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Part 1. K0 and the Chow ring

In this first part, we give the definition of algebraic K0 and the Chow
ring of a smooth variety over a field k. We sketch the basic properties
of these two objects: homotopy, left-exact short localization sequence,
projective bundle formula, and describe how to relate K0 and CH via
Chern classes and the Grothendieck-Riemann-Roch theorem.

1. Basic definitions

1.1. Algebraic K0. First, let R be a noetherian commutative ring.
Recall that an R module P is called projective if there is an R-module
Q with P ⊕Q a free R module. If P is finitely generated, then one can
choose Q finitely generated, giving

P ⊕Q ∼= Rn

for some n. We let MR denote the category of finitely generated R-
modules, and PR the full subcategory of finitely generated projective
R-modules.

Remark 1.1. If

0→M → N → P → 0

is an exact sequence with P projective, then there is an isomorphism
N ∼= M ⊕ P so that the sequence becomes the evident split sequence.

Definition 1.2. The Grothendieck group K0(R) is the free abelian
group on the isomorphism classes of finitely generated projective R-
modules, modulo the relation [P ] = [P ′] + [P ′′] if there is a short exact
sequence 0→ P ′ → P → P ′′ → 0.

By remark 1.1, one can just as well impose the relations [P ′⊕P ′′] =
[P ′] + [P ′′], but in more general situations, this won’t work.

Alternatively, one can define K0(R) as the set of isomorphism classes
of projectives, modulo the relation of stable equivalence: P ∼ P ′ if
there is a projective module (or even a free module) P ′′ with P ⊕P ′′ ∼=
P ′ ⊕ P ′′.

Tensor product ofR-modules makes K0(R) into a commtutative ring.
We can also make a construction with all finitely generated R-modules:

Definition 1.3. G0(R) is the free abelian group on the isomorphism
classes of finitely generated R-modules, modulo the relations [M ] =
[M ′] + [M ′′] if there exists a short exact sequence

0→M ′ →M →M ′′ → 0.
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Notice that it now makes a difference if we use short exact sequences
instead of direct sums, because not every short exact sequence of R-
modules splits.

Remark 1.4. Let A be an abelian category with a set of isomorphism
classes of objects (essentially small). Define K0(A) to be the free
abelian group on the isomorphism classes of objects of A, modulo the
relations [M ] = [M ′] + [M ′′] if there exists a short exact sequence

0→M ′ →M →M ′′ → 0.

K0(A) is called the Grothendieck group ofA. ClearlyG0(X) = K0(MX).

As tensor product with a projective module preserves exactness,
G0(R) is a K0(R)-module. Also, considering a projective R-module
as an R-module defines a homomorphism K0(R) → G0(R) which is
sometimes, but not usually, an isomorphism. More about this later.

Now suppose X is a (noetherian) scheme. Replace MR with MX ,
the category of coherent sheaves, and PR with PX , the category of
locally free sheaves, and we have the commutative ring K0(X), the
K0(X)-module G0(X), and the homomorphism K0(X) → G0(X). If
X = SpecR is affine, we recover K0(R) and G0(R), since we have the
equivalence of categories (preserving exact sequences)

PR ∼ PX ; MR ∼MX .

1.2. The Chow ring. We now shift gears a bit. Let X be a variety
over a field k. Suppose at first that X is non-singular in codimension
one. Let D ⊂ X be a subvariety of codimension one on X, and con-
sider the local ring OX,D of rational functions on X which are regular
functions at the generic point of D. It is well-known that OX,D has a
unique maximal ideal m, which is principal. In fact m is just the set of
all f ∈ OX,D which vanish at the generic point of D. In any case, since
m = (t), and since the quotient field of OX,D is the field of rational
functions on X, k(X), to each non-zero f ∈ k(X), we can assign the
integer ordD(f) by writing

f = u · tn

with u a unit in OX,D and then setting ordD(f) := n.
Since each non-zero rational function on X is regular and non-zero

on some dense open subset of X, it follows that ordD(f) = 0 for all but
finitely many D. The divisor of f is the formal Z-linear combination

div(f) :=
∑

D

ordD(f) ·D.
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This sum takes place in the group of divisors on X, i.e., the free abelian
group on the codimension one subvarieties of X, denoted Z1(X). We
set CH1(X) := Z1(X)/{div(f) | f ∈ k(X)∗}.

If X is not smooth in codimension one, we replace X with its normal-
ization p : XN → X. Since p∗ : k(X)→ k(XN) is an isomorphism, we
can, for f ∈ k(X)∗, take divXN (f), and then apply the operation p∗ :
Z1(XN)→ Z1(X) to get div(f), where p∗(D) = [k(D) : k(p(D))]·p(D)
for a codimension one subvariety D of XN .

The group CH1(X) is well-known to algebraic geometers of the 19th
century as the group of divisors modulo linear equivalence. For X
a smooth projective curve over C, Abel’s theorem identifies CH1(X)
with the Jacobian variety H0(X,Ω1

X)∗/H1(X,Z). We will return to
this later.

We can generalize this construction as follows: Let Zp(X) be the free
abelian group on the dimension p subvarieties of X: the dimension p
algebraic cycles on X. Let Rp(X) ⊂ Zp(X) be the subgroup generated
by cycles of the form i∗(div(f)), where i : W → X is the inclusion of
a dimension p + 1 subvariety, and f is a non-zero rational function on
W ; i∗ : Z1(W )→ Zp(X) is the map sending D ⊂ W to i(D) ⊂ X and
extending by linearity.

Definition 1.5. The Chow group of dimension p cycles on X, modulo
rational equivalence, is the quotient group CHp(X) := Zp(X)/Rp(X).

Now assume that X is smooth over k. We usually label with codi-
mension instead of dimension, writing this as a superscript, e.g., CHp(X).
There is a partially defined intersection product of cycles on X. For
this, let Z and W be subvarieties of X of codimension p and q, re-
spectively, and let T be an irreducible component of Z ∩W . Suppose
that T has the “correct” codimension p + q on X. One can define the
positive integer m(T ;Z ·W ) by

m(T ;Z ·W ) =

dimk X∑

i=0

(−1)i`(Tor
OX,T

i (OX,T/IZ,OX,T/IW )).

Here IZ and IW are the defining ideal sheaves of Z and W , and ` means
length as an OX,T -module. The work of Serre [35] shows that this is
well-defined and is indeed a positive integer.

If now each component T of Z ∩ W has the correct codimension,
define

Z ·W :=
∑

T

m(T ;Z ·W ) · T.

This is called the intersection product of cycles.
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Theorem 1.6. Suppose that X is smooth and quasi-projective over k.
The partially defined intersection of cycles descends to a well-defined
product

CHp(X)⊗ CHq(X)→ CHp+q(X),

making CH∗(X) := ⊕pCHp(X) a graded, commutative ring with unit.

In fact, this theorem has had a long list of false proofs, before Fulton
[11] gave the first completely correct proof using algebraic geometry.
Quillen’s proof of Bloch’s formula (see theorem 9.7) gave an earlier
proof using higher K-theory.

1.3. Functorialities for K0, G0 and CH∗. Let f : X → Y be a
projective morphism of schemes. Define

f∗ : Zp(X)→ Zp(Y )

as we did for divisors: f∗(Z) = [k(Z) : k(f(Z))] · f(Z) if Z → f(Z) is
generically finite, and f∗(Z) = 0 if dim Z > dim f(Z). This passes to
the Chow groups, giving

f∗ : CH∗(X)→ CH∗(Y ).

Similarly, if F is a coherent sheaf on X, we have the coherent sheaf
f∗(F) on Y . However, F 7→ f∗F does not preserve exact sequences, so
does not define a map on G0. To rectify this, we use the higher direct
images Rif∗F , which are also coherent sheaves. If 0 → F ′ → F →
F ′′ → 0 is a short exact sequence, we have the long exact sequence

0→ f∗F
′ → f∗F → f∗F

′′ → R1f∗F
′ → . . .→ Rnf∗F → Rnf∗F

′′ → 0,

where n is for intance the dimension of X. Thus, the assignment

F 7→
dim X∑

i=0

(−1)i[Rif∗F ]

gives a well-defined map

f∗ : G0(X)→ G0(Y ),

using the following:

Remark 1.7. If

0→ F0 → F1 → . . .→ Fm → 0

is an exact sequence of coherent sheaves on X, then
∑m

i=0(−1)i[Fi] = 0
in G0(X).
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The push-forward f∗ on K0 is more difficult to define and in fact
cannot always be defined; we postpone this to later.

Let f : X → Y be a morphism of schemes. If F is a coherent sheaf
on Y , we have the coherent sheaf f ∗F on X. However, this operation
does not preserve exact sequences, unless for example f is flat, or the
exact sequence consists of locally free sheaves. This gives functorial
pull-back maps

f ∗ : K0(Y )→ K0(X)

and, if f is flat

f ∗ : G0(Y )→ G0(X).

If f : X → Y is of finite Tor-dimension (always the case if Y is smooth),
we can define f ∗ on G0 the way we did f∗:

f ∗(F) =
dim Y∑

i=0

(−1)iLif
∗(F).

Here L0f
∗ = f ∗, and the Lif

∗(F) = TorOY

i (F ,OX) for i > 0. It is
easy to see that f ∗ is a ring homomorphism for K0, and a K0-module
homomorphism for G0 (when defined). We also have the projection
formula:

(1.1) f∗(f
∗(a) · b) = a · f∗(b)

for f projective, a ∈ K0(X), b ∈ G0(X).
Pullback f ∗ : CH∗(Y )→ CH∗+d(X) for a flat morphism f of relative

dimension d is defined by sending a subvariety Z ⊂ Y to the cycle
determined by the subscheme f−1(Z). IfW is an irreducible component
of f−1(Z), we let m(W ; f−1(Z)) be the length of Of−1(Z)⊗OX,W as an
OX,W -module, and define

f ∗(Z) :=
∑

W

m(W ; f−1(Z)) ·W.

The Z-linear extension of f ∗ to f ∗ : Zp(Y )→ Zp+d(X) descends to

f ∗ : CHp(Y )→ CHp+d(X).

In general, the pull-back f ∗ : CH∗(Y ) → CH∗(X) is defined using
the intersection product. Let Γ ⊂ X × Y be the graph of f . The
operation ∩Γ defines a map from CH∗(X × Y ) to CH∗(Γ) = CH∗(X).
We define

f ∗(Z) := (X × Z) ∩ Γ ∈ CH∗(X).

We have a projection formula for CH as well.
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2. Fundamental properties

We discuss the important properties of K0 and G0. Some of these
properties are also shared by CH∗ and CH∗, but we will concentrate
on K-theory, giving brief indications of the analogues for the Chow
groups.

2.1. Reduction by resolution and filtration. We work in the cate-
gory of R-modules for simplicity. Let M be an R-module, and suppose
we have a filtration

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M.

Putting together all the subquotients gives a bunch of short exact se-
quences, which shows that

[M ] =
n∑

i=1

[Mi/Mi−1].

Now suppose we have a nilpotent ideal I ⊂ R, and let R̄ = R/I. Let
i∗ : G0(R̄) → G0(R) be the evident map. Take a filtration as above
such that IMi ⊂ Mi−1. Then each quotient Mi/Mi−1 is an R̄-module
(for instance, Mj = IjM), so the sum

∑n
i=1[Mi/Mi−1] defines a class

ˆ[M ] in G0(R̄) with i∗( ˆ[M ]) = [M ] in G0(R). As the notation suggests,
ˆ[M ] is independent of the choice of filtration (this follows from the

butterfly lemma), and sending M to ˆ[M ] descends to a well-defined
homomorphism

ˆ: G0(R)→ G0(R̄)

with i∗( ˆ[M ]) = [M ]. If N is already a R̄-module, we can take the trivial

filtration, so ˆi∗[N ] = [N ]. Thus:

Theorem 2.1. Let I be a nilpotent ideal in R. Then i∗ : G0(R/I) →
G0(R) is an isomorphism. More generally, let X be a scheme, i :
Xred → X the associated reduced scheme. Then i∗ : G0(Xred)→ G0(X)
is an isomorphism.

Examples 2.2. (1) Let F be a field. Clearly MF = PF are both the
category of finite dimensional vector spaces over F . As each vector
space V is the direct sum of dimF V copies of F , sending V to dimF V
gives an isomorophism of K0(F ) = G0(F ) with Z.
(2) LetO be a local ring with maximal idealm. LetMO(m) be the sub-
category of MO consisting of those O-modules which are mN -torsion
for someN . Let k = O/m. ClearlyG0(MO(m)) = limN→∞G0(MO/mN ).
By theorem 2.1, the inclusionMk →MO(m) induces an isomorphism

Z ∼= G0(Mk) ∼=MO(m).
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If M is inMO(m), then M admits a filtration

0 = M0 ⊂ M1 ⊂ . . . ⊂ Mn = M

with Mi/Mi−1
∼= k; by definition n is the length of M . Thus, sending

M to `(M) gives the isomorphism G0(MO(m)) ∼= Z.

We can also use long exact sequences to relate K0 and G0. Suppose
X is a regular scheme (e.g., X is smooth over a field k). Then every
coherent sheaf F admits a finite resolution by locally free sheaves:

0→ En → . . .→ E0 → F → 0

(in fact, one can always take n ≤ dimkX if X is smooth and finite
type over k). Send F to the class

∑n
i=0(−1)i[Ei] in K0(X). If we have

a second resolution E ′ → F → 0, one can always find a third resolution
to which the other two map, term-wise injectively, with locally free
cokernel. From this, it is easy to see that

∑n
i=0(−1)i[Ei] is independent

of the choice of resolution, and defines a homomorphism

res : G0(X)→ K0(X).

Letting can : K0(X) → G0(X) be the canonical map, it follows that
can◦res = id, since we can take the identity resolution of a locally free
sheaf. By remark 1.7, res ◦ can = id. Thus

Theorem 2.3. Let X be a regular scheme of finite Krull dimension.
Then can : K0(X) → G0(X) is an isomorphism, with inverse res :
G0(X)→ K0(X).

Using theorem 2.3, we can define push-forward maps f∗ : K0(X) →
K0(Y ) for f : X → Y a projective morphism with Y smooth over k:
take the composition

K0(X)
can
−−→ G0(X)

f∗
−→ G0(Y )

res
−→ K0(Y ).

2.2. Localization. Let i : Z → X be a closed subscheme with open
complement j : U → X. The localization sequence gives a way of
relating G0(X), G0(U) and G0(Z).

We recall thatMX is an abelian category. Let MX(Z) be the sub-
category ofMX consisting of coherent sheaves which are supported on
Z. MX(Z) is a Serre subcategory, i.e.,MZ is closed under subquotients
and extensions inMX .

Given an abelian category A and a Serre subcategory B ⊂ A, one
can form the quotient category A/B, having the same objects as A, but
where we formally invert a morphism f : M → N if ker(f) and cok(f)
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are in B. Explicitly, a morphism g : M → N in A/sB is given by a
diagram in A

M ′

i

}}{{
{{

{{
{{ f

!!B
BB

BB
BB

B

M N

with ker(i) and cok(i) in B, where we identify two such diagrams if
there is a commutative diagram

M ′

i

}}zz
zz

zz
zz f

!!C
CC

CC
CC

C

M N

M ′′

i′

aaDDDDDDDD f ′

=={{{{{{{{

φ

OO

Composition of M1
i1←− M ′

1

f1
−→ M2 with M2

i2←− M ′
2

f2
−→ M3 is given by

going around the outside of the diagram

M ′
1 ×M2 M

′
2

p1

yyssssssssss
p2

%%KKKKKKKKKK

M ′
1

i1

}}{{
{{

{{
{{

f1
%%LLLLLLLLLLL

M ′
2

i2

yyrrrrrrrrrrr

f2 !!D
DD

DD
DD

D

M1 M2 M3.

Essentially, this makes all the objects of B isomorphic to the zero
object, in a universal way, so each functor of abelian categories F :
A → A′ for which F (B) ∼= 0 for all B ∈ B factors uniquely through
A/B. It is not hard to see that A/B is also an abelian category, and
the canonical functor p : A → A/B is exact.

Theorem 2.4. Let A be an abelian category, i : B → A a Serre
subcategory, p : A → A/B the quotient category. Then the sequence

K0(B)
i∗−→ K0(A)

p∗
−→ K0(A/B)→ 0

is exact.

Proof. Since A/B and A have the same objects, p∗ is clearly surjective.

Let 0 → M ′ f
−→ M

g
−→ M ′′ → 0 be an exact sequence in A/B.

Changing the sequence by an isomorphism in A/B, we can assume
that f and g are morphisms in A and that g ◦ f = 0 in A. Then the
sequence being exact in A/B means that ker(f), ker(g)/im(f) and
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cok(g) (all taken in A) are in B. The sequence being a complex in A
gives the identity in K0(A):

[M ]− [M ′]− [M ′′] =[ker(g)] + [im(g)]

− ([ker(f)] + [im(f)])− ([im(g)] + [cok(g)])

=[ker(g)/im(f)]− [ker(f)]− [cok(g)]

Thus, every relation defining K0(A/B) lifts to a relations showing an
element of K0(A) is actually in K0(B). This together with a simple
diagram chase shows that we have a well-defined map p∗ : K0(A/B)→
K0(A)/K0(B) with p∗ ◦ p∗ the quotient map K0(A)→ K0(A)/K0(B).
Thus ker(p∗) = im(i∗). �

If we apply this to the situation A = MX , B = MX(Z), we also
have the equivalence of categoriesMX/MX(Z) ∼MU . Thus, we have
the exact sequence

K0(MX(Z))→ K0(MX)
j∗

−→ K0(MU)→ 0.

Using reduction by filtration, the inclusionMZ →MX(Z) induces an
isomorphism on K0, so we have

Theorem 2.5. Let i : Z → X be a closed subscheme, j : U → X the
open complement. Then the sequence

G0(Z)
i∗−→ G0(X)

j∗

−→ G0(U)→ 0

is exact.
If X is smooth, so is U , and we have the exact sequence

G0(Z)
i∗−→ K0(X)

j∗

−→ K0(U)→ 0,

using the resolution theorem 2.3.

The analogous result holds for CH∗:

Theorem 2.6. Let i : Z → X be a closed subscheme, j : U → X the
open complement. Then the sequence

CH∗(Z)
i∗−→ CH∗(X)

j∗

−→ CH∗(U)→ 0

is exact.

Proof. If Z is a subvariety of U , then the closure Z̄ is a subvariety of
X restricting to Z on U . Thus j∗ is surjective. Clearly j∗i∗ = 0. If
η ∈ CHq(X) has j∗η = 0, then η = [

∑
i niZ̄i], and there is a dimension

q + 1 subscheme W ⊂ U and an f ∈ k(W )∗ with

iW∗(div(f)) =
∑

i

niZi; Zi := Z̄i ∩ U.



12 A SHORT COURSE IN K-THEORY MEXICO CITY MAY, 2002

Let W̄ be the closure of W in X. Then f is in k(W̄ )∗ = k(W )∗, and
j∗(iW̄∗(divf)) = iW∗(div(f)). Thus there is a cycle z ∈ Zq(Z) with

i∗(z) + iW̄∗(divf)) =
∑

i

niZ̄i,

or η = i∗([z]). �

2.3. Homotopy. G0 enjoys a homotopy invariance property, which K0

inherits for regular schemes.

Theorem 2.7. Let X be a scheme, p : X × A1 → X the projection.
Then p∗ : G0(X)→ G0(X × A1) is an isomorphism.

Proof. We give the proof for X = SpecR an affine variety over a field
k, for simplicity.

For a ∈ k, we have the functor φa : MR[X] → MR, φa(M) =
M ⊗R[X]R[X]/(X − a). Take a = 0. Since R[X]/X has Tor-dimension
1 over R[X], sending M to φ∗a(M) := [φa(M)] − [Tor1(M,R[X]/X)]
gives

φ∗ : G0(R[X])→ G0(R).

We also have p∗ : MR → MR[X], p
∗(M) = M [X], and φ∗ ◦ p∗ = id.

Thus p∗ is injective.
Suppose that R is a field F . Let M be a finitely generated F [X]-

module. Since F [X] is a PID, M = F [X]r ⊕ T , where T is a finitely
generated torsion module. Each T has a finite filtration

0 = T0 ⊂ . . . ⊂ Tn = T

with Ti/Ti−1
∼= F [X]/(f), where f is an irreducible monic polynomial.

Also, we have the exact sequence

0→ F [X]
×f
−→ F [X]→ F [X]/(f)→ 0,

showing that [F [X]/(f)] = [F [X]] − [F [X]] = 0 in G0(F [X]). Thus
[T ] = 0 as well, and [M ] = r · [F [X]] = p∗([F r]). Thus p∗ : G0(F ) →
G0(F [X]) is surjective.

Now proceed by noetherian induction. Suppose R is an integral

domain with quotient field F . LetM(1)
R be the category of torsion R-

modules. Similarly, let M(1′)
R[X] be the subcategory of R[X] which are

f -torsion for some f ∈ R. Then

K0(M
(1)
R ) = lim

→
f∈R−{0}

G0(R/(f))

and
K0(M

(1′)
R[X]) = lim

→
f∈R−{0}

G0(R[X]/(f))
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Thus p∗ : K0(M
(1)
R ) → K0(M

(1′)
R[X]) is an isomorphism, by noetherian

induction.
By the localization theorem 2.4, we have the commutative diagram

with exact rows

K0(M
(1′)
R[X])

// G0(R[X]) // G0(F [X]) // 0

K0(M
(1)
R )

p∗

OO

// G0(R) //

p∗

OO

G0(F )

p∗

OO

// 0

The left and right-hand p∗ are surjective, thus the middle p∗ is surjective
as well. We can handle a general R similarly by induction on the
number of components. �

Remark 2.8. An argument similar to the above shows that CH∗ also
enjoys the homotopy property.

Remark 2.9. One can show, more generally, that if p : E → X is a flat
morphism of schemes, with p−1(x) ∼= An

x for each point x ∈ X, then p∗ :
G0(X)→ G0(E) is an isomorphism, and similarly for CH∗. The proof
uses the localization theorem as above, which shows p∗ is surjective.
For injectivity one needs to use the projective bundle formula in the
next section, or wait for higher K-theory.

2.4. The first Chern class. Let L→ X be a line bundle (algebraic)
on some smooth k-variety X, and let s : X → L be a section. If
L is trivialized on some open U ⊂ X, ψ : LU ∼= U × A1, then we
may consider s as a regular function sψ on U , and so we have the
divisor divU(sψ) =

∑
D⊂U ordD(sψ) ·D. If φ : LU ∼= U × A1 is another

trivalization, then sψ = v · sφ, where v is a nowhere vanishing regular
function on U , so divU(sψ) = divU(sφ). Thus, the local divisors of s
patch together on X to give div(s) ∈ Z1(X).

Lemma 2.10. The class of div(s) ∈ CH1(X) is independent of the
choice of s.

Proof. Let s′ be another section of L. Then s′⊗s−1 is a rational section
of L ⊗ L−1 ∼= X × A1, that is s′ ⊗ s−1 is a rational function f on X.
By checking in local coordinates, we find

div(f) = div(s′ ⊗ s−1) = div(s′)− div(s),

or div(s′) = div(s) + div(f), so div(s) = div(s′) in CH1(X). �

Thus, if L has a non-zero section s, we may define c1(L) ∈ CH1(X)
by c1(L) := div(s). Since div(s⊗ s′) = div(s) + div(s′), it follows that
c1(L⊗ L

′) = c1(L) + c1(L
′) if L and L′ have non-zero sections.
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Now suppose that X ⊂ PN is quasi-projective and let OX(1) be the
restriction of the hyperplane bundle. If L is an arbitrary line bundle
on X, then L ⊗ OX(n) has a non-zero section, for n sufficiently large.
Thus, we may define

c1(L) := c1(L⊗ OX(n))− c1(OX(n)).

Let Pic(X) be the group of line bundles under tensor product. Then
we have defined a homomorphism

c1 : Pic(X)→ CH1(X).

We identify line bundles with rank one locally free sheaves by passing
from a line bundle to its sheaf of sections.

Proposition 2.11. For X quasi-projective and smooth over k, c1 :
Pic(X)→ CH1(X) is an isomorphism.

Proof. Let D be a divisor on X. We have the invertible sheaf OX(D)
with

OX(D)(U) := {f ∈ k(X) | (div(f) +D) ∩ U > 0}.

If D > 0, we have the section s : OX → OX(D) sending 1 to 1. It is
easy to check that div(s) = D. Also OX(D+D′) = OX(D)⊗OX(D′),
and if D = div(f)+D′, then multiplication by f gives an isomorphism
OX(D′)→ OX(D). Finally, if an invertible sheaf L has a section s with
div(s) = D, then L ∼= OX(D). Thus, sending D to OX(D) defines an
inverse to c1. �

Remark 2.12. We also have the functoriality:

c1(f
∗L) = f ∗c1(L)

for L→ X a line bundle f : Y → X a morphism.

2.5. The projective bundle formula for CH∗. Let E → X be a
vector bundle on X, q : P(E) → X the projective space bundle of
lines in E, O(−1) → P(E) the tautological subbundle of q∗E, and
q∗E∨ → O(1) the dual quotient bundle.

Let ξ ∈ CH1(P(E)) be c1(O(1)).

Lemma 2.13. If E has rank r + 1, the q∗(ξ
r) = 1 ·X ∈ CH0(X).

Proof. We may suppose X irreducible. Then CH0(X) = Z · [X], so
for each open j : U → X, the restriction j∗ : CH0(X) → CH0(U) is
an isomorphism. Thus, it suffices to show that j∗(q∗(ξ

r)) = 1 · [U ] for
some open U .

Take U so that EU → U is trivial, EU ∼= U × Ar+1. Then O(1)
is the hyperplane bundle on Pr × U , with sections the free Γ(U,OU)-
module on the standard coordinates X0, . . . , Xr. Thus, ξ is represented
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by the hyperplane Xi = 0 for any i, and ξr is thus represented by the
transverse intersection X1 = . . . = Xr = 0. Thus ξr is represented by
the codimension r subvariety (1 : 0 : . . . : 0)×U ; clearly q∗((1 : 0 : . . . :
0)× U) = 1 · [U ], proving the result. �

Theorem 2.14. If E has rank r+1, then CH∗(P(E)) is a free CH∗(X)-
module with basis 1, ξ, . . . , ξr.

Proof. We first consider the case of a trivial bundle E = Or+1
X , so

P(E) = Pr × X. Let Z = Pr−1 × X be the closed subscheme defined
by Xr = 0, with inclusion i : Z → P(E). Let ξ̄ = c1(O(1)|Z). By our
computation of ξi above, we see that

i∗(ξ̄
i) = ξi+1

for i = 0, 1, . . .. Let j : Pr × X − Z = Ar × X → Pr × X be the
inclusion. Since Z is defined by Xr = 0, j∗(O(1)) is the trivial bundle,
so j∗(ξ) = 0. We have the exact localization sequence

CH∗(P
r−1 ×X)

i∗−→ CH∗(P
r ×X)

j∗

−→ CH∗(A
r ×X)→ 0.

By induction CH∗(Pr−1×X) is generated over CH∗(X) by 1, . . . , ξr−1,
and CH∗(Ar ×X) is generated by 1, by the homotopy property. Thus
CH∗(Pr ×X) is generated by 1, . . . , ξr.

In general, let i : Z → X be the complement of j : U → X such
that j∗E is trivial. Then we have the commutative diagram, where the
rows are the exact localization sequences, and the vertical arrows

CH∗(P(i∗E)))
ĩ∗

// CH∗(P(E))
j̃∗

// CH∗(P(j∗E)) // 0

CH∗−r+i(Z)
i∗

//

ξi
Z
∪q∗

OO

CH∗−r+i(X)
j∗

//

ξi
X
∪q∗

OO

CH∗−r+i(U) //

ξi
U
∪q∗

OO

0

the case of the trivial bundle and noetherian induction shows that
CH∗(P(E)) is generated over CH∗(X) by 1, . . . , ξr.

Now suppose that
∑s

i=0 q
∗(ai)ξ

i = 0 for a0, . . . , as ∈ CH∗(X), with
as 6= 0 and s ≤ r. Multiply by ξr−s and take q∗. Then

0 = q∗(

s∑

i=0

q∗(ai)ξ
i+r−s)

=
s∑

i=0

ai · q∗(ξ
i+r−s).

By dimension reasons, q∗(ξ
j) = 0 if 0 ≤ j < r, so we have

0 = as · q∗(ξ
r) = as,
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contradicting our choice of s. �

2.6. The projective bundle formula for G0. For a vector bundle
E → X, we have the projective bundle q : P(E) → X, with fiber
q−1(x) the space of lines in Ex through 0. This gives the tautological
line bundle O(−1) → P(E), with inclusion O(−1) → E, giving the
exact sequence

0→ O(−1)→ q∗E → Q→ 0,

with Q a vector bundle.
Suppose E has rank r + 1. Let ξj : G0(X)→ G0(P(E)) be the map

ξj(x) = O(−j)⊗ q∗(x)

where O(−j) = O(−1)⊗j. Let ξ : ⊕rj=0G0(X) → G0(P(E)) be the
product

∏r
j=0 ξj.

Theorem 2.15. ξ : G0(X)r+1 → G0(P(E)) is an isomorphism.

Proof. We give the “motivic” proof, due to Beilinson. Write P for P(E).
Let ∆ ⊂ P ×X P be the diagonal. Dualize the tautological sequence,
giving

0→ Q∨ → q∗E∨ → O(1)→ 0.

For x, y ∈ P, we have the bilinear map

Q∨
x × O(−1)y → E∨ × E

<−,−>
−−−−→ F,

where <−,−> is the canonical pairing. It is easy to see that the map
on the tensor product Q∨

x ⊗O(−1)y → F is surjective if x 6= y and 0 if
x = y. In fact, taking the associated locally free sheaves Q and O(−1),
the map p∗1Q ⊗ p∗2O(−1) → OP×XP has image exactly the ideal sheaf
of ∆. Since E := p∗1Q ⊗ p

∗
2O(−1) is a locally free sheaf of rank r, the

Koszul complex

0→ ΛrE → . . .→ Λ1E → OP×P → O∆ → 0

is exact. Thus, in K0(P× P), [O∆] =
∑r

i=0(−1)i[ΛiE ].
Now, define the map φ : G0(P)→ G0(P) by

φ(x) = p2∗(p
∗
1(x)⊗ [O∆]).

Since pi : ∆→ P is an isomorphism, φ(x) = x. By our formula, we can
write φ as a sum φ =

∑r
i=0 φi, where

φi(x) := (−1)ip2∗(p
∗
1(x)⊗ [ΛiE ]).

Now Λi(E) = p∗1(Λ
i(Q∨))⊗ p∗2(O(−i)), so

φi(x) = (−1)iq∗(x⊗ Λi(Q∨))⊗O(−i).
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Thus the classes [O], [O(−1)], . . . , [O(−r)] generate G0(P) over G0(X).
Also, q∗(O(−j)) = 0 if 0 < j ≤ r, and = [OX ] if j = 0. If we
have xi ∈ G0(X) with

∑r
i=0 xi[O(−i)] = 0, then multiplying by O(i),

i = 0, . . . , r, and applying q∗, we see that xi = 0, i = 0, . . . , r. This
proves the theorem. �

The same proof shows

Theorem 2.16. Let E → X be a rank r+1 vector bundle on X. Then
ξ : K0(X)r+1 → K0(P(E)) is an isomorphism, so K0(P(E)) is a free
K0(X)-module with basis 1, [O(−1)], . . . , [O(−r)].

3. Relating K0 and CH

3.1. Chern classes. We recall Grothendieck’s method of defining Chern
classes of vector bundles (see [13]).

Let E → X be a vector bundle on X of rank r. We have the
projective bundle q : P(E∨) → X and the canonical quotient bundle
q∗E → O(1). Let ξ = c1(O(1)). By theorem 2.14, CH∗(P(E∨)) is a
free CH∗(X)-module with basis 1, ξ, . . . , ξr−1. Thus, there are unique
elements ai ∈ CHi(X), i = 1, . . . , r, with

(3.1) ξr +

r∑

i=1

(−1)iq∗(ai)ξ
r−i = 0.

The element ai is denoted ci(E), and is called the ith Chern class of
E. We let c(E) = 1 + c1(E) + . . .+ cr(E), the total Chern class of E.

Suppose that E = L is a line bundle on X. Then P(L∨) = X, and
the canonical quotient L → O(1) is an isomorphism. Then ξ = c1(L)
and the relation (3.1) gives ξ = a1, so this method recoves the original
definition of c1(L).

Proposition 3.1 (Properties of the Chern classes). Let X be a smooth
k-variety. Then

(1) Let E be a vector bundle on X, and f : Y → X a morphism of
smooth varieties. Then f ∗(ci(E)) = ci(f

∗E).
(2) Let 0 → E ′ → E → E ′′ → 0 be an exact sequence of vector

bundles on X. Then c(E) = c(E ′) · c(E ′′).

Proof. (1) follows from the naturality of the quotient bundle O(1) and
the operation of taking c1 of a line bundle.

For (2), first suppose that E ′ =
∑s

i=1 Li, E
′′ =

∑r
i=s+1 Li and E =∑r

i=1 Li. Let ξi = c1(Li). It suffices to show that

c(E) =

r∏

i=1

(1 + c1(Li)),



18 A SHORT COURSE IN K-THEORY MEXICO CITY MAY, 2002

that is, that ci(E) is the ith elementary function σi in the Chern classes
c1(L1), . . . , c1(Lr).

For each i, the projection
∑r

j=1 Lj →
∑

j 6=i Lj gives the inclusion

P(
∑

j 6=i L
∨
j )→ P(E∨), call this divisor Di. Di is defined by the vanish-

ing of the composition q∗Li → q∗E → O(1), i.e., O(Di) ∼= q∗L∨i ⊗O(1).
Thus Di = c1(q

∗L∨i ⊗ O(1)) = ξ − q∗ξi.
Since ∩ri=1Di = ∅, we have

∏r
i=1(ξ − q

∗ξi) = 0. Thus
r∑

i=0

(−1)iq∗(σi(ξ1, . . . , ξr))ξ
r−i = 0,

so ci(E) = σi(ξ1, . . . , ξr), as desired.
In general, let p : F`(E) → X be the full flag variety of E, i.e. the

variety of filtrations

0 = E0 ⊂ E1 ⊂ . . . ⊂ Er = E,

where Ei is a vector bundle of rank i. Clearly p∗E admits a filtration
by subbundles with quotients Ei/Ei−1 = Li line bundles. Also, we can
construct F`(E) by first passing to P(E), taking the quotient E1 :=
E/O(−1), passing to P(E1), etc. Thus CH∗(F`(E)) is free CH∗(X)-
module; in particular, p∗ : CH∗(X) → CH∗(F`(E)) is injective. Thus,
if we want to check identities in CH∗(X), we can pass to CH∗(F`(E)).

Thus, we may assume that E has a filtration as above and that E ′

and E ′′ are given by a sub and quotient in the filtration. However,
for each i, the Ext-group Ext1(Ei−1, Li) is a k-vector space, and the
sequence 0→ Ei−1 → Ei → Li → 0 is an element ηi ∈ Ext

1(Ei−1, Li).
We may thus take a family of vector bundles over X × A1, with value
at t = 1 the vector bundle E, and at t = 0 the vector bundle

∑r
i=1 Li;

similarly for E ′ and E ′′. By the homotopy property, we have

c(E) = c(
r∑

i=1

Li),

and also for E ′ and E ′′, which reduces us to the case we have already
handled. �

Corollary 3.2. Let X be a smooth k-variety. The assignment E 7→
cp(E) descends uniquely to a map of pointed sets cp : K0(X)→ CHp(X).

Proof. Make
∏dimk X

i=1 CHi(X) into a group by sending (z1, . . . , zr) to
the sum 1 + z1 + . . . + zr ∈ CH∗(X), and defined the addition ? by

using the product in CH∗(X). Call this group ĈH(X). Setting c̃(E) =
(c1(E), . . . , cd(E)), d = dimkX, we have

c̃(E) = c̃(E ′) ? c̃(E ′′)
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if there is an exact sequence 0 → E ′ → E → E ′′ → 0. Thus c̃
respects the relations defining K0(X), and thus descends to a group
homomorphism

c̃ : K0(X)→ ĈH(X).

Taking the component cp proves the result. �

3.2. The topological filtration. Let X be a smooth variety. Sending
a subvariety Z ⊂ X to the class of the structure sheaf OZ in G0(X) =
K0(X) defines a homomorphism

cl : Zp(X)→ K0(X).

However, this map does not pass to rational equivalence. To under-
stand the situation, we first note that the subgroup Rp(X) ⊂ Zp(X)
can be described by cycles on X ×A1: Let f be a rational function on
a codimension p − 1 subvariety W ⊂ X, and let Γf ⊂ X × P1 be the
closure of the graph of X. The open subset P1−{1} of P1 is isomorphic
to A1 via t ∈ A1 7→ (t− 1 : t) ∈ P1 − {1}. Letting Γ0

f ⊂ X ×A1 be the
restriction of Γf , we have

div(f) = prX [(X × 0−X × 1) · Γ0
f ].

Conversely, let Γ be an arbitrary codimension p subvariety of X × A1.
Then by the homotopy property, there is a codimension p cycle z on
X with Γ ∼ p∗1z. Thus, in CHp(X), we have

prX [(X × 0−X × 1) · Γ] = prX [i∗0p
∗
1(z)− i

∗
1p
∗
1z] = z − z = 0,

where i0, i1 : X → X × A1 are the 0 and 1 sections. Thus, the cycle
prX [(X × 0−X × 1) · Γ] is in Rp(X). In short, Rp(X) is the subgroup
of Zp(X) consisting of cycles of the prX [(X × 0−X × 1) · Γ], where Γ
is a codimension p cycle on X × A1.

By the homotopy property of G0(X), we similarly have

i∗0(OΓ) = i∗1(OΓ)

for each subvariety Γ of X ×A1. However, i∗0(OΓ) is not in general the
same as cl(i∗0(Γ)). It does follow from the computation in example 2.2
and the localization theorem for G0 that i∗0(OΓ) ≡ cl(i∗0(Γ)) modulo the
image of G0(Z) for some closed subset Z of X of codimension ≥ p+ 1.
This motivates the following

Definition 3.3. Let X be a scheme. Define F q
topG0(X) ⊂ G0(X) to

be the subgroup of G0(X) generated by the images G0(Z) → G0(X),
as Z runs over closed subschemes of X of codimension ≥ q.

If X is regular, we define F q
topK0(X) as the image of F q

topG0(X) via
the isomorphism K0(X) ∼= G0(X).
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Clearly cl(Zp(X)) ⊂ F p
topG0(X); our computation above shows that

cl descends to
clp : CHp(X)→ grptopG0(X).

Lemma 3.4. clp : CHp(X)→ grptopG0(X) is surjective.

Proof. Let η be in F p
topG0(X). Then there is a pure codimension p

subscheme i : Z → X and an element η′ ∈ G0(Z) with η = i∗(η
′).

If Z has irreducible components Z1, . . . , Zs, then G0(k(Zi)) = Z, so
there are integers n1, . . . , ns such that η′ −

∑
i ni[OZi

] goes to zero in
⊕iG0(k(Zi)). But then there is an open subscheme U of Z, containing
the generic point of each Zi such that η′ −

∑
i ni[OZi

] goes to zero in
G0(U). Let Z̄ = Z \ U . Then Z̄ has codimension ≥ p + 1 on X, and
by the localization sequence

G0(Z̄)
ī
−→ G0(Z)→ G0(U)→ 0,

there is an element α ∈ G0(Z̄) with

η′ =
∑

i

ni[OZi
] + ī∗(α)

in G0(Z). Pushing forward to G0(X) gives

η =
∑

i

ni[OZi
] + α′,

where α′ is the image of α under G0(Z̄) → G0(X). But
∑

i ni[OZi
] =

cl(
∑

i ni · Zi), and α′ is in F p+1
top G0(X), proving the result. �

3.3. GRR. In fact, clp is almost an isomorphism. The almost inverse
is given by the pth Chern class. This follows from a special case of
what is known as the Grothendieck-Riemann-Roch theorem. Here is
the special case we need (for a proof, see the original article of Borel-
Serre [9], or the more modern treatment in [11]):

Theorem 3.5 (Grothendieck-Riemann-Roch). Let i : Z → X be the
inclusion of an integral closed codimension p subscheme of a smooth k
variety X, giving the class [OZ ] in G0(X) = K0(X). Then cq([OZ ]) = 0
for q < p, and cp([OZ ]) = (−1)p−1(p− 1)! · Z in CHp(X).

Corollary 3.6. Let X be a smooth k-variety.

(1) The map cp : K0(X)→ CHp(X) sends F p+1
top K0(X) to zero, and

defines a homomorphism

cp : grptopK0(X)→ CHp(X).

(2) cp ◦ clp = (−1)p−1(p− 1)! · id and clp ◦ cp = (−1)p−1(p− 1)! · id.



A SHORT COURSE IN K-THEORY MEXICO CITY MAY, 2002 21

Proof. That cp descends to a set map on grp follows from GRR. Also,
if a and b are in F p

topK0(X), then c(a+ b) = c(a)c(b) and GRR implies
that cp(a + b) = cp(a) + cp(b) (since the lower Chern classes are zero).
This proves (1). The first formula in (2) follows also from GRR. For the
second, clp : Zp(X) → grptopK0(X) is surjective by lemma 3.4. Thus,
the first formula implies the second. �

3.4. Curves and surfaces. For X a smooth curve over k, GRR gives
us the short exact sequence

0→ CH1(X)→ K0(X)→ CH0(X)→ 0.

CH0(X) is just the free abelian group on the components of X, and
CH1(X) is the classical group of divisors modulo linear equivalence,
which we have already seen is isomorphic to the Picard group Pic(X).

Suppose X is projective. Then we have the degree homomorphism
CH1(X) → Z, which is surjective if for example X has a k-rational
point. The kernel of the degree homomorphism is the group of k-points
of the Jacobian variety of X.

Now suppose X is a surface. We have the two-step filtration of
K0(X):

F 2
topK0(X) ⊂ F 1

topK0(X) ⊂ K0(X).

By GRR, we have gr0
topK0(X) = CH0(X), gr1

topK0(X) = CH1(X) and

gr2
topK0(X) = CH2(X). The story for CH0(X) is just as for curves, and

that of gr1
topK0(X) = CH1(X) is similar: if X is smooth and projective,

we have the intersection product deg(D ·D′) ∈ Z for D,D′ ∈ CH1(X).
Call D numerically equivalent to zero if deg(D ·D′) = 0 for all D′. Then
CH1(X)/num (num = the group of divisors numerically equivalent to
zero). is a finitely generated group. num contains a subgroup of finite
index alg, and alg ⊂ CH1(X) is the group of k-points on the Picard
variety of X, which is a projective group variety over k. In fact, there
is a very similar description of CH1(X) for all X smooth and projective
over a field k.

The situation for CH2(X) is radically different, in general. We will
take this up in some detail in the next paragraph.

3.5. Topological and analytic invariants. Now suppose the base
field k = C. By the localization sequence, it suffices to understand
K0(X) or CH∗(X) for X smooth and projective over C; using GRR,
we can restrict our attention to CH∗.

First of all, taking the topological class of an algebraic cycle defines
the map

clptop : CHp(X)→ H2p(X,Z).
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It is known that clptop is not in general surjective. In fact, the C-
cohomology of X has the Hodge decomposition

Hn(X,C) = ⊕p+q=n; p,q≥0H
p,q(X),

with Hp,q(X) = Hq,p(X) and with

Hp,q ∼= Hq(X,Ωp
X).

It is easy to see that the image of clptop lands in H2p(X,Z)∩(2πi)−pHp,p,
and it is easy to construct examples where this is not all of H2p(X,Z).
We write CHp(X)hom for the kernel of clptop.

The Hodge conjecture asserts that the image of (2πi)pclp is of finite
index in (2πi)pH2p(X,Z)∩Hp,p. This is known to be the case for p = 1
(in this case one gets all of (2πi)H2(X,Z) ∩ H1,1 as the image), but
is not known in general (there is a million dollar prize for a proof or
counter-example!)

In the case of p = 1, the kernel of cl1top is the same as the subgroup

alg defined above, so CH1(X)hom is the Picard variety of X. There is
an analytic discription of this variety: let

J1(X) = H0,1(X)/(2πi)H1(X,Z).

Then J1(X) is isomorphic to the Picard variety of X. Griffiths gener-
alized this construction, defining complex torii Jp(X) by

Jp(X) :=
H0,2p−1(X)⊕ . . .⊕Hp−1,p(X)

(2πi)pH2p−1(X,Z)
.

There is a cycle class map

clphom : CHp(X)hom → Jp(X),

generalizing the isomorphism CH1(X)hom
∼= J1(X). However, except

in some special cases, the map clphom is neither injective nor surjective.
If Ha,b(X) 6= 0 for some a, b with a + b = 2p − 1 and |a − b| > 1,
then clphom is not surjective. Also, the image of clphom can be quite
complicated; examples of Clemens and others show that the image can
be an uncountably generated group, with trivial connected component
of 0.

For codimension= dimX = d (i.e., dimension zero), CHd(X)hom is
just the group of dimension zero cycles of degree zero, J d(X) is the
Albanese variety, and cldhom : CHd(X)hom → Jd(X) is induced by the
Albanese morphism of X, in particular cldhom is surjective.
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3.6. Infinite dimensionality. For d = 1, cl1hom : CH1(X)hom → J1(X)
is an isomorphism, and J1(X) is an algebraic variety. For CH2, the sit-
uation is very different, as first pointed out in a fundamental result of
Mumford [28].

Definition 3.7. For a given variety X, we say that CHp(X)hom is finite
dimensional if there is a variety T over C, together with a codimension
p cycle W on X × T , such that the set of codimension p cycles on
X, {prX(W · (X × t)) | t ∈ T (C)} is all of CHp(X)hom. We say that
CHp(X)hom is infinite dimensional if it is not finite dimensional.

For example if X is smooth and projective, CH1(X)hom is finite di-
mensional, as takingW to be the Poincaré divisor on J 1(X)×X realizes
the isomorphism cl1hom : CH1(X)hom → J1(X).

Theorem 3.8 (Mumford). Let X be a smooth projective surface over
C. Suppose that H0(X,Ω2

X/C) 6= 0, that is, that X has a non-zero global

two-form. Then CH2(X) is infinite dimensional.

Roitman [32] has generalized Mumford’s result to show

Theorem 3.9. Let X be a smooth projective variety over C. Suppose
that H0(X,Ωp

X) 6= 0 for some p > 1. Then the kernel of clqhom is infinite
dimensional.

So, bad news. To date no one has been able to give a coherent
description of CHd(X)hom in case H0(X,Ωp

X) 6= 0 for some p > 1.
There is the famous conjecture of Bloch:

Conjecture 3.10. Let X be a smooth projective surface over C with
H0(X,Ω2

X) = 0. Then cl2hom : CH2(X)hom → J2(X) is an isomorphism.

This has been settled for surfaces not of general type in [6], and for
many surfaces of general type by a number of authors, but without any
“structural” proof, the full conjecture still remains quite open. The
converse of Bloch’s conjecture, that the injectivity of the cycle class
map implies the that cohomology/Hodge theory of X is particularly
simple, has been generalized by Jannsen [17] and Esnault-Levine [10]
as follows:

Theorem 3.11 (Jannsen). Let X be a smooth projective variety over
C. Suppose that clptop : CHp(X)Q → H2p(X,Q) is injective for all p.
Then H2p+1(X,Q) = 0 for all p, and clptop : CHp(X)Q → H2p(X,Q) is

an isomorphism for all p. In particular, Ha,b(X) = 0 for a 6= b.

Theorem 3.12 (Esnault, Levine). Let X be a smooth projective variety
over C. Suppose that clphom : CHp(X)homQ → Jp(X)Q is injective for
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all p. Then clphom : CHp(X)homQ → Jp(X)Q is an isomorphism for all
p, and Ha,b(X) = 0 for |a− b| > 1.

Both of these results have finer versions stating that, if clp is injective
for p ≥ s, then clp is surjective for p ≤ s+ 1.

On the positive side, the torsion seems to be quite well behaved.
Roitman [33] has shown (he actually proves a more general result valid
for an arbitrary algebraically closed field k instead of C):

Theorem 3.13. Let X be a smooth projective variety of dimension d
over C. Then the map

cldhom : CHd(X)hom → Jd(X)

induces an isomorphism on the torsion subgroups.

3.7. Complete intersections. For an affine variety over a field, X =
SpecR, there is a close connection between K0 and problems in com-
mutative algebra. One example is the question: Is a given ideal I a
complete intersection in R, i.e., is I = (f1, . . . , fn), where f1, . . . , fn
form a regular sequence in R?

One condition is clearly that I must be a local complete intersection:
for each prime ideal p, the image Ip in the local ring Rp must be a
complete intersection, but in general this is not enough. If I is a local
complete intersection, then R/I admits a finite projective resolution,
so has a class [R/I] ∈ K0(R). If I is a complete intersection, one has
the Koszul resolution

0→ ΛnRn → . . .→ Λ2Rn → Rn → R→ R/I → 0,

from which it follows [R/I] = 0. What about the converse? One can
even ask the more difficult question: Let X = SpecR, and let Z ⊂ X
be a pure codimension p subscheme. Suppose that Z is a local complete
intersection in X and that the associated cycle |Z| ∈ Zp(X) goes to
zero in CHp(X). Is Z a complete intersection subscheme in X?

Since one would expect that going to zero in CHp(X) is a weaker
condition than going to zero in K0(X), this may seem to be too much
to require. However, one has the following result:

Theorem 3.14 (Murthy, Levine, Srinivas). Let X be a reduced affine

variety of dimension d over an algebraically closed field k. Then C̃H
d
(X)

is torsion free, hence the map C̃H
d
(X)→ K0(X) is injective.

Here, I should explain C̃H
d

is a modified version of CHd(X) (con-
structed in [18]) which maps to K0(X) even if X is not smooth over

k; C̃H
d

is CHd if X is smooth. The case of a smooth X was proved by
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Mohan Kumar and Murthy [27], relying on Roitman’s theorem 3.13;
Levine [19] proved the case of X smooth in codimension one, and Srini-
vas [37] proved the general case.

As for the complete intersection question, if Z has pure codimension
one and is a local complete intersection, the ideal sheaf IZ is a rank
one locally free sheaf, and [OZ ] = [OX ]− [IX ], so [OZ ] = 0 if and only
if [IZ ] = [OX ]. However, sending E to ΛrankEE defines a map of sets
det : K0(X) → Pic(X), splitting the map Pic(X) → K0(X). Thus,
two rank one sheaves have the same K0(X)-class if and only if they are
isomorphic. So, [OZ ] = 0 implies IZ ∼= OX , so Z is defined by a single
equation (the image of 1 ∈ OX in IZ).

For codimension two, Serre proved

Theorem 3.15. Let X be a smooth affine surface over an algbraically
closed field, and let Z be a codimension two closed subscheme. Suppose
that Z is a local complete intersection and that the associated cycle |Z|
vanishes in CH2(X). Then Z is a complete intersection.

Relying on theorem 3.14, Murthy and Mohan Kumar [26] extended
this to codimension two subschemes of smooth threefolds:

Theorem 3.16. Let X be a smooth affine scheme of dimension 3 over
an algbraically closed field, and let Z be a codimension 2 closed sub-
scheme. Suppose that Z is a local complete intersection and that the
associated cycle |Z| vanishes in CH2(X). Then Z is a complete inter-
section.

A related problem is: Let E be a locally free sheaf of rank r on
an affine variety X of dimension r. If E admits a nowhere vanishing
section (that is, E = OX ⊕ E ′ for some rank r − 1 sheaf E ′), it follows
from the Whitney product formula for Chern classes that the top Chern
class cr(E) is zero in CHr(X). The converse for X a variety over an
algebraically closed field is the following theorem of Murthy [29] (the
case of dimension three was settled in [26])

Theorem 3.17. Let X = SpecR be a reduced affine variety of dimen-
sion r over an algebraically closed field k, and let P be a projective
R-module of rank r. Let P denote the associated locally free sheaf on

X. If cr(P) = 0 in C̃H
r
(X) ⊂ K0(X), then P = Q⊕ R for some rank

r − 1 projective R-module Q.
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Part 2. Higher K-theory of rings

We now turn to higher K-theory, with some historical background on
K1 and K2 of rings, followed by a sketch of Quillen’s plus construction.

4. K1 of a ring

4.1. Matrices and elementary matrices. Let R be a ring. We have
the ring of n×n matrices Mn(R), and the group of units GLn(R). The

stabilization map GLn(R)
ρn
−→ GLn+1(R) is defined by

(aij) 7→

(
aij 0
0 1

)
;

define GL(R) to be the limit

GL(R) := lim
→
n

GLn(R).

For indices 1 ≤ i 6= j ≤ n and element λ ∈ R, let eλij be the n × n
matrix with 1’s down the diagonal, λ in the ith row and jth column,
and all other entries zero. We let En(R) be the subgroup of GLn(R)
generated by the eλij. The stabilization maps send En(R) into En+1(R),
so we can define E(R) as the limit of the En(R). These are all called
the group of elementary matrices.

Remark 4.1. Let Unin(R) be the group of upper triangular matrices
with 1’s down the diagonal. Then Unin(R) ⊂ En(R), in fact Unin(R)
is the subgroup of GLn(R) generated by the eλij with i < j. Indeed, left

multiplication by eλij gives the elementary row operation of adding λ
times the jth row to the ith row, from which our assertion easily follows.
Similarly, the lower triangular matrices with 1’s on the diagonal are in
En(R), being the subgroup generated by the eλij with i > j.

4.2. The Whitehead lemma. The basic elementary matrices satisfy
the following identities (we ignore the size n): Take λ, µ in R.

(1) if i, j, k, l are all distinct, then eλij and eµkl commute.

(2) eλije
µ
ij = eλ+µ

ij .

(3) if i, j, k are distinct, then the commutator [eλij, e
µ
jk] is eλµik (here

[a, b] = a1b−1ab).

In consequence, we have

Lemma 4.2. For n ≥ 3, En(R) = [En(R), En(R)].

Proof. Take i 6= j between 1 and n, and take λ ∈ R. Since n ≥ 3, there
is a k in {1, . . . , n} distinct from i and j. By the relation (3), we have

eλij = [e1ik, e
λ
kj],
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so En(R) ⊂ [En(R), En(R)]. The other inclusion is evident. �

Lemma 4.3. Let A be in GLn(R). Then

(
A 0
0 A−1

)
is in E2n(R).

Proof. We have seen in remark 4.1 that, for M ∈Mn(R), the matrices
(
In M
0 In

)
,

(
In 0
M In

)

are in E2n(R). We have
(

0 A
−A−1 0

)
=

(
In A
0 In

) (
In 0
−A−1 In

) (
In A
0 In

)
∈ E2n(R)

Taking A = −In, we see that

(
0 −In
In 0

)
is also in E2n(R). Thus

(
A 0
0 A−1

)
=

(
0 A
−A−1 0

) (
0 −In
In 0

)

is in E2n(R). �

Theorem 4.4 (Whitehead). E(R) = [GL(R),GL(R)]. In particular,
E(R) is a normal subgroup of GL(R).

Proof. Let A andB be in GLn(R). Then the image of [A,B] in GL2n(R)
is the product

(
(BA)−1 0

0 BA

) (
A 0
0 A−1

) (
B 0
0 B−1

)
,

which is in E2n(R) by the previous lemma. �

Definition 4.5. Let R be a ring. The group K1(R) is the abelianiza-
tion of GL(R):

K1(R) := GL(R)/[GL(R),GL(R)].

By the Whitehead theorem, we have the alternate description of
K1(R) as

K1(R) = GL(R)/E(R).

Examples 4.6. (1) Let R be a commutative ring. The determinant
homomorphisms det : GLn(R) → R× define a homomorphism det :
GL(R) → R×. Since clearly det(E(R)) = 1, we have the surjective
homomorphism

det : K1(R)→ R×.

The kernel of det is denoted SK1(R).
(2) Let R be a field F . Noting from the proof of lemma 4.3 that



28 A SHORT COURSE IN K-THEORY MEXICO CITY MAY, 2002

the matrix

(
0 1
−1 0

)
is in E2(R), is easy to see that every invertible

matrix can be made into a diagonal matrix by the elementary row

operations eλij ×−. Noting that

(
u 0
0 u−1

)
is also in E2(R) for u ∈ F×

(by lemma 4.3), we see that G ∈ GLn(F ) is equivalent to a matrix of
the form 



u 0 . . . 0
0 1 . . . 0
...

...
0 0 . . . 1




for some u ∈ F×. Clearly u = detG, i.e. det : K1(F ) → F× is an
isomorphism. An analogous argument shows that K1(R) = R× for R a
local ring, or R a Euclidean ring (but not in general for R a PID!). In a
famous paper of Bass-Milnor-Serre [2], it is shown that SK1(OS,F ) = 0
where OS,F is the ring of S-integers in a number field F .

5. K2 of a ring

We have the exact sequence 1 → E(R) → GL(R) → K1(R) → 0;
K2(R) continues this “unwinding” of GL(R).

5.1. The Steinberg group. Fix an integer n ≥ 3 and a ring R. The
Steinberg group Stn(R) is the free group on symbols xλij, with 1 ≤ i 6=
j ≤ n, λ ∈ R, modulo the following relations: Take λ, µ in R.
(5.1)

(1) If i, jk, l are all distinct, then [xλij, x
µ
kl] = 1.

(2) xλijx
µ
ij = xλ+µ

ij .

(3) If i, j, k are distinct, then [xλij, x
µ
jk] = xλµik .

We have the evident homomorphisms Stn(R)→ Stn+1(R); we let St(R)
be the limit of the Stn(R), i.e., St(R) is the free group on generators
xλij with 1 ≤ i 6= j, λ ∈ R, modulo the relations (1)-(3).

Since the elementary matrices eλij satisfy the relations (1)-(3), sending

xλij to eλij defines the homomorphisms Stn(R)→ En(R), St(R)→ E(R).

Definition 5.1. Let R be a ring. K2(R) is defined to be the kernel of
St(R)→ E(R).

The following result is crucial:
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Theorem 5.2. K2(R) is an abelian group. In fact, K2(R) is the center
of St(R) and the sequence

0→ K2(R)→ St(R)→ E(R)→ 1

is the universal central extension of E(R).

For a proof of this result, see [25, §5].
Since the central extensions of a group G are classified by H2(G,Z),

we have

Corollary 5.3. K2(R) is canonically isomorphic to H2(E(R),Z).

Because K2(R) is an abelian group, we usually write the group law
additively.

Example 5.4. We have already seen that

e112e
−1
21 e

1
12 =

(
0 1
−1 0

)
.

Calling this matrix A, it is clear thatA4 = I2. Thus η := (x1
12x

−1
21 x

1
12)

4 ∈
St(Z) is in fact in K2(Z). It turns out that η 6= 0, 2η = 0, and
K2(Z) = <η>.

5.2. Symbols and Matsumoto’s theorem. Let U, V be commuting
elements of E(R). If we lift U and V to elements Ũ , Ṽ of St(R), then
clearly the commutator [Ũ , Ṽ ] is in K2(R). Since K2(R) is the center
of St(R), this commutator depends only on U and V ; we denote it
<U, V >.

For example, take units u and v in R, and assume that R is a com-
mutative ring. Define the symbol {u, v} ∈ K2(R) by

{u, v} := <



u 0 0
0 u−1 0
0 0 1


 ,



v 0 0
0 1 0
0 0 v−1


>.

This symbol has the following properties:
(5.2)

(1) The assignment (u, v) 7→ {u, v} is bilinear, with respect to
group law of multiplication on R×.

(2) If u and 1− u are in R×, then {u, 1− u} = 0.

No discussion of K2 is complete without Matsumoto’s theorem:

Theorem 5.5. Let F be a field. Then sending u, v to {u, v} gives a
surjective homomorphism F×⊗ZF

× → K2(F ), with kernel the subgroup
generated by elements of the form u⊗ (1− u), with u ∈ F , u 6= 0, 1.
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Remark 5.6. Let u 6= 0 be in F . We have

0 = {
1

u
, 1−

1

u
} = −{u,

1− u

−u
} = {u,−u}.

In particular, the bilinear map (u, v) 7→ {u, v} is alternating: {u, v} =
−{v, u}.

Remark 5.7. The relation {a, 1 − a} = 0 is called the Steinberg rela-
tion. It crops up in many situations; Matsumoto’s theorem then allows
one to insert K-theoretic machinery. For example, let k be a field, let
W (k) denote the Witt ring of quadratic forms over k, modulo hyper-
bolic forms, and let I ⊂ W (k) be the ideal of forms of even dimension.
Sending a ∈ k× to the class <a> of the form x2 − ay2 defines a ho-
momorphism k× → I/I2; using the ring structure in W (k), we have
k× ⊗ k× → I2/I3 by a ⊗ b 7→ <a, b> := <a> · <b>. One can show
that <a, 1− a> = 0, giving the map K2(k)→ I2/I3. It is known that
I2/I3 is a 2-torsion group, so we have K2(k)/2→ I2/I3; a fundamental
theorem of Merkurjev [22] says that this map is an isomorphism.

As another example, let F/k be an extension of fields. We have
the group homomorphism d ln : F× → Ω1

F/k by a 7→ (1/a)da. This

induces d ln∧d ln : F× ⊗ F× → Ω2
F/k, a⊗ b 7→ d ln(a) ∧ d ln(b); clearly

d ln(a)∧d ln(1−a) = 0, giving d ln∧d ln : K2(F )→ Ω2
F/k. This map has

important applications in relating K-theory to de Rham cohomology.
Finally, the vanishing of a∪ (1− a) in H2(F, µ⊗2

n ) (discussed below)
allows for the formulation of a central result in K-theory, the Bloch-
Kato conjecture.

6. BGL+

6.1. Categories and simplicial sets. We let Ord denote the cate-
gory with objects the non-empty finite totally ordered sets, with mor-
phisms being order-preserving maps of sets. As each finite ordered
set of cardinality n + 1 ≥ 1 is uniquely isomorphic to the ordered set
[n] := {0, . . . , n} with the standard order, Ord is equivalent to the
category with objects [n] n = 0, 1, . . ., with order-preserving maps.

A functor S : Ordop → Sets is called a simplicial set, S([n]) is the set
of n-simplices of S. We can just as well replace Sets with an arbitrary
category C, giving the notion of a simplicial object of C. A cosimplicial
object of C is a functor T : Ord→ C; T ([n]) is the n-cosimplices of T .
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Remark 6.1. The morphisms in Ord are generated by the coboundary
maps δni : [n]→ [n+ 1], i = 0, . . . , n+ 1,

δni (j) =

{
j if j < i

j + 1 if j ≥ i,

and the codegeneracy maps σni : [n]→ [n− 1], i = 1, . . . , n,

σni (j) =

{
j if j < i

j − 1 if j ≥ i.

These satisfy certain relations, which we don’t specify here. A sim-
plicial object S is thus often given by defining the n-simplices Sn, the
boundary maps ∂ni = S(δn−1

i ) : Sn → Sn−1, and the degeneracy maps
sni = S(σn+1

i ) : Sn → Sn+1.

The fundamental example of a cosimplicial space (C = Top) is ∆ :
Ord→ Top. ∆([n]) is the standard topological n-simplex:

∆([n]) = ∆n := {(t0, . . . , tn) ∈ Rn+1 |
n∑

i=0

ti = 1, ti ≥ 0}.

∆n has vertices vn0 , . . . , v
n
n, where vni has ti = 1, tj = 0 for j 6= i; clearly

∆n is the convex hull of its vertices. Let g : [n] → [m] be a map of
sets (order-preserving). We send ∆n to ∆m by sending the vertex vni
to vmg(i) and then taking the convex-linear extension:

∑

i

tiv
n
i 7→

∑

i

tiv
m
g(i).

This defines the functor ∆ : Ord→ Top.
Now let S : Ordop → Sets be a simplicial set. Define the geometric

realization of S, |S|, as the topological space

|S| =
∞∐

n=0

Sn ×∆n/ ∼

where the gluing data ∼ is defined by

S(g)(s)× x ∼ s×∆(g)(x),

for all s ∈ Sn, x ∈ ∆m and g : [m]→ [n] in Ord.
Now let C be a small category (C has a set of objects). Define a

simplicial set NC, the nerve of C with 0-simplices the objects of C,
and with n-simplices (for n > 0) the set of composable morphisms
(f1, . . . , fn):

a0
f1
−→ a1

f2
−→ . . .

fn−1
−−→ an−1

fn
−→ an.
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If h : [m]→ [n] is order-preserving define h((f1, . . . , fn)) = (g1, . . . , gm),
where gi : ah(i−1) → ah(i) is the composition of fh(i−1)+1, . . . , fh(i) if
h(i − 1) < h(i), and the identity on ah(i−1) if h(i − 1) = h(i). The
classifying space of the category C is defined as

BC := |NC|.

Examples 6.2. (1) Let X be a set. Let E(X) be the category with
objects X, and with a unique morphism x → y for each x, y ∈ X.
Clearly N (E(X))n = Xn+1, with

∂ni (x0, x1, . . . , xn) = (x0, . . . , xi−1, xi+1, . . . , xn)

We write EX for |E(X)|; it is not hard to see that EX is contractible.

(2) Let G be a group. We may consider G as a category B(G) with
a single object ∗, where HomB(G)(∗, ∗) = G, and the composition is
f ◦ g = gf . Thus, the nerve of B(G) has n-simplices Gn, and the ith
boundary is given by

∂ni (g1, . . . , gn) = (g1, . . . , gi−2, gi−1gi, gi+1, . . . , gn)

for 0 < i ≤ n, and

∂n0 (g1, . . . , gn) = (g2, . . . , gn).

We write BG for |B(G)|. We have the isomorphism of simplicial sets

N (B(G)) ∼= G\N (E(G)),

where g(g0, . . . , gn) = (gg0, . . . , ggn), (and we send (g1, . . . , gn) ∈ N (B(G))n
to (1, g1, g1g2, . . . , g1·. . .·gn) ∈ G\N (E(G))) which extends to the spaces

BG = G\EG.

Also G acts freely on EG, so we have the covering space EG → BG
with group G. Since EG is contractible, BG has π1 = G, π0 = ∗, and
πi = 0 for i > 1. BG is the classifying space of the group G.

Either by definition, or by identifying the chain complex of BG with
the standard complex computing the homology H∗(G,Z), we see that
H∗(G,Z) is canonically isomorphic to H∗(BG,Z). More generally if M
is a G-module, since π1(BG) = G, we have the associated local system
M on BG, and H∗(G,M) = H∗(BG,M).

6.2. The plus construction. Quillen’s plus construction is in some
sense the topological version of taking the quotient of a group π by a
normal subgroup N . In order for the more subtle topological operation
to work, one needs to assume that N is perfect, that is, N = [N,N ].
We will apply this with π = GL(R), N = E(R) to define the space
BGL(R)+, whose homotopy groups are the higher K-groups of R.
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Now for the general construction (we follow the description given in
[1]). Start with a connected pointed space (X, ∗) and let N ⊂ π1(X, ∗)
be a perfect normal subgroup. We wish to construct a pointed map
i : (X, ∗)→ (X+, ∗) with the following properties:
(6.1)

(1) X+ is connected, and the map i : π1(X, ∗) → π1(X
+, ∗) is the

quotient map π1(X, ∗)→ π1(X, ∗)/N .
(2) Let L be a local system on X+. Then i∗ : H∗(X, i

∗L) →
H∗(X

+,L) is an isomorphism.

In other words, the plus construction kills exactly N in π1(X, ∗), but
leaves the homology of X alone. Using obstruction theory, one can
easily show that (6.1) characterizes the map i : X → X+ uniquely up
to homotopy equivalence (if i : X → X+ is a relative CW complexe;
up to weak equivalence in general).

To construct X+, let p : X̃ → X be the covering space corresponding
to the subgroup N ⊂ π1(X, ∗), and let G = π1(X, ∗)/N . Thus G acts
freely on X̃ over X, X = G\X̃ and π1(X̃) = N .

Take x ∈ N . Since N = [N,N ], we can write x =
∏

i[yi, zi], yi, zi ∈

N . LetX1, X̃1 be the 1-skeleton ofX, X̃. Since π1(X̃
1, ∗)→ π1(X̃, ∗) is

surjective, we can lift yi, zi to ȳi, z̄i in π1(X̃
1, ∗). Attach a two-cell D2

x to
X by the attaching map p∗(

∏
i[ȳi, z̄i]), forming the space Y . Similarly,

for each g ∈ G, attach a two cell D2
x,g to g(

∏
i[ȳi, z̄i]), forming the space

Ỹ . Extend the G action to Ỹ by sending D2
x,g to D2

x,g′g via the identity.

This makes Ỹ → Y a covering space with group G.
Continue doing this for enough x ∈ N to generate N as a normal

subgroup, and denote again by Ỹ → Y the resulting spaces. Then Ỹ
is connected and simply connected, hence π1(Y, ∗) = G.

By the Hurewicz theorem,

π2(Ỹ , ∗) = H2(Ỹ ,Z).

Also, for each cell D2
x,g we attached, we have ∂(D2

x,g) = 0 in homology,
so

H2(Ỹ ,Z) = H2(X̃,Z)⊕ F,

where F is the free Z-module on the D2
x,g. Thus F is a free Z[G]-

module. Let fα : S2 → Ỹ , α ∈ A, be maps which form a Z[G]-basis for
F .

Form X+ by attaching 3-cells D3
α to Y by the attaching maps p∗fα.

Form X̃+ similarly by attaching D3
α,g with attaching maps g ·fα, g ∈ G.

Then X̃+ → X+ is again covering space with group G.
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Since π1(X
+) = π1(Y ), we have π1(X

+) = G. Now let L be a local
system on X+, and let L be the corresponding G-module. As the
relative chain complex C∗(X̃

+, X̃) is clearly

0→ . . .→ F
∼=
−→ F → . . .→ 0,

the relative chain complex C∗(X
+, X;L) is thus

0→ . . .→ F ⊗Z[G] L
∼=
−→ F ⊗Z[G/N ] L→ . . .→ 0,

hence i∗ : H∗(X, i
∗L) → H∗(X

+,L) is an isomorphism. Thus i : X →
X+ verifies (6.1).

We now take the case X = BGL(R), N = E(R), forming i :
BGL(R) → BGL(R)+. By our identification of H∗(GL(R),Z) with
H∗(BGL(R),Z), we thus have the canonical identification

H∗(BGL(R)+,Z) ∼= H∗(GL(R),Z).

Definition 6.3. Let R be a ring. The higher K-groups Ki(R), i =
1, 2, . . . are defined by

Ki(R) := πi(BGL(R)+, ∗).

6.3. K1 and K2. We need to reconcile this definition with the “classi-
cal” definition of K1 and K2.

Proposition 6.4. For i = 1, 2, the new definition of Ki(R) agrees with
the old one.

Proof. For i = 1, this follows from the property (6.1)(1). For i = 2,
consider the covering

p : ˜BGL(R)
+

→ BGL(R)+

in the construction above. Clearly ˜BGL(R)
+

= BE(R)+, where we
use the perfect subgroup E(R) of E(R) for the second +-construction.
Since p is a covering space, p∗ is an isomorphism on π2, so it suffices to
show that π2(BE(R)+) = K2(R).

For this, BE(R)+ is simply connected, so by the Hurewicz theorem,

π2(BE(R)+) = H2(BE(R)+,Z).

But by the property (6.1)(2),

H2(BE(R)+,Z) = H2(BE(R),Z) = H2(E(R),Z) = K2(R).

�
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6.4. Sums and products. Given two matrices A and B, one can form
the direct sum

A⊕ B :=

(
A 0
0 B

)

However, this is clearly not compatible with stabilization. For Gl(R),
we do the following: Reorder the basis e1, . . . , e2n of R2n by taking all
the odd vectors first, followed by the even ones, both sets in increasing
order. After this basis change, A⊕B becomes the shuffled sum A⊕σB.
The sum ⊕σ is stable and thus defines an operation ⊕σ : BGL(R) ×
BGL(R) → BGL(R). However, ⊕σ is evidently not associative, and
the unit matrix doesn’t act as the identity for this operation; these
statements are only true after a further reordering of the basis. As a
change of basis matrix τ acts on π1(BGL(R)) = GL(R) by conjugation,
this reordering is not even homotopically trivial, so one can’t hope to
define an H-group structure on BGL(R) this way.

If one passes to BGL(R)+, then, at least on π1, conjugation acts
trivially, so there is some hope. In fact

Lemma 6.5. Take g ∈ GL(R). Then the conjugation action by g on
BGL(R) extends to an action on BGL(R)+ which is homotopic to the
identity.

Additionally, one can show that the stable sum ⊕σ extends to an op-
eration⊕ : BGL(R)+×BGL(R)+ → BGL(R)+ which makes BGL(R)+

into an H-group, with the identity matrix as unit.
Loday [21] has shown that the tensor product operation on matrices

(A,B) 7→ A⊗B can be modified to define a product

BGL(R)+ ∧ BGL(R)+ → BGL(R)+

which makes the graded group ⊕∞i=0Ki(R) into a graded ring.

6.5. Milnor K-theory of fields. Let F be a field. We have K1(F ) =
F× and K2(F ) = F× ⊗ F×/{a⊗ (1− a)} (by Matsumoto’s theorem).
Milnor [24] defined an extension of this in a universal way to a ring-
valued functor on fields, now called Milnor K-theory.

Definition 6.6. Let F be a field. The graded ring

KM
∗ (F ) := ⊕∞p=0K

M
p (F )

is defined as the quotient of the tensor algebra over Z on the abelian
group F×, ⊕p=0(F

×)⊗p, modulo the two-sided ideal generated by ele-
ments of the form a⊗ (1− a), a ∈ F , a 6= 0, 1.

The image of an element a1⊗. . .⊗an inKM
n (F ) is denoted {a1, . . . , an}.
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Thus, KM
0 (F ) = Z = K0(F ), KM

1 (F ) = F× = K1(F ) and KM
2 (F ) =

K2(F ). One can show that the Matsumoto isomorphism KM
2 (F ) =

K2(F ) is induced by the product in K-theory

∪ : F× ⊗ F× = K1(F )⊗K1(F )→ K2(F ).

Moreover, as the elements a∪(1−a) are thus zero in K2(F ), the product
in K-theory gives rise to a unique ring homomorphism KM

∗ (F ) →
K∗(F ) with {a1, . . . , an} going to a1 ∪ . . . ∪ an.

It is thus reasonable to ask if KM
n (F ) → Kn(F ) is an isomorphism

for all n, and the answer is no, in general (in fact, KM
3 (F )→ K3(F ) is

never surjective). One way to see this is to use an additional structure
on K∗, namely the Adams operations.

Just as tensor product induces the product in K-theory, the wedge
product operations on matrices, g 7→ Λig, induce operations in K-
theory, λi : Kn(R)→ Kn(R), which satisfy the “same” relations as the
universal relations among the representations Λi (see [16] for a con-
struction of these operations). If Pn(σ1, . . . , σn) is the polynomial with
Z-coefficients that expresses the symmetric function

∑
i t
n
i in terms of

the elementary symmetric functions σ1(t1, t2, . . .), . . . , σn(t1, t2, . . .), we
have the Adams operation

ψn := Pn(λ
1, . . . , λn).

It turns out that the Q-vector space Kp(R)Q breaks up into simul-
taneous eigenspaces for the Adams operations:

Kp(R)Q = ⊕pq=0Kp(R)(q),

where

Kp(R)(q) = {x ∈ Kp(R)Q | ψk(x) = kq · x for all/some k ≥ 2}.

If p > 0, the term Kp(R)(0) is zero, and if p > 1, the term Kp(R)(1) = 0
as well; if R = F is a field, then K1(F ) = K1(F )(1) (even integrally).
In addition, the ψk are ring homomorphisms, so the image of KM

n (F )Q

is contained in Kn(F )(n). Thus, if Kn(F )(m) 6= 0 for some m < n, then
KM
n (F )→ Kn(F ) cannot be surjective.
For a number field F , the weight-spaces Kn(F )(q) have been calcu-

lated by Borel [8], and the answer is (for n ≥ 2): If n ≥ 2 is even, then
Kn(F )Q = 0. If n = 2p − 1 ≥ 3 is odd, then Kn(F )(q) = 0 for q 6= p,
and

dimQ(K2p−1(F )(p)) =

{
r2 for p even,

r1 + r2 for p odd.

Here r1 is the number of real embeddings F → R, and r2 is the number
of pairs of complex conjugate embeddings F → C, r1 + 2r2 = [F : Q].
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In particular every number field F has K5(F ) 6= KM
5 (F ), even after

tensoring with Q.
For a finite field, Quillen has computed

Kn(Fq) =

{
0 for n ≥ 2 even,

Z/qp − 1 for n = 2p− 1 ≥ 1.

In particular, since KM
2 (F ) = K2(F ) = 0, KM

n (F ) = 0 for all n ≥
2; so KM

n (F ) 6= Kn(F ) for n > 2. In fact, even for a number field
KM
n (F ) → Kn(F ) is not surjective for all odd n > 2, since one can

construct torsion elements in Kn(F ) which obviously don’t come from
KM
n (F ). Also, for a number field, Bass and Tate [3] have shown that

KM
n (F ) is a finite two-torsion group for all n > 2.
Suslin [39] has investigated the kernel of KM

n (F ) → Kn(F ) for an
arbitrary field F , proving

Theorem 6.7. The kernel ker of the natural map KM
n (F ) → Kn(F )

satisfies (n− 1)!(ker) = 0.

We conclude with a theorem of Quillen:

Theorem 6.8 ([31]). Let F be a number field, O = OF,S the ring of
S-integers in F , for some finite set of primes S. Then Kn(O) is finitely
generated for all n.

Together with the localization sequence discussed below, and the
computation of the K-groups of finite fields, this gives some idea about
the structure of the K-groups of number fields.

6.6. Some conjectures. The results mentioned in the previous sec-
tion have inspired a number of conjectures, some of which remain open
to this day.

Conjecture 6.9 (Bass). Let R be a commutative ring which is finitely
generated over Z. Then K0(R) is a finitely generated group.

The Bass conjecture for R the ring of S-integers in a number field
follows from the finitenes of the class group. For R the ring of a curve
over a finite field, the conjecture follows from the representability of the
Picard group of a smooth projective curve by the Jacobian times Z. A
deep result of Bloch [5], relying an the Mordell-Weil theorem, extends
this to curves over a ring of S-integers, but after this, there are only
scattered results. In short, the general Bass conjecture remains wide
open.

What about the higher K-groups? In fact, the Bass conjecture im-
plies the finite generation of all the K-groups of a regular commutative
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ring which is finitely generated over Z, and in fact a similar finite gen-
eration for the K-groups of a regular scheme of finite type over Z.

The next conjecture involves the weight spaces K
(q)
n .

Conjecture 6.10 (Beilinson, Soulé). Let F be a field. ThenKp(F )(q) = 0
if p > 0, 2q ≤ p.

As mentioned above, Soulé showed that Kp(F )(1) = 0 for p > 1,
which verifies the conjecture for p ≤ 3. Except for number fields, finite
fields and function fields of curves over finite field, and some trivial
extensions of these examples, the conjecture is unknown in the first
interesting cases n = 4, 5, that is, the weight two part is not known to
vanish. The Beilinson-Soulé vanishing conjecture is in turn related to
other conjectures of Bloch and Beilinson concerning the existence of a
category of mixed motives with certain properties.

In the study of the torsion of the K-groups, the most central conjec-
tures are the Quillen-Lichtenbaum conjectures, which give a relation of
the torsion orders in various K-groups, and certain “regulators” con-
structed out of the free part of the K-groups, to the values of the zeta
function of the given number field. This conjecture can be broken into
two parts: the first concerning the relationship of the values of zeta
functions to the étale cohomology of OF , and the second relating the
étale cohomology to the K-theory. On the zeta function side, the con-
jecture is verified, at least a certain class of fields, the totally real fields
[43], with some results for imaginary quadratic fields [34] and CM-fields
[14] as well. For the part of the conjecture relating the K-groups to
étale cohomology groups, the chapter is almost closed; we’ll give a quick
resumé of the story below.

For a field F of characteristic prime to n, we have the Kummer
sequence

1→ µn → F̄× xn

−→ F̄× → 1

where F̄ is the separable closure. This gives the identity

H1(F, µn) ∼= F×/(F×)n,

where H1 is the Galois (or étale) cohomology. The right-hand side is
KM

1 (F )/n, so we have the isomorphism

ϑ1
F,n : KM

1 (F )/n→ H1(F, µn).

One can show that ϑ(a) ∪ ϑ(1− a) = 0 in H2(F, µ⊗2
n ), so we have the

Galis symbol

ϑqF,n : KM
q (F )/n→ Hq(F, µ⊗qn ).

We have
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Conjecture 6.11 (Bloch-Kato). ϑqF,n is an isomorphism for all q and all
n prime to the characteristic of F .

In fact, Milnor made this conjecture for n = 2ν in [24]. Merkurjev
proved the Milnor version for q = 2 in [22] and Merkurjev and Suslin
gave a proof of the Bloch-Kato conjecture for q = 2 and all F and n in
[23]. Voevodsky proved the full Milnor conjecture in [41], and together
with Rost, there is now a proof of the full Bloch-Kato conjecture.

Work of Suslin-Voevodsky [40] and Geisser-Levine [12], plus the “mo-
tivic spectral sequence” of Bloch-Lichtenbaum [7], show how the Bloch-
Kato conjecture implies the part of the Quillen-Lichtenbaum conjecture
relating K-theory and étale cohomology.

Finally, let me just mention the conjectures of Beilinson [4] which
used higher algebraic K-theory and Deligne cohomology to simultane-
ously generalize the Hodge conjecture and the Birch/Sinnerton-Dyer
conjecture.
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Part 3. Higher K-theory of schemes

Quillen’s Q-construction in [30] laid the general basis for a wide-
ranging application of K-theory to commutative algebra, algebraic ge-
ometry and number theory. In this part, we describe theQ-construction
and outline its basic properties, mostly without proof, and give a
glimpse into the consequences for the algebraic K-theory of schemes.
Those interested in the details are encouraged to look at Quillen’s beau-
tiful paper [30].

7. The Q-construction

7.1. Exact categories. We follow the discussion given in [30]. Let E
be a full additive subcategory of an abelian category A. We suppose
that E is closed under extensions in A, that is, if M ′ and M ′′ are in E ,
and 0→M ′ →M →M ′′ → 0 is an exact sequence in A, then M is in
E . In particular, E is closed under isomorphisms and finite direct sums
in A.

Let E be the collection of sequences

0→M ′ i
−→M

j
−→M ′′ → 0

in E which are exact in A. A map in E which occurs as a map i in such
a sequence is called an admissible monomorphism; a map which occurs
as a map j is called an admissible epimorphism. This data satisfies the
following properties

(7.1)

(1) Any sequence in E which is isomorphic to a sequence in E is in
E . For all objects M ′, M ′′ in E , the sequence

0→M ′ (id,0)
−−−→M ′ ⊕M ′′ p2

−→M ′′ → 0

is in E. For each sequence in E , i is a kernel for j, and j is a
cokernel for i in the additive category E .

(2) The classes of admissible monomorphisms and admissible epi-
morphisms are both closed under composition. Admissible epi-
morphisms are closed under base-change by an arbitrary mor-
phism in E ; admissible monomorphisms are closed under cobase-
change by an arbitrary morphism in E .

(3) Let M → M ′′ be a morphism possessing a kernel in E . If
there exists a map N → M in E such that N → M → M ′′

is an admissible epimorphism, then M → M ′′ is an admissible
epimorphism. Dually for admissible monomorphisms.
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We denote an admissible monomorphism by M ′
� M and an admis-

sible epimorphism by M � M ′′.

Definition 7.1. An additive category E with a class of sequences E
satisfying (7.1) is called an exact category. An exact functor F : E → E ′

of exact categories is an additive functor which sends E to E ′.

Remark 7.2. In fact, if E is an exact category, there is an abelian
category A for which E is a full additive subcategory of A, closed under
extensions in A, and where E is the class of sequences in E which are
exact in A. One can thus take this as a definition instead of using the
properties (7.1).

Examples 7.3. (1) An abelian categoryA with the collection of all exact
sequences in A is an exact category; we will always use this structure
on an abelian category. For example, MX is an exact category.
(2) Taking the full subcategory PX of MX gives the exact category
PX .
(3) Let HX be the full subcategory of MX consisting of coherent
sheaves F which admit a finite resolution by locally free sheaves. Then
HX is closed under extensions inMX , hence defines an exact category.

7.2. The definition of Q. Let E be an exact category. Form a new
category QE with the same objects as E . A morphism M → N in QE
is an equivalence class of diagrams

(7.2) N ′

j
����

//
i

// N

M

As the notation suggests, i is an admissible monomorphism and j is
an admissible epimorphism; two diagrams are equivalent if there is a
diagram of the form

N ′

j
����

//
i

// N

M N ′′
j′

oooo
OO

i′

OO
φ

aaCCCCCCCC
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with φ an isomorphism. We write the morphism given by (7.2) as i!j
!.

Composition is given via the diagram

N ′ ×N P ′

p1
����

//
p2

// P ′

j′

����

//
i′

// P

N ′

j
����

//
i

// N

M

by setting (i′!j
′!) ◦ (i!j

!) = (i′p2)!(jp1)
!.

If i : N ′ → N is an admissible monomorphism or if j : N ′ →M is an
admissible epimorphism, we write i! : N ′ → N for i!id

! and j ! : M → N ′

for Id!j
!. Then i! ◦ j ! = i!j

!.

7.3. The K-groups of an exact category.

Definition 7.4. Let E be an exact category. The K-groups of E , Ki(E),
are defined as

Ki(E) := πi+1(BQ(E), 0).

Clearly, the K-groups of E are functorial with respect to exact func-
tors: if F : E → E ′ is an exact functor, we write F∗ : Kp(E) → Kp(E ′)
for the induced map on the K-groups.

Since E is an additive category, we have the direct sum operation
⊕ : E × E → E . This defines a functor Q⊕ : Q(E) × Q(E) → Q(E).
Taking the classifying space, we have the operation

⊕ : BQ(E)× BQ(E)→ BQ(E);

one can easily show that this makes BQ(E) into an H-group.
We now have two definitions of K0 of an exact category, one from

the Grothendieck construction, and one from the Q-construction. We
temporarily write KQ

0 (E) for π1(BQ(E)).
Let M be an object in an exact category E . We have the canonical

admissible monomorphism iM : 0 → M and admissible epimorphism
jM : M → 0. This gives us the path (j !

M)−1 ◦ iM ! from 0 to 0 in BQ(E).
Thus, we have a map

φ : Obj(E)→ π1(BQ(E)) = KQ
0 (E).

Proposition 7.5. The map φ descends to an isomorphism K0(E) →
π1(BQ(E)).
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Proof. For a small category C, let X → BC be a covering space. For
each x ∈ C and morphism f : x→ y. we have the path γf from x to y
in BC corresponding to f , which gives the isomorphism

f∗ : Xx → Xy.

Given g : y → z, we have the 2-simplex in BC with faces f , g and gf ,
so (gf)∗ = g∗ ◦ f∗. Thus, X determines a functor

X̂ : C → Sets; x 7→ Xx, f 7→ f∗.

X̂ is morphism-inverting, that is, X̂(f) is an isomorphism for all f .
Conversely, let F : C → Sets be a morphism inverting functor. Form

the category C|F , with objects the pair (x, y) with x ∈ C, y ∈ F (x),
where a morphism f : (x, y)→ (x′, y′) is just a morphism f : x→ x′ in
C, and where we have y′ = f(y). It is clear that the projection (x, y) 7→
x determines a functor p : C|F → C, that Bp : BC|F → BC is a

covering space, and that B̂p = F . Thus, the category of covering spaces
of BC is equivalent to the category of morphism-inverting functors
F : C → Sets. If BC is connected, and 0 ∈ C is an object, we have
a canonical equivalence of the category of covering spaces of BC with
the category of π1(BC, 0)-sets.

Since BQ(E) is evidently connected (use iM ! : 0→M , for example),
we are thus reduced to showing that the category of morphism-inverting
functors F : Q(E)→ Sets is equivalent to the category of K0(E)-sets.

For this, let F : BE → Sets be a morphism-inverting functor. F is
clearly canonically equivalent to a functor with F (0) = F (M) and with
F (iM !) = idM for allM , so we need only consider such functors. Now let
S be a K0(E)-set. Let FS : QE → Sets be the functor with FS(M) = S,
and with FS(i!j

!) : S → S multiplication by [ker j] ∈ K0(E) (note that
the isomorphism class of ker j depends only on the morphism i!j

!).
Conversely, let F : QE → Sets be a morphism-inverting functor with
F (0) = F (M) and F (iM !) = idM for all M . Given i : M ′

� M , we
have i ◦ iM ′ = iM , so F (i) = id.

Suppose we have an exact sequence

0→M ′ i
−→M

j
−→M ′′ → 0.

Then j ! ◦ iM ′′! = i!j
!
M ′ , so F (j !) = F (j !

M ′). Also j !
M = j ! ◦ j !

M ′′ , so

F (j !
M) = F (j !)F (j !

M ′′) = F (j !
M ′)F (j !

M ′′).

By the universal property ofK0, there is a unique group homomorphism
of K0(E) to Aut(F (0)) with [M ] 7→ F (j !

M). This gives the inverse to
the transformation constructed above, proving the result. �
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In fact, this can be generalized to the following important property
of the Q-construction:

Proposition 7.6 ([30, Corollary 1, §3]). Let 0 → F ′ → F → F ′′ → 0
be an exact sequence of exact functors E → E ′. Then F∗ = F ′

∗ + F ′′
∗ as

maps Kp(E)→ Kp(E ′).

7.4. Fundamental properties of the K-groups. Three fundamen-
tal properties of the functor K0 extend in a much stronger fashion to
the higher K-groups. To explain this, we first recall a basic notion
from algebraic topology.

Let f : (X, ∗) → (Y, ∗) be a continuous map of pointed topological
spaces. The homotopy fiber of f is the space Fib(f) consisting of pairs
(x, γ), where x is in X, and γ is a path from f(x) to ∗ ∈ Y ; the
topology on Fib(f) is induced from that of X and Y . The base-point
on Fib(f) is (∗X , id∗Y

). We have the map q : (Fib(f), ∗) → (X, ∗) by
sending (x, γ) to x; clearly the paths γ give a canonical homotopy of
f ◦ q to the map Fib(f)→ ∗. Also, taking x = ∗, we have an inclusion
i : ΩY → Fib(f). The sequence

ΩY
i
−→ Fib(f)

q
−→ X

f
−→ Y

thus gives a sequence of maps on homotopy groups

. . .→ πn(Y )→ πn−1(Fib(f))→ πn−1(X)→ πn−1(Y )→ . . . ,

which is in fact exact (at least down to π1).
We call a sequence F → X → Y a weak homotopy fiber sequence if

F → Y is contractible, and the map F → Fib(X → Y ) induced by
the choice of a contraction is a weak equivalence. Thus, constructing
a weak homotopy fiber sequence is a method for giving a long exact
sequence of homotopy groups.

We can now state the main theorems for the K-theory of exact cat-
egories.

Theorem 7.7 ([30, Theorem 4, §5]). Let A be an abelian category,
i : B → A a full abelian subcategory, closed under taking subquotients
in A. Suppose that each object M of A admits a finite filtration

0 = M0 ⊂ M1 ⊂ . . . ⊂ Mn = M

with quotients Mi/Mi−1 all in B. Then BQi : BQ(B) → BQ(A) in-
duces an isomorphism i∗ : Kp(B)→ Kp(A) for all p.

Theorem 7.8 ([30, Theorem 3, §4]). Let i : E0 → E1 be a full exact
subcategory of an exact subcategory E1, with E0 closed under extensions
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in E1. Suppose that each object M of E1 admits a finite resolution

0→ Pn → . . .→ P1 → P0 →M → 0

with the Pi in E0. Then BQi : BQ(E0) → BQ(E1) induces an isomor-
phism i∗ : Kp(E0)→ Kp(E1) for all p.

Theorem 7.9 ([30, Theorem 5, §5]). Let i : B → A be the inclusion of
a Serre subcategory B of an abelian category A, and let j : A → A/B
be the canonical quotient map. Then

BQ(B)
BQi
−−→ BQ(A)

BQj
−−→ BQ(A/B)

is a weak homotopy fiber sequence, so we have a long exact sequence of
K-groups

. . .→ Kp+1(A/B)
∂
−→ Kp(B)

i∗−→ Kp(A)
j∗
−→ Kp(A/B)→ . . .

In addition K0(A)→ K0(A/B) is surjective.

8. K-theory and G-theory of schemes

Definition 8.1. Let X be a scheme. Recall the abelian cateogoryMX

of coherent sheaves on X, and the exact subcategory PX of locally free
coherent sheaves. Define

Kp(X) := Kp(PX); Gp(X) := Kp(MX).

Let f : Y → X be a morphism of schemes. Then f ∗ : PX → PY is
exact, so we have f ∗ : Kp(X) → Kp(Y ); if f is flat, we similarly have
f ∗ : Gp(X) → Gp(Y ). With some technical fiddling, one can define
f∗ : Gp(Y )→ Gp(X) if f is projective.

8.1. Devissage, resolution and localization. The main theorems
of the previous section have the following applications for Kp(X) and
Gp(X).

Theorem 8.2. Let i : Z → X be the inclusion of a closed subscheme,
giving the full embedding of abelian categories i∗ : MZ → MX(Z).
Then i∗ : Gp(Z)→ Kp(MX(Z)) is an isomorphism for all p.

Indeed, each coherent sheaf F supported on Z has a finite filtra-
tion with quotient sheaves OZ-modules. We then apply theoreom 7.7.
As one consequence, let X be a scheme, and take Z = Xred. Then
MX(Z) =MX , and thus Gp(Xred)→ Gp(X) is an isomorphism.

Theorem 8.3. Let X be a regular noetherian scheme (e.g., X is a
smooth scheme over a field). Then the inclusion PX → MX induces
an isomorphism Kp(X)→ Gp(X).
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Indeed, if X is regular and noetherian, each coherent sheaf F on
X has a finite resolution by locally free sheaves. We then apply theo-
rem 7.8.

Theorem 8.4. Let i : Z → X be the inclusion of a closed subscheme,
j : U → X the open complement. Then the sequence

BQ(MZ)
BQi∗
−−−→ BQ(MX)

BQj∗

−−−→ BQ(MU)

is a weak homotopy fiber sequence, so we have a long exact sequence

. . .→ Gp+1(U)
∂
−→ Gp(Z)

i∗−→ Gp(X)
j∗

−→ Gp(U)→ . . .

for p ≥ 0. Also, j∗ : G0(X)→ G0(U) is surjective.

Proof. We have the equivalence of categories MU ∼ MX/MX(Z).
This gives the homotopy fiber sequence

BQ(MX(Z))
BQi∗
−−−→ BQ(MX)

BQj∗

−−−→ BQ(MU)

by theorem 7.9. By theorem 8.2, BQ(MZ)→ BQ(MX(Z)) is a weak
equivalence, which proves the theorem. �

Remark 8.5. We now have two possible definitions of the K-theory
of a commutative ring R, namely Kp(R) and Kp(SpecR). In [15], it
is shown that there is a natural isomorphism of these two, even as
H-spaces.

8.2. Mayer-Vietoris. A nice consequence of the localization property
for G-theory is the Mayer-Vietoris property:

Theorem 8.6. Let X be a scheme, jU : U → X, jV : V → X open
subschemes with X = U ∪ V . Let j0 : U ∩ V → U , j1 : U ∩ V → V be
the inclusions. Then

BQ(MX)
(BQj∗

U
,BQj∗

V
)

−−−−−−−−→ BQ(MU)× BQ(MV )
BQj∗1−BQj

∗
2−−−−−−−→ BQ(MU∩V )

is a weak homotopy fiber sequence, giving the Mayer-Vietoris sequence

. . .→ Gp+1(U ∩ V )
∂
−→ Gp(X)

(j∗
U
,j∗

V
)

−−−−→ Gp(U)⊕Gp(V )
j∗1−j

∗
2−−−→ Gp(U ∩ V )→ . . .

Proof. Let i : Z → X be the complement of U . Since U ∪ V = X, Z is
also the complement of U ∩ V in V , iV : Z → V . Thus, the homotopy
fibers of

BQj∗U : BQ(MX)→ BQ(MU); BQj∗2 : BQ(MV )→ BQ(MU∩V )

are both weakly equivalent to BQ(MZ). By standard homotopy the-
ory, this shows that we have the weak homotopy fiber sequence we
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wanted (or just patch together the two localization sequences along
Gp(Z) to get the Mayer-Vietoris sequence). �

8.3. Homotopy. In addition to these structural properties, the G-
theory of a scheme satisfies a homotopy invariance property, generaliz-
ing that of G0.

Theorem 8.7. Let X be a scheme. Then p1 : X × A1 → X induces
an isomorphism p∗1 : Gp(X)→ Gp(X × A1).

If we combine this with the localization property and use noetherian
induction, we have the extended homotopy property for G-theory:

Theorem 8.8. Let p : E → X be a flat morphism such that p−1(x) is
an affine space AN

x for each x ∈ X. Then p∗ : Gp(X) → Gp(E) is an
isomorphism.

8.4. Ring structure. One cannot expect a nice product (like tensor
product on PX) give a product structure on the Q-construction. In-
deed, since Ki(E) = πi+1BQ(E), a product of spaces

BQ(E) ∧ BQ(E)→ BQ(E)

would induce Ki(E)⊗Kj(E)→ Ki+j+1(E). What in fact occurs comes
from Waldhausen’s multiple Q-construction. Without going into de-
tails, one can iterate the Q-construction, forming for each n an n-
category Qn(E). The nerve of an n-category is not a simplicial set, but
an n-simplicial set, where the models are not simplices, but products of
n-simplices (possibly of different dimensions). Using these models, one
has the geometric realization |Nn(Q

n(E))|, which we write as BQn(E).
Waldhausen [42] shows there is a natural weak equivalence

ΩmBQn+m(E) ∼ BQn(E)

for all n ≥ 1, m ≥ 0. (This shows that BQ(E) is an infinite loop space,
and defines the K-theory spectrum:

K(E)n := BQn−1(E).)

Also, a bilinear exact pairing ∪ : E1 × E2 → E3 induces a map of
bisimplicial sets

NQ(E1) ∧NQ(E2)→N2Q
2(E2).

Taking the geometric realizations and using Waldhausen’s theorem
gives the map

∪ : BQ(E1) ∧BQ(E2)→ ΩBQ(E3),
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after possibly inverting some weak equivalences. Thus, we have a map
on the homotopy groups

∪ij : Ki(E1)⊗Kj(E2)→ Ki+j(E3).

Using the tensor product PX ×PX → PX or PX ×MX →MX , this
gives K∗(X) the structure of a graded-commutative ring, and G∗(X) a
graded K∗(X)-module. These structures generalize the ones we already
have for K0 and G0. For X = SpecR, this product on K∗(X) = K∗(R)
agrees with the product on K∗(R) defined by Loday. The K∗(X)-ring
structure is natural with respect to the pull-back maps f ∗, and, for
f : Y → X projective, we have the projection formula:

f∗(f
∗(a) · b) = a · f∗(b); a ∈ Ki(X), b ∈ Gj(Y ).

8.5. Projective bundles. Both K-theory and G-theory satisfy a pro-
jective bundle formula: for E → X a vector bundle of rank r + 1,
K∗(P(E)) is a free K∗(X)-module with basis 1, [O(−1)], . . . , [O(−r)],
and similarly for G-theory; the proof is essentially the same as for G0

and K0. There is an interesting extension of this to “twisted forms” of
projective bundles, the so-called Severi-Brauer varieties over K. This
formula of Quillen’s was important in the argument of Merkurjev and
Suslin [23] proving that the Galois symbol

ϑ2
F,n : K2(F )/n→ H2

ét(F, µ
⊗2
n )

is an isomorphism for all fields F of characteristic prime to n.

9. Gersten’s conjecture and Bloch’s formula

9.1. The topological filtration. Let X be a noetherian scheme, Z ⊂
X a closed subscheme. The codimension of Z in X is the minimum of
the Krull dimension of the local rings OX,z, as z runs over the generic
points of Z. DefineMp

X to be the full subcategory ofMX with objects
the coherent sheaves F such that supp (F) has codimension≥ p. Mp

X is
a Serre subcategory ofMX , giving the sequence of Serre subcategories

0 =MdimX+1
X →MdimX

X → . . .→Mp
X → . . .→M0

X =MX .

We letMp/q
X denote the quotient categoryMp

X/M
q
X for q ≥ p.

We can now state Gersten’s conjecture:

Conjecture 9.1 (Gersten). Suppose X = Spec (O), where O is a regular
local ring. Then for each p ≥ 0, the inclusion Mp+1

O → Mp
O induces

the zero map Kq(M
p+1
O )→ Kq(M

p
O) for all q.
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9.2. The Quillen spectral sequence. Gersten’s conjecture can be
viewed as a kind of local triviality of the K-theory functor for regular
schemes, anaologous to the assertion that the singular cohomology of an
open disk is trivial. In fact, we can patch together the long exact local-

ization sequences arising from the sequence Mp+1
X →Mp

X →M
p/p+1
X :

(9.1)

. . .→ Kq(M
p+1
X )→ Kq(M

p
X)

j∗p
−→ Kq(M

p/p+1
X )

∂p

−→ Kq−1(M
p+1
X )→ . . .

with the similar one coming from the sequence Mp+2
X → Mp+1

X →

Mp+1/p+2
X to define the map dp,−p−q1 : Kq(M

p/p+1
X ) → Kq−1(M

p+1/p+2
X )

as the composition

Kq(M
p/p+1
X )

∂p

−→ Kq−1(M
p+1
X )

j∗p+1
−−→ Kq−1(M

p+1/p+2
X ).

Linking all these long exact sequences together gives an exact couple

⊕p,qKq(M
p
X)

p7→p−1
// ⊕p,qKq(M

p
X)

j∗vvlllllllllllll

⊕p,qKq(Mp/p+1)

∂p

+1

hhRRRRRRRRRRRRR

which by standard machinery defines the Quillen spectral sequence

Ep,q
1 = K−p−q(M

p/p+1
X ) =⇒ K−p−q(MX) = G−p−q(X).

The E1-differentials dp,q1 : K−p−q(M
p/p+1
X )→ K−p−q(M

p+1/p+2
X ) are the

ones defined above.
This spectral sequence is useful, since the E1-terms can be expressed

in terms of the K-theory of the residue fields of X. Indeed, since, for
closed subsets Z ⊂ W ⊂ X, the quotient categoryMX(W )/MX(Z) is

equivalent to the categoryMX\Z(W \Z), we see thatMp/p+1
X is equiv-

alent to the direct sum of the categories MOX,x
(x), where x runs over

the codimension p points of X, and OX,x is the local ring of functions
on X regular at x. As the inclusion Mk(x) → MOX,x

(x) induces an
isomorphism on the K-groups, by the filtration theorem 8.2, we have
a canonical isomorphism

Kq(M
p/p+1
X ) ∼= ⊕x∈X(p)Kq(k(x)),

where X (p) is the set of points x ∈ X with closure x̄ ⊂ X having
codimension p. Thus, we have the spectral sequence

(9.2) Ep,q
1 (X) = ⊕x∈X(p)K−p−q(k(x)) =⇒ K−p−q(MX) = G−p−q(X).

Now the relation with Gersten’s conjecture:

Lemma 9.2. The following are equivalent:
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(1) For all p and q, the map Kq(M
p+1
X )→ Kq(M

p
X) is zero.

(2) For all q, Ep,−q
2 (X) = 0 if p 6= 0, and the edge homomorphism

Gq(X)→ E0,−q
2 (X) is an isomorphism.

(3) For all q, the complex

0→ Gq(X)→ ⊕x∈X(0)Kq(k(x))
d1−→ ⊕x∈X(1)Kq−1(k(x))

d1−→ . . .

is exact, where d1 is the E1-differential in (9.2).

Indeed, all three conditions are equivalent with the long exact se-
quence (9.1) breaking up into short exact sequences

0→ Kq(M
p
X)

j∗p
−→ Kq(M

p/p+1
X )

∂p

−→ Kq−1(M
p+1
X )→ 0

for all p and q.

9.3. Cohomology of K-sheaves. One can go even further with this
if one considers the K-sheaves Kp on X, defined as the sheaf associated
to the presheaf U 7→ Kp(U). The stalk Kp,x at x ∈ X is just Kp(OX,x).

We may similarly sheafify the E1-complex of lemma 9.2, giving the
complex of sheaves on X

(9.3) 0→ Kq → ⊕x∈X(0)ix∗(Kq(k(x)))
d1−→

⊕x∈X(1) ix∗(Kq−1(k(x)))
d1−→ . . .

d1−→ ⊕x∈X(q)ix∗(K0(k(x))).

Here ix : x → X is the inclusion, and we consider Kn(k(x)) as the
constant sheaf on the one-point space x.

Now, if Gersten’s conjecture is true for all the local rings OX,x, then
the complex of sheaves (9.3) is exact. Since ix∗S is a flasque sheaf (here
we are relying on the Zariski topology!), (9.3) gives a flasque resolution
of the sheaf Kq. Thus

Proposition 9.3. Suppose Gersten’s conjecture is true for all the local
rings OX,x. Then Hp(X,Kq) is isomorphic to the E2-term Ep,−q

2 (X)
in the Quillen spectral sequence (9.2). In particular, Hp(X,Kq) = 0 if
p > q.

Indeed, the complex (E∗,−q
1 (X), d∗,−q1 ) is the complex of global sec-

tions of the sheaf complex (9.3) (after deleting Kq).

Example 9.4. Take the case q = 1. Then K1 is just the sheaf of units
O×X , and the sheafified Gersten complex is (assume X is irreducible
with generic point η)

1→ O×X → iη∗k(X)× → ⊕x∈X(1) ix∗Z→ 0.
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At a particular point y ∈ X, the stalks of this complex at y are

1→ O×X,y → k(X)×
∂
−→ ⊕x∈X(1),y∈x̄ Z→ 0.

Assuming that ∂ is just the map f 7→ div(f)|Spec (OX,y), which we verify
in lemma 9.6 below, the exactness of this sequence is just saying that
O×X,y is the subgroup of k(X)× consisting of those rational functions f
with div(f) having no component containing y, and that every divisor
containing y is principal in a neighborhood of y. This is all true if and
only if OX,y is a UFD. If X is regular, this is true for all y, since a
regular local ring is a UFD by the well-known theorem of Auslander-
Buchsbaum.

Taking global sections, we have the complex

k(X)×
div
−→ Z1(X),

which has kernel Γ(X,O×X) = H0(X,K1), and cokernel CH1(X) ∼=
Pic(X) = H1(X,O×X) = H1(X,K1).

9.4. Quillen’s theorem. In [30], Quillen gave a proof of Gersten’s
conjecture in the “geometric” case.

Theorem 9.5 ([30, Theorem 5.11, §7]). Let O be the local ring of a
point x on a regular scheme of finite type over a field k. Then Gersten’s
conjecture holds.

Proof. We assume k is perfect and infinite for simplicity; it is not hard
to reduce to this case.

If η is an element of Kq(M
p+1
O ), there is a smooth affine k-scheme

X ⊂ AN
k , a point x ∈ X, a closed codimension p + 1 reduced closed

subscheme Z ⊂ X containing x and an element ηZ ∈ Gq(Z) such that

O = OX,x and η is the image of ηZ in Kq(M
p+1
O ). It suffices to show

that ηZ dies in Kq(M
p
U) for some open subset U of X containing x.

Say X has dimension d+ 1.
Let D be a codimension one subvariety of X containing Z. By

Noether normalization, a generic linear projection π : AN → Ad induces
a finite morphism π|D : D → Ad. We can also assume that π is smooth
in a neighborhood U of x in X, as a general linear map Tx(X) →
Tπ(x)(Ad) is surjective. This gives us the diagram

D ×Ad X

p1

��

p2
// X

π|X
��

D π|D
//

s

OO

Ad,

where s is the section induced by the inclusion D → X.
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Let V = p−1
2 (U). Then p1 : V → D is smooth, with fiber dimension

one, thus s(D)∩V is a codimension one subscheme of V , and the ideal
sheaf Is(D) is locally principal on V . Also, the map p2 : V → U is
finite. Shrinking U , we may assume that U and V are affine, and that
the ideal I defining s(D) ∩ V is principal, I = (t) ⊂ R = Γ(V,OV ),
with t a non-zero divisor.

Let i : s(D)∩ V → V be the inclusion. Since t is a non-zero divisor,
the map

×t : p∗1M → p∗1M

is injective for all M ∈ MD∩U . We thus have the functorial exact
sequence

0→ p∗1M
×t
−→ p∗1M → i∗M → 0,

giving the exact sequence of exact functors fromMp
D∩U toMp

V

0→ p∗1(−)
×t
−→ p∗1(−)→ s∗(−)→ 0.

Applying p2∗ gives the exact sequence of functors fromMp
D∩U toMp

U

0→ p2∗p
∗
1(−)

×t
−→ p2∗p

∗
1(−)→ i∗(−)→ 0.

Thus, i∗ : Kq(M
p
D∩U) → Kq(M

p
U) is zero, by the additivity property

proposition 7.6. As Z∩U has codimension p on D∩U , the composition

Kq(MZ)
iZ∗−−→ Kq(M

p+1
X )

j∗

−→ Kq(M
p+1
U )→ Kq(M

p
U) factors through

Kq(MZ)→ Kq(M
p
D)→ Kq(M

p
D∩U)

i∗−→ Kq(M
p
U).

Thus, ηZ goes to zero in Kq(M
p
U), completing the proof. �

9.5. Bloch’s formula. The results of the previous section show how
to relate the cohomology of the K-sheaves to the Chow ring.

Let F be a field. We have already seen that K0(F ) = Z and K1(F ) =
F×. This shows that the end of the Gersten complex E∗,−q

1 (X), for
q ≤ dimX, looks like

. . .→ ⊕x∈X(q−1)k(x)×
dq−1,−1
1−−−−→ ⊕x∈X(q)Z.

The term in degree q is just Zq(X).

Lemma 9.6. Let X be a scheme of finite type over a field k, and let
W ⊂ X be an integral closed subscheme of codimension q − 1 with
generic point w. Let iw : k(W )× → ⊕x∈X(q−1)k(x)× be the inclusion as
the summand indexed by w. Then the composition

k(W )×
iw−→ ⊕x∈X(q−1)k(x)×

dq−1,−1
1−−−−→ ⊕x∈X(q)Z ∼= Zq(X)

is the map sending f ∈ k(W )× to ±iW∗(div(f)) ∈ Zq(X), for a uni-
versal choice of sign.
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Proof. Let Z be a codimension p integral closed subscheme of X. First
suppose that Z is not contained in D. If we remove a closed subset of
X of codimension > q, it does not affect the Gersten complex E∗,−q

1 , so
we may assume that Z ∩D = ∅. Since the Quillen spectral sequence is
functorial for flat morphisms, we may restrict to the open neighborhood
X \D of Z to compute the composition

k(W )×
iw−→ ⊕x∈X(q−1)k(x)×

dq−1,−1
1−−−−→ ⊕x∈X(q)Z

pz
−→ Z,

where pz is the projection on the summand indexed by the generic point
z of Z. Since the term k(w)∗ clearly goes to zero upon this restriction,
it follows that pz ◦ d1 ◦ iw(f) = 0.

Now suppose that Z ⊂ D. We may again use functoriality of the
localization sequence with respect to finite morphisms to reduce to the
case X = D. We may then localize to assume that X = SpecO is local,
dimension one, and Z = SpecF , where F is the residue field. Again
using functoriality with respect to finite morphisms, we may assume
that O is normal, so O is a discrete valuation ring with residue field F .
Let L be the quotient field of O. We have the localization sequence

K1(O)→ K1(L)
∂
−→ K0(F )→ K0(O)→ K0(L).

Since K0(O) = K0(L) = Z by rank, ∂ is surjective to K0(F ) ∼= Z.
Let t be a generator for the maximal ideal of O. Then L× ∼= tZ×O×.

Since the image of O× in L× comes from K1(O), we have ∂(O×) = 0.
Thus ∂(tZ) must be all of K0(F ) = Z, so ∂(t) is a generator. Since
ordZ(t) = 1, we have ∂(t) = ε(ordZ(t)), with ε = ±1. For an arbitrary
f ∈ L×, write f = u · tn with u ∈ O×. Then ordZ(f) = n = ε∂(u · tn),
as desired.

To see that the sign ε is universal, note that we have the flat k-algebra
homomorphism k[X](X) → O, X 7→ t. This reduces the computation
further to the case of O = k[X](X), t = X, so there is a universal choice
of sign. �

In fact, this shows thatEq,−q
2 (X) ∼= CHq(X) for allX. As Eq,−q

2 (X) ∼=
Hq(X,Kq) forX smooth over a field by proposition 9.3 and theorem 9.5,
we have shown

Theorem 9.7 (Bloch’s formula, [30, Theorem 5.19, §7]). Let X be a
smooth variety over a field. Then CHq(X) ∼= Hq(X,Kq) for all q ≥ 0.

The Gersten complex gives “cycle-theoretic” descriptions of other
K-cohomology groups. For example, Hp(X,Kp+1) is generated by el-
ements

∑
i(Zi, fi), where Zi is a codimension p subscheme of X, fi is

in k(Zi)
×, and

∑
i div(fi) = 0 as a codimension p+ 1 cycle on X. The
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relations are generated by elements of the form T (D, {f, g}), where D
is a codimension p− 1 subvariety of X, f, g are in k(D)×, {f, g} is the
symbol in K2(k(D)). T is the tame symbol:

T ({f, g}) =
∑

Z

iZ∗
(
(−1)ordZ(f)ordZ(g)(

f ordZ(g)

gordZ(f)
)|Z

)
,

where the sum is over all codimension one subvarieties of the normaliza-
tion DN of D, and iZ : Z → X is the composition Z ⊂ DN → D ⊂ X.
A number of authors, starting with Bloch and Beilinson, have at-
tached analytic invariants to elements of Hp(X,Kp+1), by associating
to

∑
i(Zi, fi) the current

ω 7→
∑

i

∫

Zi

ln(fi)ω + (2πi)

∫

∆

ω,

where ∆ is a 2p-chain (with Q-coefficients) with boundary the (2p−1)-
cycle

∑
i f

−1
i ([0,∞]).

Similarly, H0(X,K2) is given by elements η =
∑

i{fi, gi} ∈ K2(k(X))
such that T (η) =

∑
i T ({fi, gi}) = 0 in ⊕x∈X(1)k(x)∗. Using this de-

scription, Bloch has constructed interesting elements in H0(E,K2), and
Beilinson [4] has constructed analogous elements in H0(C,K2), where
C is a modular curve, and related these elements to values of the L-
function of C.
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