recall the main points of complex cobordism

e Describe the setting of “oriented cohomology over a field k"

e Describe the fundamental properties and main applications
of algebraic cobordism

e Sketch the construction of algebraic cobordism



Complex cobordism



Quillen’s viewpoint

Quillen (following Thom) gave a ‘“geometric’ description of
MU*(X) (for X a C* manifold):

MUMX)={(f:Y = X,0)}/ ~
1. f:Y — X is a proper C°° map
2. n=dimX —dimY = codimf/.
3. 0 is a “C-orientation of the virtual normal bundle of f":

a factorization of f through a closed immersion i : Y — CY x X
plus a complex structure on the normal bundle N; of Y in CV x X
(oron N; R if n is odd).



~ IS the cobordism relation:

For (F:Y — X xR, ©), transverse to X x {0,1}, identify the
fibers over O and 1:

(FO . YO — X, @O) ~ (Fl . Yl — X,@l).

Yo = F 13X x0), Y1 ;= F (X x1).



To identify MU™(X) ={(f:Y — X,0)}/ ~:

€ MUMX) = z: (X xSV X x00) = (Th(Uy), %)
—Y =z 1(0-section) — X

where we make Y a manifold by deforming x to make the inter-
section with the 0O-section transverse.
To reverse (n even):

¥ 51 - X) — f: 1Y — Th(Upy 4 )2) classifying Y 2 N;
-3 Nx =Th(1) —» MUsniy,



Properties of MU*

e X — MU*(X) is a contravariant ring-valued functor:
Forg: X' — X and (f:Y — X,0) € MU™"(X),

N =X"xxY - X
after moving f to make f and g transverse.

e For (g: X — X' 0) a proper C-oriented map, we have
gx s MU*(X) — MU*T™(X"); (f:Y - X)w (gf 1Y — X')

with n = codimf.

Definition Let L — X be a C-line bundle with O-section s: X —
L. The first Chern class of L is:

c1(L) = s*sx(1y) € MU?(X).



T hese satisfy:
e (99")+« = gxgl, idx =id.
e Compatibility of g« and f* in transverse cartesian squares.
e Projective bundle formula: £ — X a rank r+1 vector bundle,
£ :=c1(0(1)) € MU%(P(E)). Then

MU*(P(E)) = &j_oMU* *(X) - .

e Homotopy invariance: MU*(X) = MU*(X x R).



Definition A cohomology theory X — E*(X) with push-forward

maps g« for C-oriented g which satisfy the above properties is
called C-oriented.

Theorem 1 (Quillen) MU* s the universal C-oriented coho-
mology theory

Proof. Given a C-oriented theory E*, let 1y € EO(Y) be the unit.
Map

(f:Y = X,0) e MUMX) — f«(1ly) € E"(X).



The formal group law

E: a C-oriented cohomology theory. The projective bundle for-
mula yields:

E*(CP™) :=lim E*(CP") = E*(pt)[[u]]

where the variable u maps to ¢1(0(1)) at each finite level. Sim-
ilarly

E*(CP™ x CP*) = E*(pt)[[c1(0(1,0)),c1(0(0, 1))]].
where

0(1,0) =p10(1); 0(0,1) = p50(1).



Let 0(1,1) = pi0(1) ® p50(1) = O(1,0) ® O(0,1). There is a
unique

Fg(u,v) € E*(pt)[[u,v]]
with

Fr(c1(0(1,0)),c1(0(0,1))) = ¢1(0(1,1)) € E?(CP>® x CP>).

Since O(1) is the universal C-line bundle, we have

Fg(e1(L),c1(M)) = c1(L ® M) € E*(X)

for any two line bundles L, M — X.



Properties of IF'g(u,v)

e 1®L=L=L®1=F(0,u) =u= Fg(u,0).

o LOIM=ME®L= Fg(u,v) = Fg(v,u).

o (LRM)RN = LQ(MRN) = Fp(Fp(u,v),w) = Fg(u, Fp(v,w)).

so Fg(u,v) defines a formal group (commutative, rank 1) over
E*(pt).

Note: cq1 is not necessarily additive!



The Lazard ring and Quillen’s theorem

There is a universal formal group law Fy, with coefficient ring
the Lazard ring L. Let

QSE L — E*(pt); ¢(FL) = FE-
be the ring homomorphism classifying Fg.

Theorem 2 (Quillen) ¢, : L — MU*(pt) is an isomorphism,
I.e., Fysy Is the universal group law.

Note. Let ¢ : L. = MU*(pt) — R classify a group law Fg over
R. If ¢ satisfies the “Landweber exactness’ conditions, form the
C-oriented spectrum MU Ny R, with

(MU N R)(X) = MU*(X) ®MU*(pt) R
and formal group law F'p.



Examples
1. H*(—,7Z) has the additive formal group law (u + v,7Z).

2. Kj,, has the multiplicative formal group law (u4v—pBuv, Z[3, B~1)),
8 = Bott element in K;,>(pt).

Theorem 3 (Conner-Floyd) K}, = MU Ax Z[3,87 ', K}, is
the universal multiplicative oriented cohomology theory.



Oriented cohomology over k



We now turn to the algebraic theory.

Definition k£ a field. An oriented cohomology theory A over k
IS a functor

A* : Sm/Ek°P — GrRing
together with pushforward maps
ge 1 A*(Y) = AT(X)

for each projective morphism g : Y — X, n = codimg, satisfying
the algebraic versions of the properties of MU:

e functoriality of push-forward,

e compatibility of f* and g« in transverse cartesian squares,
e projective bundle formula,

e homotopy.



Remarks
1. For L — X a line bundle with O-section s: X — L,

c1(L) 1= s5"s4(1x)).
2. The required homotopy property is
AT (X) = A™(V)
for V. — X an A™-bundle.

3. There is no “Mayer-Vietoris’ property required.



Examples
1. X — CH*(X).

l _
2. X = KG9(X)[8,871], deg B = —1.
3. Foro:k — C, E a (topological) oriented theory,
X — E?*(X5(C)).

4. X — MGL?**(X). Note. Let & be a Pl-spectrum. The
cohomology theory £€%* has good push-forward maps for projec-
tive g exactly when € is an M GL-module. In this case

IS an oriented cohomology theory over k.



The formal group law

Just as in the topological case, each oriented cohomology theory
A over k has a formal group law Fy(u,v) € A*(Speck)[[u,v]] with

Fa(ef (L), et (M) = (L © M)

for each pair L,M — X of algebraic line bundles on some X €
Sm/k. Let

¢A . L—>A*(k'>

be the classifying map.

Examples
1. Fcy(u,v) = u+v.

2. FKO[ﬁ,ﬁ—l](u>v) = u 4+ v — Buw.



Algebraic cobordism



T he main theorem

Theorem 4 (L.-Morel) Let k be a field of characteristic zero.
There is a universal oriented cohomology theory 2 over k, called
algebraic cobordism. €2 has the additional properties:

1. Formal group law. The classifying map ¢o : L — Q*(k) is an
isomorphism, so Fq is the universal formal group law.

2. Localization Let1: Z — X be a closed codimension d embed-
ding of smooth varieties with complement 5 : U — X. The
sequence

Q*4(7) 2 Q*(X) 5 Q*(U) — 0



IS exact.



For an arbitrary formal group law ¢ : L = Q*(k) — R, Fr =
»(Fy.), we have the oriented theory

Q*(X)¢ is universal for theories whose group law factors through

Q.

The Conner-Floyd theorem extends to the algebraic setting:

Theorem 5 The canonical map
l _
Q% — K§918,871

is an isomorphism, i.e., Kglg[ﬁ, B~11 is the universal multiplicative
theory over k. Here

QY = Q" @y, Z[8,87].



Not only this but there is an additive version as well:

Theorem 6 The canonical map

Q4 — CH”
is an isomorphism, i.e., CH* is the universal additive theory over
k. Here

Qj‘ = QF 1. 7.
Remark
Define “connective algebraic Kp", kglg = Q* @1 Z[A].
K9/ = CH*
197 o l _
ko187 = Ko 18, 871,

This realizes Kglg[ﬁ,ﬁ—l] as a deformation of CH*.



Degree formulas

Definition Let X be an irreducible smooth variety over k with
generic point n. Define

deg : Q*(X) — Q*(k)
as the composition
Q*(X) Q*(k)
i) 90
Q*(k
(M) 5

Note. Let f:Y — X be a projective morphism with dimX =
dimY. Then f has a degree, Q9(X) =Z and

deg(f«(1y)) = deg(f).



M. Rost first considered degree formulas, which express interest-
ing congruences satisfied by characteristic numbers of smooth
projective algebraic varieties. These all follow from

Theorem 7 (Generalized degree formula) Given a € Q*(X),

there are projective maps f; . Z;, — X and elements «o; € Q2*(k)
such that

1. The Z; are smooth over k and dim Z; < dim X.
2. f; . Z; — f;(Z;) is birational

3. a= deg(a) -1y + >0 fz*(lZz)



Proof _
1. By definition, j*a = deg(«) - 17 for some open U L X.

2. Let W — W := X \ U be a resolution of singularities.
f: W — X the structure morphism.

Since j*(a —deg(a) -1x) =0,

use localization to find a; € Q*~1(W) with

f«(a1) = a —deg(a) - 1x.

3. Use induction on dim X to conclude.

One applies the generalized degree formula by taking o := f«(1y)
for some morphism f : Y — X and evaluating “primitive " charac-
teristic classes on both sides of the identity for o to vield actual
degree formulas for characteristic numbers.



The construction of algebraic cobordism



The idea

We build Q*(X) following roughly Quillen’'s basic idea, defining
generators: ‘“‘cobordism cycles” and relations. However, there
are some differences:

1. We construct a “bordism theory” 2. with projective push-
forward and “1st Chern class operators’ built in. At the end,
we show 2. has good pull-back maps, vielding

Q*(X) = Qqim x—«(X).

2. The formal group law doesn’'t come for free, but needs to be
forced as an explicit relation.



Cobordism cycles

Sch;, := finite type k-schemes.

Definition Take X € Schy.

1. A cobordism cycleis a tuple (f:Y — X;L+q,...,Ly) with
(a) Y € Sm/k, irreducible.

(b) f:Y — X a projective morphism.

(c) L1,...,Ly line bundles on Y (r = 0O is allowed).

Identify two cobordism cycles if they differ by a reordering of
the Lj or by an isomorphism ¢ : Y’ — Y over X:

(f:Y = X;Ly,.. ., Ly) ~ (fo: Y — X" L1y, -5 0" Ly(py)
2. The group Z,(X) is the free abelian group on the cobordism
cycles (f:Y — X;Lq,...,Ly) withn=dimY —r.



Structures

e For g : X — X' projective, we have

gx » Zx(X) — Z*(X/)
g«(fY - X:Lq1,...,Ly) ' =(gof:Y - X':Ly,...,Ly)

e For g : X’ — X smooth of dimension d, we have

g 1 Ze(X) — Zyq q(X)
g (f:Y - X;L1,...,Ly) i=(po: Y xx X' — X", piL1,...,p5Ly)

e For L — X aline bundle, we have the 1st Chern class operator

c1(L) 1 Zx(X) — Zy—1(X)
ci()(f:Y - X;Ly,...,Ly,)) =(f:Y = X;Lq1,...,Ly, ffL)



Relations
We impose relations in three steps:

1. Kill all cobordism cycles of negative degree:

dimY —r<0=(f:Y - X;Lq,...,L;) =0.
2. Impose a “Gysin isomorphism”™: If ¢ : D — Y is smooth divisor
on a smooth Y, then
(i:D—-Y)=(Y,0y(D)).
Denote the resulting quotient of Zs by ..

Note. The identities (1) and (2) generate all the relations defin-
ing 2« by closing up with respect to the operations g«, g* and

c1(L).
Thus, these operations pass to {2..



The formal group law

For Y e Sm/k, 1y :=(id:Y —-Y) € Qqgimy (Y).
The third type of relation is:

3. Let Fyp(u,v) € L[[u,v]] be the universal formal group law.
On L ® 24, impose the relations generated by the the identities

Fp(ea(L),c1(M))(1y) = 1@ e (L @ M)(1y)

in L®R((Y), for each Y € Sm/k and each pair of line bundles
L,M onY.

The quotient is denoted (..



Concluding remarks
1. The Gysin relation (2) implies a ‘“naive cobordism relation”:

Let F: Y — X x Pl be 3 projective morphism with Y smooth
and with F transverse to X x {0,1}. Then in Q(X), we have

(FO:YO%XXO:X):(F]_ZY]_—>X><1:X).

2. The formal group law relation (3) seems artificial. But,
in the definition of CH* as cycles modulo rational equivalence,
one needs to pass from a subscheme to a cycle, by taking the
“‘associated cycle” of a subscheme. This turns out to be the
same as imposing the additive formal group law.



3. The formal group law relation is necessary. each smooth pro-
jective curve C over k has a class [C] € 21(k). However, even

though [C] = (1 — ¢g(C))[P1] in the Lazard ring, this relation is
not true in 21(k).

4. Even though it looks like we have enlarged 2 greatly by
taking L ® 2, Q2+« — Q4 is surjective. In fact, Q.«(X) is generated
by cobordism cycles (f : Y — X) without any line bundles.



