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Outline:

e Describe the setting of “oriented cohomology over a field k"

e Describe the fundamental properties of algebraic cobordism

e Sketch the construction of algebraic cobordism

e Give an application to Donaldson-Thomas invariants



Oriented cohomology



k: a field. Sm/k: smooth quasi-projective varieties over k.
What should “cohomology of smooth varieties over k" be?
T his should be at least the following:

D1. An additive contravariant functor A* from Sm/k to graded
(commutative) rings:

X — A (X);
(f:Y = X)) ff: A(X) — A" (Y).

D2. For each projective morphisms f:Y — X in Sm/k, a push-
foward map (d = codimf)

fe 1 A¥(Y) — A*TUX)



T hese should satisfy some compatibilities and additional axioms.
For instance, we should have

A2. For f:Y — X projective, f« is A*(X)-linear:

F(f* @) - y) = 2 fuy).
A3. Let
w -y
o

ZTX

be a transverse cartesian square in Sm/k, with g projective. Then

f*g* — gfkf/*‘



Examples
e singular cohomology: (k C C) X — H2* (X(C),Z).

sing

e topological K-theory: X — Kz (X(C))
e complex cobordism: X — MU%*(X(C))
e the Chow ring: X — CH*(X).

e algebraic Kgo: X — KO(X)[ﬁ,B_l]

e algebraic cobordism: X — MGL**(X)



Chern classes

Once we have f* and fx, we have the 1st Chern class of a line
bundle L — X:

Let s: X — L be the zero-section. Define

c1(L) = s*(s:(1x)) € A (X)),

If we want to extend to a good theory of A*-valued Chern classes
of vector bundles, we need two additional axioms.



AXxioms for oriented cohomology

PB:

Let £ — X be a rank n vector bundle,

P(E) — X the projective-space bundle,

Og(1) — P(FE) the tautological quotient line bundle.
¢ :=c1(0p(1)) € AN (P(E)).

Then A*(P(E)) is a free A*(X)-module with basis 1,¢,...,¢" 1.

EH:

Let p : V — X be an affine-space bundle. Then p* : A*(X) —
A*(V) is an isomorphism.



Higher Chern classes
Once we have these two axioms, use Grothendieck’'s method to
construct Chern classes:

Let £ — X be a vector bundle of rank n. By (PB), there are
unique elements ¢;(E) € AY(X), i =0,...,n, with ¢g(E) =1 and

> (—D'G(E)ET =0 € AN(P(E)),

1=0
§ 1= c1(0g(1)).

The proof of the Whitney product formula uses the splitting
principle and additional facts which rely on (PB) and (EH).



Recap.

Definition k£ a field. An oriented cohomology theory A over k
IS a functor

A* : Sm/k°P — GrRing
together with push-forward maps
ge 1 A*(YV) — ATUX)

for each projective morphism g :Y — X,
d = codimg, satisfying the axioms A1l-3, PB and EV:

functoriality of push-forward,

projection formula,

compatibility of f* and g« in transverse cartesian squares,
projective bundle formula,

homotopy.



The formal group law

A: an oriented cohomology theory.

The projective bundle formula vields:

AT(P™) 1= lim A*(P") = A™(k)[[ul]

where the variable v maps to ¢1(0(1)) at each finite level. Sim-
ilarly

A* (P x P°) = A*(k)[[u, v]].
where
u=12¢1(0(1,0)), v =¢1(0(0,1))

0(1,0) =p10(1); 0(0,1) = p50(1).



Let 0(1,1) = pi0(1) ® p50(1) = O0(1,0) ® O(0,1). There is a
unique

Fa(u,v) € A™(K)[[u, v]]
with
Fy(c1(0(1,0)),¢1(0(0,1))) = ¢1(0(1,1))
in AL(P>® x P>®).

Since O(1) is the universal line bundle, we have

Fyp(e1(L),e1(M)) = c1(L® M) € AL(X)

for any two line bundles L, M — X. (Jouanolou’s trick4+ axiom

(EH)).



Properties of F'4(u,v)
These all follow from properties of ®:

o 1 RL=L=LR1
= F4(0,u) =u= Fy(u,0).

e LOIM=MQ®L = Fy(u,v) = Fy(v,u).

o (LOIMQQN=ZLR®(MQQN)
- FA(FA(’LL,’U),’LU) — FA(’LL, FA(an))'

So: F4(u,v) defines a formal group law (commutative, rank 1)
over A*(k).



Properties of F'4(u,v)
These all follow from properties of ®:

o 1 RL=L=LR1
= F4(0,u) =u= Fy(u,0).

e LOIM=MQ®L = Fy(u,v) = Fy(v,u).

o (LOIMQQN=ZLR®(MQQN)
- FA(FA(’LL,’U),’LU) — FA(’LL, FA(an))'

So: F4(u,v) defines a formal group law (commutative, rank 1)
over A*(k).

A c1 IS not necessarily additive!



Topological background: C-oriented theories

The axioms for an oriented cohomology theory on Sm/k are
abstracted from Quillen's notion of a C-oriented cohomology
theory on the category of differentiable manifolds. This is a
cohomology theory M — E*(M) plus pushforward maps fx for
proper “C-oriented” maps f, satisfying the analog of our axioms
(with shift of 2dimg¢ instead of dimg).

A C-oriented theory E has a formal group law with coefficients
in E*(pt).

Examples
1. H*(—,Z) has the additive formal group law (u + v,7Z).

2. Kf,, has the multiplicative formal group law (u+4v—Buv, 718, 871,
£ = Bott element in Kt_og(pt).



The Lazard ring and Quillen’s theorem

There is a universal formal group law Fj, with coefficient ring
the Lazard ring .. For an oriented theory A on Sm/k, let

pa: L — A*(k); ¢(FL) = Fa.

be the ring homomorphism classifying F4. In the setting of
a topological C-oriented theory E, we have instead ¢p : L —

E*(pt).

Theorem 1 (Quillen) (1) Complex cobordism MU* s the uni-
versal C-oriented theory.

(2) ¢py 0 L — MU*(pt) is an isomorphism, i.e., Fyy is the
universal group law.



The Conner-Floyd theorem

Note. Let ¢ : L. = MU*(pt) — R classify a group law Fgr over
R. If ¢ satisfies the “Landweber exactness’ conditions, form the
C-oriented spectrum MU Ng R, with

(MU ANy R)(X) = MU (X) D nU(pt) B
and formal group law FRp.
Theorem 2 (Conner-Floyd)

Kf,, = MU A« Z[8,87 Y, K}, is the universal multiplicative ori-
ented cohomology theory.



Algebraic cobordism



T he main theorem

Theorem 3 (L.-Morel) Let k be a field of characteristic zero.
There is a universal oriented cohomology theory 2 over k, called
algebraic cobordism. 2 has the additional properties:

Formal group law. The classifying map ¢ : L — Q*(k) is an
iIsomorphism, so Fq is the universal formal group law.

Localization. Let 1 : Z — X be a closed codimension d em-
bedding of smooth varieties with complement 53 : U — X. The
sequence

Q*d(7) =, ¥ (X) L QF(U) — 0

IS exact.



For an arbitrary formal group law ¢ : L = Q*(k) — R, Fr =
¢(F1 ), we have the oriented theory

Q*(X)¢ is universal for theories whose group law factors through
¢. Let

QY = Qe Z[B, 7]
Qj_ = Q" Q Z.
The Conner-Floyd theorem extends to the algebraic setting:

Theorem 4 The canonical map
l _
Q% — K§B8, 871

is an isomorphism, i.e., Kg“lg[ﬁ, B~11 is the universal multiplicative
theory over k.



There is an additive version as well:

Theorem 5 The canonical map
Qj_ — CH*

is an isomorphism, i.e., CH* is the universal additive theory over
k.

Remark
Define “connective algebraic Ky, kglg = Q* @ Z[3].
K9/ = CH*
lgf o z _
ko 1871 = Ko 18,871,

This realizes Kglg[ﬁ,ﬁ—l] as a deformation of CH*.



Relation with motivic homotopy theory

CH™(X) & H?™(X,Z(n)) = H*™"(X)

Ko(X) 2 K*"™(X)
The universality of 2* gives a natural map

vn(X) 1 QX)) — MGL?™™(X).
Conjecture 1 Q"(X) &£ MGL?™»"(X) for all n, all X € Sm/k.

Note. (1) vp(X) is surjective, and an isomorphism after Q.

(2) vp(k) is an isomorphism.



T he construction of algebraic cobordism



The idea

We build Q*(X) following roughly Quillen’s basic idea, defin-
ing generators and relations. The original description of Levine-
Morel was rather complicated, but necessary for proving all the
main properties of 2*. Following a suggestion of Pandharipande,
we Nnow have a very simple presentation, with the same kind of
generators as for complex cobordism. The relations are also
similar, but need to allow for “double-point degenerations’ .

The simplified presention requires the base-field k£ to have char-
acteristic zero.

This is joint work with R. Pandharipande.



Generators

Sch;. := finite type k-schemes.

Definition Take X € Schy.

1. M(X) := the set of isomorphism classes of projective mor-
phisms f:Y — X, with Y € Sm/k.

2. Grade M(X):

Mn(X) i ={f:Y - X e M(X) | n=dim,Y}.

3. M« (X) is a graded monoid under []; let M;"(X) be the group
completion.

Explicitly: Mf,}"(X) is the free abelian group on f : Y — X in
M(X) with Y irreducible and dim,Y = n.



Double point degenerations

Definition Let C be a smooth curve, ¢ € C a k-point. A
morphism 7 : Y — C in Sm/k is a double-point degeneration at
c if

1) =SuT
with
1. S and T smooth,
2. 5 and T intersecting transversely on Y.

We allow the special cases SNT =0, or T = ().

The codimension two smooth subscheme D = SN 7T is called
the double-point locus of the degeneration.



The degeneration bundle

Let #: Y — C be a double-point degeneration at ¢ € C(k), with

Y e)=8SuUT; D:=SnNT.
Set Np/g = the normal bundle of D in 5.

Set
P(r,c) :=P(Op ® Nps),

a Pl-bundle over D.



Let Np,r := the normal bundle of D in T.

Npss = Oy (T') ® Op; Np,7 = 0y(S) ® Op.
Since Oy (S+T)® O0p = Op,
~ —1
So the definition of P(m,c) does not depend on the choice of S
or 1"

P(mw,c) =Pp(Op ® Np,s) =Pp(Op ® Np 7).



Double-point cobordisms
We impose the relation of double point cobordism:

Definition Let f:Y — X x P! be a projective morphism with
Y € Sm/k. Call f a double-point cobordism if

1. pro f:Y — Pl is a double-point degeneration at 0 € P!.

2. (poo £)~1(1) is smooth.



Double-point relations
Let f:Y — X x P! be a double-point cobordism.
Write (pao f)71(0) = Yo = SUT, (p2o f)~1(1) = Y1, giving
elements
[S — X[, [T — X], [P(p20 f,0) — X], [Y1 — X]
of M(X). The element

R(f) =[Y1 - X]-[S— X] - [T - X]+ [P(p1 0 f,0) — X]

IS the double-point relation associated to the double-point cobor-
dism f.



A presentation of algebraic cobordism

Definition For X € Schg, Qiip(X) (double-point cobordism) is
the quotient of M;"(X) by the subgroup of generated by relations
{R(f)}given by double-point cobordisms:

QP (X) 1= MF(X)/<{R(f)}>

for all double-point cobordisms f:Y — X x P1. In other words,
we impose all double-point cobordism relations

Y1 = X] =[5 — X]+ [T — X] - [P(pz20 f,0) — X]



We have the homomorphism

b M — Q.
sending f:Y — X to f«(1ly) € Q«(X).

Theorem 6 (L.-Pandharipande) The map ¢ descends to an
iIsomorphism

Q¥ Q.



If we evaluate at Speck, we have the isomorphism

(k) 1 QP (k) — Qu(k).

Since Q«(k) = L and the class of a smooth projective variety X
in I is completely determined by the Chern numbers of X, the
fact that ¢(k) is an isomorphism can be expressed as:

Let + : Mc_zl_(k) — 7Z be a homomorphism that sends all double
point relations R(f) to zero. Then for each smooth projective

variety X of dimension d, 1(X) depends only on the Chern num-
bers of X.



Dually, if X and Y are smooth projective varieties of the same
dimension, and if X and Y have the same Chern numbers, then
there exist double point cobordisms f;. : Wi — Speck x P1 and
integers r; such that

X —-Y = ZrkR(fk)a
k

as a formal sum of irreducible smooth projective varieties over k.



Elementary structures in fop

e For g : X — X' projective, we have

g T M (X) — Mi(X')
g«(f:Y = X):=(gof:Y = X)

e For g : X’ — X smooth of dimension d, we have

g%t Ma(X) — My q(X)
(Y = X)i=(p2: Y xx X' — X')

e Products over k induce an external product

QP (x) 0 QP(Y) = QP(X x Y).



e For L — X a globally generated line bundle, we have the 1st
Chern class operator

(L) : QP (X) — Q% (X)
A(L)(f:Y - X)) =(foip:D— X)

D := the divisor of a general section of f*L.



lep as oriented cohomology

It is not at all apparant that jSp(X) = ngmX_*(X) has the
structures/satisfies the axioms of an oriented theory on Sm/k.

€2+ was constructed as the “universal Borel-Moore functor of
geometric type” on Schi, a more elementary structure than an
oriented cohomology theory.

To relate Q. and Q% we show that Q% is a Borel-Moore functor
of geometric type



B-M functors of geometric type
This is a “weak homology theory” Ax: A«(X) is a graded abelian
group for each X & Sch; with

1. push-forward for projective morphisms

2. pull-back (with a shift) for smooth maps

3. external products, unit element 1 € Ag(k)

4. 1st Chern class operators ¢1(L) : A«(X) — A,_1(X) for each
line bundle L — X.

5. Ring homomorphism ¢4 : L« — Ax(k), i.e., a formal group law
Fy over A«(k)



T hese satisfy some axioms:

(Dim) For X € Sm/k, set 1x :=p%(1). Then
e (L)M A (1x) = 0.
(Sect) Let i : D — X be a smooth divisor on X € Sm/k. Then

ix(1p) = ¢1(Ox(D))(1x).
(FGL) For line bundles L,M — X, X € Sm/k,

Fa(c1(L),e1(M))(1x) = c1(L® M)(1x).

in addition to standard compatibilities of f«, f* and ¢;.



Q. = QP

The proof that Q2 = Qilp goes by showing that the 1st Chern
class operators in Qilp (defined only for globally generated line
bundles!) satisfy a formal group law.

T his permits the extension of operators ¢; on Qilp to all L. The
axioms (Dim), (Sect) and (FGL) are then not hard to verify.

The universality of Q. gives a surjective map €. — Q%

The double-point cobordism relation is satisfied in €24, giving a
surjective map Qf,fp — Q.

We give a sketch of the proof that the ¢1 satisfy a formal group
law at the end of the lecture, time permitting.



A conjecture of MNOP



Donaldson-Thomas invariants

Let X be a smooth projective 3-fold over C and let Hilb(X,n) be
the Hilbert scheme of length n closed subschemes of X.

Maulik, Nekrasov, Okounkov and Pandharipande construct a nat-
ural “virtual fundamental class”

[Hilb(X, n)]?"" € CHg(Hilb(X,n))

and define the “partition function”

Z(X,q) ;=14 Y deg([Hilb(X,n)]"")g"
n>1



MNOP conjecture (1st proved by Jun Li):

Conjecture 2 Let M(q) be the MacMahon function:

M) = ] ——

=14q+3¢2+6¢3+13¢*"+....
n21(1_qn)n

Then
Z(X,q) = M(q)?e9(e3(Tx@Rx)

for all smooth projective X over C.
Note. The MacMahon function has a combinatorial origin as the

generating function for the number of 3-dimensional partitions
of size n, i.e., 3-dimensional Young diagrams with n cubes.



Proof of the MNOP conjecture
MNOP verify:

Proposition 1 (Double point relation) Let = : Y — C be a
double-point degeneration (over C) at 0 € C of relative dimension
3. Let ¢ € C be a regular value of =. Write n=1(0) = SUT,
7 1(¢c) = X. Then

X0 == r 0y, 0)

In other words, sending a smooth projective X to Z(X,q) de-
scends to a homomorphism

Z(—,q) : Q73(C) — (1 + Z[[g]])*.



It follows from general principles that, for P(cq,...,cn) a weighted

homogeneous polynomial in the Chern classes cq,...,cn (wWith Z-
coefficients) sending a smooth projective variety X over C to
deg P(c1,...,cn)(Ty) descends to a homomorphism

P:Q ™C —Z

For example: X — deg(c3(Tx®Kx)). Thus X — M(q)9e9(c3(Tx®Kx))
descends to

M(g)* : Q73(C) — (1 + Z[lglD™.



Next we have the result of MNOP:

Proposition 2 The degree 0 conjecture is true for X = (CIP?’,
CP! x CP?, and (CP1)3.

To finish, we use the well-known fact from topology:

Proposition 3 The rational Lazard ring L* @ Q = MU?*(pt) ® Q
is a polynomial ring over Q with generators the classes [CP"],
n=20,1,..., with [CP"] in degree x = —n.

Since (1 + Z[[¢]])* is torsion free, M(q)? and Z(—,q) factor
through 9—3((3)@ = ]L@3 and agree on as Q-basis, hence are
equal.



The formal group law for Q%



T he strategy Quillen gave a geometric contruction for the for-
mal group law for MU* (or in our case Q2*) by using the projective
bundle formula to write ¢1(Opnypm(1,1)) as
c1(Opnypm(1,1)) =u+ov+ > aju'y’
i>1,5>1
where u = ¢1(0(1,0), v = ¢c1(0(0,1)) and the a;; are in Q*(k).
Passing to the limit over n,m defines the power series

Flu,v) ' =u+v+ Zaijuivj.
1J
Properties of the tensor product of line bundles shows that
F'(u,v) defines a formal group law.

We don’t have the projective bundle formula for fop, but if we
can write ¢1(Opnypm(1,1)) as above “by hand”, we have a hope

of getting a formal group law for Q2.



Extending the double point relation

Lemma 1 Let X be in Sm/k. Suppose we have smooth divisors
S, T and W such that S+T+W is a reduced strict normal crossing
divisor and W ~, S+T. Let D=5SNT, E=SNTNW. Then

W = X] =[S - X]+[T - X]-[P1 — X]+ [P — X] - [P3 — X]

where

P1:=Pp(Op(S) ® Op), Pg :=P(Op(-T) @ Og(-W))
P> =Pp, (O ® O(1)), P3 =Pr(Op(-T) ® Op(-W) & Og)



Proof. Blow-up X along (SUT)NW to form a morphism
fox' —p!

with f=3(0) = S+7T. f~1(0) = W. Blow up X’ along S forming

X". This resolves the singularties of X/, leaves W and T alone

and blows up S along E. In addition, this gives a double-point

cobordism with total space X” smooth fiber W and singular fiber
S'UT.

Deformation to the normal bundle of E in S also gives a double-
point cobordism with smooth fiber S and singular fiber S’ U P3.
Putting these together gives the results.



Let Hym C P xP™ be the divisor of a general section of O(1,1).
This gives us the normal crossing divisor Hy m + P™ X pm—1 +
Pr—1 x P™, with

Hpm ~p P x Pm—1 p pr=1 o pm

Applying the extended double point in this case gives a start
of the relation we seek, but the “coefficients” are non-constant
projective space bundles.

We need to iterate, making the P"-bundles eventually into prod-
ucts. When we apply the extended double-point relation again,
we get two-term towers of P"™-bundles.



Admissible towers An admissible tower over X is a morphism
Y — X that can be factored as

Y =Py —Py_1—... 2P >Pg=X
where P, 1 = Pp.(©;L;) with the L; line bundles on P;.

Lemma 2 LetY — X be an admissible tower. Let Hy,...,Hs be
smooth semi-ample divisors on X. For an index I = (iq,...,1s)
i; >0, let H = ﬂjH](ij). Suppose that the H! are irreducible and
that the restriction of theH; to H! generate Pic(H!) for each I.
T hen there are admissible towers Y[,j — Speck such that

Y — X] = ny;lY;; x H — X]
I,j

in jSp(X).



The proof is an induction, using the extended double point rela-
tion and:

Let F — Z be a vector bundle L. — Z be a line bundle and
i: D — Z a smooth divisor on Z € Sm/k. Then

1. P(EL)+Pp(i"(E L L(D)))+P(E® L(D)) is a reduced
SNC divisor on P(E® L & L(D))

2. P(E® L)+ Pp(i*(E® L® L(D))) ~y P(E® L(D))



T he formal group law We apply the proposition to the divisors
Pr—1 x P, P? x P~ and Hpm on P x P, where Hy.m, is the
divisor of a general section of O(1,1). The admissible tower
lemma plus an induction gives:

Proposition 4 For each n,m there are elements a?}fm € pr(k)
such that

[Hpm — P* x P = [P 1 x P™ — P" x P™]
+ [P" x P PP ox P
+ ¥ a?;j”[w—i x P — P x P
i>1,j>1
in €5 (P™ x P™).

One then shows that the a,?}.m are independent of n,m for n >> 0,
m >> 0, giving elements a;; € Q’C'}p.



Since [Hp m — P xP™] represents c¢1(O(1,1)) and [P?* ! xP™~J —
P x P™] represents ¢1(O(1,0))%-¢1(0(0,1))7, this relation even-
tually leads to showing that
Flu,v) ' =u+v+ Zaijuivj
i
gives the formal group law for lep we were |looking for.



T hank you!



