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Abstract. This paper is based on the author’s lecture at the
ICM Satellite Conference in Algebra at Suzhou University, August
30-September 2, 2002, describing a joint work with Fabien Morel.

1. Introduction

Together with Fabien Morel, we have constructed a theory of alge-

braic cobordism, which lifts the theory of complex cobordism to alge-
braic varieties over a field of characteristic zero, as the theory of the
Chow ring lifts singular cohomology, or the theory of algebraic K0 lifts
the topological K0. In this paper, we give an introduction to this the-
ory for the non-expert. For those interested in more details, we refer
the reader to [5, 6, 7, 8].

We would like to thank the organizers of the Satellite Conference in
Algebra at Suzhou University for providing a warm and stimulating at-
mosphere at the conference and for promoting the continued exchange
of ideas among mathematicians.

2. Complex cobordism

We recall that the Thom space Th(E) of a vector bundle E → X
is the quotient space D(E)/S(E), where D(E) and S(E) are the disk
bundle and sphere bundle

D(E) := {v ∈ E | ||v|| ≤ 1},

S(E) := {v ∈ E | ||v|| = 1},

with respect to a chosen metric on E. It is easy to see that Th(E) is
independent of choice of metric; in fact, one can define Th(E) without
reference to a metric as

Th(E) := P(E ⊕ eC)/P(E),

where P is the associated bundle of projective spaces, and eC is the
trivial complex line bundle.

The author gratefully acknowledges support from the N.S.F., grant DMS
0140445.
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Taking the example of the universal rank n complex vector bundle
Un → Gr(n,∞), we have the 2nth universal Thom space

MU2n := Th(Un).

The bundle Un ⊕ eC → Gr(n,∞) is classified by an inclusion in :
Gr(n,∞) → Gr(n + 1,∞), giving the isomorphism

Un ⊕ eC
∼= i∗nUn+1.

This in turn yields the map of Thom spaces Th(Un⊕ eC) → Th(Un+1).
In addition, one has the homeomorphism Th(Un ⊕ e) ∼= S2 ∧ Th(Un),
which yields the connecting maps

S2 ∧MU2n
εn−→ MU2n+2.

We set MU2n+1 := S1 ∧MU2n. The sequence of spaces

MU0 = pt., MU1, MU2, . . . , MU2n, MU2n+1, . . .

with attaching maps

S1 ∧MU2n = M2n+1
id
−→ M2n+1

S1 ∧MU2n+1 = S2 ∧MU2n
εn−→ MU2n+2

defines the Thom spectrum MU ; for a topological space X, the com-

plex cobordism of X is defined as the set of stable homotopy classes of
pointed maps

MUn(X) := lim
N→∞

[ΣNX+, MUN+n].

Sending X to the graded group MU ∗(X) evidently defines a con-
travariant functor. In fact, this satisfies the axioms of a cohomology
theory on topological spaces.

2.1. Quillen’s construction. Restricting to differentiable manifolds,
the cohomology theory MU ∗ was given a more geometric flavor by
Quillen [9], following work of Thom. In [9] Quillen describes MUn(X)
as generated (for n even) by the set of complex oriented proper maps
f : Y → X of codimension n. Here a complex orientation is given by
factoring f through a closed embedding i : Y → E, where E → X
is a complex vector bundle, together with a complex structure on the
normal bundle Ni of Y in E (for n even). For n odd, one puts a
complex structure on Ni⊕eR. One then imposes the cobordism relation

by identifying f−1(X×0) and f−1(X×1), if f : Y → X×R is a proper
complex oriented map, transverse to X × {0, 1}.

From this definition, it becomes apparant that MU ∗(X) has natural
push-forward maps f∗ : MUn(X) → MUn−d(X ′) for a proper complex-
oriented map f : X → X ′ of relative dimension d. Pull-back is defined
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by noting that, given a differentiable map g : X ′ → X, and a complex-
oriented map f : Y → X, one can change f by a homotopy to make f
transverse to g. One then defines g∗(f) as the projection Y×XX ′ → X ′.
One also has the compatibility g∗f∗ = f ′∗g

′∗ for cartesian squares

X ′ ×X Y

f ′

��

g′
// Y

f

��

X ′ g
// X

with f proper and complex-oriented, and g transverse to f .
Disjoint union defines the addition in MU ∗(X), and “reversing” the

orientation defines the minus. Taking products of maps defines external
products MUn(X) ⊗ MUm(Y ) → MUn+m(X × Y ). Taking X = Y
and pulling back by the diagonal defines cup products on MU ∗(X),
making MU∗(X) a graded commutative ring with identity 1X = idX .

2.2. Chern classes and the projective bundle formula. Let L →
X be a complex line bundle on a differentiable manifold X, and let
s : X → L be the zero section. Define c1(L) ∈ MU2(X) by

c1(L) = s∗s∗(1X).

One has the projective bundle formula: Let E → X be a rank n + 1
vector bundle on X, L → P(E) the tautological line bundle on P(E),
and let ξ = c1(L). Then MU∗(P(E)) is a free MU ∗(X)-module, with
basis 1, ξ, . . . , ξn. In fact, MU∗ is the universal cohomology theory with
Chern classes and a projective bundle formula.

2.3. The formal group law. It is not the case that c1(L ⊗ M) =
c1(L)+c1(M)! To make this failure precise, one considers the universal
case of the tautological complex line bundle Ln on Pn and the limit
bundle L∞ on P∞. Letting ξn = c1(Ln), sending u to ξn defines an
isomorphism

MU∗(Pn) ∼= MU∗(pt.)[u]/un+1.

Taking limits gives MU ∗(P∞) ∼= MU∗(pt.)[[u]], with u mapping to ξ∞.
Similarly, we have MU ∗(P∞ × P∞) ∼= MU∗(pt.)[[u, v]], with u going
to c1(p

∗

1L∞), and v to c1(p
∗

2L∞). We have the power series F (u, v) ∈
MU∗(pt.)[[u, v]] defined as the element corresponding to c1(p

∗

1L∞ ⊗
p∗2L∞). Thus, for any two line bundles L, M , we have

c1(L⊗M) = F (c1(L), c1(M)).
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From the elementary properties of tensor product, we see that F
defines a commutative formal group law on MU ∗(pt.), that is

F (u, 0) = F (0, u) = u,

F (u, v) = F (v, u),

F (u, F (v, w)) = F (F (u, v), w).

In fact, Quillen [9] has shown this is the universal formal group law, so
the failure of c1 to be additive is as complete as it can possibly be.

2.4. The Lazard ring. The coefficient ring of the universal formal
group was first studied by Lazard [4], and is thus known as the Lazard

ring L. The Lazard ring is known to be a polynomial ring over Z in
infinitely many variables

L = Z[x1, x2, . . .].

L is naturally a graded ring with deg(xi) = −i.
Explicitly, one constructs L and the universal group law FL as fol-

lows: Let L̃ = Z[{Aij | i, j ≥ 1}], where we give Aij degree −i− j + 1,

and let F ∈ L̃[[u, v]] be the power series F = u + v +
∑

ij Aiju
ivj. Let

L = L̃/F (u, v) = F (v, u), F (F (u, v), w) = F (u, F (v, w)).

and let FL be the image of F in L[[u, v]]. Then (FL, L) is evidently the
universal commutative dimension 1 formal group; L is thus the Lazard
ring.

3. Oriented cohomology theories

We abstract the properties of MU ∗ in an algebraic setting. Fix a
base field k and let Smk denote the category of smooth quasi-projective
k-schemes.

Definition 3.1. An oriented cohomology theory on Smk is given by

D1. A contravarient functor A∗ from Smk to graded rings.
D2. For each projective morphism f : X → Y in Smk of relative

codimension d an A∗(Y )-linear push-forward homomorphism
f∗ : A∗(X) → A∗+d(Y ).

These satisfy:

A1. (f ◦ g)∗ = f∗ ◦ g∗. id∗ = id.



A SURVEY OF ALGEBRAIC COBORDISM 5

A2. Let

W
g′

//

f ′

��

X

f
��

Y g
// Z

be a cartesian square, with X, Y , Z and W in Smk, and with
f projective. Then

g∗f∗ = f ′
∗
g′∗.

A3. Projective bundle formula. For a line bundle L on X ∈ Smk

with zero-section s : X → L, define

c1(L) := s∗s∗(1X) ∈ A1(X).

Let E → X be a rank n + 1 vector bundle over X ∈ Smk,
and P(E) → X the associated projective bundle. Let ξ =
c1(O(1)). Then A∗(P(E)) is a free module over A∗(X) with
basis 1, ξ, . . . , ξn.

A4. Homotopy. Let p : V → X be an An bundle over X ∈ Smk.
Then p∗ : A∗(X) → A∗(V ) is an isomorphism.

Remark 3.2. The reader should note that an oriented cohomology the-
ory as defined above is not a cohomology theory in the usual sense,
as there is no requirement of a Mayer-Vietoris property. One should
perhaps call the above data an oriented pre-cohomology theory, but we
have chosen not to use this terminology.

4. The formal group law

Let A∗ be an oriented cohomology theory. We have

lim
←

n,m

A∗(Pn × Pm) ∼= A∗(k)[[u, v]],

the isomorphism sending u to c1(p
∗

1O(1)) and v to c1(p
∗

2O(1)). The class
of c1(p

∗

1O(1)⊗p∗2O(1)) thus gives a power series FA(u, v) ∈ A∗(k)[[u, v]]
with

c1(p
∗

1O(1)⊗ p∗2O(1)) = FA(c1(p
∗

1O(1)), c1(p
∗

2O(1))).

By naturality, we have, for X ∈ Smk with line bundles L, M , the
identity

c1(L⊗M) = FA(c1(L), c1(M)).

In addition, FA(u, v) = u + v mod uv, FA(u, v) = FA(v, u), and
FA(FA(u, v), w) = FA(u, FA(v, w)). Thus, FA gives a formal group law
with coefficients in A∗(k). In particular, for each oriented cohomology
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theory A, there is a canonical ring homomorphism φA : L → A∗(k)
classifying the group law FA.

Note that c1 : Pic(X) → A1(X) is a group homomorphism if and
only if FA(u, v) = u + v; we call such a theory ordinary.

Examples 4.1. (1) The Chow ring of algebraic cycles modulo ratio-
nal equivalence, CH∗, and étale cohomology H2∗

ét (−, Z/n(∗)) (also with
Zl(∗) or Ql(∗) coefficients). These are all ordinary theories. Similarly,
if σ : k → C is an embedding, and X is in Smk, let Xσ(C) be the
complex manifold of C-points on X×k C. We have the ordinary theory

X 7→ H∗(Xσ(C), Z)

where H∗(−, Z) is singular cohomology.

(2) For X ∈ Smk, we have the Grothendieck group of algebraic vector

bundles on X, Kalg
0 (X). For a projective morphism f : Y → X, we

have the pushforward f∗ : Kalg
0 (Y ) → Kalg

0 (X), defined by sending E
to the alternating sum

∑
i(−1)i[Rif∗(E)]. Here, we need to identify

Kalg
0 (X) with the Grothendieck group of coherent sheaves on X, for

which we require X to be regular (e.g. smooth over k).
This does not define an oriented cohomology theory, since there is

no natural grading on Kalg
0 which respects the pushforward maps in

the proper manner. To correct this, we adjoin a variable β (of degree
-1), and its inverse β−1, and define

f∗([E]βn) := f∗([E])βn−d

for f : Y → X projective, d = dimk X − dimk Y . This defines the
oriented cohomology theory theory K0[β, β−1].

K0[β, β−1] is not an ordinary theory, in fact, its formal group law is
the multiplicative group

FK0(u, v) = u + v − βuv.

To see this, it follows from the definition of c1 that c1(L) = β−1(1−L∨),
where L∨ is the dual line bundle. If L = OX(D), M = OX(E) for
smooth transverse divisors D and E, we have the exact sequences

0 → OX(−D) → OX → OD → 0

0 → OX(−E) → OX → OE → 0

and

0 → OX(−D − E) → OX(−D)⊕OX(−E)

→ OX → OD ⊗OX
OE → 0.
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From these, one finds the relation in Kalg
0

[1]− [(L⊗M)∨] = ([1]− [L∨])+ ([1]− [M∨])− ([1]− [L∨]) · ([1]− [M∨]),

which yields the stated group law.

(3) As in (1), let σ : k → C be an embedding. We have the oriented
cohomology theories

X 7→ K0
top(X

σ(C))[β, β−1]

X 7→ MU∗(Xσ(C))

These are both extraordinary theories (i.e., not ordinary). The group
law for K0

top is the multiplicative group, and for MU ∗ the universal
group law.

5. Algebraic cobordism

Let PSchk be the category with objects finite type k-schemes, and
with morphisms the projective maps Y → X; let PSmk be the full sub-
category of PSchk with objects the smooth quasi-projective schemes
over k. We can now state our main result on algebraic cobordism:

Theorem 5.1 ([5, 6, 7]). Let k be a field of characteristic zero.

(1) There is a universal oriented cohomology theory Ω∗ on Smk.

(2) The homomorphism φΩ : L → Ω∗(k) is an isomorphism

(3) For X of dimension d, write Ωn(X) := Ωd−n(X). Then the

covarient functor Ω∗ on PSmk extends to a covariant functor

on PSchk satisfying

(a) Ω∗ has pull-back homomorphisms for smooth quasi-projective

morphisms, compatible in cartesian squares.

(b) Let i : Z → X be a closed embedding with open complement

j : U → X. Then the sequence

Ω∗(Z)
i∗−→ Ω∗(X)

j∗

−→ Ω∗(U) → 0.

is exact.

Idea of construction: For a finite type k-scheme X, let M(X) be the
set of isomorphism classes of morphisms f : Y → X, with Y ∈ Smk

and f projective. M(X) is a graded monoid under disjoint union, with
f : Y → X in degree dimk(Y ), let M(X)+ be the group completion.
Composition with a projective morphism g : X → X ′ makes M+ a
functor on PSmk

We construct Ω∗(X) as a quotient of M(X)+ in three steps:
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(1) Impose the relation of “classical cobordism”: f−1(0) = f−1(1)
for f : W → X ×A1, W ∈ Smk, f projective, and f transverse
with respect to the inclusion X × {0, 1} → X × A1.

(2) For L → X a globally generated line bundle and f : Y → X in
M(X), let i : D → Y be the zero locus of a general section of
f ∗L. Set c1(L)(f) := f ◦ i : D → X. One checks that this is
well-defined modulo the relation of classical cobordism.

Impose the universal formal group law:

c1(L⊗M)(f) = FL(c1(L), c1(M))(f)

for globally generated line bundles L and M on X and f : Y →
X in M(X).

(3) Impose the “Gysin relation”, by identifying c1(OW (D))(idW )
with the class of i : D → W for D a smooth divisor on W .

Remarks 5.2. (1) The above gives the rough outline of a somewhat
simplified version of the actual construction. We refer the reader to
[7, 8] for more details.

(2) The restriction to characteristic zero in Theorem 5.1 arises from
a heavy use of resolution of singularities [3]. In addition, the weak
factorization theorem of [1] is used in an essential way in the proof of
Theorem 5.1(2).

6. Degree formulas

In the paper [10], Rost made a number of conjectures based on the
theory of algebraic cobordism in the Morel-Voevodsky stable homo-
topy category; assuming these conjecture, Rost is able to construct
the so-called splitting varieties which play a crucial role in Voevod-
sky’s approach to proving the Bloch-Kato conjecture. Many of Rost’s
conjectures have been proved by homotopy-theoretic means (cf. [2]);
our construction of an algebro-geometric cobordism gives an alternate
proof of these results, and settles many remaining open questions as
well. We give a sampling of some of these results.

6.1. The generalized degree formula. All the degree formulas fol-
low from the “generalized degree formula”. Before stating this result,
we first define the degree homomorphism

deg : Ω∗(X) → Ω∗(k).

We assume the base-field k has characteristic zero.
Let X be an irreducible finite type k-scheme and let ix : x → X

be the generic point of X, with structure map px : x → Spec k. By
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Theorem 5.1, we have the commutative diagram

Ω∗(k)
p∗x

// Ω∗(k(x))

L

φΩ/k

bbD
D
D
D
D
D
D
D φΩ/k(x)

::vvvvvvvvvv

with φΩ/k and φΩ/k(x) isomorphisms. Thus the base-change homomor-
phism p∗x : Ω∗(k) → Ω∗(k(x)) is also an isomorphism.

Let f : Y → X be in M(X), with X irreducible. Define deg f ∈
Ω∗(k) to be the element mapping to fx : Y ×X x → x in Ω∗(k(x)) under
the isomorphism p∗x : Ω∗(k) → Ω∗(k(x)). More generally, if η in any
element of Ω∗(X), let deg(η) ∈ Ω∗(k) be the element with

p∗x(deg(η)) = i∗xη ∈ Ω∗(k(x)).

Theorem 6.2 (Generalized degree formula). Let X be an irreducible

finite type k-scheme, and let η be in Ω∗(X). Let f0 : B0 → X be a

resolution of singularities of X, with B0 quasi-projective over k. Then

there are ai ∈ Ω∗(k), fi : Bi → X in M(X), i = 1, . . . , s, such that

(1) fi : Bi → f(Bi) is birational and f(Bi) is a proper closed subset

of X, i = 1, . . . , s.
(2) η − (deg η)[f0] =

∑
i ai[fi] in Ω∗(X).

Proof. It follows from the definitions of Ω∗ that, for X an irreducible
finite type k-scheme, we have

Ω∗(k(X)) = lim
→
U

Ω∗(U),

where the limit is over dense open subschemes U of X, and Ω∗(k(X)) is
the value at Spec k(X) of the functor Ω∗ on finite type k(X)-schemes.
Thus, there is a smooth open subscheme j : U → X of X such that
j∗η = (deg η)[U ] in Ω∗(U). Shrinking U if necessary, we may assume
that B0 → X is an isomorphism over U . Thus, j∗(η − (deg η)[f0]) = 0
in Ω∗(U).

Let W = X \ U . From the localization sequence

Ω∗(W )
i∗−→ Ω∗(X)

j∗

−→ Ω∗(U)

we find an element η1 ∈ Ω∗(W ) with i∗(η1) = η − (deg η)[f0], and
noetherian induction completes the proof. �

Remarks 6.3. (1) If X is in Smk, we can take f0 = idX , giving the
formula

η − (deg η)[idX ] =

m∑

i=1

ai[fi]
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in Ω∗(X).

(2) If X is in Smk, and η = [f ] for some f : Y → X in M(X), we have

[f ]− (deg f)[idX ] =

m∑

i=1

ai[fi]

in Ω∗(X).

(3) If f : Y → X is in M(X), and dim Y = dim X, then deg f is
an integer, namely, the usual degree of f if f is dominant, and zero
if f is not dominant. Indeed, the map Ω∗(k(X)) → Ω∗(k(X)) is an

isomorphism (k(X) the algebraic closure of k(X)), and it is clear that

the image of [f ] in Ω∗(k(X)) is [k(Y ) : k(X)] · [Spec k(X)] if f is
dominant, and zero if not.

6.4. Classical cobordism and algebraic cobordism. From the the
universal property of Ω∗, one sees that a homomorphism of fields σ :
k → C yields a natural homomorphism <σ : Ω∗(X) → MU2∗(Xσ(C)),
with f : Y → X going to the class of the map of complex manifolds
fσ : Y σ(C) → Xσ(C).

Let P = P (c1, . . . , cd) be a degree d (weighted) homogeneous poly-
nomial. If X is smooth and projective of dimension d over k, we have
the Chern number

P (X) := deg(P (c1(ΘXσ(C)), . . . , cd(ΘXσ(C)))).

P (X) is in fact independent of the choice of σ.
Let sd be the polynomial which corresponds to

∑
i ξ

d
i , where ξ1, . . .

are the Chern roots. The following divisibility is known: If d = pn − 1
for some prime p, and dim X = d, then sd(X) is divisible by p.

In addition, for integers d = pn − 1 and r ≥ 1, there are mod p
characteristic classes td,r, with td,1 = sd/p mod p. The sd and the td,r

have the following properties:
(6.1)

(1) sd(X) ∈ pZ is defined for X smooth and projective of dimension
d = pn−1. td,r(X) ∈ Z/p is defined for X smooth and projective
of dimension rd = r(pn − 1).

(2) sd and td,r extend to homomorphisms sd : Ω−d(k) → pZ, td,r :
Ω−rd(k) → Z/p.

(3) If X and Y are smooth projective varieties with dim X, dim Y >
0, dim X + dim Y = d, then sd(X × Y ) = 0.

(4) If X1, . . . , Xs are smooth projective varieties with
∑

i dim Xi =
rd, then td,r(

∏
i Xi) = 0 unless d| dimXi for each i.
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Theorem 6.5. Let f : Y → X be a morphism of smooth projective

k-schemes of dimension d, d = pn− 1 for some prime p. Then there is

a zero-cycle η on X such that

sd(Y )− (deg f)sd(X) = p · deg(η).

Theorem 6.6. Let f : Y → X be a morphism of smooth projective

k-schemes of dimension rd, d = pn−1 for some prime p. Suppose that

X admits a sequence of surjective morphisms

X = X0 → X1 → . . . → Xr−1 → Xr = Spec k

such that,

(1) dim Xi = d(r − i).
(2) Let η be a zero-cycle on Xi×Xi+1

Spec k(Xi+1). Then p| deg(η).

Then

td,r(Y ) = deg(f)td,r(X).

Proof. These two theorems follow easily from the generalized degree
formula Theorem 6.2 and the amplifications of Remark 6.3. Indeed,
for Theorem 6.5, we have the identity

[Y → X]− (deg f)[idX ] =
m∑

i=1

ai[Bi → X]

in Ω∗(X) with the ai in Ω∗(k) and with dim(Bi) < d for all i. Pushing
forward to Ω∗(k) gives the identity

[Y ]− (deg f)[X] =

m∑

i=1

ai[Bi]

in Ωd(k). We can express each ai as a sum

ai =
∑

l

nil[Yil],

where the Yil are smooth projective varieties over k. Applying sd gives

sd(Y )− deg(f)sd(X) =
∑

i,l

nilsd(Yil × Bi).

As dim(Bi) < d for all i, we have dim(Yil) > 0 for all i, l.
Since sd vanishes on non-trivial products, only the terms with Bi a

point zi of X survive in this last sum. Rewriting the sum, this gives

sd(Y )− deg(f)sd(X) =
∑

j

mjsd(Yj) deg(zj)
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for smooth projective dimension d k-schemes Yj, integers mj and points
zj of X. Since sd(Yj) = pnj for suitable integers nj, we have

sd(Y )− deg(f)sd(X) = p deg(
∑

j

mjnjzj),

proving Theorem 6.5.
For Theorem 6.6, we have as before

[Y → X]− (deg f)[idX ] =
m∑

i=1

ai[Bi → X]

in Ω∗(X). We then decompose each Bj → X2 using Theorem 6.2,
giving

[Bj] = a0j [X2] +
∑

i

nijaij[Bij].

in Ω∗(X2). Iterating, we have the identity in Ω∗(k)

[Y ]− (deg f)[X] =
∑

I=(i0,...,ir)

nI [

r∏

j=0

Yij],

where the Yij are smooth projective k-schemes. In addition, the con-
ditions on the tower imply that for each product

∏r
j=0 Yij such that

d| dimYij for all j has p|nI. Thus, arguing as above, we see that
td,r(Y ) = deg(f)td,r(X). �

7. Comparison results

In this last section, we explain how one can recover both the Chow
ring CH∗(X) and Kalg

0 (X) from Ω∗(X).
Suppose we have a formal group law (f, R), giving the canonical

homomorphism φf : L → R. Let Ω∗(f,R) be the functor

Ω∗(f,R)(X) = Ω∗(X)⊗L R,

where Ω∗(X) is an L-algebra via the isomorphism φΩ : L → Ω∗(k). For

X a finite type k-scheme, define Ω
(f,R)
∗ (X) similarly.

Since ⊗ is right exact, the theories Ω∗(f,R) and Ω
(f,R)
∗ have the same

formal properties as Ω∗ and Ω∗. In particular, Ω∗(f,R) is an oriented coho-

mology theory, and Ω
(f,R)
∗ satisfies localization. The universal property

of Ω∗ gives the analogous universal property for Ω∗(f,R).

In particular, let Ω∗+ be the theory with (f(u, v), R) = (u+v, Z), and
let Ω∗× be the theory with (f(u, v), R) = (u + v − βuv, Z[β, β−1]). We
thus have the canonical natural transformations of oriented theories

(7.1) Ω∗+ → CH∗; Ω∗
×
→ Kalg

0 [β, β−1].
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Theorem 7.1. The natural transformations (7.1) are isomorphisms.

Proof. We define maps backwards:

CH∗ → Ω∗+; Kalg
0 [β, β−1] → Ω∗×.

For CH∗, we first note that Ωn(k)+ = 0 for n 6= 0, since L ∼= Ω∗(k), and
L is generated by the coefficients of the universal group law. To map
CH∗ to Ω∗+, send a subvariety Z ⊂ X to the map Z̃ → X, where Z̃ → Z
is a resolution of singularities of Z. It follows from localization that
the class of Z̃ in Ω∗+(X) is independent of the choice of the resolution.
A similar argument shows that the relations defining CH∗ go to zero.
It is evident that the composition CH∗ → Ω∗+ → CH∗ is the identity.
Finally, the generalized degree formula Theorem 6.2 shows that the
map CH∗ → Ω∗+ is surjective, proving the result.

For Kalg
0 [β, β−1], we use a “Chern character” to define the backwards

map. In fact, sending a line bundle L to ch(L) :=
∑

i c
Ω×

1 (L)i is easily
seen to satisfy

ch(L⊗M) = ch(L)ch(M).

Defining ch(⊕iLi) =
∑

i ch(Li) and using the splitting principle defines

the ring homomorphism ch : Kalg
0 [β, β−1] → Ω∗

×
. One calculates the

associated Todd genus as follows: The respective projective bundle
formulas give isomorphisms

lim
←

Kalg
0 [β, β−1](Pn) ∼= Z[β, β−1][[u]]; lim

←
Ω∗
×
(Pn) ∼= Z[β, β−1][[v]],

with u going to 1−O(−1), and v going to the class of a hyperplane H.
Thus, one can write ch(1 − O(−1)) as φ([H]) in Ω×(Pn) for a unique
power series φ(v) = av+. . .. Then Todd(v)−1 = φ(v)/v. But one easily
computes φ(v) = v, giving Todd(v) = 1. The Riemann-Roch formula
then gives

ch(OZ) = [Z] ∈ Ω×(X)

for Z → X a smooth closed subscheme of X ∈ Smk. This and lo-
calization implies that ch : Kalg

0 [β, β−1] → Ω∗
×

is surjective; one easily
computes that the composition

Kalg
0 [β, β−1] → Ω∗

×
→ Kalg

0 [β, β−1]

is the identity, completing the proof. �
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