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Outline:

• Describe the setting of “oriented cohomology over a field k”

• Describe the fundamental properties of algebraic cobordism

• Sketch the construction of algebraic cobordism

• Give an application to Donaldson-Thomas invariants



Oriented cohomology



k: a field. Sm/k: smooth quasi-projective varieties over k.

What should “cohomology of smooth varieties over k” be?

This should be at least the following:

D1. An additive contravariant functor A∗ from Sm/k to graded
(commutative) rings:

X 7→ A∗(X);

(f : Y → X) 7→ f∗ : A∗(X)→ A∗(Y ).

D2. For each projective morphisms f : Y → X in Sm/k, a push-
foward map (d = codimf)

f∗ : A∗(Y )→ A∗+d(X)



These should satisfy some compatibilities and additional axioms.

For instance, we should have

A1. (fg)∗ = f∗g∗; id∗ = id

A2. For f : Y → X projective, f∗ is A∗(X)-linear:

f∗(f∗(x) · y) = x · f∗(y).

A3. Let

W
f ′

//

g′
��

Y
g

��

Z f
//X

be a transverse cartesian square in Sm/k, with g projective. Then

f∗g∗ = g′∗f
′∗.



Examples

• singular cohomology: (k ⊂ C) X 7→ H2∗
sing(X(C),Z).

• topological K-theory: X 7→ K2∗
top(X(C))

• complex cobordism: X 7→MU2∗(X(C))

• the Chow ring: X 7→ CH∗(X).

• algebraic K0: X 7→ K0(X)[β, β−1]

• algebraic cobordism: X 7→MGL∗,∗(X)



Chern classes

Once we have f∗ and f∗, we have the 1st Chern class of a line

bundle L→ X:

Let s : X → L be the zero-section. Define

c1(L) := s∗(s∗(1X)) ∈ A1(X).

If we want to extend to a good theory of A∗-valued Chern classes

of vector bundles, we need two additional axioms.



Axioms for oriented cohomology

PB:

Let E → X be a rank n vector bundle,

P(E)→ X the projective-space bundle,

OE(1)→ P(E) the tautological quotient line bundle.

ξ := c1(OE(1)) ∈ A1(P(E)).

Then A∗(P(E)) is a free A∗(X)-module with basis 1, ξ, . . . , ξn−1.

EH:

Let p : V → X be an affine-space bundle. Then p∗ : A∗(X) →
A∗(V ) is an isomorphism.



Higher Chern classes

Once we have these two axioms, use Grothendieck’s method to

construct Chern classes:

Let E → X be a vector bundle of rank n. By (PB), there are

unique elements ci(E) ∈ Ai(X), i = 0, . . . , n, with c0(E) = 1 and

n∑
i=0

(−1)ici(E)ξn−i = 0 ∈ A∗(P(E)),

ξ := c1(OE(1)).

The proof of the Whitney product formula uses the splitting

principle and additional facts which rely on (PB) and (EH).



Recap:

Definition k a field. An oriented cohomology theory A over k
is a functor

A∗ : Sm/kop → GrRing

together with push-forward maps

g∗ : A∗(Y )→ A∗+d(X)

for each projective morphism g : Y → X,
d = codimg, satisfying the axioms A1-3, PB and EV:

• functoriality of push-forward,
• projection formula,
• compatibility of f∗ and g∗ in transverse cartesian squares,
• projective bundle formula,
• homotopy.



The formal group law

A: an oriented cohomology theory.

The projective bundle formula yields:

A∗(P∞) := lim←
n

A∗(Pn) = A∗(k)[[u]]

where the variable u maps to c1(O(1)) at each finite level. Sim-
ilarly

A∗(P∞ × P∞) = A∗(k)[[u, v]].

where

u = c1(O(1,0)), v = c1(O(0,1))

O(1,0) = p∗1O(1); O(0,1) = p∗2O(1).



Let O(1,1) = p∗1O(1) ⊗ p∗2O(1) = O(1,0) ⊗ O(0,1). There is a

unique

FA(u, v) ∈ A∗(k)[[u, v]]

with

FA(c1(O(1,0)), c1(O(0,1))) = c1(O(1,1))

in A1(P∞ × P∞).

Since O(1) is the universal line bundle, we have

FA(c1(L), c1(M)) = c1(L⊗M) ∈ A1(X)

for any two line bundles L,M → X. (Jouanolou’s trick+ axiom

(EH)).



Properties of FA(u, v)
These all follow from properties of ⊗:

• 1⊗ L ∼= L ∼= L⊗ 1
⇒ FA(0, u) = u = FA(u,0).

• L⊗M ∼= M ⊗ L⇒ FA(u, v) = FA(v, u).

• (L⊗M)⊗N ∼= L⊗ (M ⊗N)
⇒ FA(FA(u, v), w) = FA(u, FA(v, w)).

So: FA(u, v) defines a formal group law (commutative, rank 1)
over A∗(k).



Properties of FA(u, v)
These all follow from properties of ⊗:

• 1⊗ L ∼= L ∼= L⊗ 1
⇒ FA(0, u) = u = FA(u,0).

• L⊗M ∼= M ⊗ L⇒ FA(u, v) = FA(v, u).

• (L⊗M)⊗N ∼= L⊗ (M ⊗N)
⇒ FA(FA(u, v), w) = FA(u, FA(v, w)).

So: FA(u, v) defines a formal group law (commutative, rank 1)
over A∗(k).

4! c1 is not necessarily additive!



Topological background: C-oriented theories

The axioms for an oriented cohomology theory on Sm/k are
abstracted from Quillen’s notion of a C-oriented cohomology
theory on the category of differentiable manifolds. This is a
cohomology theory M 7→ E∗(M) plus pushforward maps f∗ for
proper “C-oriented” maps f , satisfying the analog of our axioms
(with shift of 2 dimC instead of dimC).

A C-oriented theory E has a formal group law with coefficients
in E∗(pt).

Examples
1. H∗(−,Z) has the additive formal group law (u+ v,Z).

2. K∗top has the multiplicative formal group law (u+v−βuv,Z[β, β−1]),

β = Bott element in K−2
top(pt).



The Lazard ring and Quillen’s theorem

There is a universal formal group law FL, with coefficient ring

the Lazard ring L. For an oriented theory A on Sm/k, let

φA : L→ A∗(k); φ(FL) = FA.

be the ring homomorphism classifying FA. In the setting of

a topological C-oriented theory E, we have instead φE : L →
E∗(pt).

Theorem 1 (Quillen) (1) Complex cobordism MU∗ is the uni-

versal C-oriented theory.

(2) φMU : L → MU∗(pt) is an isomorphism, i.e., FMU is the

universal group law.



The Conner-Floyd theorem

Note. Let φ : L = MU∗(pt) → R classify a group law FR over

R. If φ satisfies the “Landweber exactness” conditions, form the

C-oriented spectrum MU ∧φ R, with

(MU ∧φ R)(X) = MU∗(X)⊗MU∗(pt) R

and formal group law FR.

Theorem 2 (Conner-Floyd)

K∗top = MU ∧× Z[β, β−1]; K∗top is the universal multiplicative ori-

ented cohomology theory.



Algebraic cobordism



The main theorem

Theorem 3 (L.-Morel) Let k be a field of characteristic zero.

There is a universal oriented cohomology theory Ω over k, called

algebraic cobordism. Ω has the additional properties:

Formal group law. The classifying map φΩ : L → Ω∗(k) is an

isomorphism, so FΩ is the universal formal group law.

Localization. Let i : Z → X be a closed codimension d em-

bedding of smooth varieties with complement j : U → X. The

sequence

Ω∗−d(Z)
i∗−→ Ω∗(X)

j∗−→ Ω∗(U)→ 0

is exact.



For an arbitrary formal group law φ : L = Ω∗(k) → R, FR :=
φ(FL), we have the oriented theory

X 7→ Ω∗(X)⊗Ω∗(k) R := Ω∗(X)φ.

Ω∗(X)φ is universal for theories whose group law factors through
φ. Let

Ω∗× := Ω∗ ⊗L Z[β, β−1]

Ω∗+ := Ω∗ ⊗L Z.

The Conner-Floyd theorem extends to the algebraic setting:

Theorem 4 The canonical map

Ω∗× → K
alg
0 [β, β−1]

is an isomorphism, i.e., Kalg
0 [β, β−1] is the universal multiplicative

theory over k.



There is an additive version as well:

Theorem 5 The canonical map

Ω∗+ → CH∗

is an isomorphism, i.e., CH∗ is the universal additive theory over

k.

Remark

Define “connective algebraic K0”, kalg0 := Ω∗ ⊗L Z[β].

k
alg
0 /β = CH∗

k
alg
0 [β−1] = K

alg
0 [β, β−1].

This realizes Kalg
0 [β, β−1] as a deformation of CH∗.



Relation with motivic homotopy theory

CHn(X) ∼= H2n(X,Z(n)) = H2n,n(X)

K0(X) ∼= K2n,n(X)

The universality of Ω∗ gives a natural map

νn(X) : Ωn(X)→MGL2n,n(X).

Conjecture 1 Ωn(X) ∼= MGL2n,n(X) for all n, all X ∈ Sm/k.

Note. (1) νn(X) is surjective, and an isomorphism after ⊗Q.

(2) νn(k) is an isomorphism.



The construction of algebraic cobordism



The idea

We build Ω∗(X) following roughly Quillen’s basic idea, defin-

ing generators and relations. The original description of Levine-

Morel was rather complicated, but necessary for proving all the

main properties of Ω∗. Following a suggestion of Pandharipande,

we now have a very simple presentation, with the same kind of

generators as for complex cobordism. The relations are also

similar, but need to allow for “double-point degenerations”.

The simplified presention requires the base-field k to have char-

acteristic zero.

This is joint work with R. Pandharipande.



Generators

Schk := finite type k-schemes.

Definition Take X ∈ Schk.

1. M(X) := the set of isomorphism classes of projective mor-
phisms f : Y → X, with Y ∈ Sm/k.

2. Grade M(X):

Mn(X) := {f : Y → X ∈M(X) | n = dimkY }.
3. M∗(X) is a graded monoid under

∐
; let M+

∗ (X) be the group
completion.

Explicitly: M+
n (X) is the free abelian group on f : Y → X in

M(X) with Y irreducible and dimkY = n.



Double point degenerations

Definition Let C be a smooth curve, c ∈ C a k-point. A

morphism π : Y → C in Sm/k is a double-point degeneration at

c if

π−1(c) = S ∪ T

with

1. S and T smooth,

2. S and T intersecting transversely on Y .

We allow the special cases S ∩ T = ∅, or T = ∅.

The codimension two smooth subscheme D := S ∩ T is called

the double-point locus of the degeneration.



The degeneration bundle

Let π : Y → C be a double-point degeneration at c ∈ C(k), with

π−1(c) = S ∪ T ; D := S ∩ T.

Set ND/S := the normal bundle of D in S.

Set

P(π, c) := P(OD ⊕ND/S),

a P1-bundle over D.



Let ND/T := the normal bundle of D in T .

ND/S = OY (T )⊗ OD; ND/T = OY (S)⊗ OD.

Since OY (S + T )⊗ OD
∼= OD,

ND/S
∼= N−1

D/T
.

So the definition of P(π, c) does not depend on the choice of S

or T :

P(π, c) = PD(OD ⊕ND/S) = PD(OD ⊕ND/T ).



Double-point cobordisms

We impose the relation of double point cobordism:

Definition Let f : Y → X × P1 be a projective morphism with

Y ∈ Sm/k. Call f a double-point cobordism if

1. p2 ◦ f : Y → P1 is a double-point degeneration at 0 ∈ P1.

2. (p2 ◦ f)−1(1) is smooth.



Double-point relations

Let f : Y → X × P1 be a double-point cobordism.

Write (p2 ◦ f)−1(0) = Y0 = S ∪ T , (p2 ◦ f)−1(1) = Y1, giving

elements

[S → X], [T → X], [P(p2 ◦ f,0)→ X], [Y1 → X]

of M(X). The element

R(f) := [Y1 → X]− [S → X]− [T → X] + [P(p1 ◦ f,0)→ X]

is the double-point relation associated to the double-point cobor-

dism f .



A presentation of algebraic cobordism

Definition For X ∈ Schk, Ωdp
∗ (X) (double-point cobordism) is

the quotient of M+
∗ (X) by the subgroup of generated by relations

{R(f)}given by double-point cobordisms:

Ωdp
∗ (X) := M+

∗ (X)/<{R(f)}>

for all double-point cobordisms f : Y → X × P1. In other words,

we impose all double-point cobordism relations

[Y1 → X] = [S → X] + [T → X]− [P(p2 ◦ f,0)→ X]



We have the homomorphism

φ : M+
∗ → Ω∗

sending f : Y → X to f∗(1Y ) ∈ Ω∗(X).

Theorem 6 (L.-Pandharipande) The map φ descends to an

isomorphism

φ : Ωdp
∗ → Ω∗



If we evaluate at Spec k, we have the isomorphism

φ(k) : Ωdp
∗ (k)→ Ω∗(k).

Since Ω∗(k) = L and the class of a smooth projective variety X

in L is completely determined by the Chern numbers of X, the

fact that φ(k) is an isomorphism can be expressed as:

Let ψ : M+
d (k) → Z be a homomorphism that sends all double

point relations R(f) to zero. Then for each smooth projective

variety X of dimension d, ψ(X) depends only on the Chern num-

bers of X.



Dually, if X and Y are smooth projective varieties of the same

dimension, and if X and Y have the same Chern numbers, then

there exist double point cobordisms fk : Wk → Spec k × P1 and

integers rk such that

X − Y =
∑
k

rkR(fk),

as a formal sum of irreducible smooth projective varieties over k.



Elementary structures in Ωdp
∗

• For g : X → X ′ projective, we have

g∗ : M∗(X)→M∗(X ′)

g∗(f : Y → X) := (g ◦ f : Y → X ′)

• For g : X ′ → X smooth of dimension d, we have

g∗ : M∗(X)→M∗+d(X
′)

g∗(f : Y → X) := (p2 : Y ×X X ′ → X ′)

• Products over k induce an external product

Ωdp
∗ (X)⊗Ωdp

∗ (Y )→ Ωdp
∗ (X × Y ).



• For L → X a globally generated line bundle, we have the 1st

Chern class operator

c̃1(L) : Ωdp
∗ (X)→ Ωdp

∗−1(X)

c̃1(L)(f : Y → X) := (f ◦ iD : D → X)

D := the divisor of a general section of f∗L.



Ω∗dp as oriented cohomology

It is not at all apparant that Ω∗dp(X) := Ωdp
dimX−∗(X) has the

structures/satisfies the axioms of an oriented theory on Sm/k.

Ω∗ was constructed as the “universal Borel-Moore functor of

geometric type” on Schk, a more elementary structure than an

oriented cohomology theory.

To relate Ω∗ and Ωdp
∗ , we show that Ωdp

∗ is a Borel-Moore functor

of geometric type



B-M functors of geometric type

This is a “weak homology theory” A∗: A∗(X) is a graded abelian

group for each X ∈ Schk with

1. push-forward for projective morphisms

2. pull-back (with a shift) for smooth maps

3. external products, unit element 1 ∈ A0(k)

4. 1st Chern class operators c̃1(L) : A∗(X) → A∗−1(X) for each

line bundle L→ X.

5. Ring homomorphism φA : L∗ → A∗(k), i.e., a formal group law

FA over A∗(k)



These satisfy some axioms:

(Dim) For X ∈ Sm/k, set 1X := p∗X(1). Then

c̃1(L)dimX+1(1X) = 0.

(Sect) Let i : D → X be a smooth divisor on X ∈ Sm/k. Then

i∗(1D) = c̃1(OX(D))(1X).

(FGL) For line bundles L,M → X, X ∈ Sm/k,

FA(c̃1(L), c̃1(M))(1X) = c̃1(L⊗M)(1X).

in addition to standard compatibilities of f∗, f∗ and c̃1.



Ω∗ = Ωdp
∗

The proof that Ω∗ = Ωdp
∗ goes by showing that the 1st Chern

class operators in Ωdp
∗ (defined only for globally generated line

bundles!) satisfy a formal group law.

This permits the extension of operators c̃1 on Ωdp
∗ to all L. The

axioms (Dim), (Sect) and (FGL) are then not hard to verify.

The universality of Ω∗ gives a surjective map Ω∗ → Ωdp
∗ .

The double-point cobordism relation is satisfied in Ω∗, giving a

surjective map Ωdp
∗ → Ω∗.

We give a sketch of the proof that the c̃1 satisfy a formal group

law at the end of the lecture, time permitting.



A conjecture of MNOP



Donaldson-Thomas invariants

Let X be a smooth projective 3-fold over C and let Hilb(X,n) be

the Hilbert scheme of length n closed subschemes of X.

Maulik, Nekrasov, Okounkov and Pandharipande construct a nat-

ural “virtual fundamental class”

[Hilb(X,n)]vir ∈ CH0(Hilb(X,n))

and define the “partition function”

Z(X, q) := 1 +
∑
n≥1

deg([Hilb(X,n)]vir)qn



MNOP conjecture (1st proved by Jun Li):

Conjecture 2 Let M(q) be the MacMahon function:

M(q) =
∏
n≥1

1

(1− qn)n
= 1 + q+ 3q2 + 6q3 + 13q4 + . . . .

Then

Z(X, q) = M(q)deg(c3(TX⊗KX))

for all smooth projective X over C.

Note. The MacMahon function has a combinatorial origin as the

generating function for the number of 3-dimensional partitions

of size n, i.e., 3-dimensional Young diagrams with n cubes.



Proof of the MNOP conjecture

MNOP verify:

Proposition 1 (Double point relation) Let π : Y → C be a

double-point degeneration (over C) at 0 ∈ C of relative dimension

3. Let c ∈ C be a regular value of π. Write π−1(0) = S ∪ T ,

π−1(c) = X. Then

Z(X, q) =
Z(S, q) · Z(T, q)

Z(P(π,0), q)

In other words, sending a smooth projective X to Z(X, q) de-

scends to a homomorphism

Z(−, q) : Ω−3(C)→ (1 + Z[[q]])×.



It follows from general principles that, for P (c1, . . . , cn) a weighted

homogeneous polynomial in the Chern classes c1, . . . , cn (with Z-

coefficients) sending a smooth projective variety X over C to

degP (c1, . . . , cn)(TX) descends to a homomorphism

P : Ω−n(C)→ Z

For example: X 7→ deg(c3(TX⊗KX)). Thus X 7→M(q)deg(c3(TX⊗KX))

descends to

M(q)? : Ω−3(C)→ (1 + Z[[q]])×.



Next we have the result of MNOP:

Proposition 2 The degree 0 conjecture is true for X = CP3,

CP1 × CP2, and (CP1)3.

To finish, we use the well-known fact from topology:

Proposition 3 The rational Lazard ring L∗⊗Q = MU2∗(pt)⊗Q
is a polynomial ring over Q with generators the classes [CPn],
n = 0,1, . . ., with [CPn] in degree ∗ = −n.

Since (1 + Z[[q]])× is torsion free, M(q)? and Z(−, q) factor

through Ω−3(C)Q = L−3
Q and agree on as Q-basis, hence are

equal.



The formal group law for Ωdp
∗



The strategy Quillen gave a geometric contruction for the for-
mal group law for MU∗ (or in our case Ω∗) by using the projective
bundle formula to write c1(OPn×Pm(1,1)) as

c1(OPn×Pm(1,1)) = u+ v+
∑

i≥1,j≥1

aiju
ivj

where u = c1(O(1,0), v = c1(O(0,1)) and the aij are in Ω∗(k).
Passing to the limit over n,m defines the power series

F (u, v) := u+ v+
∑
ij

aiju
ivj.

Properties of the tensor product of line bundles shows that
F (u, v) defines a formal group law.

We don’t have the projective bundle formula for Ωdp
∗ , but if we

can write c1(OPn×Pm(1,1)) as above “by hand”, we have a hope

of getting a formal group law for Ωdp
∗ .



Extending the double point relation

Lemma 1 Let X be in Sm/k. Suppose we have smooth divisors

S, T and W such that S+T+W is a reduced strict normal crossing

divisor and W ∼` S + T . Let D = S ∩ T , E = S ∩ T ∩W . Then

[W → X] = [S → X]+ [T → X]− [P1 → X]+ [P2 → X]− [P3 → X]

where

P1 := PD(OD(S)⊕OD), PE := P(OE(−T )⊕OE(−W ))

P2 = PPE(O ⊕O(1)), P3 = PE(OE(−T )⊕OE(−W )⊕OE)



Proof. Blow-up X along (S ∪ T ) ∩W to form a morphism

f : X ′ → P1

with f−1(0) = S+T . f−1(∞) = W . Blow up X ′ along S forming

X ′′. This resolves the singularties of X ′, leaves W and T alone

and blows up S along E. In addition, this gives a double-point

cobordism with total space X ′′ smooth fiber W and singular fiber

S′ ∪ T .

Deformation to the normal bundle of E in S also gives a double-

point cobordism with smooth fiber S and singular fiber S′ ∪ P3.

Putting these together gives the results.



Let Hn,m ⊂ Pn×Pm be the divisor of a general section of O(1,1).

This gives us the normal crossing divisor Hn,m + Pn × Pm−1 +

Pn−1 × Pm, with

Hn,m ∼` Pn × Pm−1 + Pn−1 × Pm

Applying the extended double point in this case gives a start

of the relation we seek, but the “coefficients” are non-constant

projective space bundles.

We need to iterate, making the Pn-bundles eventually into prod-

ucts. When we apply the extended double-point relation again,

we get two-term towers of Pn-bundles.



Admissible towers An admissible tower over X is a morphism

Y → X that can be factored as

Y = PN → PN−1 → . . .→ P1 → P0 = X

where Pi+1 = PPi(⊕jLj) with the Lj line bundles on Pi.

Lemma 2 Let Y → X be an admissible tower. Let H1, . . . , Hs be

smooth semi-ample divisors on X. For an index I = (i1, . . . , is)

ij ≥ 0, let HI = ∩jH
(ij)
j . Suppose that the HI are irreducible and

that the restriction of theHj to HI generate Pic(HI) for each I.

Then there are admissible towers YI,j → Spec k such that

[Y → X] =
∑
I,j

nI,j[YI,j ×HI → X]

in Ω∗dp(X).



The proof is an induction, using the extended double point rela-

tion and:

Let E → Z be a vector bundle L → Z be a line bundle and

i : D → Z a smooth divisor on Z ∈ Sm/k. Then

1. P(E ⊕L)+ PD(i∗(E ⊕L⊕L(D)))+ P(E ⊕L(D)) is a reduced

SNC divisor on P(E ⊕ L⊕ L(D))

2. P(E ⊕ L) + PD(i∗(E ⊕ L⊕ L(D))) ∼` P(E ⊕ L(D))



The formal group law We apply the proposition to the divisors
Pn−1 × Pm, Pn × Pm−1 and Hn,m on Pn × Pm, where Hn,m is the
divisor of a general section of O(1,1). The admissible tower
lemma plus an induction gives:

Proposition 4 For each n,m there are elements an,mi,j ∈ Ωdp
∗ (k)

such that

[Hn,m → Pn × Pm] = [Pn−1 × Pm → Pn × Pm]

+ [Pn × Pm−1 → Pn × Pm]

+
∑

i≥1,j≥1

a
n,m
i,j [Pn−i × Pm−j → Pn × Pm]

in Ω∗dp(P
n × Pm).

One then shows that the an,mi,j are independent of n,m for n >> 0,
m >> 0, giving elements aij ∈ Ω∗dp.



Since [Hn,m → Pn×Pm] represents c1(O(1,1)) and [Pn−i×Pm−j →
Pn× Pm] represents c1(O(1,0))i · c1(O(0,1))j, this relation even-

tually leads to showing that

F (u, v) := u+ v+
∑
ij

aiju
ivj

gives the formal group law for Ω∗dp we were looking for.



Thank you!


