Motivic Postnikov towers

Motives and Algebraic Cycles Fields Institute-March 19-23, 2007

Marc Levine

A tribute to Spencer

BO (with Ogus): Gersten's conjecture and the homology of schemes

BKL (with Kas and Lieberman): Zero cycles on surfaces with $p_g = 0$

 $B1: K_2$ and algebraic cycles

B2: Irvine Lecture Notes

B3: Algebraic cycles and higher K-theory

BS (with Srinivas): Remarks on correspondences and algebraic cycles

B4: The moving lemma for higher Chow groups

BL (with Lichtenbaum): A spectral sequence for motivic cohomology

BE (with Esnault): An additive version of higher Chow groups

BK (with Kriz): Mixed Tate motives

BEL (with Esnault and Levine): Decomposition of the diagonal ...

- LS (with Srinivas): 0-cycles on certain singular elliptic surfaces
- L1: Bloch's formula for singular surfaces
- L2: The indecomposable K_3 of fields
- L3: Relative Milnor K-theory
- L4: Bloch's higher Chow groups revisited
- EL (with Esnault): Surjectivity of cycle maps
- ELV (with Esnault and Viehweg): small degree
- L5: Mixed motives
- GL (with Geisser): The K-theory of fields in char p
- L6: Techniques of localization
- L7: Chow's moving lemma
- L8: Homotopy coniveau
- LS (with Serpé): spectral sequence for G-equivarient K-theory
- EL2 (with Esnault): Motivic π_1 and Tate motives
- KL (with Krishna): Additive higher Chow groups of schemes

Outline

- Homotopy theory and motivic homotopy theory
- Postnikov towers
- The homotopy coniveau tower
- Computations and examples
- The Postnikov tower for motives

Homotopy theory and motivic homotopy theory

Homotopy theory in 60 seconds

SH is the *stable homotopy category*: The localization of the category Spt of *spectra* with respect to stable weak equivalence.

A spectrum is a sequence of pointed spaces $E=(E_0,E_1,\ldots)$ plus bonding maps $\Sigma E_n \to E_{n+1}$. A map $f:E\to F$ is a stable weak equivalence if f induces an isomorphism on the stable homotopy groups:

$$\pi_n^s(E) := \lim_N \pi_{n+N}(E_N).$$

A spectrum E gives a *generalized cohomology theory* by

$$E^n(X) := \operatorname{Hom}_{SH}(\Sigma^{\infty} X_+, \Sigma^n E)$$

with X a space (simplicial set),

$$\Sigma^{\infty} X_{+} := (X_{+}, \Sigma X_{+}, \dots, \Sigma^{n} X_{+}, \dots)$$

and

$$\Sigma^n(E_0, E_1, \ldots) := (E_n, E_{n+1}, \ldots)$$

We go from spaces to spectra by taking Σ^{∞} . Conversely, sending a spectrum $E = (E_0, E_1, ...)$ to its *0th-space*

$$\Omega^{\infty}E := \lim_{n} \Omega^{n} E_{n}$$

gives a right adjoint to the infinite suspension functor Σ^{∞} .

SH and D(Ab)

For us, a *space* is a simplicial set, \mathbf{Spc} is the category of spaces. Replacing simplicial sets with simplicial abelian groups and repeating the above construction, we get the unbounded derived category $D(\mathbf{Ab})$ together with a (non-full!) embedding

$$D(\mathbf{Ab}) \to \mathsf{SH}.$$

This allows one to think of stable homotopy theory as an extension of homological algebra.

For example, the object of SH corresponding to the complex A[n] is the *Eilenberg-Maclane spectrum* EM(A[n]), characterized by

$$\pi_m^s(EM(A[n])) = \begin{cases} 0 & \text{for } m \neq n \\ A & \text{for } m = n \end{cases}$$

The cohomology theory represented by EM(A) is singular cohomology:

$$H^n(X,A) \cong \operatorname{Hom}_{SH}(\Sigma^{\infty}X_+, EM(A[n])).$$

Summary

$$\mathbf{Spc} \overset{\boldsymbol{\Sigma}}{\to} \mathbf{Spc}_{*} \overset{\boldsymbol{\Sigma}^{\infty}}{\longleftarrow} \overset{\boldsymbol{\Sigma}}{\mathbf{Spt}}$$

invert weak equivalences

$$\mathcal{H} \xrightarrow{+} \mathcal{H}_{*} \xrightarrow{\Sigma^{\infty}} \mathsf{SH} \qquad \supset \qquad D(\mathbf{Ab})$$

 $\Omega = \Sigma^{-1}$ on SH. SH is a triangulated category with distinguished triangles the homotopy (co)fiber sequences.

Motivic stable homotopy theory

The motivic version of stable homotopy theory follows the same pattern, with changes:

 $\operatorname{Spc} \leadsto \operatorname{Spc}(k)$: presheaves of spaces on Sm/k .

There are two basic functors: the constant presheaf functor $c: \mathbf{Spc} \to \mathbf{Spc}(k)$ and the representable presheaf functor $\mathbf{Sm}/k \to \mathbf{Spc}(k)$.

 $\mathbf{Spc}(k)$ inherits the operations in \mathbf{Spc} by performing them pointwise: e.g. pushouts. The pointed category $\mathbf{Spc}_*(k)$ has e.g. wedge products.

 $\operatorname{Spt} \leadsto \operatorname{Spt}_T(k)$: T-spectra. Let $T = \mathbb{P}^1 \cong S^1 \wedge \mathbb{G}_m$. A T-spectrum \mathcal{E} is

$$\mathcal{E}=(\mathcal{E}_0,\mathcal{E}_1,\ldots) \ + \ \text{bonding maps } \Sigma_T\mathcal{E}_n\to\mathcal{E}_{n+1}$$

$$\Sigma_TE:=E\wedge\mathbb{P}^1.$$

We have adjoint functors $\Sigma_T^{\infty} : \operatorname{Spc}_*(k) \leftrightarrow \operatorname{Spt}_T(k) : \Omega_T^{\infty}$.

One localizes with respect to

- 1. the Nisnevich topology
- 2. \mathbb{A}^1 -homotopy equivalence

For $\operatorname{Spc}_*(k)$, this localization is the *unstable motivic homotopy* category $\mathcal{H}(k)$. For $\operatorname{Spt}_T(k)$, this localization is the *stable motivic homotopy* category $\operatorname{SH}(k)$.

T-spectra and cohomology theories

Cohomology represented by a T-spectrum is

1. Bigraded. Since $\Sigma_T \cong \Sigma_{\mathbb{G}_m} \circ \Sigma_{S^1}$, we have two independent, invertible suspension operators on SH(k). So, generalized motivic cohomology is bi-graded $(X \in Sm/k)$:

$$\mathcal{E}^{n,m}(X) := \operatorname{Hom}_{\mathsf{SH}(k)}(\mathbf{\Sigma}^{\infty}X_{+}, \mathbf{\Sigma}_{\mathbb{G}_{m}}^{m}\mathbf{\Sigma}_{S^{1}}^{n-m}\mathcal{E}).$$

- 2. Satisfies Nisnevich Mayer-Vietoris
- 3. Is \mathbb{A}^1 -homotopy invariant

The localization performed imposes Nisnevich Mayer-Vietoris and \mathbb{A}^1 -homotopy on $\mathcal{E}^{*,*}$.

Motives

In motivic stable homotopy theory, the triangulated category of motives DM(k), plays the role that $D(\mathbf{Ab})$ does in the classical theory.

There is a motivic Eilenberg-Maclane functor

$$EM:DM(k)\to \mathsf{SH}(k)$$

The T-spectrum $\mathcal{H}\mathbb{Z}:=EM(\mathbb{Z})$ represents motivic cohomology:

$$\mathcal{H}\mathbb{Z}^{p,q}(X) = H^p(X,\mathbb{Z}(q)).$$

 S^1 -spectra Rather than inverting Σ_T on ${
m Spc}_*(k)$, one can just invert Σ_{S^1} .

Definition $\operatorname{Spt}_{S^1}(k)$ is the category of *presheaves of spectra on* Sm/k : objects are sequences $X=(X_0,X_1,\ldots)$ in $\operatorname{Spc}_*(k)$ plus bonding maps $\epsilon_n:\Sigma X_n\to X_{n+1}$.

Localizing $\operatorname{Spt}_{S^1}(k)$ to impose Nisnevich Mayer-Vietoris and \mathbb{A}^1 -homotopy invariance gives the homotopy category of S^1 spectra over k, $\operatorname{SH}_s(k)$. This is a triangulated category with shift induced by the usual suspension of spectra.

By forming T-spectra in $\operatorname{Spt}_{S^1}(k)$, one constructs the category of S^1 -T bi-spectra, $\operatorname{Spt}_{s,t}(k)$, with homotopy category equivalent to $\operatorname{SH}(k)$. So, we can freely pass between T spectra and S^1 -T bi-spectra.

Effective motives

Just as SH(k) contains the category of motives DM(k), $SH_s(k)$ contains the category of effective motives $DM^{eff}(k)$.

Note: Voevodsky's cancellation theorem says that the canonical functor

$$DM^{\mathsf{eff}}(k) \to DM^{\mathsf{eff}}(k)$$

is faithful. It is not known if $SH_s(k) \to SH(k)$ is faithful.

Summary

Postnikov towers

The classical Postnikov tower

Let E be a spectrum, n an integer. The n-1-connected cover $E < n > \to E$ of E is a map of spectra such that

- 1. $\pi_m^s(E < n >) = 0$ for $m \le n 1$ and
- 2. $\pi_m^s(E < n >) \to \pi_m^s(E)$ is an isomorphism for $m \ge n$.

One can construct $E < n > \to E$ by killing all the homotopy groups of E in degrees $\geq n$, $E \to E(n)$ (successively coning off each element) and then take the homotopy fiber.

There is a structural approach as well: Let $SH^{eff} \subset SH$ be the full subcategory of -1 connected spectra; this is the same as the smallest subcategory containing all suspension spectra $\Sigma^{\infty}X$ and closed under colimits.

Let $i_n: \Sigma^n \mathsf{SH}^\mathsf{eff} \to \mathsf{SH}$ be the inclusion of the nth suspension of SH^eff . The Brown representability theorem shows that the functor on $\Sigma^n \mathsf{SH}^\mathsf{eff}$

$$A \mapsto \mathsf{Hom}_{\mathsf{SH}}(i_n(A), E)$$

is representable in $\Sigma^n SH^{eff}$; the representing object is the n-1-connected cover $E < n > \to E$.

Forming the tower of subcategories

$$\ldots \subset \Sigma^{n+1} \mathsf{SH}^\mathsf{eff} \subset \Sigma^n \mathsf{SH}^\mathsf{eff} \subset \ldots \subset \mathsf{SH}$$

we have for each E the corresponding $Postnikov\ tower$ of n-1 connected covers

$$\dots E < n + 1 > \dots E < n > \dots \to E$$

natural in E.

The layers

Form the cofiber $E < n + 1 > \rightarrow E < n > \rightarrow E < n/n + 1 >$. Clearly

$$\pi_m^s(E < n/n + 1 >) = \begin{cases} 0 & \text{for } m \neq n \\ \pi_n^s(E) & \text{for } m = n. \end{cases}$$

Obstruction theory gives an isomorphism of E < n/n + 1 > with the Eilenberg-Maclane spectrum $\Sigma^n(EM(\pi_n^s(E))) = EM(\pi_n^s(E)[n])$.

Roughly speaking, the Postnikov tower shows how a spectrum is built out of Eilenberg-Maclane spectra.

From the point of view of the cohomology theory represented by E, the Postnikov tower yields the *Atiyah-Hirzebruch spectral* sequence

$$E_2^{p,q} := H^p(X, \pi_{-q}^s(E)) \Longrightarrow E^{p+q}(X)$$

(there are convergence problems in general).

This is constructed just like the the spectral sequence for a filtered complex, by linking all the long exact sequences coming from applying $\text{Hom}_{\mathsf{SH}}(\Sigma^{\infty}X_+,-)$ to the cofiber sequence $E< n+1> \to E< n> \to E< n/n+1>$.

The sketal filtration

For a CW complex X, one can recover the A-H spectral sequence by applying E to the skeletal filtration of X:

$$\emptyset = X_{-1} \subset X_0 \subset \ldots \subset X_n \subset \ldots \subset X$$

Applying E to the cofiber sequences $X_{p-1} \to X_p \to X_p/X_{p-1} \to \Sigma X_{p-1}$ gives the long exact sequence

$$\dots \to E^{p+q-1}(X_{p-1}) \to E^{p+q}(X_p/X_{p-1}) \to E^{p+q}(X_p) \to E^{p+q}(X_{p-1}) \to \dots$$

which link together to give a spectral sequence.

The universal property of the E < n > identifies the skeletal spectral sequence with the A-H spectral sequence.

The motivic Postnikov tower

Voevodsky has defined the Tate analog of the Postnikov tower:

Let $\mathsf{SH}^{\mathsf{eff}}(k)$ be the smallest full triangulated subcategory of $\mathsf{SH}(k)$ containing all the T-suspension spectra $\Sigma^{\infty}_t A$, $A \in \operatorname{Spc}_*(k)$, and closed under colim.

Taking T-suspensions gives the tower of full triangulated localizing subcategories

$$\ldots \subset \Sigma_t^{n+1} \mathsf{SH}^{\mathsf{eff}}(k) \subset \Sigma_t^n \mathsf{SH}^{\mathsf{eff}}(k) \subset \ldots \subset \mathsf{SH}(k)$$

 $n \in \mathbb{Z}$.

Lemma The inclusion functor $i_n : \Sigma_t^n SH^{eff}(k) \to SH(k)$ admits an exact right adjoint $r_n : SH(k) \to \Sigma_t^n SH^{eff}(k)$.

This follows by Neeman's "Brown representability" theorem applied to the functor on $\Sigma_t^n \mathrm{SH}^{\mathrm{eff}}(k)$

$$F \mapsto \mathsf{Hom}_{\mathsf{SH}(k)}(i_n(F), E)$$

for each $E \in SH(k)$.

Define $f_n := i_n r_n : SH(k) \rightarrow SH(k)$, giving the motivic Postnikov tower

$$\dots \to f_{n+1}E \to f_nE \to \dots \to E.$$

The layers

$$s_n E := \operatorname{cofib}(f_{n+1} E \to f_n E)$$

are Voevodsky's slices.

The Postnikov tower in $SH_s(k)$

Just as one can form an unstable Postnikov tower in \mathcal{H}_* , we have the "semi-stable" motivic Postnikov tower in $SH_s(k)$.

Take the tower of full triangulated subcategories

$$\ldots \subset \Sigma_t^{n+1} \mathsf{SH}_s(k) \subset \Sigma_t^n \mathsf{SH}_s(k) \subset \ldots \subset \Sigma_t \mathsf{SH}_s(k) \subset \mathsf{SH}_s(k)$$

The inclusions $i_{n,s}: \Sigma_t^n SH_s(k) \to SH_s(k)$ have a right adjoint $r_{n,s}: SH_s(k) \to \Sigma_t^n SH_s(k)$, giving us the truncation functors

$$f_{n,s}:\mathsf{SH}_s(k)\to\mathsf{SH}_s(k),$$

and for $E \in SH_s(k)$, the S^1 -motivic Postnikov tower

$$\dots \to f_{n+1,s}E \to f_{n,s}E \to \dots \to f_{1,s}E \to E.$$

Let $s_{n,s}E$ be the cofiber of $f_{n+1,s}E \to f_{n,s}E$.

The homotopy coniveau tower

This construction, based on the Bloch-Lichtenbaum construction of the spectral sequence for K-theory, gives an algebraic version of the (co)skeletal filtration of a CW complex.

Notation:

 $\Delta^n := \operatorname{Spec} k[t_0, \dots, t_n] / \sum_i t_i - 1$ A face F of Δ^n is a closed subscheme defined by $t_{i_1} = \dots = t_{i_r} = 0$.

 $n \mapsto \Delta^n$ extends to the cosimplicial scheme

$$\Delta^*$$
: Ord \rightarrow Sm/ k .

For
$$E \in \operatorname{Spt}(k)$$
, $X \in \operatorname{Sm}/k$, $W \subset X$ closed, set
$$E^W(X) := \operatorname{fib}(E(X) \to E(X \setminus W)).$$

• For $X \in \mathbf{Sm}/k$:

$$\mathbb{S}_X^{(p)}(n) := \{W \subset X \times \Delta^n, \text{closed, codim}_{X \times F} W \cap (X \times F) \ge p\}.$$

• For $E \in \operatorname{Spt}(k)$:

$$E^{(p)}(X,n) := \underset{W \in \mathbb{S}_X^{(p)}(n)}{\text{hocolim }} E^W(X \times \Delta^n).$$

• This gives the simplicial spectrum $E^{(p)}(X)$: $n \mapsto E^{(p)}(X,n)$, and the homotopy coniveau tower

...
$$\to E^{(p+1)}(X) \to E^{(p)}(X) \to \dots \to E^{(0)}(X) = E^{(-1)}(X) = \dots$$

Remark: $X \mapsto E^{(p)}(X)$ is functorial in X for flat maps.

Properties of the HC tower

Fix an $E \in \mathbf{Spt}(k)$. We will assume 2 basic properties hold for E:

- 1. homotopy invariance: For all $X \in \text{Sm}/k$, $E(X) \to E(X \times \mathbb{A}^1)$ is a stable weak equivalence.
- 2. Nisnevic excision: Let $f: Y \to X$ be an étale map in Sm/k . Suppose $W \subset X$ is a closed subset such that $f: f^{-1}(W) \to W$ is an isomorphism. Then $f^*: E^W(X) \to E^{f^{-1}(W)}(Y)$ is a stable weak equivalence.

We also assume that k is an infinite perfect field.

Theorem Let E be in $\mathbf{Spt}(k)$ satisfying properties 1 and 2. Then

- (1) $X \mapsto E^{(p)}(X)$ extends (up to weak equivalence) to a functor $E^{(p)}: \operatorname{Sm}/k^{\operatorname{op}} \to \operatorname{Spt}$.
- (2) Localization. Let $i:W\to X$ be a closed codimension d closed embedding in Sm/k , with trivialized normal bundle, and open complement $j:U\to X$. There is a natural homotopy fiber sequence in SH

$$(\Omega_t^d E)^{(p-d)}(W) \to E^{(p)}(X) \xrightarrow{j^*} E^{(p)}(U)$$

(3) Delooping. There is a natural weak equivalence

$$(\Omega_t^m E)^{(n)} \xrightarrow{\sim} \Omega_t^m (E^{(n+m)})$$

- (1) Functoriality: this is proven using Chow's moving lemma, just as for Bloch's cycle complexes.
- (2) Localization: this is proven using Bloch's moving lemma (blowing up) just as for Bloch's cycle complexes.
- (3) Delooping follows from the localization sequence:

$$(\Omega_t E)^{(n)}(X \times 0) \to E^{(n+1)}(X \times \mathbb{P}^1) \to E^{(n+1)}(X \times \mathbb{A}^1)$$

and the natural weak equivalence

$$\mathsf{fib}(F(X \times \mathbb{P}^1) \to F(X \times \mathbb{A}^1)) \cong (\Omega_t F)(X).$$

For $q \ge p$, set $E^{(p/q)}(X) := \text{cofib}(E^{(q)}(X) \to E^{(p)}(X))$.

Corollary (Birationality) Take $E \in \operatorname{Spt}(k)$, $X \in \operatorname{Sm}/k$, Then $E^{(0/1)}(X) \cong E^{(0/1)}(k(X))$.

Proof: Take $W\subset X$ smooth with trivial normal bundle, codim d>0. Let $F=\Omega^d_t E$, $U=X\setminus W$. Localization \Longrightarrow we have a fiber sequence

$$F^{(0-d/1-d)}(W) \to E^{(0/1)}(X) \to E^{(0/1)}(U)$$

But $1 - d \le 0$, so $F^{(-d)}(W) = F^{(1-d)}(W) = F(W)$ and thus $F^{(0-d/1-d)}(W) \sim *$.

For general W, the same follows by stratifying.

The comparison theorem

Theorem (1) For E satisfying (1) and (2), $E^{(n)}$ is in $\Sigma_T^n SH_s(k)$.

(2) The map $E^{(n)} \to f_{n,s}E$ induced by $E^{(n)} \to E$ is an isomorphism

The motivic Postnikov tower is just a homotopy invariant version of the coniveau filtration.

The delooping identity $\Omega_t(E^{(n+1)}) \cong (\Omega_t E)^{(n)}$ gives

Corollary
$$\Omega_t \circ f_{n+1,s} \cong f_{n,s} \circ \Omega_t$$
.

This yields the motivic Freudenthal suspension theorem:

Theorem
$$E \in \Sigma_t^n SH_s(k) \Longrightarrow \Omega_t \Sigma_t E \in \Sigma_t^n SH_s(k)$$

This allows one to use the semi-stable Postnikov tower to compute the stable one via

Corollary
$$E \in \Sigma_t^n SH_s(k) \Longrightarrow \Omega_t^\infty \Sigma_t^\infty E \in \Sigma_t^n SH_s(k)$$

The stable homotopy coniveau tower

Let

$$\mathcal{E} := (E_0, E_1, \dots, E_n, \dots)$$

$$\epsilon_n : E_n \to \Omega_T E_{n+1}$$

be an (s,t)-spectrum over k. We assume that the ϵ_n are weak equivalences.

For each n, m we have the weak equivalence $\epsilon_n^{< m>}$:

$$E_n^{(n+m)} \xrightarrow{(\epsilon_n)^{(n+m)}} (\Omega_T E_{n+1})^{(n+m)} \xrightarrow{\text{deloop}} \Omega_T (E_{n+1}^{(n+m+1)})$$

Set:

$$\mathcal{E} < m > := (E_0^{(m)}, E_1^{(m+1)}, \dots, E_n^{(m+n)}, \dots)$$

with bonding maps $\epsilon_n^{< m>}$.

The homotopy coniveau towers

$$\ldots \to E_n^{(m+n+1)} \to E_n^{(m+n)} \to \ldots$$

fit together to form the T-stable homotopy coniveau tower

$$\ldots \to \mathcal{E} < m + 1 > \to \mathcal{E} < m > \to \ldots \to \mathcal{E} < 0 > \to \mathcal{E} < -1 > \to \ldots \to \mathcal{E}.$$

in SH(k).

The stable comparison theorem

Theorem (1) For $\mathcal{E} \in SH(k)$, $\mathcal{E} < n > is in \Sigma_t^n SH^{eff}(k)$.

(2) For each $\mathcal{E} \in SH(k)$, the canonical map $h: \mathcal{E} < n > \to f_n \mathcal{E}$ is an isomorphism.

These results follow easily from the S^1 results.

Some results

- 1. $s_0(S_k) = \mathcal{H}\mathbb{Z}$ (a theorem of Voevodsky), $S_k := \Sigma_t^{\infty} \operatorname{Spec} k_+$.
- 2. $s_n(\mathfrak{K}) = \Sigma_t^n(\mathfrak{H}\mathbb{Z})$. This yields the Atiyah-Hirzebruch spectral sequence for K-theory:

$$E_2^{p,q} := H^{p-q}(X, \mathbb{Z}(-q)) \Longrightarrow K_{-p-q}(X)$$

This is the same one as constructed by Bloch-Lichtenbaum (for fields) and extended to arbitrary X by Friedlander-Suslin.

3. The layers $s_n E$ are all *motives*: There is an equivalence of categories (\emptyset stvær-Röndigs)

$$EM:DM(k)\to \mathbb{HZ} ext{-}\mathsf{Mod}$$

Since each $E \in SH(k)$ is an S_k -modules, s_nE is thus an $s_0(S_k) = \mathcal{H}\mathbb{Z}$ -module.

In fact, there is a canonical *birational motive* $\pi_n^{\mu}(E)$ in DM(k) with

$$\sum_{t=0}^{n} EM(\pi_{n}^{\mu}(E)) = EM(\pi_{n}^{\mu}(E)(n)[2n]) = s_{n}E.$$

A birational motive M (following Kahn-Sujatha) is one that is locally constant in the Zariski topology on \mathbf{Sm}/k : the restriction map from X to an open subscheme U induces an isomorphism

 $\operatorname{Hom}_{DM(k)}(M_{\operatorname{gm}}(X),M[i]) \to \operatorname{Hom}_{DM(k)}(M_{\operatorname{gm}}(U),M[i])$ We can think of $\pi_n^{\mu}(E)$ as the *nth homotopy motive* of E. 4. The slice tower yields the *motivic Atiyah-Hirzebruch spectral* sequence

$$E_2^{p,q} := H^{p-q}(X, \pi_{-q}^{\mu}(E)(-q)) \Longrightarrow E^{p+q}(X)$$

Here

$$H^{p}(X, \pi_{-q}^{\mu}(E)(-q)) := \text{Hom}_{DM(k)}(M(X), \pi_{-q}^{\mu}(E)(-q)[p-q]).$$

The change in cohomological index comes from the shift [-2q] rather than [-q] in the topological version.

Computations and examples

The birational homotopy motives

For presheaf of spectra E, we have the birational motive $\pi_n^{\mu}(E)$ and the identity

$$s_n(E) = EM(\pi_n^{\mu}(E)(n)[2n]).$$

This allows us to decribed $s_n(E)$ as a "generalized cycle complex".

Let $X^{(n)}(m)$ be the set of points $w \in X \times \Delta^m$ with closure \bar{w} in good position.

Theorem Take $E \in \operatorname{Spt}_{S^1}(k)$ satisfying properties 1 and 2 and take $X \in \operatorname{Sm}/k$. Then

1.
$$\pi_n^{\mu}(E)(X) = s_0(\Omega_t^n E)(X) \cong (\Omega_t^n E)^{(0/1)}(k(X))$$

2. There is a simplicial spectrum $E_{s.l.}^{(n)}(X)$, with

$$E_{s.l.}^{(n)}(X)(m) \cong \bigoplus_{w \in X^{(n)}(m)} s_0(\Omega_t^n E)(w)$$

and with $s_n E(X)$ is isomorphic in SH to $E_{s,l}^{(n)}(X)$.

The homotopy groups $\pi_m(s_n E(X))$ of $s_n E(X)$ are the higher Chow groups of X with coefficients $\pi_n^{\mu}(E)$.

The semi-local \triangle

For a field F, let $\Delta_{F,0}^n = \operatorname{Spec}(\mathcal{O}_{\Delta_F^n,v})$, the "semi-local" n simplex.

It follows directly from the comparison theorem that the coefficient motive $\pi_n^{\mu}(E)$ is given by

$$\pi_n^{\mu}(E)(X) \cong (\Omega_t^n E)^{(0/1)}(k(X)) = (\Omega_t^n E)(\Delta_{k(X),0}^*)$$

The nth homotopy motive of E is $\Omega_t^n E$ made k(t)-homotopy invariant.

Some examples

(1) One can calculate $s_nK(X)$ directly using these results. It is not hard to see that

$$(\Omega_t^n K)^{(0/1)}(w) = K^{(0/1)}(w) = EM(K_0(k(w))) = EM(\mathbb{Z}),$$

so we get $K_{s.l.}^{(n)}(X)=z^n(X,*)$. In terms of the homotopy motives, this gives

$$\pi_n^{\mu}(K) = \mathbb{Z}$$

just like for topological K-theory.

(2) The coefficient spectrum $s_0(\Omega_t^n E)$ has been computed explicitly for some other E, for example $E = K_A$, $K_A(X) := K(X; A)$, for A a c.s.a. over k (w. Bruno Kahn). We get

$$(\Omega_t^n K_{\mathcal{A}})^{(0/1)}(w) = K_{\mathcal{A}}^{(0/1)}(w) = EM(K_0(k(w) \otimes_k \mathcal{A})).$$

In terms of motives, this gives

$$\pi_n^{\mu}(K_{\mathcal{A}}) = \mathbb{Z}_{\mathcal{A}}$$

where $\mathbb{Z}_{\mathcal{A}}$ is the birational homotopy invariant presheaf with value $K_0(k(X) \otimes_k \mathcal{A})$ on X.

(3) (with C.Serpé) Let a finite group G act on a (smooth) k-scheme X. Consider the presheaf $K_{G,X}$

$$K_{G,X}(Y) := K(G, X \times Y)$$

the K-theory of the category of G-bundles over the $G \times$ id action on $X \times Y$. Then (for $W \subset X \times Y$)

$$(\Omega_t^n K_{G;X})^{(0/1)}(w) = K_{G;X}^{(0/1)}(w) = EM(K_0(k(w)^{tw}[G])),$$

with $k(w)^{tw}[G]$ the twisted group ring. We denote this motive by $R_{G;X}$. This gives

$$\pi_n^{\mu} K_{G,X} = R_{G,X}$$

All three examples give strongly convergent A-H spectral sequences.

We concentrate on the example K_A :

$$E_2^{p,q} = H^{p-q}(X, \mathbb{Z}_{\mathcal{A}}(-q)) \Longrightarrow K_{-p-q}(X, \mathcal{A}).$$

So:
$$K_0(\mathcal{A}) = H^0(k, \mathbb{Z}_{\mathcal{A}}), K_1(\mathcal{A}) = H^1(k, \mathbb{Z}_{\mathcal{A}}(1)).$$

For $X=\operatorname{Spec} k$, and $\deg \mathcal{A}=p$ prime, $H^n(k,\mathbb{Z}_{\mathcal{A}}(1))=0$ for $n\neq 1$, so

$$K_2(\mathcal{A}) = H^2(k, \mathbb{Z}_{\mathcal{A}}(2)),$$

and we have an exact sequence

$$0 \to H^1(k, \mathbb{Z}_s A(2) \to K_3(\mathcal{A}) \to H^3(k, \mathbb{Z}_A(3)) \to 0.$$

The inclusion $\mathbb{Z}_{\mathcal{A}} \to \mathbb{Z}$ induces the *reduced norm*

$$H^p(k,\mathbb{Z}_A(q)) \to H^p(k,\mathbb{Z}(q))$$

which is the usual reduced norm on K-theory for (p,q)=(0,0),(1,1),(2,2).

Oriented higher Chow groups?

One can apply this machinery to hermitian K-theory/Grothendieck-Witt theory. It's not clear what one gets.

Questions: What is the "coefficient spectrum" $(\Omega_p^t GW)(\Delta_{k(X),0}^*)$? Is it an Eilenberg-Maclane spectrum? Is

$$\widetilde{CH}^p(X) = H^{2p}(X, \pi_p^{\mu}(GW)(p))$$
?

For a field F, is

$$J^{p}(F) = H^{p}(F, \pi_{p}^{\mu}(GW)(p))?$$

The Postnikov tower for motives

One defines the motivic Postnikov tower inside DM(k) or $DM^{\text{eff}}(k)$ directly by using

$$\ldots \subset DM^{\mathsf{eff}}(k)(n+1) \subset DM^{\mathsf{eff}}(k)(n) \subset \ldots \subset DM^{\mathsf{eff}}(k) \subset \ldots \subset DM(k)$$

The cancellation theorem gives a simple formula for $f_n = f_{n,s}$ (for $E \in DM^{\text{eff}}(k)$):

$$f_n M = \mathcal{H}om_{DM}^{eff}(\mathbb{Z}(n), M)(n)$$

(Kahn).

The homotopy coniveau approach also works.

The slices for M(X)

Since $DM^{\text{eff}}(k)$ is a category of complexes of sheaves on \mathbf{Sm}/k , we have the cohomology sheaves \mathcal{H}^m of a motive. Recall:

$$\pi_n^{\mu}(M) := s_n(M)(-n)[-2n]$$

$$= \operatorname{cofib}[\mathcal{H}om_{DM}^{\text{eff}}(\mathbb{Z}(n+1)[2n], M)(1)$$

$$\xrightarrow{ev} \mathcal{H}om_{DM}^{\text{eff}}(\mathbb{Z}(n)[2n], M)]$$

For X projective over k, we have the birational sheaf $\underline{CH}_r(X)$

$$\underline{CH}_r(X)(Y) := \mathsf{CH}_r(X_{k(Y)}).$$

Proposition (Huber-Kahn-Sujatha) Let X be smooth projective over k.

- 1. For $0 \le n \le \dim X$, $\mathcal{H}^{m}(\pi_{n}^{\mu}(M(X))) = 0$ for m > 0 and $\mathcal{H}^{0}(\pi_{n}^{\mu}(M(X))) = \underline{CH}_{n}(X)$.
- 2. For $n > \dim X$, $f_n(M(X)) = 0$.

Note: In general, $\mathcal{H}^m(\pi_n^\mu(M(X))) \neq 0$ for m < 0. But $\pi_n^\mu(M(\mathbb{P}^N)) = \mathbb{Z}$

for $0 \le n \le N$.

Theorem (Kahn-L.) Let X = SB(A), deg(A) = p. Then

$$\pi_n^{\mu}(M(X)) = \mathbb{Z}_{A^{\otimes d-n}} = \underline{CH}_n(X)$$

$$0 \le n \le d = p - 1$$
.

Sketch of proof: For E a (fibrant) presheaf of spectra, we have the presheaf $R\mathcal{H}om(X,E)$:

$$R\mathcal{H}om(X,E)(Y) := E(X \times Y)$$

One shows: $s_0R\mathcal{H}om(X,f_mE)\sim *$ for m> dim X. Applying $s_0R\mathcal{H}om(X,-)$ to the Postnikov tower for E

$$\dots \to f_{m+1}E \to f_mE \to \dots \to E$$

gives the finite tower

$$s_0 R \mathcal{H}om(X, f_d E) \to \ldots \to s_0 R \mathcal{H}om(X, E)$$

with layers $s_0 R \mathcal{H}om(X, s_n E)$, $n = 0, \dots d$.

Evaluating at some $Y \in \mathbf{Sm}/k$, we have the strongly convergent spectral sequence

$$E_{a,b}^{1} = \pi_{a+b}s_0R\mathcal{H}om(X, s_aE)(Y) \Longrightarrow \pi_{a+b}s_0R\mathcal{H}om(X, E)(Y).$$
(*)

By Quillen's computation of the K-theory of SB varieties, we have (for $X=SB(\mathcal{A})$)

$$R\mathcal{H}om(X,K) = \bigoplus_{i=0}^{d} K_{\mathcal{A}^{\otimes i}}.$$

For E=K, Adams operations act on (*): it degenerates at E_1 giving

$$\bigoplus_{i=0}^{d} \mathbb{Z}_{\mathcal{A} \otimes i} = s_0(\bigoplus_{i=0}^{d} K_{\mathcal{A} \otimes i})
= s_0 R \mathcal{H}om(X, K)
= \bigoplus_{i=0}^{d} s_0 R \mathcal{H}om(X, s_a K)$$

By our computations of the slices of K-theory, we have $(a \leq d)$

$$R\mathcal{H}om(X, s_a K) = R\mathcal{H}om(X, EM(\mathbb{Z}(a)[2a]))$$

 $= \text{Hom}_{DM^{\text{eff}}}(M(X), \mathbb{Z}(a)[2a])$
 $= \text{Hom}_{DM^{\text{eff}}}(M(X)(d-a)[2d-2a], \mathbb{Z}(d)[2d])$
 $= \text{Hom}_{DM^{\text{eff}}}(\mathbb{Z}(d-a)[2d-2a], M(X))$
 $= f_{d-a}(M(X))(a-d)[2a-2d]$

Taking s_0 gives

$$s_0 R \mathcal{H}om(X, s_a K) \cong \pi_{d-a}^{\mu}(M(X))$$

SO

$$\bigoplus_{a=0}^{d} \pi_{d-a}^{\mu}(M(X)) \cong \bigoplus_{i=0}^{d} \mathbb{Z}_{\mathcal{A}^{\otimes i}}$$

hence

$$\mathcal{H}^{m}(\pi_{d-a}^{\mu}(M(X))) = 0 \text{ for } m \neq 0$$

The rest is bookkeeping.

Corollary Let A be a c.s.a over k of prime rank. Then

$$Nrd: K_2(\mathcal{A}) \to K_2(k)$$

is injective. (Assume BK in weight 3)

Sketch of proof:

$$K_2(\mathcal{A}) = H^2(k, \mathbb{Z}_{\mathcal{A}}(2)) = \operatorname{Hom}_{DM}(\mathbb{Z}, \mathbb{Z}_{\mathcal{A}}(2)[2]).$$

Let X = SB(A). The Postnikov tower

$$f_d M(X) \to \ldots \to f_1 M(X) \to M(X)$$

has layers $s_{d-a}M(X)=\mathbb{Z}_{\mathcal{A}\otimes a}(a)[2a]$. Applying $\mathrm{Hom}_{DM}(\mathbb{Z},-)$ to M(X)(3-d)[4-2d] gives

$$\operatorname{Hom}_{DM}(\mathbb{Z}, \mathbb{Z}_{\mathcal{A}}(2)[2]) = \operatorname{Hom}_{DM}(\mathbb{Z}, M(X)(3-d)[4-2d])$$

Using duality, this gives

$$K_2(A) = \text{Hom}_{DM}(M(X), \mathbb{Z}(3)[4]) = H^4(X, \mathbb{Z}(3)).$$

By Beilinson-Lichtenbaum, we have

$$H^4(X,\mathbb{Z}(3)) = H^4_{\text{\'et}}(X,\mathbb{Z}(3)) = \text{Hom}_{DM}(M(X)_{\text{\'et}},\mathbb{Z}(3)_{\text{\'et}}[4])$$

But $M(X)_{\text{\'et}}$ has slices $(\mathbb{Z}_{A^{\otimes i}}(i)[2i])_{\text{\'et}} = \mathbb{Z}(i)_{\text{\'et}}[2i]$ and the spectral sequence for the Postnikov tower of $M(X)_{et}$ gives

$$0 \to H^4_{\text{\'et}}(X,\mathbb{Z}(3)) \to H^2_{\text{\'et}}(k,\mathbb{Z}(2)) \to H^5_{\text{\'et}}(k,\mathbb{Z}(3))$$

By Beilinson-Lichtenbaum again,

$$H^2_{\text{\'et}}(k,\mathbb{Z}(2)) = H^2(k,\mathbb{Z}(2)) = K_2(k)$$

giving

$$0 \to K_2(\mathcal{A}) \to K_2(k) \to H^5_{\mathrm{\acute{e}t}}(k,\mathbb{Z}(3))$$

Singular cohomology

Ayoub pointed out that $H^*_{\text{\'et}}(-,\mathbb{Z}/n)$ has all slices 0 (for $k\supset \mu_n$):

$$H_{\text{\'et}}^*(-,\mathbb{Z}/n) = \lim_{n \to \infty} H^*(-,\mathbb{Z}/n(q))$$

so is effective and equal to its own Tate twist.

The same is not true for $H^*_{sing}(-,\mathbb{Z})$ (for $k=\mathbb{C}$): using Hodge theory one can show that the 0th slice is non-zero when evaluated at e.g. an elliptic curve.

Probably this is also true for $H_{\text{\'et}}^*(-,\mathbb{Z}_\ell)$ or $H_{\text{\'et}}^*(-,\mathbb{Q}_\ell)$?

Questions:

- 1. How can one describe the cohomology theories $f_nH_{\text{sing}}(-,\mathbb{Z})$, $s_nH_{\text{sing}}(-,\mathbb{Z})$? Do these have something to do with cycles mod algebraic equivalence (via Bloch's formula)?
- 2. What is the relation with the coniveau filtration on $H_{sing}(-,\mathbb{Z})$?
- 3. What about the generalized Hodge conjecture (cf. work of Huber)?

Thank you,

and

Happy Birthday, Spencer!