
Bloch’s cycle complex

Recall Bloch’s cycle complex (zq(X , ∗), d):

zq(X , n) := Z{irreducible, codimension q subvarieties

W ⊂ X ×∆n in good position}

with differential the alternating sum of intersections with the
codimension one faces.
The higher Chow groups of X are

CHq(X , n) := Hn(zq(X , ∗), d).
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Bloch’s cycle complex

Universal integral cohomology is Hp(X ,Z(q)) := CHq(X , 2q − p).
To reflect the re-indexing, set

ΓBl(q)∗(X ) := zq(X , 2q − p),

giving the complex of sheaves on XZar

U 7→ ΓBl(q)∗(U).

Since the higher Chow groups have a Mayer-Vietoris property, we
have

Hp(X ,Z(q)) := Hp(ΓBl(q)∗(X )) ∼= Hp(XZar, ΓBl(q)).
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Suslin’s cycle complexes
Homology and the Dold-Thom theorem

Recall the Dold-Thom theorem:

Theorem (Dold-Thom)

Let (T , ∗) be a pointed CW complex. There is a natural
isomorphism

Hn(T , ∗) ∼= πn(Sym∞T ).

Here

Sym∞T = lim−→[T → Sym2T → . . .→ SymnT → . . .]

with SymnT → Symn+1T the map “add ∗ to the sum”.
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Suslin’s cycle complexes
Homology and the Dold-Thom theorem: an algebraic version

Definition
For X ,Y varieties, X smooth and irreducible, set

zfin(Y )(X ) := Z[{irreducible, reduced W ⊂ X ×k Y with

W → X finite and surjective}].

Definition
For a k-scheme Y , the Suslin complex of Y , C Sus

∗ (Y ), is the
complex associated to the simplicial abelian group

n 7→ zfin(Y )(∆n
k).

The Suslin homology of Y is

HSus
n (Y ,A) := Hn(C Sus

∗ (Y )⊗ A).
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Suslin’s cycle complexes
Suslin homology

Since a finite cycle W ⊂ Y ×∆n is a cycle of codimension
dY = dim Y , intersecting all faces properly, we have the inclusion
of complexes

C Sus
∗ (Y ) ↪→ zdY (Y , ∗).

For Y smooth and projective, this inclusion induces an isomorphism

HSus
n (Y ,Z) ∼= H2dY−n(Y ,Z(dY )).

(Poincare’ duality).

Marc Levine Categories of motives



Suslin’s cycle complexes
Relations with universal cohomology

One can recover all the universal cohomology groups from the
Suslin homology construction, properly modified. For this, we
recall how the Dold-Thom theorem gives a model for cohomology.

Since Sn has only one non-trivial reduced homology group,
Hn(Sn,Z) = Z, the Dold-Thom theorem tells us that Sym∞Sn is a
K (Z, n), i.e.

πm(Sym∞Sn) =

{
0 for m 6= n

Z for m = n.

Obstruction theory tells us that

Hm(X ,Z) = πn−m(Maps(X ,Sym∞Sn)).

for m ≤ n.
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Suslin’s cycle complexes
Relations with universal cohomology

To rephrase this in the algebraic setting, we need a good
replacement for the n-spheres. The correct choice is governed by
the Gysin morphism:

Let i : A→ B be a closed immersion of manifolds, d = codimRi ,
NA/B the normal bundle. The Gysin morphism

i∗ : Hn(A)→ Hn+d(B) is defined via

Hn(A) ∼= Hn+d(Th(NA/B), ∗) ∼= Hn+d(Tε(A), ∂Tε(A))

= Hn+d(B,B \ Tε(A))→ Hn+d(B)

where Th(NA/B) := P(NA/B ⊕ 1)/P(NA/B) is the Thom space.

If A = pt, then NA/B = Rd and Th(NA/B) = RPd/RPd−1 = Sd .
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Suslin’s cycle complexes
Relations with universal cohomology

In the algebraic setting, let i : X → Y be a closed immersion of
smooth varieties, NX/Y the normal bundle. Formally, the algebraic
Thom space is Th(NX/Y ) := P(NX/Y ⊕ 1)/P ∗ (NX/Y ).

If X = pt, the NX/Y = Ad and

Th(NX/Y ) = Pd/Pd−1 =: S2d ,d .

For d = 1,

S2,1 = P1 = A1 ∪A1−{0} A1 ∼ S1 ∧ (A1 − {0}) 6= S1 ∧ S1 = S2.

We should use the 2d sphere of weight d , S2d ,d = Pd/Pd−1, if we
want to have a Gysin map in our cohomology.
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Suslin’s cycle complexes
Relations with universal cohomology

The quotient Pq/Pq−1 doesn’t make much sense, but since we are
going to apply this to finite cycles, we just take a quotient by the
cycles “at infinity” as groups:

zfin(S2q,q)(X ) = zfin(Pq/Pq−1)(X )

:= zfin(Pq)(X )/zfin(Pq−1)(X )

This leads to
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Suslin’s cycle complexes
Relations with universal cohomology

Definition
The Friedlander-Suslin weight q cycle complex of X is

ΓFS(q)∗(X ) := zfin(S2q,q)(X ×∆2q−∗).

This gives us the complex of sheaves U 7→ ΓFS(q)(U)∗.

Restriction from X ×∆n×Pq → X ×∆n×Aq defines the inclusion

ΓFS(q)∗(X ) ↪→ zq(X × Aq, 2q − ∗) = ΓBl(q)∗(X × Aq)
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Suslin’s cycle complexes
Relations with universal cohomology

Theorem (Friedlander-Suslin-Voevodsky)

For X smooth and quasi-projective, the maps

ΓFS(q)∗(X )→ ΓBl(q)∗(X × Aq)
p∗←− ΓBl(q)∗(X )

are quasi-isomorphisms. In particular, we have natural
isomorphisms

Hp(XZar, ΓFS(q)) ∼= Hp(ΓFS(q)(X )∗) ∼= Hp(X ,Z(q)).
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Suslin’s cycle complexes
Relations with universal cohomology

Since

X 7→ ΓFS(q)∗(X ) := zfin(Pq/Pq−1)(X ×∆2q−∗)

is functorial in X , the Friedlander-Suslin complex gives a functorial
model for Bloch’s cycle complex.

Products for ΓFS(q) are similarly defined on the level of complexes.

This completes the Beilinson-Lichtenbaum program, with the
exception of the vanishing conjectures.

Marc Levine Categories of motives



Categories of motives
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Grothendieck motives

How to construct the category of pure motives for an adequate
equivalence relation ∼.
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Grothendieck motives
Pseudo-abelian categories

An additive category C is abelian if every morphism f : A→ B has
a (categorical) kernel and cokernel, and the canonical map
coker(ker f )→ ker(cokerf ) is always an isomorphism.

An additive category C is pseudo-abelian if every idempotent
endomorphism p : A→ A has a kernel:

A ∼= ker p ⊕ ker 1− p.
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Grothendieck motives
Pseudo-abelian categories

For an additive category C, there is a universal additive functor to
a pseudo-abelian category ψ : C→ C\.

C\ has objects (A, p) with p : A→ A an idempotent
endomorphism,

HomC\((A, p), (B, q)) = qHomC(A,B)p.

and ψ(A) := (A, id), ψ(f ) = f .

Note. If p1, . . . , pr are commuting mutually orthogonal
idempotents on A with

∑
i pi = idA, then

ψ(A) = (A, p1)⊕ . . .⊕ (A, pr )

in C\.
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Grothendieck motives
The category Cor∼(k)

The category Cor∼(k) has the same objects as SmProj/k .

Morphisms (for X irreducible) are

HomCor∼(X ,Y ) := AdX
∼ (X × Y )Q

with composition the composition of correspondences:

W ′ ◦W := p13∗(p∗12(W ) · p∗23(W ′))

for W ∈ HomCor∼(X ,Y ), W ′ ∈ HomCor∼(Y ,Z ).
In general, take the direct sum over the components of X .

Write X (as an object of Cor∼(k)) = h∼(X ) or just h(X ). For
f : Y → X , set h(f ) := tΓf . This gives a functor

h∼ : SmProj/kop → Cor∼(k).
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Grothendieck motives
The category of correspondences

1. Cor∼(k) is an additive category with
h(X )⊕ h(Y ) = h(X q Y ).

2. Cor∼(k) is a tensor category with h(X )⊗ h(Y ) = h(X × Y ).

For a ∈ AdX∼ (X × Y )Q, b ∈ A
dX ′∼ (X ′ × Y ′)Q

a⊗ b := t∗(a× b)

with t : (X × X ′)× (Y × Y ′)→ (X × Y )× (X ′ × Y ′) the
exchange.

3. h∼ is a symmetric monoidal functor.

Marc Levine Categories of motives



The category of orrespondences
Note.

The composition law for correspondences:

W ′ ◦W := p13∗(p∗12(W ) · p∗23(W ′))

requires

I That Y is proper (for p13∗ to be defined)

I That we work modulo an adequate equivalence relation (for
p∗12(W ) · p∗23(W ′) to be defined).

From the point of view of “higher cycle” this is bad, as we lose the
choice of equivalences between cycles. Voevodsky’s use of “finite
correspondences” solves both problems.
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Grothendieck motives
Effective pure motives

Definition
Meff
∼ (k) := Cor∼(k)\.

Explicitly, Meff
∼ (k) has objects (X , α) with X ∈ SmProj/k and

α ∈ AdX∼ (X × X )Q with α2 = α (as correspondence mod ∼).

Meff
∼ (k) is a tensor category with unit 1 = (Spec k , [Spec k]).

Set h∼(X ) := (X ,∆X ), for f : Y → X , h∼(f ) := tΓf .
This gives the symmetric monoidal functor

h∼ : SmProj(k)op → Meff
∼ (k).
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Grothendieck motives
Motives as cohomology

Grothendieck constructed the category of motives to give a
universal geometric cohomology theory for smooth projective
varieties.
To explain: Take a “reasonable” (i.e. Weil) cohomology theory on
SmProj/k : X 7→ H∗(X ) (e.g. H∗(X ) = H∗sing(X (C),Q)) admiting
a good theory of cycle class

Z 7→ γX (Z ) ∈ H2q(X ); Z ∈ zq(X ).

Then Z ∈ Corrat(X ,Y ) gives Z∗ : H∗(X )→ H∗(Y ) by

Z∗(α) := pY ∗(p∗X (α) ∪ γX×Y (Z ))

and (Z ◦W )∗ = Z∗ ◦W∗.
Thus, we can think of hrat(X ) ∈ Meff

rat(k) as a formal version of the
total cohomology H∗(X ): sending X to H∗(X ) extends to a functor

H : Meff
rat(k)→ GrAb
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Grothendieck motives
Standard conjectures

Standard conjecture 1. H : Meff
rat(k)→ GrAb descends to

H : Meff
num(k)→ GrAb (automatically faithful).

For each n we have the projection of H∗(X ) on Hn(X ), giving the
commuting mutually orthogonal idempotent endomorphisms pn of
H∗(X )

Standard conjecture 2. Assume SC1. Then for each
X ∈ SmProj/k and each n, pn(H∗(X )) lifts to an idempotent
endomorphism Πn of hnum(X ). Set hn(X ) := (hnum(X ),Πn).

Standard conjecture 3. Assume SC1. Then Meff
num(k) is a

semi-simple abelian category.

If we assume SC1-3, then h(X ) = ⊕2 dim X
n=0 hn(X ) and

hn(X ) ∈ Meff
num(k) can be thought of as a universal construction of

the nth cohomology of X . This could help explain the mysterious
parallels between different cohomology theories on SmProj/k .
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Grothendieck motives
Standard conjectures

Examples. 1. ∆P1 ∼rat P1 × 0 + 0× P1  

h(P1) = (P1, 0× P1) + (P1,P1 × 0) = h0(P1)⊕ h2(P1).

(P1, 0× P1) ∼= hrat(pt) = 1, the remaining factor is the Lefschetz
motive L := (P1,P1 × 0).

2. Let C be a smooth projective curve over k , 0 ∈ C (k). Then

h(C ) = (C , 0× C )⊕ (C ,∆C − 0× C − C × 0)⊕ (C ,C × 0)

= h0(C )⊕ h1(C )⊕ h2(C )

= 1⊕ h1(C )⊕ L.

h1(C ) 6= 0 iff g(C ) > 0.
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Grothendieck motives
Jannsen’s semi-simplicity theorem

The coarsest equivalence is ∼num, so Mnum(k) should be the most
simple category of motives.

In fact, at least one part of Grothendieck’s program has been
verified.

Theorem (Jannsen)

Mnum(k) is a semi-simple abelian category. If M∼(k) is
semi-simple abelian, then ∼=∼num.

The proof is surprisingly easy, relying on the Lefschetz trace
formula and the fact that a nilpotent matrix has zero trace.
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Beilinson’s conjectures
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Beilinson’s conjectures
Why mixed motives?

Pure motives describe the cohomology of smooth projective
varieties over an algebraically closed field.

Mixed motives should describe the cohomology of arbitrary
varieties.

Weil cohomology is replaced by Bloch-Ogus cohomology:
Mayer-Vietoris for open covers and a purity isomorphism (with
twists) for cohomology with supports.
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Beilinson’s conjectures

Beilinson conjectured that the semi-simple abelian category of pure
motives Mnum(k)Q should admit a full embedding as the
semi-simple objects in an abelian tensor category of mixed motives
MM(k)Q.

This can be thought of as a universal version of the category of
mixed Hodge structures MHS: the category of pure Hodge
structures is a semi-simple abelian category and there is a
functorial exact weight filtration W∗ on MHS such that grnW H is a
pure Hodge structure for each MHS H.

MM(k) should have the following structures and properties:
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Beilinson’s conjectures

I a natural finite exact weight filtration W∗ on MM(k)Q such
that for each M ∈ MM(k), the graded pieces grWn MQ are in
Mnum(k)Q.

I A functor Rh : Schop
k → Db(MM(k))

I An embedding Mrat(k)Z ↪→ Db(MM(k)); in particular
Tate/Lefschetz motives Z(n) (L⊗n = Z(n)[2n]).

I A natural isomorphism

HomDb(MM(k))(Z,Rh(X )(q)[p])Q ∼= K
(q)
2q−p(X ),

in particular ExtpMM(k)(Z,Z(q))Q ∼= K
(q)
2q−p(k).

I All “universal properties” of the cohomology of algebraic
varieties should be reflected by identities in Db(MM(k)) of
the objects Rh(X ).

Definition
Hp

mot(X ,Z(q)) := HomDb(MM(k))(Z,Rh(X )(q)[p]).
I.e., universal integral cohomology should be motivic cohomology.
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Beilinson’s conjectures
A partial success

The category MM(k) has not been constructed.

In fact, the existence of MM(k) would prove the Beilinson-Soulé
vanishing conjectures!

However, there are now a number of (equivalent) constructions of
triangulated tensor categories that satisfy all the structural
properties expected of the derived categories Db(MM(k)), except
those which exhibit these as a derived category of an abelian
category (t-structure).

There are at present various attempts to extend this to the
triangulated version of Beilinson’s vision of motivic sheaves over a
base S .

We give a discussion of the construction of various versions of
triangulated categories of mixed motives over k due to Voevodsky.
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Triangulated categories
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Triangulated categories
Translations and triangles

A translation on an additive category A is an equivalence
T : A→ A. We write X [1] := T (X ).
Let A be an additive category with translation. A triangle
(X ,Y ,Z , a, b, c) in A is the sequence of maps

X
a−→ Y

b−→ Z
c−→ X [1].

A morphism of triangles

(f , g , h) : (X ,Y ,Z , a, b, c)→ (X ′,Y ′,Z ′, a′, b′, c ′)

is a commutative diagram

X
a−−−−→ Y

b−−−−→ Z
c−−−−→ X [1]

f

y g

y h

y f [1]

y
X ′ −−−−→

a′
Y ′ −−−−→

b′
Z ′ −−−−→

c ′
X ′[1].
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Triangulated categories
Verdier’s definition

Verdier has defined a triangulated category as an additive category
A with translation, together with a collection E of triangles, called
the distinguished triangles of A, which satisfy some axioms (which
we won’t specify).

A graded functor F : A→ B of triangulated categories is called
exact if F takes distinguished triangles in A to distinguished
triangles in B.
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Triangulated categories
Long exact sequences

Remark Suppose (A,T ,E) is a triangulated category. If
(X ,Y ,Z , a, b, c) is in E, and A is an object of A, then the
sequences

. . .
c[−1]∗−−−−→ HomA(A,X )

a∗−→ HomA(A,Y )
b∗−→

HomA(A,Z )
c∗−→ HomA(A,X [1])

a[1]∗−−−→ . . .

and

. . .
a[1]∗−−−→ HomA(X [1],A)

c∗−→ HomA(Z ,A)
b∗−→

HomA(Y ,A)
a∗−→ HomA(X ,A)

c[−1]∗−−−−→ . . .

are exact.
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Triangulated categories
The main point

A triangulated category is a machine for generating natural long
exact sequences.
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Triangulated categories
An example

Let A be an additive category, C ?(A) the category of
cohomological complexes and K ?(A) the homotopy category: the
same objects as C ?(A) and morphisms are chain homotopy classes
of degree 0 maps of complexes.
For a complex (A, dA), let A[1] be the complex

A[1]n := An+1; dn
A[1] := −dn+1

A .

For a map of complexes f : A→ B, we have the cone sequence

A
f−→ B

i−→ Cone(f )
p−→ A[1]

where Cone(f ) := An+1 ⊕ Bn with differential

d(a, b) := (−dA(a), f (a) + dB(b))

i and p are the evident inclusions and projections.
We make K ?(A) a triangulated category by declaring a triangle to
be exact if it is isomorphic to the image of a cone sequence.
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Triangulated categories
Tensor structure

Definition
Suppose A is both a triangulated category and a tensor category
(with tensor operation ⊗) such that (X ⊗ Y )[1] = X [1]⊗ Y .
Suppose that, for each distinguished triangle (X ,Y ,Z , a, b, c), and
each W ∈ A, the sequence

X⊗W
a⊗idW−−−−→ Y⊗W

b⊗idW−−−−→ Z⊗W
c⊗idW−−−−→ X [1]⊗W = (X⊗W )[1]

is a distinguished triangle. Then A is a triangulated tensor
category.
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Triangulated categories
Tensor structure

Example If A is a tensor category, then K ?(A) inherits a tensor
structure, by the usual tensor product of complexes, and becomes
a triangulated tensor category. (For ? = ∅, A must admit infinite
direct sums).
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Triangulated categories
Thick subcategories

We form new triangulated categories from old ones by localizing.

Definition
A full triangulated subcategory B of a triangulated category A is
thick if B is closed under taking direct summands.

If B is a thick subcategory of A, the set of morphisms s : X → Y
in A which fit into a distinguished triangle X

s−→ Y −→ Z −→ X [1]
with Z in B forms a saturated multiplicative system of morphisms.

The intersection of thick subcategories of A is a thick subcategory
of A, So, for each set T of objects of A, there is a smallest thick
subcategory B containing T, called the thick subcategory
generated by T.
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Triangulated categories
Localization of triangulated categories

Let B be a thick subcategory of a triangulated category A. Let S

be the saturated multiplicative system of map A
s−→ B with “cone”

in B.

Form the category A[S−1] = A/B with the same objects as A,
with

HomA[S−1](X ,Y ) = lim→
s:X ′→X∈S

HomA(X ′,Y ).

Let QB : A→ A/B be the canonical functor.
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Triangulated categories
Localization

Theorem (Verdier)

(i) A/B is a triangulated category, where a triangle T in A/B is
distinguished if T is isomorphic to the image under QB of a
distinguished triangle in A.
(ii) The functor QB : A→ A/B is universal for exact functors
F : A→ C such that F (B) is isomorphic to 0 for all B in B.
(iii) S is equal to the collection of maps in A which become
isomorphisms in A/B and B is the subcategory of objects of A

which becomes isomorphic to zero in A/B.
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Triangulated categories
Localization of triangulated tensor categories

If A is a triangulated tensor category, and B a thick subcategory,
call B a thick tensor subcategory if A in A and B in B implies that
A⊗ B and B ⊗ A are in B.

The quotient QB : A→ A/B of A by a thick tensor subcategory
inherits the tensor structure, and the distinguished triangles are
preserved by tensor product with an object.
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Triangulated categories
Localization

Example The classical example is the derived category D?(A) of
an abelian category A. D?(A) is the localization of K ?(A) with
respect to the multiplicative system of quasi-isomorphisms
f : A→ B, i.e., f which induce isomorphisms
Hn(f ) : Hn(A)→ Hn(B) for all n.

If A is an abelian tensor category, then D−(A) inherits a tensor
structure ⊗L if each object A of A admits a surjection P → A
where P is flat, i.e. M 7→ M ⊗ P is an exact functor on A. If each
A admits a finite flat (right) resolution, then Db(A) has a tensor
structure ⊗L as well. The tensor structure ⊗L is given by forming
for each A ∈ K ?(A) a quasi-isomorphism P → A with P a complex
of flat objects in A, and defining

A⊗L B := Tot(P ⊗ B).
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Triangulated categories of
motives
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Triangulated categories of motives
Finite correspondences

To solve the problem of the partially defined composition of
correspondences, Voevodsky introduces the notion of finite
correspondences, for which all compositions are defined.

Recall:

Definition
Let X and Y be in Sm/k . The group zfin(Y )(X ) is the subgroup
of z(X ×k Y ) generated by integral closed subschemes
W ⊂ X ×k Y such that

1. the projection p1 : W → X is finite

2. the image p1(W ) ⊂ X is an irreducible component of X .

Write Corfin(X ,Y ) := zfin(Y )(X ). The elements of Corfin(X ,Y )
are called the finite correspondences from X to Y .
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Triangulated categories of motives
Finite correspondences

The following basic lemma is easy to prove:

Lemma
Let X , Y and Z be in Schk , W ∈ Corfin(X ,Y ),
W ′ ∈ Corfin(Y ,Z ). Suppose that X and Y are irreducible. Then
each irreducible component C of |W | × Z ∩ X × |W ′| is finite over
X and pX (C ) = X .

Thus: for W ∈ Corfin(X ,Y ), W ′ ∈ Corfin(Y ,Z ), we have the
composition:

W ′ ◦W := pXZ∗(p∗XY (W ) · p∗YZ (W ′)),

This operation yields an associative bilinear composition law

◦ : Corfin(Y ,Z )× Corfin(X ,Y )→ Corfin(X ,Z ).
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Triangulated categories of motives
The category of finite correspondences

Definition
The category Corfin(k) is the category with the same objects as
Sm/k , with

HomCorfin(k)(X ,Y ) := Corfin(X ,Y ),

and with the composition as defined above.

Remarks (1) We have the functor Sm/k → Corfin(k) sending
a morphism f : X → Y in Sm/k to the graph Γf ⊂ X ×k Y .

(2) We write the morphism corresponding to Γf as f∗, and the
object corresonding to X ∈ Sm/k as [X ].

(3) The operation ×k (on smooth k-schemes and on cycles) makes
Corfin(k) a tensor category. Thus, the bounded homotopy category
Kb(Corfin(k)) is a triangulated tensor category.
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Triangulated categories of motives
The category of effective geometric motives

Definition
The category D̂M

eff

gm(k) is the localization of Kb(Corfin(k)), as a
triangulated tensor category, by

I Homotopy. For X ∈ Sm/k , invert p∗ : [X × A1]→ [X ]

I Mayer-Vietoris. Let X be in Sm/k . Write X as a union of
Zariski open subschemes U,V : X = U ∪ V .
We have the canonical map

Cone([U ∩ V ]
(jU,U∩V∗,−jV ,U∩V∗)−−−−−−−−−−−−→ [U]⊕ [V ])

(jU∗+jV∗)−−−−−−→ [X ]

since (jU∗ + jV ∗) ◦ (jU,U∩V ∗,−jV ,U∩V ∗) = 0. Invert this map.

The category DMeff
gm(k) of effective geometric motives is the

pseudo-abelian hull of D̂M
eff

gm(k) (Balmer-Schlichting).
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Triangulated categories of motives
The category of effective geometric motives

Sending X ∈ Sm/k to the image of [X ] in DMeff
gm(k) gives the

functor
m : Sm/k → DMeff

gm(k)

with

m(X q Y ) = m(X )⊕m(Y )

m(X ×k Y ) = m(X )⊗m(Y )
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Triangulated categories of motives
The Tate motive

Definition (The Tate motive)

Z(1) is the complex

[P1]
p∗−→ [Spec k]

with [P1] in degree 2. Let Z(n) := Z(1)⊗n, Z = Z(0) = m(Spec k).

The cell decomposition of PN yields:

m(PN) = ⊕N
n=0Z(n)[2n].

For M ∈ DMeff
gm(k), n ≥ 0, set

M(n) := M ⊗ Z(n).
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Triangulated categories of motives
Motivic homology and cohomology

Definition
For X ∈ Sm/k , define

Hmot
n (X ,Z) := HomDMeff

gm (k)(Z[n],m(X ))

and
Hp

mot(X ,Z(q)) := HomDMeff
gm (k)(m(X ),Z(q)[p]).

Marc Levine Categories of motives



Triangulated categories of motives
Properties

Many structural properties of motivic homology and cohomology
follows directly from the construction of DMeff

gm(k).For example:

I (Homotopy invariance)
p∗ : Hp

mot(X ,Z(q))→ Hp
mot(X × A1,Z(q)) is an isomorphism

I (Mayer-Vietoris) If X = U ∪ V , U,V open, there is a long
exact Mayer-Vietoris sequence

. . .→ Hp(X ,Z(q))→ Hp(U,Z(q))⊕ Hp(V ,Z(q))

→ Hp(U ∩ V ,Z(q))→ Hp−1(X ,Z(q))→ . . .

For (1), use: p : m(X × A1)→ m(X ) is an isomorphism in
DMeff

gm(k).

For (2), use: we have a distinguished triangle
m(U ∩V )→ m(U)⊕m(V )→ m(X )→ m(U ∩V )[1] in DMeff

gm(k).
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Triangulated categories of motives
Properties

It is very difficult to make computations, however, for instance, to
see that one recovers the (co)homology we have defined using
cycle complexes.

For this, we need a sheaf-theoretic extension of DMeff
gm(k). We

begin with a quick review of sheaves on a Grothendieck site.
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Sheaves
Presheaves

A presheaf P on a small category C with values in a category A is
a functor

P : Cop → A.

Morphisms of presheaves are natural transformations of functors.
This defines the category of A-valued presheaves on C,
PreShvA(C).
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Sheaves
Presheaves

Theorem
(1) If A is an abelian category, then so is PreShvA(C), with kernel
and cokernel defined objectwise: For f : F → G ,

ker(f )(x) = ker(f (x) : F (x)→ G (x));

coker(f )(x) = coker(f (x) : F (x)→ G (x)).

(2) For A = Ab, PreShvAb(C) has enough injectives.
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Sheaves
Pre-topologies

Definition
Let C be a category. A Grothendieck pre-topology τ on C is given
by defining, for X ∈ C, a collection Covτ (X ) of covering families of
X : a covering family of X is a set of morphisms {fα : Uα → X} in
C.
These satisfy some axioms, making a covering family the analog of
coverings by a basis of open sets for a topological space, with

I a member fα : Uα → X corresponding to an open subset
Uα ⊂ T

I fiber product Uα ×X Uβ corresponding to intersection
Uα ∩ Uβ of open subsets
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Sheaves
Pre-topologies

One requires

1. idX is a covering of X

2. if {fα : Uα → X} is a covering of X , and f : Y → X is a
morphism, then {p2 : Uα ×X Y → Y } is a covering of Y

3. if {fα : Uα → X} is a covering of X and {gαβ : Vαβ → Uα} is
a covering of Uα for each α, then {fα ◦ gαβ : Vαβ → X} is a
covering of X .

A category with a (pre) topology is a site
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Sheaves
The sheaf axiom

For S presheaf of abelian groups on C and
{fα : Uα → X} ∈ Covτ (X ) for some X ∈ C, we have the
“restriction” morphisms

f ∗α : S(X )→ S(Uα)

p∗1,α,β : S(Uα)→ S(Uα ×X Uβ)

p∗2,α,β : S(Uβ)→ S(Uα ×X Uβ).

Taking products, we have the sequence of abelian groups

0→ S(X )
Q

f ∗α−−−→
∏
α

S(Uα)

Q
p∗1,α,β−

Q
p∗2,α,β−−−−−−−−−−−→

∏
α,β

S(Uα ×X Uβ).
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Sheaves
The sheaf axiom

0→ S(X )
Q

f ∗α−−−→
∏
α

S(Uα)

Q
p∗1,α,β−

Q
p∗2,α,β−−−−−−−−−−−→

∏
α,β

S(Uα ×X Uβ).

Definition
A presheaf S is a sheaf for τ if for each covering family
{fα : Uα → X} ∈ Covτ , the above sequence is exact. The category
ShvAb

τ (C) of sheaves of abelian groups on C for τ is the full
subcategory of PreShvAb(C) with objects the sheaves.
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Sheaves
Sheaves on a site

Proposition

(1) The inclusion i : ShvAb
τ (C)→ PreShvAb

τ (C) admits a left
adjoint: “sheafification”.
(2) ShvAb

τ (C) is an abelian category: For f : F → G , ker(f ) is the
presheaf kernel. coker(f ) is the sheafification of the presheaf
cokernel.
(3) ShvAb

τ (C) has enough injectives.
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Sheaves
The Nisnevich topology

Definition
Let X be a k-scheme of finite type. A Nisnevich cover U→ X is
an étale morphism of finite type such that, for each finitely
generated field extension F of k , the map on F -valued points
U(F )→ X (F ) is surjective.

Using Nisnevich covers as covering families gives us the small
Nisnevich site on X , XNis.

Notation ShNis(X ) := Nisnevich sheaves of abelian groups on X
For a presheaf F on Sm/k or XNis, we let FNis denote the
associated sheaf.

We now return to motives.
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Triangulated categories of motives
Sheaves with transfer

The sheaf-theoretic construction of mixed motives is based on the
notion of a Nisnevich sheaf with transfer.

Definition
(1) The category PST(k) of presheaves with transfer is the
category of presheaves of abelian groups on Corfin(k) which are
additive as functors Corfin(k)op → Ab.
(2) The category of Nisnevich sheaves with transfer on Sm/k ,
ShNis(Corfin(k)), is the full subcategory of PST(k) with objects
those F such that, for each X ∈ Sm/k, the restriction of F to XNis

is a sheaf.
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Triangulated categories of motives
Sheaves with transfer

Remark A PST F is a presheaf on Sm/k together with transfer
maps

Tr(a) : F (Y )→ F (X )

for every finite correspondence a ∈ Corfin(X ,Y ), with:

I Tr(Γf ) = f ∗

I Tr(a ◦ b) = Tr(b) ◦ Tr(a)

I Tr(a± b) = Tr(a)± Tr(b).
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Triangulated categories of motives
Homotopy invariant sheaves with transfer

Definition
Let F be a presheaf of abelian groups on Sm/k . We call F
homotopy invariant if for all X ∈ Sm/k , the map

p∗ : F (X )→ F (X × A1)

is an isomorphism.
We call F strictly homotopy invariant if for all q ≥ 0, the
cohomology presheaf X 7→ Hq(XNis,FNis) is homotopy invariant.
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Triangulated categories of motives
The PST theorem

Theorem (PST)

Let F be a homotopy invariant PST on Sm/k. Then

1. The cohomology presheaves X 7→ Hq(XNis,FNis) are PST’s

2. FNis is strictly homotopy invariant:
Hq(XNis,FNis) ∼= Hq(X × A1

Nis,FNis) for all X , q.

3. FZar = FNis and Hq(XZar,FZar) = Hq(XNis,FNis).

Corollary

Let F be a homotopy invariant Nisnevich sheaf with transfers.
Then all the Nisnevich cohomology sheaves H

q
Nis(F ) are homotopy

invariant sheaves with transfers.
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Triangulated categories of motives
The category of motivic complexes

Definition
Inside the derived category D−(ShNis(Corfin(k))), we have the full
subcategory DMeff

− (k) consisting of complexes whose cohomology
sheaves are homotopy invariant.

Proposition

DMeff
− (k) is a triangulated subcategory of D−(ShNis(Corfin(k))).

This follows from the PST theorem: F a homotopy invariant sheaf
with transfer =⇒ all cohomology sheaves are homotopy invariant
sheaves with transfer, so homotopy invariance “makes sense in the
derived category”.
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Triangulated categories of motives
The Suslin complex

We can promote the Suslin complex construction to an operation
on D−(ShNis(Corfin(k))).

Definition
Let F be a presheaf on Corfin(k). Define the presheaf CSus

n (F ) by

CSus
n (F )(X ) := F (X ×∆n)

The Suslin complex CSus
∗ (F ) is the complex with differential

dn :=
∑

i

(−1)iδ∗i : CSus
n+1(F )→ CSus

n (F ).
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Triangulated categories of motives
The Suslin complex

Remarks (1) If F is a sheaf with transfers on Sm/k , then
CSus
∗ (F ) is a complex of sheaves with transfers.

(2) The homology presheaves hi (F ) := H−i (CSus
∗ (F )) are

homotopy invariant. Thus, by Voevodsky’s PST theorem, the
associated Nisnevich sheaves hNis

i (F ) are homotopy invariant. We
thus have the functor

CSus
∗ : ShNis(Corfin(k))→ DMeff

− (k).
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Triangulated categories of motives
Representable sheaves

For X ∈ Sm/k , we have the representable presheaf with transfers
Ztr (X ) := Corfin(−,X ). This is in fact a Nisnevich sheaf.

The Suslin complex C Sus
∗ (X ) is just CSus

∗ (Ztr (X ))(Spec k).

We denote CSus
∗ (Ztr (X )) by CSus

∗ (X ).
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Triangulated categories of motives
Representable sheaves

For X ∈ Sm/k , Ztr (X ) is the free sheaf with transfers generated
by the representable sheaf of sets Hom(−,X ). Thus:
there is a canonical isomorphism

HomShNis(Corfin(k))(Ztr (X ),F ) = F (X )

and more generally: For F ∈ ShNis(Corfin(k)) there is a canonical
isomorphism

ExtnShNis(Corfin(k))(Ztr (X ),F ) ∼= Hn(XNis,F )

and for C ∗ ∈ D−(ShNis(Corfin(k))) there is a canonical
isomorphism

HomD−(ShNis(Corfin(k)))(Ztr (X ),C ∗[n]) ∼= Hn(XNis,C
∗).
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Triangulated categories of motives
The localization theorem

Let A is the localizing subcategory of D−(ShNis(Corfin(k)))
generated by complexes

Ztr (X × A1)
p1−→ Ztr (X ); X ∈ Sm/k,

and let

QA1 : D−(ShNis(Corfin(k)))→ D−(ShNis(Corfin(k)))/A

be the quotient functor.

Since Ztr (X ) = C0(X ), we have the canonical map

ιX : Ztr (X )→ C∗(X )

This acts like an “injective resolution” of Ztr (X ), with respect to
the localization QA1 .
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Triangulated categories of motives
The localization theorem

Theorem
1. The functor

CSus
∗ : ShNis(Corfin(k))→ DMeff

− (k).

extends to an exact functor

RCSus
∗ : D−(ShNis(Corfin(k)))→ DMeff

− (k),

left adjoint to the inclusion DMeff
− (k)→ D−(ShNis(Corfin(k))).

2. RCSus
∗ identifies DMeff

− (k) with D−(ShNis(Corfin(k)))/A
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Triangulated categories of motives
The tensor structure

We define a tensor structure on ShNis(Corfin(k)):
Set Ztr (X )⊗ Ztr (Y ) := Ztr (X × Y ).

This extends to a tensor operation on ⊗L on D−(ShNis(Corfin(k))).

We make DMeff
− (k) a tensor triangulated category via the

localization theorem:

M ⊗ N := RC∗(α(M)⊗L α(N)),

α : DMeff
− (k)→ D−(ShNis(Corfin(k))) the inclusion.
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Triangulated categories of motives
The embedding theorem

Theorem
There is a commutative diagram of exact tensor functors

Kb(Corfin(k))
Ztr

−−−−→ D−(ShNis(Corfin(k)))y yRC∗

DMeff
gm(k) −−−−→

i
DMeff

− (k)

such that
1. i is a full embedding with dense image.
2. RCSus

∗ (Ztr (X )) ∼= CSus
∗ (X ).

Marc Levine Categories of motives



Triangulated categories of motives
The embedding theorem

Explanation: Sending X ∈ Sm/k to Ztr (X ) ∈ ShNis(Corfin(k))
extends to an additive functor

Ztr : Corfin(k)→ ShNis(Corfin(k))

and then to an exact functor

Ztr : Kb(Corfin(k))→ Kb(ShNis(Corfin(k)))→ D−(ShNis(Corfin(k))).

One shows

1. Sending X to CSus
∗ (X ) sends the complexes

[X × A1]→ [X ]; [U ∩ V ]→ [U]⊕ [V ]→ [U ∪ V ]

to “zero”. Thus i exists.

2. Using results of Ne’eman, one shows that i is a full
embedding with dense image.
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Triangulated categories of motives
Consequences

Corollary

For X and Y ∈ Sm/k,

HomDMeff
gm (k)(m(Y ),m(X )[n])

∼= Hn(YNis,C
Sus
∗ (X )) ∼= Hn(YZar,C

Sus
∗ (X )).

Because:

HomDMeff
gm (k)(m(Y ),m(X )[n])

= HomDMeff
− (k)(CSus

∗ (Y ),CSus
∗ (X )[n])

= HomD−(ShNis(Corfin(k)))(Ztr (Y ),CSus
∗ (X )[n])

= Hn(YNis,C
Sus
∗ (X ))

plus the PST theorem: Hn(YNis,C
Sus
∗ (X )) = Hn(YZar,C

Sus
∗ (X )).
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Triangulated categories of motives
Consequences

Taking Y = Spec k , the corollary yields

Hmot
n (X ,Z) = HomDMeff

gm (k)(Z[n],m(X ))

∼= Hn(CSus
∗ (X )(k)) = Hn(C Sus

∗ (X )) = HSus
n (X ,Z).
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Triangulated categories of motives
Consequences

Since m(Pq) = ⊕q
n=0Z(n)[2n] we have

CSus
∗ (Ztr (q)[2q])(Y ) ∼= C Sus

∗ (Pq/Pq−1)(Y ) = ΓFS(q)(Y )[2q]

Applying the corollary with X = Ztr (q) gives

Hp
mot(Y ,Z(q)) := HomDMeff

gm (k)(m(Y ),Z(q)[p])

∼= Hp(YZar,C
Sus
∗ (Z(q))) = Hp(YZar, ΓFS(q))

∼= Hp(ΓFS(q)(Y )) = Hp(Y ,Z(q)).

Thus, we have identified motivic (co)homology with universal
(co)homology.
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