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Homotopy theory

and
motivic homotopy theory



Homotopy theory in 60 seconds

SH is the stable homotopy category. The localization of the
category Spt of spectra with respect to stable weak equivalence.

A spectrum is a sequence of pointed spaces E = (Eg, Eq,...)
plus bonding maps >En, — E,41. A map f: E — F is a sta-
ble weak equivalence if f induces an isomorphism on the stable
homotopy groups:

T (E) = limm, 4 y(EN).



A spectrum E gives a generalized cohomology theory by
E™(X) := Homgy(XZ®°X,,>"E)
with X a space (simplicial set),
YOXy = (X, XX, XXy, )
and

S"(Eo, Ex,--.) i= (En, Bpg1,- )

We go from spaces to spectra by taking >°°. Conversely, sending
a spectrum E = (Eg, E1,...) to its Oth-space

gives a right adjoint to the infinite suspension functor >°°.
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SH and D(Ab)

For us, a space is a simplicial set, Spc is the category of spaces.
Replacing simplicial sets with simplicial abelian groups and re-
peating the above construction, we get the unbounded derived
category D(Ab) together with a (non-full!) embedding

D(Ab) — SH.

This allows one to think of stable homotopy theory as an exten-
sion of homological algebra.



For example, the object of SH corresponding to the complex A[n]
is the Eilenberg-Maclane spectrum EM(A[n]), characterized by

0 for m #=n
A form=n

Tm(EM(A[n])) = {

The cohomology theory represented by EM(A) is singular coho-
mology:

H™(X, A) = Homgp(Z® X, EM(A[n])).



Summary

) g O)
SpciSpc* Z: Spt
() 0
(92 [93

linvert weak equivalences

) g O
H-F-, SZ; SH > D(Ab)
<ﬁ> <§>

Q=>"1lonSH. SHisa triangulated category with distinguished
triangles the homotopy (co)fiber sequences.
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Motivic stable homotopy theory
T he motivic version of stable homotopy theory follows the same
pattern, with changes:

Spc ~ Spc(k): presheaves of spaces on Sm/k.

There are two basic functors: the constant presheaf functor
¢ : Spc — Spc(k) and the representable presheaf functor Sm/k —

Spc(k).

Spc(k) inherits the operations in Spc by performing them point-
wise: e.g. pushouts. The pointed category Spc,(k) has e.g.
wedge products.
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Spt ~» Spt(k): T-spectra. Let T = P! =2 SIAG,,. A T-spectrum
€ is

& =1(€0,€1,...) + bonding maps Z7&n — €41
>rFE :=EAPL

We have adjoint functors X%° : Spc,(k) < Sptp(k) : Q.
One localizes with respect to

1. the Nisnevich topology
2. Al-homotopy equivalence

For Spc,(k), this localization is the unstable motivic homotopy
category H(k). For Sptr(k), this localization is the stable mo-
tivic homotopy category SH(k).
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T-spectra and cohomology theories
Cohomology represented by a T-spectrum is

1. Bigraded. Since X = > g, ©2g1, We have two indepen-
dent, invertible suspension operators on SH(k). So, generalized
motivic cohomology is bi-graded (X € Sm/k):

En’m(X) L= HomSH(k>(Z°°X_|_, Z@ng’;]mﬁ)

2. Satisfies Nisnevich Mayer-Vietoris
3. Is Al-homotopy invariant
The localization performed imposes Nisnevich Mayer-Vietoris and

Al-homotopy on &**.
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Motives
In motivic stable homotopy theory, the triangulated category of
motives DM (k), plays the role that D(Ab) does in the classical

theory.
There is a motivic Eilenberg-Maclane functor
EM : DM (k) — SH(k)
The T-spectrum HZ = EM(Z) represents motivic cohomology:

HZPU(X) = HP (X, Z(q)).
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Sl_spectra Rather than inverting X7 on Spc,(k), one can just
invert > ¢1.

Definition Sptgi(k) is the category of presheaves of spectra on
Sm/k: objects are sequences X = (X, X1,...) in Spc,(k) plus
bonding maps e, : 2 Xn — X, 41.

Localizing Sptgi1(k) to impose Nisnevich Mayer-Vietoris and Al-
homotopy invariance gives the homotopy category of S1 spectra
over k, SHs(k). Thisis a triangulated category with shift induced
by the usual suspension of spectra.

By forming T-spectra in Sptgi(k), one constructs the category
of S1-T bi-spectra, Sptsyt(k), with homotopy category equivalent
to SH(k). So, we can freely pass between T spectra and sl
bi-spectra.
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Effective motives

Just as SH(k) contains the category of motives DM (k), SHs(k)
contains the category of effective motives DM€ (k).

Note: Voevodsky's cancellation theorem says that the canonical
functor

DMET (k) — DMET (k)
is faithful. It is not known if SHs(k) — SH(k) is faithful.
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Summary

H(k)———DM(k)

e

H(k) —F— 3. (k) - SH(s1)(k)~———DM (k)

Qs ,t
ZOO
QOO
) <_>DMefF

e

(k)
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Postnhikov towers
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T he classical Postnikov tower
Let £ be a spectrum, n an integer. The n-1-connected cover
E<n> — FE of E is a map of spectra such that

1. 73 (E<n>) =0 for m <n—1 and
2. w3 (E<n>) — w2 (F) is an isomorphism for m > n.

One can construct E<n> — FE by Killing all the homotopy groups
of E in degrees > n, E — FE(n) (successively coning off each
element) and then take the homotopy fiber.
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There is a structural approach as well: Let SHET = SH be the
full subcategory of -1 connected spectra; this is the same as the
smallest subcategory containing all suspension spectra >°°X and
closed under colimits.

Let i, : S"SHET . SH be the inclusion of the nth suspension
of SHET. The Brown representability theorem shows that the
functor on ="SHeff

A — Homgpy(in(A), E)

is representable in —"SHe: the representing object is the n-1-
connected cover E<n> — F.

20



Forming the tower of subcategories

. xntlgyef - sngyeff -~ sH

we have for each E the corresponding Postnikov tower of n-1
connected covers

. E<n+1>— E<n>— ... —> F

natural in E.
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The layers

Form the cofiber E<n 4+ 1> — E<n> — E<n/n + 1>. Clearly

o) for m#=n
s (E)  for m =n.

T (E<n/n+ 1>) = {

Obstruction theory gives an isomorphism of E<n/n-+41> with the
Eilenberg-Maclane spectrum X"(EM(n;(E))) = EM () (E)[n]).

Roughly speaking, the Postnikov tower shows how a spectrum
is built out of Eilenberg-Maclane spectra.
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From the point of view of the cohomology theory represented
by E, the Postnikov tower yields the Atiyah-Hirzebruch spectral

sequence
ERY = HP(X,n® (E)) = EFTY(X)

(there are convergence problems in general).

This is constructed just like the the spectral sequence for a

filtered complex, by linking all the long exact sequences com-

ing from applying Homgy(X*°X,,—) to the cofiber sequence
E<n+1> — E<n> — E<n/n 4+ 1>.
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T he sketal filtration
For a CW complex X, one can recover the A-H spectral sequence
by applying E to the skeletal filtration of X:

l=X_1CXpC...CXnC...CX

Applying E to the cofiber sequences X

2 X,_1 gives the long exact sequence

= BPT(x, 1) — EPTI(Xp/ X))
— EPTI(Xp) — EPTI(X, 1) — ...

which link together to give a spectral sequence.

The universal property of the E<n> identifies the skeletal spec-
tral sequence with the A-H spectral sequence.
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T he motivic Postnikov tower
Voevodsky has defined the Tate analog of the Postnikov tower:

Let SHE™M (k) be the smallest full triangulated subcategory of
SH(k) containing all the T-suspension spectra >°A, A € Spc,(k),
and closed under colim.

Taking T-suspensions gives the tower of full triangulated local-
izing subcategories

.= IsHeT (k) ¢ ZPSHEM (k) ¢ ... C SH(k)
n € 7.
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Lemma The inclusion functor ip, : “PSH®T (k) — SH(k) admits
an exact right adjoint r : SH(k) — ZPSHeT (k).

This follows by Neeman’'s “Brown representability” theorem ap-
plied to the functor on Z2?SHeM (k)
for each £ € SH(k).
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Define f, .= inrn : SH(k) — SH(k), giving the motivic Postnikov
tower

.= fpp1b— B — ... —> E.
The layers
snB = cofib(fp,41E — fnkE)

are VVoevodsky's slices.
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The Postnikov tower in SH,(k)

Just as one can form an unstable Postnikov tower in Hs, we have
the ‘“semi-stable” motivic Postnikov tower in SHg(k).

Take the tower of full triangulated subcategories

.. C IPTISH (k) € ZPSHs(K) C ... C Z;SHs(k) C SHs(k)

The inclusions ins @ X}SHs(k) — SHs(k) have a right adjoint
rn,s - SHs(k) — ZPSHs(k), giving us the truncation functors

fn,s SHs(k) — SHs(k),
and for E € SH4(k), the Sl-motivic Postnikov tower
.= Jnt1sE — fnsb — ... — f1sE — B

Let sp sk be the cofiber of f,11 F — fnsE.
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The homotopy coniveau tower

This construction, based on the Bloch-Lichtenbaum construc-
tion of the spectral sequence for K-theory, gives an algebraic
version of the (co)skeletal filtration of a CW complex.
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Notation:

A" .= Speckl[tg,...,tn]/ > ;t; — 1
A face F of A" is a closed subscheme defined by

ti1:°°°:tir:O-

n — A" extends to the cosimplicial scheme

A" : Ord — Sm/k.

For E € Spt(k), X € Sm/k, W C X closed, set
EV(X) :=fib(E(X) — E(X \ W)).
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e For X € Sm/k:

Sg?>(n) = {W C X x A", closed, codimyxrpW N (X x F) > p}.

e For E € Spt(k):

EP) (X, n) := hocolim EW(X x A™).
wes) (n)

e This gives the simplicial spectrum E®)(X): n — E®) (X, n),
and the homotopy coniveau tower

S EetLUx) S B (x) 5 . S EOx) = ECD(x) = ...

Remark: X — E®)(X) is functorial in X for flat maps.
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Properties of the HC tower
Fix an E € Spt(k). We will assume 2 basic properties hold for

E:

1. homotopy invariance: For all X € Sm/k, E(X) — E(X x Al)
IS a stable weak equivalence.

2. Nisnevic excision: Let f:Y — X be an étale map in Sm/k.
Suppose W C X is a closed subset such that f: f—l(W) — W
is an isomorphism. Then f* : EW(X) — E/TV)(v) is a
stable weak equivalence.

We also assume that k is an infinite perfect field.
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Theorem Let E be in Spt(k) satisfying properties 1 and 2.
Then

(1) X — EWP)(X) extends (up to weak equivalence) to a functor
E®) : Sm/k°P — Spt.

(2) Localization. Let ¢ : W — X be a closed codimension d
closed embedding in Sm/k, with trivialized normal bundle, and
open complement 3 : U — X. There is a natural homotopy fiber

sequence in SH

QB P~ D(w) - EX(x) L 5@ ()

(3) Delooping. There is a natural weak equivalence
(QE)™ = @ (Bt
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(1) Functoriality: this is proven using Chow's moving lemma,
just as for Bloch's cycle complexes.

(2) Localization: this is proven using Bloch’'s moving lemma

(blowing up) just as for Bloch's cycle complexes.

(3) Delooping follows from the localization sequence:
(%E) ™ (X x 0) - BT (x x Py » pntD(x x AD)

and the natural weak equivalence

fib(F(X x P1) — F(X x A1) 2 (Q,F)(X).
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For ¢ > p, set B/ (X) := cofib(ED(X) — E®)(X)).

Corollary (Birationality) Take E € Spt(k), X € Sm/k, Then

2O/ x) =2 5O/ (k(x)).

Proof: Take W C X smooth with trivial normal bundle, codim
d>0. Let F=Q¢E, U =X\ W. Localization = we have a
fiber sequence

pO=d/1-d)yry -, pO/D)(xy . g0/ (1)

But 1 —d < 0, so F&CDw) = FA-d(w) = F(W) and thus
FO=d/1=D) (W) ~ «.

For general W, the same follows by stratifying.
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The comparison theorem
Theorem (1) For E satisfying (1) and (2), E( is in Z2.SH(k).

(2) The map E( — f, E induced by E(™) — E is an isomor-
phism

The motivic Postnikov tower is just a homotopy invariant
version of the coniveau filtration.
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The delooping identity Q(EM+T1)Y) = (Q,E)(™ gives
Corollary €2;0 fy, 415 = fn,s 0.
This yields the motivic Freudenthal suspension theorem:

Theorem FE € XPSHs(k) = 431 F € Z7SHs(k)

This allows one to use the semi-stable Postnikov tower to com-
pute the stable one via

Corollary FE € X}SHs(k) == Q> °F € X}'SHs(k)
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The stable homotopy coniveau tower

Let
E = (Eo,El,...,En,...)

be an (s,t)-spectrum over k. We assume that the ¢, are weak
equivalences.

For each n,m we have the weak equivalence e5™~:

() L) (B qp) (Mt S5208, QT(quTEmjL )

Set:
E<m> = (™, B{Y L Eimtm) )
with bonding maps 5™~
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The homotopy coniveau towers

o E7§Lm—|—n—|—1) . 7gjfm—l—n) L

fit together to form the T'-stable homotopy coniveau tower

= e<m+ 1> —-E<im> — ... = E<O> - E<—1> — ... = €.

in SH(k).
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The stable comparison theorem
Theorem (1) For & € SH(k), E<n> is in ZPSHe (k).

(2) For each & € SH(k), the canonical map h : E<n> — fr€ is an
i[somorphism.

These results follow easily from the S results.
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Some results
1. 50(Sk) = HZ (a theorem of Voevodsky), Sy := Z°Speck,.

2. sp(K) = ZP(HZ). This yields the Atiyah-Hirzebruch spectral
sequence for K-theory:

ESY = HPTUX,Z(—q)) = K_p—¢(X)

This is the same one as constructed by Bloch-Lichtenbaum (for
fields) and extended to arbitrary X by Friedlander-Suslin.
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3. The layers s, E are all motives: There is an equivalence of
categories (Dstveer-Rondigs)

EM : DM (k) — HZ-Mod

Since each E € SH(k) is an Si-modules, spE is thus an sg(S) =
HZ-module.

In fact, there is a canonical birational motive wh(E) in DM (k)
with
SPEM (nf(E)) = EM (xf(E)(n)[2n]) = snE.

A birational motive M (following Kahn-Sujatha) is one that is
locally constant in the Zariski topology on Sm/k: the restriction
map from X to an open subscheme U induces an isomorphism

Hom p sy (Mgm (X)), M[i]) — Hom p ) (Mgm(U), Mi])
We can think of 7 (E) as the nth homotopy motive of E.
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4. The slice tower vields the motivic Atiyah-Hirzebruch spectral
sequence

EY? = HPTI(X, " (B)(—q)) = EPTI(X)
Here

HP(X, 7 (E)(~q)) 1= Hom pyy(y (M(X), 7 (B) (—9)[p — a]).

The change in cohomological index comes from the shift [—2¢]
rather than [—q] in the topological version.
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Computations and examples
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T he birational homotopy motives
For presheaf of spectra E, we have the birational motive 75 (E)
and the identity

sn(E) = EM (m;(E)(n)[2n]).

This allows us to decribed s, (F) as a ‘‘generalized cycle com-
plex’ .
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Let X(™)(m) be the set of points w € X x A™ with closure @ in
good position.

Theorem Take E € Sptgi(k) satisfying properties 1 and 2 and
take X € Sm/k. Then

1. 7h(E)(X) = so(QPE)(X) 2 (QPE)O/D (k(X))

2. There is a simplicial spectrum ngrl") (X), with

EM(X)m)2 @ so(QE)(w)
weX (1) (m)

and with sp,E(X) is isomorphic in SH to Eﬁj’?(X).

The homotopy groups mm(snE (X)) of spnE(X) are the higher
Chow groups of X with coefficients ©h(E).
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T he semi-local A

For a field F', let A}Za,o — Spec (OA%,U), the “semi-local” n sim-
plex.

It follows directly from the comparison theorem that the coeffi-
cient motive 7k (E) is given by

i (B)(X) 2 (7 E) OV (k(X)) = (7 E) (Afx).0)

The nth homotopy motive of E is Q}E made k(t)-homotopy
invariant.
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Some examples

(1) One can calculate s, K(X) directly using these results. It is
not hard to see that

(P K) O/ (w) = KO/D(w) = EM(Ko(k(w))) = EM(Z),

so we get K{ET'Z’.)(X) = 2"(X, ). In terms of the homotopy mo-
tives, this gives

mH(K) =7

just like for topological K-theory.
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(2) The coefficient spectrum sg(2}*E) has been computed explic-
itly for some other E, for example £ = K4, K4 (X) = K(X; A),
for A a c.s.a. over k (w. Bruno Kahn). We get

QK ) O (w) = KO (w) = EM(Ko(k(w) @ A)).
In terms of motives, this gives
Th(Kg) =Zy

where Z 4 is the birational homotopy invariant presheaf with value
Ko(k(X) ®, A) on X.
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(3) (with C.Serpé) Let a finite group G act on a (smooth) k-
scheme X. Consider the presheaf Kq x

Kax(Y) = K(G,X xY)

the K-theory of the category of G-bundles over the G x id action
on X xY. Then (for WC X xY)

(U Kex) OV (w) = KA (w) = EM(Ko(k(w)™[G])),

with k(w)™[G] the twisted group ring. We denote this motive
by Rg:-x. This gives

hKagx = Rg x
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All three examples give strongly convergent A-H spectral se-
quences.
We concentrate on the example K 4:

BB = HP (X, Za(~q)) = K_po(X, A).

So: Kg(A) = HO%k,Zy), K1(A) = HY(k,Z4(1)).
For X = Speck, and degA = p prime, H"(k,Z4(1)) = 0 for
n#* 1, soO
Ko(A) = H?(k, Z,4(2)),
and we have an exact sequence
0 — HY(k,ZsA(2) — K3(A) — H3(k,Z4(3)) — O.
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The inclusion Z, — Z induces the reduced norm

HY(k,Za(q)) — H(k,Z(q))

which is the usual reduced norm on K-theory for
(p,q) = (0,0),(1,1),(2,2).
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Oriented higher Chow groups?

One can apply this machinery to hermitian K-theory/Grothendieck-
Witt theory. It's not clear what one gets.

Questions: What is the “coefficient spectrum” (Q;GW)(A;Z(X) O)?
Is it an Eilenberg-Maclane spectrum? 1Is

CH'(X) = H? (X, =} (GW)(p))?
For a field F', is

JP(F) = HP(F, 7, (GW)(p))7
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T he Postnikov tower for motives
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One defines the motivic Postnikov tower inside DM (k) or DM€ (k)
directly by using

...Cc DM (K)(n+1) c DM (Y(n) c...c DM (k) c ... c DM (k)

The cancellation theorem gives a simple formula for f, = fns
(for E € DM®T(k)):

fnM = Hom ), err(Z(n), M)(n)
(Kahn).

The homotopy coniveau approach also works.
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The slices for M(X)

Since DM€ (k) is a category of complexes of sheaves on Sm/k,
we have the cohomology sheaves H™ of a motive. Recall:

mh(M) 1= sp(M)(—n)[-2n]
= cofib[Hom.,, rerr(Z(n + 1)[2n], M)(1)
— Hom p, et (Z(n)[2n], M)]

For X projective over k, we have the birational sheaf CH,.(X)

CH,(X)(Y) 1= CHr (X))
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Proposition (Huber-Kahn-Sujatha) Let X be smooth projec-

tive over k.

1. For0<n<dmX, H"(xh(M(X))) =0 for m >0 and
HO(rh (M (X)) = CH, (X).

2. Forn>dmX, f,(M(X)) =0.

Note: In general, H™ (7 (M(X))) # 0 for m < 0. But
rh(M(PY)) = Z

for 0 <n < N.
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Theorem (Kahn-L.) Let X = SB(A), deg(A) =p. Then
T (M(X)) = Z god-n = CHp(X)
O<n<d=p-—1.

Sketch of proof: For E a (fibrant) presheaf of spectra, we have
the presheaf RHom (X, E):

RHom(X,E)(Y) := E(X xY)

One shows: sgRHom(X, fmE) ~ x for m > dimX. Applying
soRHom(X,—) to the Postnikov tower for E

= 1= fmE— ... > FE
gives the finite tower
soRHom(X, f4E) — ... — sgRHom (X, E)

with layers spRHom(X,spE), n=0,...d.
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Evaluating at some Y € Sm/k, we have the strongly convergent
spectral sequence

E;)b = TatpsoRHom (X, 54 E)(Y) == w4 psoRHom (X, E)(Y).
(*)
By Quillen’'s computation of the K-theory of SB varieties, we
have (for X = SB(A))
RHom(X,K) = @gl:oKA®i-
For E = K, Adams operations act on (*): it degenerates at Eq
giving
d o . — d .
EB@:O A®r — SO(@'L:O A@Z)

= sopRHom (X, K)
= EBEZ:OSORQ‘Com(X, saK)
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By our computations of the slices of K-theory, we have (a < d)

RHom (X, sqK) = RHom(X, EM(Z(a)[2a]))
= Hom , rerf (M (X), Z(a)[2a])
= Hom e (M (X)(d — a)[2d — 2a], Z(d)[2d])
= HomDMefr(Z(d —a)[2d — 2a], M (X))
= fa—a(M(X))(a — d)[2a — 2d]
Taking sg gives
soRHom (X, seK) = 7t/ (M(X))
SO
Bit=om_o(M(X)) 2 Ol 45
hence
H" (wh_ (M(X))) =0 form#0

The rest is bookkeeping.
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Corollary Let A be a c.s.a over k of prime rank. Then

Nrd : KQ(A) — Kz(k)

is injective. (Assume BK in weight 3)

Sketch of proof:
K3(A) = H?(k,Z4(2)) = Hompy(Z, Z 4 (2)[2]).
Let X = SB(A). The Postnikov tower

has layers s;_,M(X) = Z za(a)[2a]. Applying Hompy/(Z,—) to
M(X)(3—d)[4 — 2d] gives

Homp(Z, Z4(2)[2]) = Hompp(Z, M(X)(3 — d)[4 — 2d])
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Using duality, this gives
K5(A) = Homp (M (X), Z(3)[4]) = H* (X, Z(3)).
By Beilinson-Lichtenbaum, we have
H*(X,Z(3)) = Hg (X, Z(3)) = Hompp (M (X)et, Z(3)et[4])

But M(X)et has slices (Z 4x:(7)[2i])st = Z(i)et[2¢] and the spec-
tral sequence for the Postnikov tower of M (X ).t gives

0 — He (X, Z(3)) — HZ(k, Z(2)) — Hg.(k,Z(3))
By Beilinson-Lichtenbaum again,
HZ (k,Z(2)) = H?(k,Z(2)) = Ka(k)
giving
0 — Ko(A) — Ko(k) — HZ(k,Z(3))
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Singular cohomology
Ayoub pointed out that HZ,(—,Z/n) has all slices O (for k D up):

n—aoeo

so is effective and equal to its own Tate twist.

The same is not true for H;‘mg(—,Z) (for k = C): using Hodge

theory one can show that the Oth slice is non-zero when evaluated
at e.g. an elliptic curve.

Probably this is also true for HZ (—,Zy) or HZ (—, Q)7
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Questions:

1. How can one describe the cohomology theories
fnHsing(—,2Z), snHsing(—,Z)? Do these have something to do
with cycles mod algebraic equivalence (via Bloch’s formula)?

2. What is the relation with the coniveau filtration on Hg;,,(—,7Z)7

3. What about the generalized Hodge conjecture (cf. work of
Huber)?
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Thank you,

and
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Happy Birthday, Spencer!
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