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Abstract. Let k be a number field, and let S ⊂ P1(k) be a finite set of
rational points. We relate the Deligne-Goncharov contruction of the motivic

fundamental group of X := P1 \S to the Tannaka group scheme over Q of the
category of mixed Tate motives over X.
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Introduction

In [8], P. Deligne defined the motivic fundamental group of X = P1 \ {0, 1,∞}
over a number field k as an object in the category of systems of realizations. This is a
Tannakian category over Q, which he constructed as tuples (Betti, de Rham, `-adic,
crystalline), with compatibilities between them, a definition close to the one given
by U. Jannsen [19]. The Betti-de Rham component is the mixed Hodge structure,
defined by J. Morgan [27], on the nilpotent completion lim←−N Q[πtop(X, a)]/IN of the
topological fundamental group πtop

1 (X(C), a), for all complex embeddings k ⊂ C,
where the base-point a is either a point in X(k) or a non-trivial tangent vector at
ā ∈ (P1 \X)(k).

A. Beilinson ([9, proposition 3.4]) showed that for any smooth complex variety
X, and for base-point a ∈ X(C), the ind-system

lim−→
N

HomQ(Q[πtop(X, a)]/IN ,Q),

which is a Hopf algebra over Q, arises from the cohomology of a cosimplicial scheme
Pa(X). As pointed out by Z. Wojtkoviak [32], the Hopf algebra structure on
lim−→N

(Q[πtop(X, a)]/IN )∨ similarly arises from operations on Pa(X). These key
results have many consequences. For instance, one can use Pa(X) to define the
mixed Hodge structure on lim←−N Q[πtop(X, a)]/IN , cf. [14]. Even more, the cosim-
plicial scheme Pa(X), regardless of the geometry of X, defines an ind- Hopf algebra
object hk(Pa(X)) in Voevodsky’s triangulated category of motives DMgm(k) [11,
chapter V]; here

hk : Sm/kop → DMgm(k)

is the “cohomological motive” functor, dual to the canonical functorMgm : Sm/k →
DMgm(k). If in addition X is the complement in P1

k of a finite set of k-rational
points, then hk(Pa(X)) lies in the full triangulated subcategory DMT(k) ofDM(k)Q
spanned by the Tate objects Q(n).

As explained in [26], if k satisfies the Beilinson-Soulé vanishing conjecture, that
is, if the motivic cohomology Hp(k,Z(q)) vanishes for p ≤ 0, q > 0, there is a
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t-structure defined on DMT(k), the heart of which is the abelian category MT(k)
of mixed Tate motives over k. MT(k) is a Q-linear, abelian rigid tensor category
with the structure of a functorial exact weight filtration W∗. Taking the associated
graded object with respect to W∗ defines a neutral fiber functor grW∗ , endowing
MT(k) with the structure of a Tannakian category over Q.

By the work of Borel [4], we know that if k is a number field, then k does satisfy
the Beilinson-Soulé conjecture. Thus Beilinson’s construction allows one to define
the ind-Hopf algebra object H0(hk(Pa(X)) in MT(k), if k is a number field. In
[9, théorème 4.4] P. Deligne and A. Goncharov show that the dual πmot

1 (X, a) of
H0(hk(Pa(X)), which is a pro-group scheme object in MT(k), yields Deligne’s orig-
inal motivic fundamental group upon applying the appropriate realization functors,
in case a ∈ X(k) and X ⊂ P1

k is the complement of a finite set of k-points of P1. In
addition, they show that, even for a tangential base-point a, there is a pro-group
scheme object πmot

1 (X, a) in MT(k) which maps to Deligne’s motivic fundamen-
tal group under realization, without, however, making an explicit construction of
πmot

1 (X, a) in this case. Using this construction as starting point, they go on to
construct a motivic fundamental group for any unirational variety over the number
field k, as a pro-group scheme over the larger Tannakian category of Artin-Tate
motives MAT(k) (see [9] for details).

Using recent work of Cisinski-Déglise [7], one now has available a reasonable
candidate for the category of motives over a base X, at least if X is a smooth
variety over a perfect field k. In any case, the resulting triangulated category
DM(X) has Tate objects ZX(n) which properly compute the motivic cohomology
of X (defined using Voevodsky’s category DMgm(k)). In addition, if X ⊂ P1

k is an
open defined over a number field k, then the observation made in [26] carries over to
the full triangulated subcategory DMT(X) of the category DM(X)Q generated by
the Tate objects QX(n). Indeed, the localization sequence and homotopy invariance
for motivic cohomology allow one to reduce Beilinson-Soulé vanishing conjectures
for the motivic cohomologyHp(X,Z(q)) ofX to the conjectures for finite extensions
of k. Thus, assuming k is a number field, there is a heart MT(X) ⊂ DMT(X) which
is a Q-linear abelian rigid tensor category, and which receives MT(k) by pull back
via the structure morphism p : X → Spec k.

By Tannaka duality, we therefore have the Tannaka group schemes over Q,
G(MT(X), grW∗ ) and G(MT(k), grW∗ ), and p∗ : MT(k)→ MT(X) gives a canonical
short exact sequence

1→ K → G(MT(X), grW∗ )
p∗−→ G(MT(k), grW∗ )→ 1.

K is defined as the kernel of p∗; the surjectivity of p∗ follows from the fact that
each a ∈ X(k) defines a splitting sa∗ : G(MT(k), grW∗ ) → G(MT(X), grW∗ ) to p∗.
In fact, the splitting sa∗ also defines an action of G(MT(k), grW∗ ) on K, which lifts
the Q group-scheme K to a group-scheme object Ka in MT(k).

In [9, section 4.19], Deligne and Goncharov use the group-scheme πmot
1 (X, a) over

MT(k) to define MT(X) as the category of MT(k) representations of πmot
1 (X, a).

In [9, section 4.22] they ask about the relationship between MT(k(P1)), defined as
above as a subcategory of Voevodsky’s category DM(k(P1))Q, and lim−→X⊂P1 MT(X)
(this is the formulation for k = Q̄, in general, one needs to use the Artin-Tate
motives MAT). The purpose of this article is to give an answer to this question
in the following shape: the intrinsic definition of MT(X) we outlined above is
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equivalent to the category of Ka-representations in MT(k), assuming P1\X consists
of k-rational points.

We now describe our main result (corollary 6.6.2; see also theorem 6.6.1 for a
more general statement).

Theorem 1. Let k be a number field, S ⊂ X(k) a finite set of k-points of P1,
let X := P1 \ S and take a ∈ X(k). Then the pro-group scheme objects Ka and
πmot

1 (X, a) are isomorphic as group-schemes in MT(k).

The equivalence of MT(X) with the category of Ka-representations in MT(k)
follows directly from this.

We now explain the ideas that go into the proof. In [1] S. Bloch and I. Kriz
construct a group-scheme GBK(k) over Q, by applying the bar construction to the
cycle algebra Nk := Q⊕⊕r≥1Nk(r). The rth component Nk(r) of Nk is a shifted,
alternating version of Bloch cycle complex,

Nm
k (r) = zr(k, 2r −m)Alt;

the alternation makes the product on Nk strictly graded-commutative. The ad-
ditional grading r is the Adams grading. The reduced bar construction gives us
the Adams graded Hopf algebra H0(B̄(Nk)) and GBK(k) is the pro group scheme
SpecH0(B̄(Nk)). Bloch-Kriz define the category of “Bloch-Kriz” mixed Tate mo-
tives over k, MTBK(k), as the finite dimensional graded representations of GBK(k)
in Q-vector spaces.

In [21], I. Kriz and P. May consider, for an Adams graded commutative dif-
ferential graded algebra (cdga) A = Q · id ⊕ ⊕r≥1A(r) over Q, the “bounded”
derived category DfA of Adams graded dg A modules. DfA admits a functorial ex-
act weight filtration, arising from the Adams grading; in case A is cohomologically
connected, DfA has a t-structure, defined by pulling back the usual t-structure on
DfQ ∼= ⊕nDb(Q) via the functor M 7→M ⊗LA Q from DfA to DfQ. In particular, they
define the heart HfA. Next, assuming A cohomologically connected, they construct
an exact functor

ρ : Db
(
co-repfQ(H0(B̄(A)))

)
→ DfA

where co-repfQ(H0(B̄(A))) is the category of graded co-representations ofH0(B̄(A))
in finite-dimension Q-vector spaces, and show that ρ identifies the categories HfA
and co-repfQ(H0(B̄(A))) (although ρ is not in general an equivalence). For those
who prefer group-schemes to Hopf algebras, let GA := SpecH0(B̄(A)). Then GA
is a pro-affine group scheme over Q with Gm action, and co-repfQ(H0(B̄(A))) is
equivalent to the category of graded representions of GA in finite dimensional Q-
vector spaces.

Taking A = Nk, and noting that the Beilinson-Soulé vanishing conjectures for k
are equivalent to the cohomological connectedness of A, this gives an equivalence
of the heart HfNk

with the Bloch-Kriz mixed Tate motives MTBK(k).
M. Spitzweck [31] (see [24, section 5] for a detailed account) defines an equiva-

lence
θk : DfNk

→ DMT(k) ⊂ DMgm(k)Q

for k an arbitrary field. In addition, under the assumption that k satisfies the
Beilinson-Soulé conjectures, or equivalently, that Nk is cohomologically connected,
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θk restricts to an equivalence

θk : HfNk
→ MT(k).

From the discussion above, this gives an equivalence of co-repfQ(H0(B̄(Nk))) with
MT(k), and in fact identifies GBK(k)nGm as the Tannaka group of (MT(k), gr∗W ).

Our first task is to extend this picture from k to X. To this aim, one defines
the cycle algebra NX by replacing k with X in the definition of Nk and modifying
the construction further by using complexes of cycles which are equi-dimensional
over X. This yields an Adams graded cdga over Q together with a map of Adams
graded cdgas p∗ : Nk → NX arising from the structure morphism p : X → Spec k.
Essentially the same construction as for k gives an equivalence

(∗) θX : DfNX
→ DMT(X) ⊂ DM(X)Q

and ifX satisfies the Beilinson-Soulé vanishing conjectures, θX restricts to an equiv-
alence HfNX

∼ MT(X). Defining the Q pro-group scheme GBK(X) as above,

GBK(X) := GNX
= Spec (H0(B̄(NX))),

we also have the equivalence of MT(X) with the graded representations of GBK(X)
in finite dimensional Q-vector spaces, giving the identification of GBK(X) n Gm

with the Tannaka group of (MT(X), grW∗ ), and identifying p∗ : G(MT(X), grW∗ )→
G(MT(k), grW∗ ) with the map

p̃× id : GBK(X) n Gm → GBK(k) n Gm,

with p̃ induced from p∗ : Nk → NX .
A k-point a of X gives an augmentation εa : NX → Nk. We discuss the general

theory of augmented cdgas in section 2, leading to the relative bar construction
H0
N (B̄N (A, ε)) of a cdg N algebra A with augmentation ε : A → N , as an ind-

Hopf algebra in HfN . Let GA/N (ε) = SpecH0
N (B̄N (A, ε)) and let GA/N (ε)Q be

the pro-group scheme over Q gotten from GA/N (ε) by applying the fiber functor
grW∗ : HfN → VecQ. Note that Tannaka duality gives a canonical action of GN on
GA/N (ε)Q.

Of course, in order to make a reasonable relative bar construction, one needs to
use a good model for A as an N -algebra. This is provided by using the relative
minimal model A{∞}N of A over N , for which the derived tensor product is just
the usual tensor product.

In section 2.5, especially theorem 2.5.3, we show that
(1) GA/N (ε)Q = SpecH0(B̄(A{∞}N ⊗N Q)).
(2) There is an exact sequence of pro-group schemes over Q:

1→ GA/N (ε)Q → GA
p∗−→ GN → 1

The splitting ε∗ to p∗ defines a splitting ε∗ : GN → GA to p∗.
(3) The conjugation action of GN on GA/N (ε)Q given by the splitting ε∗ is the

same as the canonical action.
To do this, we use an alternate description of dg modules over an Adams graded

cdga N , that of flat dg connections. Kriz and May describe dg modules M over
N as N+ :=

⊕
r>0N (r)-valued connections over M ⊗N Q (for the canonical

augmentation N → Q). Writing A{∞}+N as N+ ⊕ I, with this decomposition
coming from the augmentation A{∞}N → N , the absolute (i.e. A{∞}+N -valued)
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connection on H0(B̄(A)) = H0(B̄(A{∞}N )) induces a N+-valued connection on
H0(B̄(A{∞}N ⊗N Q)). Similarly, the structure of H0

N (B̄N (A, ε)) as an ind-Hopf
algebra in HfN gives an N+-valued connection on

H0
N (B̄N (A, ε))⊗N Q = H0(B̄(A{∞}N ⊗N Q)).

Using this description, it is easy to make the identifications necessary for proving
(1)-(3) above. In a metaphorical way, we could say that GA/N (ε) is the Gauß-Manin
connection of GA associated to A/N .

Applying this theory to the splitting εa : NX → Nk, the Q pro-group scheme K,
and lifting Ka to a MT(k) pro-group scheme, gives us the isomorphism of pro-group
schemes

K ∼= SpecH0(B̄(NX{∞}Nk
⊗Nk

Q))

and the isomorphism of pro-group scheme objects in HfNk

(∗∗) Ka
∼= H0

N (B̄Nk
(NX , εa)).

One can make the dg Nk-module H0
N (B̄Nk

(NX , εa)) explicit as an object in
MT(k) via Spitzweck’s theorem. This relies on a crucial property of the transfor-
mation from dg Nk modules to motives:

Take X ∈ Sm/k. If the motive hk(X) is in DMT(k) and X satisfies the Beilinson-
Soulé vanishing conjectures, then the motive of the cycle module NX{∞}Nk

is
canonically isomorphic to hk(X)Q.

The explicit decription of the Beilinson simplicial scheme underlying the Deligne-
Goncharov construction, together with this essential fact, allows one to conclude
that the Gauß-Manin connection is precisely πmot

1 (X, a), when a comes from a ra-
tional point a ∈ X(k) (see sections 6.5 and 6.6). In other words, we have the
isomorphism of pro-group schemes over MT(k):

πmot
1 (X, a) ∼= SpecH0

N (B̄Nk
(NX , εa)).

Combining this with our identification (∗∗) proves the main theorem.
The generalization of Spitzweck’s theorem, i.e., the identification (∗) of the trian-

gulated Tate subcategory DMT(X) of DM(X)Q with the bounded derived category
of dg modules over NX , is entirely due to the second author. This result together
with a sketch of the proof is summarized in section 5. Along with the necessary
constructions on motives over a base and cycle algebras (sketched here in sections 3
and 4) this material will be developed to a greater extent in a forthcoming article
[22] by the second author.

We now discuss a few questions. In this article, we do not consider the case
of the base-point a being a non-trivial tangent vector at some point ā ∈ P1 \ X.
As mentioned above, Deligne-Goncharov [9] show in this case as well that the
motivic π1, defined by Deligne [8] as a system of realizations, comes from MT(k).
This defines πmot

1 (X, a) as an object in MT(k), but there is no direct construction
in MT(k). However, the results of [23] give a section εa to p∗ : Nk → NX (in
the homotopy category of cdgas) for tangential base-points a as well as for k-
points, so we do have a relative bar construction available even for tangential base-
points. In order to extend our main theorem 6.6.1 to this case, one should define
realization functors on the categories of Tate motives, described as dg modules over
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the cycle algebra, and check that the realization of SpecH0
N (B̄Nk

(NX , εa)) agrees
with Deligne’s motivic π1.

At any rate this raises another question. Given any section s : GNk
→ GNX

, the
resulting action of G(MT(k), grW∗ ) on K defines a pro-group scheme object Ks over
MT(k). We have as well a descripton of the action in terms of the Gauß-Manin
connection. We could ask for a description of all the sections and a condition which
separates out the ones which are geometric, i.e., arising from a rational point or
tangential base-point.

Recall that sections sét of the natural homomorphism πét1 (X) → Gal(k̄/k) of
Grothendieck’s pro-finite fundamental group to the Galois group of k are predicted
by Grothendieck’s section conjecture to be geometric (see [13]), if |(P1 \X)(k̄)| ≥ 3,
(or more generally if X is a hyperbolic curve), and k is a number field. Geometric
in this setting means that there is a rational point a ∈ P1 such that the restriction
of the section to πét1 (X∪{a}) comes from a ∈ P1(k). This implies in particular that
each section sét lifts to a section of πét1 (U)→ Gal(k̄/k) for all U ⊂ X open. If one
knew this, then the conjecture would reduce to the case X = P1 \{0, 1,∞} (see [10,
proposition 7.9]). In addition, it is shown in [10, theorem 6.5] that the geometric
sections are described precisely by lim←−n k

×/(k×)n at each rational point at infinity.
This group contains k×, this subgroup corresponding to Deligne’s tangential base
points ([10, section 6]). On the other hand, sections sét should define sections s` of
G(MT(X), grW∗ )⊗Q` → G(MT(k), grW∗ )⊗Q` for all `.

It is thus natural to ask about the sections of

p∗ : G(MT(X), grW∗ )→ G(MT(k), grW∗ ),

i..e. graded sections of GBK(X)
p̃−→ GBK(k). It is rather easy to see that the Lie

algebra of GBK(k) is a free pro-nilpotent Lie algebra over Q, so there is essentially
no restriction on the graded sections to p̃. Thus, we need to look deeper for an
analog to Grothendieck’s conjecture.

If we fix a k-point a ∈ X(k), we have the conjugation representation ρa of
GBK(k) on the kernel K. If we want to pick out the geometric sections, we can
first ask: suppose we have a section s to p∗ with the property that the resulting
conjugation representation ρs is isomorphic to ρa. Is s then geometric, in fact, is
s = sa?

If the answer is yes, we can then ask what properties make the representations
ρa special. An analog of the Deligne-Ihara conjecture suggests the following: Note
that the Lie algebra Lie(GBK(k)) is a graded pro-nilpotent Lie algebra over Q,
concentrated in negative degrees. Let I ⊂ Lie(GBK(k)) be the ideal generated
by the degree −1 homogeneous elements. We note that the space of degree −1
elements in Lie(GBK(k)) is the pro-vector space dual to H1(k,Q(1)) ∼= k×Q .

Conjecture 2. Let a be the tangential base point (0, ∂/∂t|0) for X := P1
Q\{0, 1,∞}.

Then the map
dρa : Lie(GBK(Q))→ End(Lie(K))

has kernel equal to I.

It is not difficult to show that the kernel of dρa contains I.

Acknowledgements: We gave a seminar in the winter 2006-7 at the university
of Duisburg-Essen on [9], to try to understand the constructions and results of
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Deligne-Goncharov, as well as the various constructions of mixed Tate motives and
the relationships between them, as developed in the works of Bloch, Bloch-Kriz,
Kriz-May and Spitzweck, and summarized in [24]; our paper is to a large extent a
product of that seminar. We thank all the seminar participants for their willing-
ness to give talks, in particular we thank Phùng Hô Hai for various discussions on
Tannakian categories.

1. Differential graded algebras

We fix notation and recall some basic facts on commutative differential graded
algebras (cdgas) over Q. This material is taken from [21].

In what follows a cdga will always mean a cdga over Q.

1.1. Adams graded cdgas.

Definition 1.1.1. (1) A cdga (A∗, d, ·) (over Q) consists of a unital, graded-
commutative Q-algebra (A∗ := ⊕n∈ZA

n, ·) together with a graded homomorphism
d = ⊕ndn, dn : An → An+1, such that

(1) dn+1 ◦ dn = 0.
(2) dn+m(a · b) = dna · b+ (−1)na · dmb; a ∈ An, b ∈ Am.

A∗ is called connected if An = 0 for n < 0 and A0 = Q ·1, cohomologically connected
if Hn(A∗) = 0 for n < 0 and H0(A∗) = Q · 1.

(2) An Adams graded cdga is a cdga A together with a direct sum decomposition
into subcomplexes A∗ := ⊕r≥0A

∗(r) such that A∗(r) · A∗(s) ⊂ A∗(r + s). In
addition, we require that A∗(0) = Q · id. An Adams graded cdga is said to be
(cohomologically) connected if the underlying cdga is (cohomologically) connected.

For x ∈ An(r), we call n the cohomological degree of x, n := deg x, and r the
Adams degree of x, r := |x|.

Note that an Adams graded cdga A has a canonical augmentation A→ Q with
augmentation ideal A+ := ⊕r>0A

∗(r).

1.2. The bar construction. We let Ord denote the category with objects the
sets [n] := {0, . . . , n}, n = 0, 1, . . ., and morphisms the non-decreasing maps of sets.
The morphisms in Ord are generated by the coface maps δni : [n] → [n + 1] and
the codegeneracy maps σni : [n] → [n − 1], where δni is the strictly increasing map
omitting i from its image and σni is the non-decreasing surjective map sending i and
i+ 1 to i. For a category C, we have the categories of cosimplicial objects in C and
simplicial objects in C, namely, the categories of functors Ord→ C and Ordop → C,
respectively. For a cosimplicial object X : Ord→ C, we often write δni and σni for
the coface maps X(δni ) and X(σni ), and for a simplicial object S : Ordop → C, we
often write dni and sni for the face and degeneracy maps S(δni ) and S(σni ).

Let A be a cdga. We begin by defining the simplicial cdga B•(A) as follows:
Tensor product (over Q) is the coproduct in the category of cdgas, so for a finite
set S, we have A⊗S , giving the functor A⊗? from finite sets to cdgas. Concretely,
for

ϕ : S := {i1, . . . , is} → T := {j1, . . . , jt}



TATE MOTIVES AND THE FUNDAMENTAL GROUP 9

a map of finite sets, the induced map A⊗ϕ : A⊗S → A⊗T of cdgas is defined by

ai1 ⊗ . . .⊗ ais 7→ bj1 ⊗ . . .⊗ bjt
bj =

∏
ϕ(i)=j

ai; bj = 1 if ϕ−1(j) = ∅.

Thus, if we have a simplicial set S such that S[n] is a finite set for all n, we may
form the simplicial cdga A⊗S , n 7→ A⊗S[n]. We have the representable simplicial
sets ∆[n] := HomOrd(−, [n]); setting [0, 1] := ∆[1] gives us the simplicial cdga

B•(A) := A⊗[0,1].

The two inclusion [0] → [1] define the maps i0, i1 : ∆[0] → ∆[1]. Letting {0, 1}
denote the constant simplicial set with two elements, the maps i0, i1 give rise to the
map of simplicial sets i0 q i1 : {0, 1} → [0, 1], which makes B•(A) into a simplicial
A⊗A = A⊗{0,1} algebra.

Suppose we have augmentations ε1, ε2 : A→ Q. Define B̄•(A, ε1, ε2) by

B̄•(A, ε1, ε2) := B•(A)A⊗AQ

using ε1 ⊗ ε2 : A ⊗ A → Q as structure map. Since B̄n(A, ε1, ε2) is a complex for
each n, we can form a double complex by using the usual alternating sum of the
face maps dni : B̄n+1(A, ε1, ε2) → B̄n(A, ε1, ε2) as the second differential, and let
B̄(A, ε1, ε2) denote the total complex of this double complex. We use cohomological
grading throughout, so B̄n(A, ε1, ε2)m has total degree m− n. For ε1 = ε2 = ε, we
write B̄(A, ε) or simply B̄(A); this is the reduced bar construction for (A, ε). As is
usual, we denote a decomposable element x1 ⊗ . . . ⊗ xn of B̄(A) by [x1|, . . . |xn].
Note that

deg([x1| . . . |xm]) = −m+
∑
i

deg(xi).

The bar construction B̄ := B̄(A) has the following structures: a differential
d : B̄ → B̄ of degree +1 coming from the differential in A, a product (the shuffle
product)

∪ : B̄ ⊗ B̄ → B̄

[x1| . . . |xp] ∪ [xp+1| . . . |xp+q] =
∑
σ

sgn(σ)[xσ(1)| . . . |xσ(p+q)]

where the sum is over all (p, q) shuffles σ ∈ Sp+q, a co-product

δ : B̄ → B̄ ⊗ B̄

δ([x1| . . . |xn]) :=
n∑
i=0

[x1| . . . xi]⊗ [xi+1| . . . |xn]

and an involution

ι : B̄ → B̄,

ι([x1|x2| . . . |xn−1|xn]) := (−1)n[xn|xn−1| . . . |x2|x1]

making (B̄(A), d,∪, δ, ι) a differential graded Hopf algebra over Q, which is graded-
commutative with respect to the product ∪. The cohomology H∗(B̄(A)) is thus
a graded Hopf algebra over Q, in particular, H0(B̄(A)) is a commutative Hopf
algebra over Q.
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Let I(A) be the kernel of the augmentation H0(B̄(A)) → Q induced by ε.
The coproduct δ on H0(B̄(A)) induces the structure of a co-Lie algebra on γA :=
I(A)/I(A)2.

From the formula for the coproduct, we see that, modulo tensors of degree < m,
we have

δ([x1| . . . |xm]) = 1⊗ [x1| . . . |xm] + [x1| . . . |xm]⊗ 1.
This implies that the pro-affine Q-algebraic group G := SpecH0(B̄(A)) is pro-
unipotent. In addition, it is known that, as an algebra over Q, H0(B̄(A)) is a
polynomial algebra, with indecomposables γA.

Suppose A = ⊕r≥0A
∗(r) is an Adams graded cdga, with canonical augmentation

ε : A → Q. The Adams grading on A induces an Adams grading on B•(A) and
thus on B̄(A); explicitly B̄(A) has the Adams grading B̄(A) = ⊕r≥0B̄(A)(r) where
the Adams degree of [x1| . . . |xm] is

|[x1| . . . |xm]| :=
∑
j

|xj |.

Thus H0(B̄(A)) = ⊕r≥0H
0(B̄(A)(r)) becomes an Adams graded Hopf algebra over

Q, commutative as a Q-algebra. We also have the Adams graded co-Lie algebra
γA = ⊕r>0γA(r).

Remark 1.2.1. Let A be an Adams graded cdga. The Adams grading equips the
pro-unipotent affine Q group scheme G := SpecH0(B̄(A)) with a grading, or,
equivalently, with a Gm-action. Thus γA is a graded nilpotent co-Lie algebra,
and there is an equivalence of categories between the graded co-representations of
H0(B̄(A)) in finite dimensional graded Q-vector spaces, co-repfQ(H0(B̄(A))), and
the graded co-representations of γA in finite dimensional graded Q-vector spaces,
co-repfQ(γA).

1.3. The category of cell modules. Kriz and May [21] define a triangulated
category directly from an Adams graded cdga A without passing to the bar con-
struction or using a co-Lie algebra. We recall some of their work here.

Let A∗ be a graded algebra over Q. We let A[n] be the left A∗-module which
is Am+n in degree m, with the A∗-action given by left multiplication. If A∗(∗) =
⊕n≥0,r≥0A

n(r) is a bi-graded Q-algebra, we let A<r>[n] be the left A∗(∗)-module
which is Am+n(r + s) in bi-degree (m, s), with action given by left multiplication.

Definition 1.3.1. Let A be a cdga.

(1) A dg A-module (M∗, d) consists of a complex M∗ = ⊕nMn of Q-vector spaces
with differential d, together with a graded, degree zero map A∗⊗Q M

∗ →M∗, a⊗
m 7→ a · m, which makes M∗ into a graded A∗-module, and satisfies the Leibniz
rule

d(a ·m) = da ·m+ (−1)deg aa · dm; a ∈ A∗,m ∈M∗.

(2) If A = ⊕r≥0A
∗(r) is an Adams graded cdga, an Adams graded dg A-module is a

dg A-module M∗ together with a decomposition into subcomplexes M∗ = ⊕sM∗(s)
such that A∗(r) · M∗(s) ⊂ M∗(r + s). We say x ∈ M∗ has Adams degree s if
x ∈M∗(s), and write this as |x| = s.

(3) An Adams graded dg A-module M is a cell module if
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(a) M is free as a bi-graded A-module, where we forget the differential struc-
ture. That is, there is a set J and elements bj ∈Mnj (rj), j ∈ J , such that
the maps a 7→ a · bj induces an isomorphism of bi-graded A-modules

⊕j∈JA<−rj>[−nj ]→M.

(b) There is a filtration on the index set J :

J−1 = ∅ ⊂ J0 ⊂ J1 ⊂ . . . Jn ⊂ . . . ⊂ J
such that J = ∪∞n=0Jn and for j ∈ Jn,

dbj =
∑

i∈Jn−1

aijbi.

A finite cell module is a cell module with index set J finite.

We denote the category of dg A-modules by MA, the A-cell modules by CMA

and the finite cell modules by CMf
A.

1.4. The derived category. Let A be an Adams graded cdga and let M and
N be Adams graded dg A-modules. Let HomA(M,N) be the Adams graded dg
A-module with Hom(M,N)n(r) the A-module consisting of maps f : M → N
with f(Ma(s)) ⊂ Na+n(s + r), and differential d defined by df(m) = d(f(m)) +
(−1)n+1f(dm) for f ∈ Hom(M,N)n(r). Similarly, let M ⊗A N be the Adams
graded dg A-module with underlying module M ⊗AN and with differential d(m⊗
n) = dm⊗ n+ (−1)degmm⊗ dn.

For f : M → N a morphism of Adams graded dg A-modules, we let Cone(f) be
the Adams graded dg A-module with

Cone(f)n(r) := Nn(r)⊕Mn+1(r)

and differential d(n,m) = (dn + f(m),−dm). Let M [1] be the Adams graded dg
A-module with M [1]n(r) := Mn+1(r) and differential −d, where d is the differential
of M . A sequence of the form

M
f−→ N

i−→ Cone(f)
j−→M [1]

where i and j are the evident inclusion and projection, is called a cone sequence.

Definition 1.4.1. Let A be an Adams graded cdga over Q. We let MA denote
the category of Adams graded dg A-modules, KA the homotopy category, i.e. the
objects of KA are the objects ofMA and

HomKA
(M,N) = H0(HomA(M,N)(0)).

The category KA is a triangulated category, with distinguished triangles as usual
those triangles which are isomorphic in KA to a cone sequence.

Definition 1.4.2. The derived category DA of dg A-modules is the localization of
KA with respect to morphisms M → N which are quasi-isomorphisms on the under-
lying complexes of Q-vector spaces. For M in DA, we denote the nth cohomology
of M , as a complex of Q-vector spaces, by Hn(M).

We define the homotopy category of A-cell modules, resp. finite cell modules, as
the full subcategory of KA with objects in CMA, resp. in CMf

A,

KCMf
A ⊂ KCMA ⊂ KA.
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Note that for A = Q, MQ is just the category of complexes of graded Q-vector
spaces, and DQ is the unbounded derived category of graded Q-vector spaces.

Proposition 1.4.3 ([21, construction 2.7]). The evident functor

KCMA → DA
is an equivalence of triangulated categories.

We let DfA ⊂ DA be the full subcategory with objects those M isomorphic in DA
to a finite cell module. As an immediate consequence of proposition 1.4.3, we have

Proposition 1.4.4. KCMf
A → D

f
A is an equivalence of triangulated categories.

Example 1.4.5 (Tate objects). For n ∈ Z, let Q(n) be the object of CMf
A which is

the free rank one A-module with generator bn having Adams degree −n, cohomo-
logical degree 0 and dbn = 0, i.e., Q(n) = A<n>. We sometimes write QA(n) for
Q(n); Q(n) is called a Tate object.

1.5. Weight filtration. Let M be an Adams graded dg A-module which is free
as a bi-graded A-module. Choose a basis B := {bj | j ∈ J}, M = ⊕jA · bj . Write

dbj =
∑
i

aijbi; aij ∈ A.

Since |aij | ≥ 0 and d has Adams degree 0, it follows that

|bi| ≤ |bj | if aij 6= 0.

Thus, we have the subcomplex

WB
nM = ⊕{j, |bj |≤n}A · bj

of M .
The subcomplex WB

nM is independent of the choice of basis: if B′ = {b′j} is
another basis and if |b′j | = n, then as b′j =

∑
i eijbi and |eij | ≥ 0, it follows that

b′j ∈ WB
nM and hence WB′

n M ⊂ WB
nM . By symmetry, WB

nM ⊂ WB′
n M . We may

thus write WnM for WB
nM .

This gives us the increasing filtration as an Adams graded dg A-module

W∗M : . . . ⊂WnM ⊂Wn+1M ⊂ . . . ⊂M
with M = ∪nWnM .

Similarly, for n ≥ n′, define Wn/n′M as the cokernel of the inclusion Wn′M →
WnM , i.e., Wn/n′M is the Adams graded dg A-module with basis the bj having
n′ < |bj | ≤ n and with differential induced by the differential in WnM . We write
grWn for Wn/n−1 and W>n for W∞/n.

It is not hard to see that WnM is functorial in M . In particular, if f : M →M ′

is a homotopy equivalence of cell modules with homotopy inverse g : M ′ → M ,
then f and g restricted to WnM and WnM

′ give inverse homotopy equivalences
Wnf : WnM → WnM

′, Wng : WnM
′ → WnM . Thus the W filtration in CMA

defines a functorial tower of endo-functors on KCMA:

(1.5.1) . . .→Wn →Wn+1 → . . .→ id

Lemma 1.5.1. 1. The endo-functor Wn is exact for each n.

2. For n′ ≤ n ≤ ∞, the sequence of endo-functors Wn′ →Wn →Wn/n′ canonically
extends to a distinguished triangle of endo-functors.
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Proof. For (1), it follows directly from the definition that Wn transforms a cone
sequence into a cone sequence. For (2), take M ∈ CMA. The sequence

0→Wn′M →WnM →Wn/n′M → 0

is split exact as a sequence of bi-graded A-modules. Thus (2) follows from the
general fact that a sequence in CMA

0→ N ′ i−→ N
p−→ N ′′ → 0

that is split exact as a sequence of bi-graded A-modules extends canonically to a
distinguished triangle in KCMA. To see this, choose a splitting s to p (as bi-graded
A-modules), and define t : N ′′ → N ′[1] by i ◦ t = s ◦ dN ′′ − dN ◦ s. It is then easy
to check that t is a map of complexes and (s, t) : N ′′ → N ⊕N ′[1] defines the map
of complexes

(s, t) : N ′ → Cone(i)
making the diagram

N ′ i // N
p

// N ′′ t //

(s,t)

��

N ′[1]

N ′ i // N // Cone(i) // N ′[1]

commute. In particular, (s, t) is an isomorphism in KCMA. One sees similarly that
another choice s′ of splitting leads to a homotopic map (s′, t′). �

Note that it is not necessary for M to be a cell module to define WnM ; being
free as a bi-graded A-module suffices. It is not however clear that WnM is a quasi-
isomorphism invariant in general. To side-step this issue, we use instead

Definition 1.5.2. Define the tower of exact endo-functors on DA
. . .→Wn →Wn+1 → . . .→ id

using (1.5.1) and the equivalence of categories in proposition 1.4.3. Concretely,
choose for each M in DA an object PM in KCMA and an isomorphism ψM : PM →
M in DA. Define WnM to be the image of WnPM in DA, and the map WnM →M
by composing WnPM → P with the chosen isomorphism ψM . Wn is defined on
morphisms via the isomorphism

HomKCMA
(PM , PN ) ∼= HomDA

(PM , PN )
(ψ∗M )−1◦ψN∗−−−−−−−−→ HomDA

(M,N)

We define Wn/n′ , grWn and W>n on DA similarly.

Remark 1.5.3. Since KCMA → DA is an equivalence of triangulated categories, the
natural distinguished triangles

Wn′ →Wn →Wn/n′ →Wn′ [1]

in KCMA give us natural distinguished triangles

Wn′ →Wn →Wn/n′ →Wn′ [1]

in DA.

One uses the weight filtration for inductive arguments, for example:

Lemma 1.5.4. Let M be a finite A-cell module. Suppose N is a summand of M
in DA. Then there is a finite A-cell module M ′ with N ∼= M ′ in DA.
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Proof. By proposition 1.4.3 there is an isomorphism N ′ ∼= N in DA with with N ′ an
object in CMA. Thus we may assume that N is a cell module. Since KCMA → DA
is an equivalence, N is a summand of M in KCMA. Write M = N ⊕N ′ in KCMA

and let p : M →M be the projection M → N followed by the inclusion N →M .
SinceM is finite, there is a minimal n withWnM 6= 0. ThusWn−1N is homotopy

equivalent to zero and N ∼= W∞/n−1N in KCMA. Hence, we may assume that
Wn−1N = 0 in CMA. Similarly, we may assume that M = Wn+rM and N =
Wn+rN in CMA for some r ≥ 0. We proceed by induction on r.

As A∗(0) = Q · id, it follows that WnM = A⊗Q M0 for a finite complex of finite
dimensional graded Q-vector spaces M0. Indeed, choose a finite bi-graded A-basis
{bj} for WnM and let M0 be the finite dimensional Q-vector space spanned by the
bj . Since Wn−1M = 0, all the bj have Adams degree n. Writing dbj =

∑
i aijbi and

noting that the differential has Adams degree 0, it follows that |aij | = 0 for all i, j,
i.e., aij ∈ Q · id. Consequently M0 is a subcomplex of M and WnM = A⊗Q M0 as
an Adams graded dg module.

But such an M0 is homotopy equivalent to the direct sum of its cohomologies;
replacing M0 with ⊕nHn(M0)[−n] and changing notation, we may assume that
dM0 = 0. Thus WnM = A ⊗Q M0 for M0 a finite dimensional bi-graded Q-vector
space; using again the fact that A(r) = 0 for r < 0 and A(0) = Q · id, we see that
Wnp = id ⊗ q with q : M0 → M0 an idempotent endomorphism of the bi-graded
Q-vector space M0. Thus WnN ∼= A⊗ im(q), hence WnN is homotopy equivalent
to a finite A-cell module. This also takes care of the case r = 0.

Using the distinguished triangle

WnN → N →Wn+r/nN →WnN [1]

we may replace N with the shifted cone of the map Wn+r/nN → A⊗im(q)[1]. Since
Wn+r/nN is a summand of Wn+r/nM , it follows by induction on r that Wn+r/nN
is homotopy equivalent to a finite cell module, hence the cone of Wn+r/nN →
A⊗ im(q) is homotopy equivalent to a finite cell module as well. �

Definition 1.5.5. Let D+w
A ⊂ DA be the full subcategory of DA with objects

M such that WnM ∼= 0 for some n. Similarly, let CM+w
A ⊂ CMA be the full

subcategory with objects M such that WnM = 0 for some n and let KCM+w
A be

the homotopy category of CM+w
A .

Lemma 1.5.6. 1. The natural map KCM+w
A → KCMA is an equivalence of

KCM+w
A with the full subcategory of KCMA with objects the M such that WnM ∼= 0

in KCMA for n << 0.

2. The equivalence KCMA → DA induces an equivalence KCM+w
A → D+w

A .

Proof. Since KCM+w
A is the homotopy category of the full subcategory CM+w

A of
CMA, the functor KCM+w

A → KCMA is a full embedding. Suppose that WnM ∼= 0
in KCMA. We have the cell module W>nM and the distinguished triangle

WnM →M →W>nM →WnM [1]

in KCMA. Thus the map M →W>nM is an isomorphism in KCMA; since W>nM
is in CM+w

A , the essential image of KCM+w
A in KCMA is as described.

For (2), following definition 1.5.2, WnM is defined by choosing an isomorphism
P →M in DA with P ∈ CMA and taking WnM := WnP . Since WnP = WnM ∼= 0
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in DA, it follows that WnP ∼= 0 in KCMA, so P is isomorphic to an object in
KCM+w

A . Thus D+w
A is the essential image of KCM+w

A in DA. Since KCMA → DA
is an equivalence, this proves (2). �

Remark 1.5.7. Take M ∈ D+w
A . Then there is an n0 such that WnM ∼= 0 for all

n ≤ n0. Indeed, by definition, Wn0M
∼= 0 for some n0. Thus M → W>n0M is an

isomorphism in DA. If n < n0, then WnM → WnW
>n0M ∼= 0 is an isomorphism

in DA.

Another result using induction on the weight filtration is

Lemma 1.5.8. Let M be an Adams graded dg A-module.

1. M is a finite A-cell module if and only if M is free and finitely generated
as a bi-graded A-module.

2. M is in CM+w
A if and only if M is free as a bi-graded A-module and there

is an integer r0 such that |m| ≥ r0 for all m ∈M .

Proof. We first prove (1). Clearly a finite A-cell module is free and finitely generated
as a bi-graded A-module. Conversely, suppose M is free and finitely generated over
A; choose a basis B for M .

Clearly WB
nM = 0 for n << 0; let N be the minimum integer n such that

WB
nM 6= 0 and let BN be the set of basis elements b of Adams degree N . Since

A(0) = Q · id, it follows that BN forms a Q basis for WNM and the differential on
BN is given by

deα =
∑
β

aαβeβ

with aαβ ∈ Q and eβ ∈ BN . Changing the Q basis for WB
NM , we may assume that

the subset B0
N of BN of eα such that deα = 0 forms an Q basis for the kernel of d

on the Q-span of BN . Since d2 = 0, the two-step filtration

B0
N ⊂ BN

exhibits WNM as a finite cell module.
The result follows by induction on the length of the weight filtration: By induc-

tion W>N
B M := M/WB

nM is a finite cell module with basis say {b′j | j ∈ J} for
some filtration on J . Since M = WB

NM ⊕W>N
B M as an A-module, we just take

the union of the two bases, and the concatenation of the filtrations, to present M
as a finite cell module.

The proof of (2) is similar. In fact, the same proof as for (1) shows that the
sub-dg A-module WB

nM of M is in CM+w
A for all n and that we may find an A

basis Bn for WB
nM and a filtration

∅ = Br0−1
n ⊂ Br0n ⊂ . . . ⊂ B2n−1

n ⊂ B2n
n = Bn

that exhibits WB
nM as a cell module. In addition, we may assume that Bi with

its filtration is just B2i
n with the induced filtration, for all i ≤ n. Thus, taking the

union of the Bn gives the desired basis for M , showing that M is in CM+w
A . �
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1.6. Bounded below modules.

Definition 1.6.1. Let D+
A ⊂ DA be the full subcategory with objects the Adams

graded dg A-modules M having Hn(M) = 0 for n << 0, as usual, we call such an
M bounded below.

Lemma 1.6.2. Suppose that A is cohomologically connected, and M is an Adams
graded dg A-module with Hn(M) = 0 for n < n0. Then there is a quasi-isomorphism
P →M with P an A-cell module having basis {eα} with deg(eα) ≥ n0 for all α. If
there is an r0 such that Hn(M)(r) = 0 for r < r0 and all n, we may find P → M
as above satisfying the additional condition |eα| ≥ r0 for all α.

Proof. We first note the following elementary facts: Let V = ⊕n,rV n(r) be a bi-
graded Q-vector space, which we consider as a complex with zero differential. Then
the complex A⊗Q V is a cell-module, as a bi-graded Q basis for V gives a bi-graded
A basis with 0 differential. In addition, the map v 7→ 1⊗ v gives a map

V n := ⊕rV n(r)→ Hn(A⊗ V ).

Finally, suppose there is an n0 such that V n0 6= 0 but V n = 0 for all n < n0. Then
as Hn(A) = 0 for n < 0 and H0(A) = Q, the map

V n → Hn(A⊗Q V )

is an isomorphism for all n ≤ n0.
We begin the construction of P →M by taking V to be a bi-graded Q subspace of

⊕n≥n0M
n representing ⊕nHn(M), giving the map of Adams graded dg A modules

φn0 : P0 := ⊕n≥n0A⊗Hn(M)[−n]→M.

From the discussion above, we see that φn0 is an isomorphism on Hn for n ≤ n0 and
a surjection on Hn for n > n0. If in addition there is an r0 such that Hn(M)(r) = 0
for r < r0 and all n, then P0 has a bi-graded A-basis S0 with |v| ≥ r0 for each
v ∈ S0.

Suppose by induction we have constructed a sequence of inclusions of A-cell
modules

P0 → P1 → . . .→ Pr−1

and maps of Adams graded dg A-modules

φn0+i : Pi →M

with the following properties:
(1) The Pi have A-bases S(i) := S0 ∪ . . .∪Si. In addition, for all i ≥ 1, all the

elements in Si are of cohomological degree n0 + i− 1, and for v ∈ Si, dv is
in Pi−1.

(2) The map Pi → Pi+1 is the one induced by the inclusion S(i) ⊂ S(i+ 1).
(3) φn0+i : Pi →M induces an isomorphism on Hn for n ≤ n0 + i.
(4) If Hn(M)(r) = 0 for r < r0 and all n, then v ∈ S(i) has Adams degree
|v| ≥ r0.

We now show how to continue the induction. For this, let nr = n0 + r and let V ⊂
Pnr

0 be a bi-graded Q-subspace of representatives for the kernel of Hnr (Pr−1) →
Hnr (M). Let

Pr := Pr−1 ⊕A⊗Q V
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as bi-graded A-module, where the differential is given by using the differential on
Pr−1, setting

d((0, 1⊗ v)) = (v, 0) ∈ Pnr
r−1

for v ∈ V and extending by the Leibniz rule. Note that, for v ∈ V , there is
an mv ∈ Mnr−1 with dmv = φr−1(v); chosing a bi-graded Q-basis Sr for V and
extending the assignment v 7→ mv from Sr to all of V by Q-linearity, we have a
Q-linear map

f : V →Mnr−1

with d(f(v)) = φr−1(v) for all v ∈ V . Thus, we may define the map of dg A-modules

φr : Pr →M

by using φr−1 on Pr, f on 1 ⊗ V and extending by A-linearity. Clearly Pr is an
A-cell module with A-basis S(r) := S(r − 1) ∪ Sr.

In case Hn(M)(r) = 0 for r < r0 and all n, clearly all bi-homogeneous elements
of V have Adams degree ≥ r0, so |v| ≥ r0 for all v ∈ Sr.

We can compute the cohomology of Pr by using the sequence of A-cell modules

0→ Pr−1 → Pr → A⊗Q V → 0,

where we consider V as a complex with zero differential, which is split exact as a
sequence of bi-graded A-modules. The resulting long exact cohomology sequence
shows that Pr−1 → Pr induces an isomorphism in cohomology Hn for n < nr − 1
and we have the exact sequence

0→ Hnr−1(Pr−1)→ Hnr−1(Pr)→ V
∂−→ Hnr (Pr−1)→ Hnr (Pr)→ 0.

In addition, one can compute the coboundary ∂ by lifting the element 1 ⊗ v ∈
(A⊗Q V )nr−1 to the element (0, 1⊗ v) ∈ Pnr−1

r and applying the differential dPr .
From this, we see that the sequence

0→ V
∂−→ Hnr (Pr−1)→ Hnr (Pr)→ 0

is exact, hence Hnr−1(Pr−1) → Hnr−1(Pr) is an isomorphism. This also shows
that φr : Pr → M induces an isomorphism on Hn for n ≤ nr and the induction
continues.

If we now take P to be the direct limit of the Pr, it follows that P is an A-cell
module with basis elements all in cohomological degree ≥ n0, and that the map
φ : P →M induced from the φr is a quasi-isomorphism. If there is an r0 such that
H∗(M)(r) = 0 for r < r0, then by (4) above, the basis S := ∪rS(r) clearly has
|e| ≥ r0 for all e ∈ S. This completes the proof. �

1.7. Tor and Ext. The Hom functor HomA(M,N) and tensor product functor
M ⊗A N define exact bi-functors

HomA : KCMop
A ⊗KCMA → DA

⊗A : KCMA ⊗KCMA → KCMA.

Via proposition 1.4.3, these give well-defined derived functors of HomA and ⊗A:

RHomA : Dop
A ⊗DA → DA

⊗LA : DA ⊗DA → DA.
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Restricting to KCMf
A, we have the derived functors for the finite categories

RHomA : Dfop
A ⊗DfA → D

f
A

⊗LA : DfA ⊗D
f
A → D

f
A.

In both settings, these bi-functors are adjoint:

RHomA(M ⊗L N,K) ∼= RHomA(M,RHomA(N,K)).

We have as well the restriction of ⊗L to D+w
A and D+

A :

⊗LA : D+w
A ⊗D+w

A → D+w
A , ⊗LA : D+

A ⊗D
+
A → D

+
A .

The derived tensor product makes DA into a triangulated tensor category with
unit 1 := A and D+w

A , D+
A and DfA are triangulated tensor subcategories. By

lemma 1.5.4, Df is closed under taking summands in DA; this property is obvious
for D+w

A and D+
A .

Define M∨ := RHomA(M,A) and call M strongly dualizable if the canonical
map M → M∨∨ is an isomorphism in DA. Note that M is strongly dualizable if
M is rigid, i.e., there exists an N ∈ DA and morphisms δ : A → M ⊗LA N and
ε : N ⊗LAM → A such that

(idM ⊗ ε) ◦ (δ ⊗ idM ) = idM
(idN ⊗ δ) ◦ (ε⊗ idN ) = idN

We have

Proposition 1.7.1 ([21, theorem 5.7]). M ∈ DA is rigid if and only if M is in
DfA, i.e., M ∼= N in DA for some finite A-cell module N .

The precise statement found in [21, theorem 5.7] is that M is rigid if and only if
M is a summand in DA of some finite cell module, so the proposition follows from
this and lemma 1.5.4; Kriz and May are working in a more general setting in which
this lemma does not hold.

Example 1.7.2. For n ≥ 0, Q(±n) ∼= (Q(±1))⊗n and for all n, Q(n)∨ ∼= Q(−n).

1.8. Change of ring. If φ : A→ A′ is a homomorphism of Adams graded cdgas,
we have the functor

−⊗A A′ :MA →MA′

which induces a functor on cell modules and the homotopy category

φ∗ : KCMA → KCMA′ .

Via proposition 1.4.3, we have the change of rings functor

φ∗ : DA → DA′

on the derived category. By proposition 1.4.3 and lemma 1.5.6, the respective
restrictions of φ∗ define exact tensor functors

φ∗ : D+w
A → D+w

A′

φ∗ : DfA → D
f
A′ .
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Lemma 1.8.1. Let φ : A → A′ be a homomorphism of cohomologically connected
cdgas. Then the map φ∗ restricts to

φ∗ : D+
A → D

+
A′ .

Proof. Take M ∈ D+
A′ . By lemma 1.6.2, there is an integer N , a cell A′ module P

with basis {eα} such that deg eα ≥ N and a quasi-isomorphism P → M . In fact,
looking at the proof of lemma 1.6.2, we can assume P has an A-basis S of the form

S = ∪∞i=0Si
with deg(e) ≥ N for e ∈ S0 and deg(e) = N + i− 1 for e ∈ Si for i > 0, and such
that dSr+1 is contained in the A-submodule Pr of P generated by ∪i≤rSi for all
r ≥ −1 (where S−1 = ∅). Thus we have the sequence of A-cell modules

0→ Pr−1 → Pr → Pr/Pr−1 → 0

which is split exact as a sequence of bi-graded A-modules. Tensoring with A′ gives
us the sequence of A′-cell modules

0→ Pr−1 ⊗A A′ → Pr ⊗A A′ → Pr/Pr−1 ⊗A A′ → 0

which is split exact as a sequence of bi-graded A′-modules.
For all r ≥ 0, we have the isomorphism of A′-cell modules

Pr/Pr−1 ⊗A A′ ∼= ⊕jA′<−rj>[−mj ]

with mj ≥ N . Thus it follows by induction on r and the fact that A′ is cohomo-
logically connected that Hn(Pr ⊗A A′) = 0 for n < N . Taking the inductive limit,
we see that Hn(P ⊗A A′) = 0 for n < N .

Since φ∗M ∼= P ⊗A A′ it follows that φ∗M is in D+
A . �

Theorem 1.8.2 ([21, proposition 4.2]). If φ is a quasi-isomorphism, then

φ∗ : DA → DA′

is an equivalence of triangulated tensor categories.

Noting the φ∗ is compatible with the weight filtrations, the theorem immediately
yields

Corollary 1.8.3. If φ is a quasi-isomorphism, then

φ∗ : D+w
A → D+w

A′

is an equivalence of triangulated tensor categories.

In addition, we have

Corollary 1.8.4. If φ is a quasi-isomorphism, then

φ∗ : DfA → D
f
A′

is an equivalence of triangulated tensor categories.

Proof. Since an equivalence of tensor triangulated categories induces an equivalence
on the subcategories of rigid objects, the result follows from theorem 1.8.2 and
proposition 1.7.1. �
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Corollary 1.8.5. Let φ : A′ → A be a quasi-isomorphism of cohomologically con-
nected cdgas. Then

φ∗ : D+
A′ → D

+
A

is an equivalence of tensor triangulated categories.

Proof. For M ∈ DA and integer n, we have

Hn(M) = ⊕rHomDA
(A,M<r>[n]).

and similarly for A′. Since φ∗ : DA′ → DA is an equivalence, we have an isomor-
phism Hn(M) ∼= Hn(φ∗M) for all M ∈ DA′ . This shows that φ∗ restricts to an
isomorphism of the isomorphism classes in D+

A′ to those in D+
A , which proves the

result. �

Proposition 1.8.6. Let φ : A → B be a map of cdgas. Then φ∗ : D+w
A → D+w

B

is conservative, i.e., φ∗(M) ∼= 0 implies M ∼= 0, or equivalently, if φ∗(f) is an
isomorphism then f is an isomorphism.

Proof. Take M ∈ D+w, and let

S := {n | M ∼= W>nM}.
Then S 6= ∅; we claim that either M ∼= 0 or S has a maximal element. Indeed, if S
has no maximum then WnM ∼= 0 for all n. But since

lim−→
n

WnM →M

is an isomorphism, this implies that M is acyclic, hence M ∼= 0 in DA.
Thus, we may find a cell module P and quasi-isomorphism P → M such that

Wn−1P = 0, but WnP is not acyclic. In particular P has a basis {eα} with |eα| ≥ n
for all α. If |eα| = n then since there are no basis elements with Adams grading
< n, we have

deα =
∑
j

aαjej

with |aαj | = 0, |ej | = n, i.e., aαj ∈ Q = A(0). Since WnP is not acyclic, it thus
follows that (WnP ) ⊗A Q is also not acyclic: if (WnP ) ⊗A Q were acyclic, this
complex would be zero in the homotopy category KCMQ, which would make WnP
0 in KCMA. As Wn(P ⊗A B) = (WnP )⊗A B and

(WnP )⊗A Q = (WnP ⊗A B)⊗B Q
it follows that P ⊗A B is not isomorphic to zero in KCMB , and thus φ∗(M) is
non-zero in D+w

B . �

Example 1.8.7. Each Adams graded cdga A has a canonical augmentation ε : A→
Q, given by projection on A0(0) = Q · id.

In particular, we have the functor

q := ε∗ : CMA →MQ, qM := M ⊗A Q
and the exact tensor functors

q : DA → DQ,

q+w : D+w
A → D+w

Q ,

qf : DfA → D
f
Q.
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Explicitly, q is given on the derived level by qM := M ⊗LA Q. Assuming A to be
cohomologically connected, we have as well the exact tensor functor

q+ : D+
A → D

+
Q .

1.9. Finiteness conditions. MQ is just the category of graded Q-vector spaces,
so DQ is equivalent to the product of the unbounded derived categories

DQ ∼=
∏
n∈Z

D(Q).

Similarly
DfQ ∼= ⊕n∈ZD

b(Q),

where Db(Q) is the bounded derived category of finite dimensional Q-vector spaces.
Finally,

D+w
Q
∼=

⋃
N

∏
n≥N

D(Q) ⊂
∏
n∈Z

D(Q).

and
D+

Q
∼=

⋃
N

∏
n∈Z

D≥N (Q) ⊂
∏
n∈Z

D+(Q),

where D≥N (Q) ⊂ D+(Q) is the full subcategory with objects those complexes C
having Hn(C) = 0 for n < N .

Remark 1.9.1. The inclusion Q → A splits ε, identifying DQ, D+
Q , etc., with full

subcategories of DA, D+
A , etc. Under this identification, and the decomposition of

DQ into its Adams graded pieces described above, the functor q is identified with
the functor grW∗ :=

∏
n∈Z grWn . Indeed, if P is an A-cell module with basis {eα},

then as A(r) = 0 for r < 0 and A(0) = Q · id, the differential d decomposes as
d = d0 + d+ with

d0eα =
∑
β

a0
αβeβ , d

+eα =
∑
β

a+
αβeβ

where |a0
αβ | = 0, |a+

αβ | > 0. Since d has Adams degree 0, it follows that |eβ | < |eα| if
a+
αβ 6= 0, and |eβ | = |eα| if a0

αβ 6= 0. Thus grW∗ P is the complex of graded Q-vector
spaces with Q basis {eα} and with dgrW

∗ P
eα = d0eα. As qP has exactly the same

description, we have the identification of grW∗ and q as described.

Lemma 1.9.2. Let M be in D+w
A . Then M is in DfA if and and only if

(1) grWn M is in Db(Q) ⊂ D(Q) for all n.
(2) grWn M ∼= 0 for all but finitely many n.

Proof. It is clear that M ∈ DfA satisfies the conditions (1) and (2). Conversely,
suppose M ∈ D+w

A satisfies (1) and (2). If M ∼= 0, there is nothing to prove, so
assume M is not isomorphic to 0. By proposition 1.8.6, qM =

∏
n grWn M is not

isomorphic to zero. Take N minimal such that grWNM is not isomorphic to zero.
By (2), there is a maximal N ′ such that grWN ′M is not isomorphic to zero.

If N = N ′, then M ∼= grWNM is in Db(Q) by (1), hence M ∼= ⊕si=1A<−N>[mi],
and thus M is in DfA. In general, we apply remark 1.5.3, giving the distinguished
triangle

grWNM →M →M>N → grWNM [1];
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note that grWn M
>N ∼= 0 for n > N ′. By induction on N ′−N , M>N is in DfA; since

DfA is a full triangulated subcategory of DA, closed under isomorphism, it follows
that M is in DfA. �

1.10. Minimal models. A cdga A is said to be generalized nilpotent if

(1) As a graded Q-algebra, A = Sym∗E for some Z-graded Q-vector space E,
i.e., A = Λ∗Eodd ⊗ Sym∗Eev. In addition, En = 0 for n ≤ 0.

(2) For n ≥ 0, let A(n) ⊂ A be the subalgebra generated by the elements of
degree ≤ n. Set A(n+1,0) = A(n) and for q ≥ 0 define A(n+1,q+1) inductively
as the subalgebra generated by A(n) and

An+1
(n+1,q+1) := {x ∈ An+1

(n+1) |dx ∈ A(n+1,q)}.

Then for all n ≥ 0,

A(n+1) = ∪q≥0A(n+1,q).

Note that a generalized nilpotent cdga is automatically connected.

Definition 1.10.1. Let A be a cdga. An n-minimal model of A is a map of cdgas

s : A{n} → A,

with A{n} generalized nilpotent and generated (as an algebra) in degree ≤ n, such
that s induces an isomorphism on Hm for 1 ≤ m ≤ n and an injection on Hn+1.

Remark 1.10.2. Let s : A{n} → A be an n-minimal model of A. Then A{n}(n−1) ⊂
A{n} is clearly generalized nilpotent and the inclusion in A{n} is an isomorphism
in degrees ≤ n − 1. Thus Hp(A{n}(n−1)) → Hp(A{n}) is an isomorphism for
p ≤ n−1 and injective for p = n, and hence s : A{n}(n−1) → A is an n−1-minimal
model.

Define the above notions for Adams graded cdgas by giving everything an Adams
grading. Let H(cdga) be the localization of the category of Adams graded cdgas
with respect to maps of cdgas that are quasi-isomorphisms on the underlying com-
plexes. We recall that the category of cdgas has the structure of a model category
(see [5]; the model structure defined there easily passes to the Adams graded case),
so that the relation of homotopy between maps of cdgas is defined. Finally, a
generalized nilpotent cdga is cofibrant, so, assuming A to be cohomologically con-
nected, the minimal model s : A{∞} → A is a cofibrant replacement (s is a weak
equivalence and A{∞} is cofibrant).

Theorem 1.10.3. Let A be an Adams graded cdga.
1. For each n = 1, 2, . . . ,∞, there is an n-minimal model of A: A{n} → A.

2. If ψ : A→ B is a quasi-isomorphism of Adams graded cdgas, and s : A{n} → A,
t : B{n} → B are n-minimal models, then there is an isomorphism of Adams graded
cdgas, φ : A{n} → B{n} such that ψ ◦ s is homotopic to t ◦ φ.

See [5] or [30] for a proof.

Corollary 1.10.4. If A is cohomologically connected, there is a quasi-isomorphism
of Adams graded cdgas A′ → A with A′ connected. Similarly, if φ : A → B is a
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map of cohomologically connected Adams graded cdgas, there is a diagram of Adams
graded cdgas

A′ //

��

B′

��

A
φ

// B

that commutes up to homotopy, with the vertical maps being quasi-isomorphisms,
such that A′ and B′ are connected.

Proof. For the first assertion, just take A′ = A{∞}. For the second, let B′ =
B{∞}. Since φ : A{∞} → A is a quasi-isomorphism of A-cell modules, φ is a
homotopy equivalence of A-cell modules (proposition 1.4.3), so taking the tensor
product yields a quasi-isomorphism

A{∞} ⊗A B → B.

Clearly A{∞} ⊗A B is a generalized nilpotent cdga, so we need only apply theo-
rem 1.10.3(2). �

This result together with theorem 1.8.2, or corollaries 1.8.3, 1.8.4, or 1.8.5, allows
us to replace “cohomologically connected” with “connected” in statements involving
DA, D+w

A , DfA or D+
A .

For example:

Proposition 1.10.5. Let φ : A→ B be a map of cohomologically connected Adams
graded cdgas. Then φ∗ : D+

A → D
+
B is conservative.

Proof. Replacing A and B with A{∞} and B{∞}, we may suppose that A and B
are connected. Take M ∈ D+

A and suppose φ∗(M) ∼= 0, i.e. M ⊗L B is acyclic. By
lemma 1.6.2, there is a quasi-isomorphism P →M with P an A-cell module having
basis {eα} and with deg(eα) ≥ n0 for some integer n0. If M is not acyclic, we may
assume that n0 is chosen so that Hn0(M) 6= 0.

Since A is cohomologically connected, this is equivalent to saying that we may
take P so that some eα has deg(eα) = n0 and deα = 0. As B is connected, (P ⊗A
B)n = 0 for n < n0; since A is connected as well, the map Pn0 → (P ⊗AB)n0 is an
isomorphism. Thus the image of eα in P ⊗A B represents a non-zero cohomology
class, i.e., Hn0(P ⊗A B) 6= 0. As M ⊗LA B = P ⊗A B, this shows that φ∗ is
conservative. �

1.11. t-structure. To define a t-structure on D+
A , D+w

A or DfA, one needs to assume
that A is cohomologically connected; by corollaries 1.8.3, 1.8.4, or 1.8.5, we may
assume that A is connected.

Define full subcategories D≤0
A , D≥0

A and HA of D+w
A by

D≤0
A := {M ∈ D+w

A | Hn(qM) = 0 for n > 0}

D≥0
A := {M ∈ D+w

A | Hn(qM) = 0 for n < 0}
HA := {M ∈ D+w

A | Hn(qM) = 0 for n 6= 0}.

The arguments of Kriz-May [21] show that this defines a t-structure (D≤0
A ,D≥0

A ) on
D+w
A with heart HA. Since Kriz-May use D+

A instead of D+w
A , we give a sketch of

the argument here, with the necessary modifications.
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Remark 1.11.1. As we have identified the functor q with
∏
n grWn (remark 1.9.1) we

can describe the category D≤0
A as the M ∈ D+w

A such that Hm(grWn M) = 0 for all
m > 0 and all n. We have a similar description of D≥0

A and HA.

Recall that an essentially full subcategory B of a category A is a full subcategory
such that, if b→ a is an isomorphism in A with b in B, then a is in B.

Definition 1.11.2. We recall that a t-structure on a triangulated category D con-
sists of essentially full subcategories (D≤0,D≥0) of D such that

(1) D≤0[1] ⊂ D≤0, D≥0[−1] ⊂ D≥0

(2) HomD(M,N [−1]) = 0 for M in D≤0, N in D≥0

(3) Each M ∈ D admits a distinguished triangle

M≤0 →M →M>0 →M≤0[1]

with M≤0 in D≤0, M>0 in D≥0[−1].
Write D≤n for D≤0[−n] and D≥n for D≥0[−n].

A t-structure (D≤0,D≥0) is non-degenerate if A ∈ ∩n≤0D≤n, B ∈ ∩n≥0D≥n
imply A ∼= 0 ∼= B.

Lemma 1.11.3. Suppose that A is connected.

1. Take M in D≤0
A . Then there is an A-cell module P ∈ CM+w

A with basis {eα}
such that deg(eα) ≤ 0 for all α, and a quasi-isomorphism P →M .

2. For N ∈ D≥0
A , there is an A-cell module P ∈ CM+w

A with basis {eα} such
that deg(eα) ≥ 0 for all α, and a quasi-isomorphism P → N .

Proof. For (1) choose a quasi-isomorphism Q→M with Q in CM+w
A . Let {eα} be

a basis for Q. Decompose the differential dQ as dQ = d0
Q + d+

Q as in remark 1.9.1.
Making a Q-linear change of basis if necessary, we may assume that the collection
S0 of eα with deg eα = 0 and d0

Qeα = 0 forms a basis of

ker[d0 : ⊕deg eα=0Qeα → ⊕deg eβ=1Qeβ ].

Let τ≤0Q be the A submodule of Q with basis {eα | deg eα < 0} ∪ S0. We claim
that τ≤0Q is a subcomplex of Q. Indeed, we have

dQeα = d0
Qeα + d+

Qeα

=
∑
β

a0
αβeβ +

∑
β

a+
αβeβ

with |a0
αβ | = 0 = deg a0

αβ , |a
+
αβ | > 0. Since A is connected, deg a+

αβ ≥ 1. As dQ
has cohomological degree +1, it follows that deg eβ ≤ deg eα if a+

αβ 6= 0. Similarly,
deg eβ = deg eα + 1 if a0

αβ 6= 0.
Take eα with deg eα = −1. Since d2

Q = 0, it follows that (d0
Q)2 = 0, from which

it follows that eβ is in S0 if a0
αβ 6= 0. Now take eα ∈ S0. Write

deα =
∑

deg b+αβ=1

b+αβf
0
β +

∑
deg b+αβ>1

b+αβfβ

with the {b+αβ} being chosen Q independent in A∗≥1, the fβ in the Q span of the
degree ≤ −1 part of the basis {eα} and the f0

β in Q span of the degree 0 part of
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{eα}. We have
0 = d2eα =

∑
deg bαβ=1

b+αβd
0(f0

β) + . . .

with the . . . involving only the degree ≤ 0 part of the basis (and coefficients from
A). Since the b+αβ are Q independent, we have d0f0

β = 0 for all β in the first sum,
hence the f0

β are in the Q-span of S0. Thus τ≤0Q is a subcomplex of Q, as claimed.
So far we have only needed that Q is a cell module. We will now use that Q lies

in CM+w
A . We claim that τ≤0Q→ Q is a quasi-isomorphism. By proposition 1.8.6

applied to the augmentation A→ Q,

q : D+w
A → D+w

Q

is conservative, thus it suffices to see that qτ≤0Q → qQ is a quasi-isomorphism.
Now, qQ represents qM ∈ DQ, and by assumption qM is inD≤0

Q , hence qQ is inD≤0
Q .

But by construction qτ≤0Q → qQ is an isomorphism on Hn for all n ≤ 0. Since
Hn(qτ≤0Q) = 0 for n > 0, it follows that qτ≤0Q→ qQ is a quasi-isomorphism, as
desired.

For (2), we may assume that N is an object in CM+w
A and thus Wr0−1N = 0 for

some r0. The result then follows from lemma 1.6.2. �

Lemma 1.11.4. Suppose that A is connected. Then HomD+w
A

(M,N [−1]) = 0 for

M in D≤0
A , N in D≥0

A .

Proof. By lemma 1.11.3 we may assume that M and N [−1] are A-cell modules with
bases {eα} for M and {fβ} for N [−1] satisfying deg eα ≤ 0 and deg fβ ≥ 1 for all
α, β. By lemma 1.5.6, we also have

HomD+w
A

(M,N [−1]) = HomKCM+w
A

(M,N [−1]).

But if φ : M → N [−1] is a map in KCM+w
A , then φ is given by a degree 0 map of

complexes, so
φ(eα) =

∑
β

aαβfβ

for aαβ ∈ A with deg(aαβ) + deg(fβ) = deg(eα) Since Ai = 0 for i < 0, this is
impossible. �

Lemma 1.11.5. Suppose that A is connected. For M ∈ D+w
A , there is a distin-

guished triangle
M≤0 →M →M>0 →M≤0[1]

with M≤0 in in D≤0
A , M>0 in D≥1

A .

Proof. We may assume that M is in CM+w
A . We perform exactly the same con-

struction as in the proof of lemma 1.11.3, giving us a sub A-cell module τ≤0M of
M such that

(a) τ≤0M has a basis {eα} with deg eα ≤ 0 for all α
(b) The map qτ≤0M → qM induced by applying q to τ≤0M → M gives an

isomorphism on Hn for n ≤ 0.
Let M≤0 = τ≤0M and let M>0 be the cone of τ≤0M → M . This gives us the

distinguished triangle

M≤0 →M →M>0 →M≤0[1]



26 HÉLÈNE ESNAULT AND MARC LEVINE

in D+w
A . By construction, M≤0 is in D+w

A . Applying q to the distinguished triangle
gives the distinguished triangle in D+w

Q

qM≤0 → qM → qM>0 → qM≤0[1];

by (b) and the fact that H1(qM≤0) = 0, it follows that Hn(qM>0) = 0 for n ≤ 0.
Thus M>0 is in D≥1

A , as desired. �

Theorem 1.11.6. Suppose A is cohomologically connected. Then (D≤0
A ,D≥0

A ) is a
non-degenerate t-structure on D+w

A .

Proof. Replacing A with its minimal model, we may assume that A is connected.
The property (1) of definition 1.11.2 is obvious; properties (2) and (3) follow from
lemmata 1.11.4 and 1.11.5, respectively.

For A ∈ ∩n≤0D≤nA , it follows that Hn(qA) = 0 for all n, i.e., qA ∼= 0 in D+w
Q .

Since q is conservative, A ∼= 0 in D+w
A . The case of B ∈ ∩n≥0D≥nA is similar, hence

the t-structure is non-degenerate. �

Definition 1.11.7. Let Df,≤0
A := DfA ∩ D

≤0
A , Df,≥0

A := DfA ∩ D
≥0
A , HfA := HA ∩

DfA = Df,≤0
A ∩ Df,≥0

A .

Corollary 1.11.8. If A is cohomologically connected, then (Df,≤0
A ,Df,≥0

A ) is a non-
degenerate t-structure on DfA with heart HfA.

Proof. Since DfA is a full triangulated subcategory of D+w
A , closed under isomor-

phisms in D+w
A , all the properties of a non-degenerate t-structure are inherited from

the non-degenerate t-structure on (D≤0
A ,D≥0

A ) on D+w
A given by theorem 1.11.6, ex-

cept perhaps for the condition (3) of definition 1.11.2. So, take M ∈ DfA. Since
(D≤0

A ,D≥0
A ) is a t-structure on D+w

A , we have a distinguished triangle

M≤0 →M →M>0 →M≤0[1]

with M≤0 in D≤0
A , M>0 in D≥0

A [−1]. Applying the exact functor grWn (see re-
mark 1.5.3) gives the distinguished triangle

grWn M
≤0 → grWn M → grWn M

>0 → grWn M
≤0[1]

in the derived category of Q-vector spaces D(Q), such that grWn M
≤0 is in D(Q)≤0

and grWn M
>0 is in D(Q)≥1, i.e., Hn(grWn M

≤0) = 0 for n > 0, Hn(grWn M
>0) = 0

for n ≤ 0. However, since M is in DfA, it follows that grWn M is in Db(Q) for all n
and is isomorphic to 0 for all but finitely many n (lemma 1.9.2). The long exact
cohomology sequence for a distinguished triangle in D(Q) thus shows that grWn M

≤0

and grWn M
>0 are in Db(Q) for all n and are isomorphic to zero for all but finitely

many n. Applying lemma 1.9.2 again shows M≤0 and M>0 are in DfA. �

Lemma 1.11.9. (1) The restriction of ⊗L to HA and HfA makes these into abelian
tensor categories.

(2) The weight filtrations on D+w
A and DfA restrict to define exact functorial fil-

trations on HA and HfA.

(3) HfA is the smallest abelian subcategory of HfA containing the Tate objects Q(n),
n ∈ Z and closed under extensions in HfA.
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Proof. (1) is more or less obvious: for cell modules M and N , we have q(M⊗AN) ∼=
qM⊗Q qN ; the Künneth formula for Hn(qM⊗Q qN) thus shows that D≤0

A and D≥0
A

are closed under ⊗LA.
For (2), note that the augmentation ε : A → Q is a homomorphism of Adams

graded cdgas, and that q = ε∗. Thus q is compatible with the weight filtrations on
DA and DQ (and also on the finite categories). In particular, we have

q(grWn M) ∼= grWn qM.

On the other hand, for C in D+w
Q we have

C ∼= ⊕mHm(C)[−m]

Furthermore Hm(C) is isomorphic to its associated weight graded ⊕ngrWn H
m(C).

All this implies that

M is in D≤0
A ⇐⇒ grWn M is in D≤0

A for all n

and similarly forD≥0
A . Thus, the t-structure (D≤0

A ,D≥0
A ) onD+

A induces a t-structure
(WnD≤0

A ,WnD≥0
A ) on the full subcategory WnD+

A with objects the WnM , M ∈ D+
A .

The same holds for D≥0
A , from which it follows that the truncation functors τ≤0, τ≥0

associated with the t-structure (D≤0
A ,D≥0

A ) commute with the functors Wn. This
proves (2).

For (3), we argue by induction on the weight filtration. Let HTA ⊂ H
f
A be any

full abelian subcategory containing all the Q(n) and closed under extension in HfA.
Since A(0) = Q · id, the full subcategory DfA(−n) of DfA consisting of M with
M ∼= grWn M is equivalent to the bounded derived category of (ungraded) finite
dimensional Q-vector spaces, Db(Q), with the equivalence sending a complex C to
Q(−n)⊗Q C. The t-structure on DfA restricts to a t-structure on DfA(−n) which is
equivalent to the standard t-structure on Db(Q).

Thus, if we have M ∈ HfA, then grWn M ∼= Q(−n)rn for some rn ≥ 0. If N is the
minimal n such that WnM 6= 0, then we have the exact sequence

0→ grWNM →M →W>NM → 0

By induction on the length of the weight filtration, W>NM is in HTA, hence M is
in HTA and thus HTA = HfA. �

Lemma 1.11.10. For N,M ∈ HfA, n ≤ m ∈ Z, we have

HomHf
A
(W>mM,WnN) = 0

Proof. If M = Q(−a), N = Q(−b) with a > b, then

HomHf
A
(M,N) = H0(A(a− b)) = 0

since A is connected. The result in general follows by induction on the weight
filtration. �

Proposition 1.11.11. HfA is a neutral Tannakian category over Q.
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Proof. Since Q(n)∨ = Q(−n), it follows from lemma 1.11.9 that M 7→M∨ restricts
from DfA to an exact involution on HfA. Since DfA is rigid, it follows that HfA is
rigid as well. Also

HomHf
A
(Q(−a),Q(−b)) =

{
H0(A(a− b)) = 0 if a 6= b

H0(A(0)) = Q · id if a = b.

By induction on the weight filtration, this implies that HomHf
A
(M,N) is a finite

dimensional Q-vector space for all M,N in HfA. Since the identity for the tensor
product is Q(0), it follows that HfA is Q linear.

We have the rigid tensor functor q : HfA → H
f
Q. Noting that HfQ is equivalent

to the category of finite dimensional graded Q-vector spaces, composing q with the
functor “forget the grading” from HfQ to VecQ defines the rigid tensor functor

ω : HfA → VecQ.

The forgetful functor HfQ → VecQ is faithful, so we need only see that q : HfA → H
f
Q

is faithful. Sending M ∈ VecQ to Q(−n)⊗M defines an equivalence of VecQ with
the full subcategory grWn Hf of HfA consisting of M which are isomorphic to grWn M .
Via this identification, we can further identify q with the functor

M 7→ grW∗ M := ⊕ngrWn M.

Let f : M → N be a map in HfA such that grWn f = 0 for all n; we claim
that f = 0. By induction on the length of the weight filtration, it follows that
W>nf = 0, where n is the mininal integer such that WnM ⊕WnN 6= 0. Thus f is
given by a map

f̃ : W>nM → grWn N.

But f̃ = 0 by lemma 1.11.10, hence f = 0 as desired. �

Notation 1.11.12. We denote the truncation to the heart,

τ≤0τ
≥0 : D+w

A → HA,

by H0
A.

1.12. Connection matrices. A convenient way to define an A-cell module is by
a connection matrix (called a twisting matrix in [21]).

Let (M,dM ) be a complex of Adams graded Q-vector spaces. An A-connection
for M is a map (of bi-graded Q-vector spaces)

Γ : M → A+ ⊗Q M

of Adams degree 0 and cohomological degree 1. One says that Γ is flat if

dΓ + Γ2 = 0.

This means the following: A⊗Q M has the standard tensor product differential, so
dΓ := dA+⊗QM ◦ Γ + Γ ◦ dM using the usual differential in the complex of maps M
to A+ ⊗Q M . Also, we extend Γ to

Γ : A+ ⊗M → A+ ⊗M

using the Leibniz rule, so that Γ2 is defined.
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Remark 1.12.1. Given a connection Γ : M → A+ ⊗Q M , define

d0 : M → A⊗Q M = M ⊕A+ ⊗Q M, m 7→ dMm⊕ Γm

and extend d0 to dΓ : A⊗QM → A⊗QM by the Leibniz rule. Then Γ is flat if and
only if dΓ endows A⊗Q M with the structure of a dg A-module, i.e. d2

Γ = 0.

If Γ : M → A+ ⊗Q M is a connection, call Γ nilpotent if M admits a filtration
by bi-graded Q subspaces

0 = M−1 ⊂M0 ⊂ . . . ⊂Mn ⊂ . . . ⊂M
such that M = ∪nMn and such that

dM (Mn) ⊂Mn−1; Γ(Mn) ⊂ A+ ⊗Mn−1

for every n ≥ 0.
The following result is obvious:

Lemma 1.12.2. Let Γ : M → A+ ⊗Q M be a flat nilpotent connection. Then the
dg A-module (A⊗Q M,dΓ) is a cell module.

Indeed, choosing a Q basis B for M such that Bn := Mn ∩B is a Q basis for Mn

for each n gives the necessary filtered A basis for A⊗Q M . In addition, we have

Lemma 1.12.3. Let Γ : M → A+ ⊗Q M be a flat connection. Suppose there is an
integer r0 such that |m| ≥ r0 for all m ∈M . Then Γ is nilpotent.

Proof. The proof is essentially the same as that of lemma 1.5.8(2): If M is con-
centrated in a single Adams degree r0, then Γ is forced to be the zero-map. Thus,
taking M0 = ker(dM ) ⊂M and M1 = M shows that Γ is nilpotent. In general, one
shows by induction on the length of the weight filtration that the restriction of Γ to
WnM := ⊕r≤nM(r) is nilpotent for every n, and then a limit argument completes
the proof. �

A morphism f : (M,dM ,Γ)→ (M ′, dM ′ ,Γ′) is a map of bi-graded vector spaces

f := f0 + f+ : M → A⊗M ′ = M ′ ⊕A+ ⊗M ′

such that
dΓ′f = fdΓ.

In particular, we may identify the category of complexes of Q-vector spaces with
the subcategory consisting of complexes with flat connection 0 and morphisms
f = f0 + f+ with f+ = 0.

We denote the category of flat nilpotent connections over A by ConnA. We let
Conn+w

A be the full subcategory consisting of flat nilpotent connections on M with
M(r) = 0 for r << 0, and ConnfA the full subcategory of flat nilpotent connections
on M with M finite dimensional over Q. It follows from lemma 1.12.3 that a flat
connection on M with M(r) = 0 for r << 0 (or with M finite dimensional over Q)
is automatically nilpotent.

Define a tensor operation on ConnA by

(M,Γ)⊗ (M ′,Γ′) := (M ⊗M ′,Γ⊗ id + id⊗ Γ′)

with Γ ⊗ id + id ⊗ Γ′ suitably interpreted as a connection by using the necessary
symmetry isomorphisms.

Let I be the complex
Q δ−→ Q⊕Q
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with Q in degree -1, and with connection 0. We have the two inclusions i0, i1 : Q→
I. Two maps f, g : (M,Γ) → (M ′,Γ′) are said to be homotopic if there is a map
h : (M,Γ)⊗ I → (M ′,Γ′) with f = h ◦ (id⊗ i0), g = h ◦ (id⊗ i1).

Definition 1.12.4. Let HConnA denote the homotopy category of ConnA, i.e.,
the objects are the same as ConnA and morphisms are homotopy classes of maps
in ConnA. Similarly, we have the full subcategories

H(ConnfA) ⊂ H(Conn+w
A ) ⊂ HConnA

with objects ConnfA, resp. Conn+w
A .

If M is an A-cell module, then let M0 be the complex of Q-vector spaces M⊗AQ.
Using the identity splitting Q → A to the augmentation A → Q, we have the
canonical isomorphism of A-modules

A⊗Q M0
∼= M.

Using the decomposition A = Q⊕A+, we can decompose the differential on A⊗QM0

induced by the above isomorphism as

d = d0 + d+

where d0 maps Q⊗M0 to Q⊗M0 and d+ maps Q⊗M0 to A+ ⊗M0.
We can thus make M0 into a complex of Adams graded Q-vector spaces by using

the differential d0. The map

d+ : M0 → A+ ⊗M0

gives a connection and the flatness condition follows from d2 = 0. Nilpotence
follows from the filtration condition (definition 1.3.1(3b)) for an A-basis of M .

Conversely, if (M0, d
0) is a complex of Adams graded Q-vector spaces, and

Γ : M0 → A+ ⊗M0

is a flat nilpotent connection, make the free Adams graded A-module A⊗QM0 a cell
module by taking dΓ to be the differential (see remark 1.12.1 and lemma 1.12.2).

It is easy to see that these operations define an equivalence of the category of
A-cell modules with the category of flat nilpotent A-connections, and that the ho-
motopy relations and tensor products correspond. Indeed the functor which assigns
to a flat nilpotent connection (M0, dM0 ,Γ) the cell module (A⊗Q M0, dΓ) is essen-
tially surjective by the discussion, and the map on Hom groups is an isomorphism.

Define the shift operator by (M,Γ)[1] := (M [1],−Γ[1]). Given a morphism
f : (M,Γ)→ (M ′,Γ′) of flat nilpotent connections, decompose f : M → A⊗M ′ as
f := f0 + f+. Define the cone of f as having underlying complex Cone(f0), with
connection (−Γ[1]⊕ Γ′) + f+. This gives us the cone sequence

(M,Γ)→ (M ′,Γ′)→ Cone(f)→ (M,Γ)[1].

Using the cone sequences as distinguished triangles makes HConnA into a trian-
gulated tensor category, equivalent to the homotopy category of A-cell modules.
Via proposition 1.4.3 we have thus defined an equivalence of HConnA with DA as
triangulated tensor categories. This restricts to equivalences of H(Conn+w

A ) with
D+w
A and H(ConnfA) with DfA.
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The weight filtration in DA can be described in this language: Let M be an
Adams graded complex of Q-vector spaces, which we decompose into Adams graded
pieces as M = ⊕rM(r). Set

WnM := ⊕r≤nM(r)

giving us the subcomplex WnM of M . If Γ : M → A+⊗M is a flat connection, then
as Γ has Adams degree 0, it follows that Γ restricts to a flat nilpotent connection

WnΓ : WnM → A+ ⊗WnM.

It is easy to see that this filtration corresponds to the weight filtration on DA.
Let HConn+w

A ⊂ HConnA be the full subcategory of objects M such that
WnM ∼= 0 for some n, and let HConnfA ⊂ HConn

+w
A be the full subcategory

of objects M such that ⊕nHn(M) is finite dimensional. It is easy to see that the
inclusions H(ConnfA) ⊂ HConnfA and H(Conn+w

A ) ⊂ HConn+w
A are equivalences,

giving us the equivalences

HConnfA ∼ D
f
A, HConn

+w
A ∼ D+w

A .

Now suppose that A is connected. It is easy to see that the standard t-structure
on the derived category D(Q) of complexes over Q induces a t-structure on the
homotopy category HConn+w

A . Under the equivalence HConn+w
A ∼ D+w

A , the
t-structure on D+w

A defined in section 1.11 corresponds to the pair of subcate-
gories (HConn≤0

A ,HConn≥0
A ), hence these give the corresponding t-structure on

HConn+w
A . In particular, the heart HA is equivalent to the category of flat A-

connections on Adams graded Q-vector spaces V with V (r) = 0 for r << 0. Denote
this latter category by Conn0

A.
As we have seen, DfA is equivalent to the full subcategory HConnfA of HConnA

with objects the flat nilpotent connections on complexes M such that ⊕nHn(M) is
finite dimensional. In case A is connected, we have a similar description ofHfA as the
abelian category of flat connections on finite dimensional Adams graded Q-vector
spaces, or equivalently, the full subcategory of HConnfA consisting of complexes M
with H∗(M) = H0(M).

Remark 1.12.5. By lemma 1.12.3, the flat connection Γ for an object (M,Γ) in
Conn0

A is automatically nilpotent.

We can also give an explicit description of the truncation functors for this t-
structure in the language of flat nilpotent connections. Let (M,d) is a complex of
Adams graded Q-vector spaces with a flat nilpotent connection

Γ : M → A+ ⊗M

such that (M,d,Γ) is in Conn+w
A . Then we can decompose Γ as

Γ :=
∑
i≥1

Γ(i)

by writing
[A+ ⊗M ]n+1 = ⊕i≥1A

i ⊗Mn−i+1

and letting Γ(i),n : Mn → Ai ⊗Mn−i+1 be the composition

Mn Γn

−−→ [A+ ⊗M ]n+1 → Ai ⊗Mn−i+1.
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The flatness condition for Γ when restricted to the component which maps Mn to
A1 ⊗Mn yields the commutative diagram

Mn

dn

��

Γ(1),n
// A1 ⊗Q M

n

1⊗dn+1

��

Mn+1

Γ(1),n+1
// A1 ⊗Q M

n+1.

This implies that Γ restricts to a flat connection τ≤nΓ on the subcomplex τ≤nM :

τ≤nΓ : τ≤nM → A+ ⊗ τ≤nM ;

τ≤nΓ is nilpotent by lemma 1.12.3.
This in turn implies that Γ descends to a connection on the quotient complex

τ>nM := M/τ≤nM :
τ>nΓ : τ>nM → A+ ⊗ τ>nM

which is in fact a flat nilpotent connection. Indeed, the only question for flatness
is for the terms in Γ2 + dΓ which factor via Γ or d through A+ ⊗M∗≤n, but which
have non-zero image in A+ ⊗ τ>nM . There are three such terms:

Γ(1),n ◦ Γ(i+1−n),i, (1⊗ dn) ◦ Γ(i+1−n),i, (1⊗ dn−1) ◦ Γ(i+2−n),i

where we use the convention that Γ(0),i = di. For a term of the first type, the fact
that Γ(1) commutes with d implies that the composition factors through Ai+1−n ⊗
(Mn/ ker dn). The second term similarly factors through Ai+1−n ⊗ (Mn/ ker dn),
while the third term goes to zero in Ai+2−n ⊗ (Mn/ ker dn).

As before, the nilpotence of τ>nΓ follows from lemma 1.12.3.
Thus for each (M,d,Γ) in Conn+w

A we have the sequence of complexes with flat
nilpotent connection

0→ (τ≤nM,d, τ≤nΓ)→ (M,d,Γ)→ (τ>nM,d, τ>nΓ)→ 0

which is exact as a sequence of bi-graded Q-vector spaces. When we take the
associated cell modules, this gives us the canonical distinguished triangle for the
t-structure we have described for D+w

A .
In particular, the truncation functor Hn

A := τ≥nτ≤n can be explicitly described
in the language of flat nilpotent connections. Namely, the restricted connection

Γ(1),n : Mn → A1 ⊗Mn

defines a connection (not necessarily flat) on the Adams graded Q-vector space Mn

for each n, and the differential d gives a map in the category of connections

dn : (Mn,Γ(1),n)→ (Mn+1,Γ(1),n+1).

In short, (M,d,Γ(1)) is a complex in the category of connections. Thus Γ(1) induces
a connection on Hn(M):

Hn(Γ) := Hn(Γ(1)) : Hn(M)→ A1 ⊗Hn(M).

On Mn, the flatness condition for Γ, when restricted to the component which maps
Mn to A2 ⊗Mn, gives the identity:

(id⊗ dn+1) ◦ Γ(2),n − Γ(1),n+1 ◦ Γ(1),n + Γ(2),n+1 ◦ dn = 0

and thus Hn(Γ(1)) is flat. Hn(Γ(1)) is nilpotent by lemma 1.12.3.
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The canonical quasi-isomorphism of complexes

τ≥nτ≤n(M,dM )→ Hn(M,dM )

thus gives rise to a quasi-isomorphism of complexes with flat nilpotent connection

τ≥nτ≤n(M,dM ,Γ)→ (Hn(M,dM ),Hn(Γ(1))).

Definition 1.12.6. Let A be a cohomologically connected cdga with 1-minimal
model A{1}. We let QA := A{1}1 and let ∂ : QA→ Λ2QA denote the differential
d : A{1}1 → Λ2A{1}1 = A{1}2. Then (QA, ∂) is co-Lie algebra over Q. If A is an
Adams graded cdga, then QA becomes an Adams graded co-Lie algebra.

In the Adams graded case, we let co-rep(QA) denote the category of co-modules
M over QA, where M is a bi-graded Q-vector space such that the Adams degrees
in M are bounded below.

Remark 1.12.7. Let us suppose that A is a generalized nilpotent Adams graded
cdga. Then the co-Lie algebra QA is given by the restriction of d to A1, noting
that d factors as

d : A1 → Λ2A1 ⊂ A2.

If now M is an Adams graded Q-vector space (concentrated in cohomological degree
0) and Γ : M → A+ ⊗M is a flat connection, then Γ is actually a map

Γ : M → A1 ⊗M

and the flatness condition is just saying the Γ makes M into an Adams graded
co-module for the co-Lie algebra QA. If in addition the Adams degrees occuring in
M have a lower bound, then Γ is automatically nilpotent (lemma 1.12.3).

Thus, we have an equivalence of the category Conn0
A with co-rep(QA), which

restricts to an equivalence of Conn0
A ∩ Conn

f
A with the category co-repf (QA) of

finite dimensional co-modules over QA.
Putting this together with the above discussion, we have equivalences

HA ∼ Conn0
A ∼ co-rep(QA)

which restrict to equivalences

HfA ∼ Conn
0
A ∩ Conn

f
A ∼ co-repf (QA).

1.13. Summary. In [21] the relations between the various constructions we have
presented above are discussed. We summarize the main points here.

Definition 1.13.1. 1. Let H = Q · id ⊕ ⊕r≥1 be an Adams Hopf algebra over
Q. We let co-rep(H) denote the abelian tensor category of co-modules M over H,
where M is a bi-graded Q vector space such that the Adams degrees in M are
bounded below. Let co-repf (H) ⊂ co-rep(H) be the full subcategory of co-modules
M such that M is finite dimensional over Q.

2. Let γ = ⊕r≥1γ(r) be an Adams graded co-Lie algebra over Q. We let co-rep(γ)
denote the abelian tensor category of co-modules M over γ, where M is a bi-
graded Q vector space such that the Adams degrees in M are bounded below. Let
co-repf (γ) ⊂ co-rep(γ) be the full subcategory of co-modules M such that M is
finite dimensional over Q.
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The Adams grading induces a functorial exact weight filtration on co-rep(H)
and co-rep(γ) by setting

WnM := ⊕r≤nM(r).
The subcategories co-repf (H) and co-repf (γ) are Tannakian categories over Q, with
neutral fiber functor the associated graded for the weight filtration grW∗ .

Let H+ = ⊕r≥1H(r) ⊂ H be the augmentation ideal, γH := H+/H
2
+ the co-Lie

algebra of H. For an H co-module δ : M → H ⊗M we have the associated γH co-
module M̄ with the same underlying bi-graded Q vector space, and with co-action
δ̄ : M̄ → M̄ ⊗ γH given by the composition

M
δ−→M ⊗H = M ⊕M ⊗H+ →M ⊗H+ →M ⊗ γH .

Then the association M 7→ M̄ induces equvalences of filtered abelian tensor cate-
gories

co-rep(H) ∼ co-rep(γH), co-repf (H) ∼ co-repf (γH).
For an Adams graded cdga A, we have the Adams graded Hopf algebra χA :=

H0(B̄(A)) and the Adams graded co-Lie algebra γA := γχA
. We have as well the

co-Lie algebra QA defined using the 1-minimal model of A (definition 1.12.6).

Theorem 1.13.2. Let A be an Adams graded cdga. Suppose that A is cohomolog-
ically connected.

(1) There is a functor ρ : Db(co-repf (χA))→ DfA. ρ respects the weight filtrations
and sends Tate objects to Tate objects. ρ induces a functor on the hearts

H(ρ) : co-repf (χA)→ HfA
which is an equivalence of filtered Tannakian categories, respecting the fiber functors
grW∗ .

(2) Let A{1} be the 1-minimal model of A. Then A{1} → A induces an isomor-
phism of graded Hopf algebras χA{1} → χA and graded co-Lie algebras

QA ∼= γA{1} ∼= γA.

(3) The functor ρ is an equivalence of triangulated categories if and only if A is
1-minimal.

(4) Sending a co-module M ∈ co-rep(χA) to the γA co-module M̄ defines equiva-
lences of neutral Tannakian categories

co-rep(χA) ∼ co-rep(γA); co-repf (χA) ∼ co-repf (γA).

Putting this together with our discussion on connections in section 1.12 gives

Corollary 1.13.3. Let A be a cohomologically connected Adams graded cdga. We
have equivalences of filtered abelian tensor categories

co-rep(χA) ∼ co-rep(γA) ∼ co-rep(QA) ∼ Conn0
A

and equivalences of filtered neutral Tannakian categories

co-repf (χA) ∼ co-repf (γA) ∼ co-repf (QA) ∼ Conn0
A ∩ Conn

f
A.

2. Relative theory of cdgas

The theory of cdgas over Q generalizes to a large extent to cdgas over a cdga N .
In this section, we give the main constructions in this direction that we will need.
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2.1. Relative minimal models. We fix a base cdga N . A cdga over N is a cdga
A together with a homomorphism of cdgas φ : N → A. An augmented cdga over N
has in addition a splitting π : A → N to φ. The same notions apply for an Adams
graded cdga A over an Adams graded cdga N . From now on, we assume we are in
the Adams graded setting.

The notions of generalized nilpotent algebras and minimal models (over Q) ex-
tend without difficulty to augmented cdgas over N . Specifically:

Definition 2.1.1. An Adams graded cdga A over N is said to be generalized
nilpotent over N if

(1) As a bi-graded N -algebra, A = Sym∗E ⊗ N for some Adams graded Z-
graded Q-vector space E, i.e., A = Λ∗Eodd ⊗ Sym∗Eev ⊗ N , where the
parity refers to the cohomological degree. In addition, E(r)n = 0 if n ≤ 0
or if r ≤ 0.

(2) For n ≥ 0, let A(n) ⊂ A be the N -subalgebra generated by the sub-
space E≤n of E consisting of elements of cohomological degree ≤ n. Set
A(n+1,0) = A(n) and for q ≥ 0 define A(n+1,q+1) inductively as the N -
subalgebra generated by A(n) and

An+1
(n+1,q+1) := {x ∈ An+1

(n+1) |dx ∈ A(n+1,q).}

Then for all n ≥ 0,

A(n+1) = ∪q≥0A(n+1,q).

Remark 2.1.2. We can phrase the condition (2) above differently: For each n ≥ 0,
E≤n+1 has an increasing exhaustive bi-graded filtration

E≤n = F0E
≤n+1 ⊂ F1E

≤n+1 ⊂ . . . ⊂ FmE≤n+1 ⊂ . . . ⊂ E≤n+1

such that
d(FmE≤n+1 ⊗N ) ⊂ Sym∗(Fm−1E

≤n+1)⊗N
Indeed, if A = Sym∗E ⊗N satisfies (2), define FmE≤n+1 by

FmE
≤n+1 ⊗ 1 = (E≤n+1 ⊗ 1) ∩ A∗(n+1,m).

Conversely, it is easy to see that the existence of such a filtration F∗E
≤n+1 for all

n implies (2).

Lemma 2.1.3. Let A be a generalized nilpotent cdga over a cdga N . If N is
cohomologically connected, then so is A.

Proof. Write A = Sym∗E ⊗ N as an N algebra, with E a bi-graded Q-vector
space, so that the conditions (1) and (2) of definition 2.1.1 are satisfied. Let Ap :=
Sym∗E∗≤p ⊗ N . Then Ap ⊂ A is a generalized nilpotent sub-cdga of A; as A is
the limit of the Ap, it suffices to show that Ap is cohomologically connected. We
may therefore assume that E = E∗≤p and that the result holds for Ap−1.

By remark 2.1.2 there is an exhaustive increasing bi-graded filtration

E∗≤p−1 = F0E ⊂ . . . ⊂ FnE ⊂ . . . ⊂ E

on E so that d(FnE ⊗N ) ⊂ Sym∗Fn−1E ⊗N for all n > 0, and such that An :=
Sym∗FnE ⊗ N (with differential induced from A) is a generalized nilpotent cdga
over N . It thus suffices to show that An is cohomologically connected for each
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n > 0. By induction on n, it suffices to show that for all n > 0, the quotient
complex

Ān := An/An−1

has vanishing cohomology Hi for i ≤ 0.
Writing En := FnE/Fn−1E, we have the filtration G∗ on Sym∗FnE/Sym∗Fn−1E

with
grGm(Sym∗FnE/Sym∗Fn−1E) ∼= SymmEn ⊗ Sym∗Fn−1

for all m ≥ 1 and G0(Sym∗FnE/Sym∗Fn−1E) = 0.
By the Leibniz rule, the subspace

Ān,m := Gm(Sym∗FnE/Sym∗Fn−1E)⊗N ⊂ Ān
is a subcomplex. Thus it suffices to show that Hi(Ān,m/Ān,m−1) = 0 for i ≤ 0.

For all n > 0 and m ≥ 1, we have

Ān,m/Ān,m−1
∼= SymmEn ⊗ Sym∗Fn−1E ⊗N

with differential id ⊗ dN . Since En has cohomological degree ≥ 1 and N has
vanishing cohomology in degrees < 0, it follows that Hi(Ān,m/Ān,m−1) = 0 for
i ≤ 0. This completes the proof. �

Definition 2.1.4. Let A be an augmented Adams graded cdga over N . An n-
minimal model over N of A is a map of augmented Adams graded cdgas over N

s : A{n}N → A,

with A{n}N generalized nilpotent over N , A{n}N = Sym∗E⊗N , with E satisfying
the conditions of definition 2.1.1, such that deg e ≤ n for all e ∈ E, and such that
s induces an isomorphism on Hm for 1 ≤ m ≤ n and an injection on Hn+1.

If the base-cdga N is understood, we call an n-minimal model over N a relative
n-minimal model.

Proposition 2.1.5. Let N be a cohomologically connected Adams graded cdga, A
an augmented Adams graded cdga over N . Then

1. For each n, there is an n-minimal model over N : A{n}N → A.

2. If ψ : A → B is a quasi-isomorphism of augmented cdgas over N , and s :
A{n}N → A, t : B{n}N → B are relative n-minimal models, then there is an
isomorphism of augmented cdgas over N , φ : A{n}N → B{n}N such that ψ ◦ s is
homotopic to t ◦ φ.

Suppose that A is also cohomologically connected. Then A{n}N → A induces
an isomorphism on Hi for all i ≤ n. In particular, the map A{∞}N → A is a
quasi-isomorphism.

Proof. This result is the relative analog of theorem 1.10.3 and the proof is essentially
the same (see [5, 30] for the details in the absolute case).

The construction of the n-minimal model over N is essentially the same as for
cdgas over Q except that we use both the cohomological degree and the Adams
degree for induction: The augmentation gives a canonical decomposition of A as

A = N ⊕ I
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with I an Adams graded dg N -ideal in A. Let E10(1) ⊂ I1(1) be a Q-subspace of
representatives for H1(I(1)), in cohomological degree 1, with Adams degree 1. We
have the evident mapping

E10(1)⊗Q N → A
using the N -module structure, which extends to

Sym∗E10(1)⊗Q N → A

using the algebra structure. Clearly this is a map of augmented cdgas over N , and
induces an isomorphism onH1(−)(1), becauseN (r) = 0 for r < 0 andN (0) = Q·id.

One then proceeds as in the case N = Q to adjoin elements in degree 1 and
Adams degree 1 to successively kill elements in the kernel of the map on H2(−)(1).
Since N (r) = 0 for r < 0 and N (0) = Q · id, this does not affect H1 in Adams
degree ≤ 1. Thus we have constructed a bi-graded Q-vector space E1(1), of Adams
degree 1 and cohomological degree 1, a generalized nilpotent cdga over N , A1,1 :=
Sym∗E1(1)⊗N and a map of cdgas overN , A1,1 → A, that induces an isomorphism
on H1(−)(1) and an injection on H2(−)(1) .

This completes the Adams degree ≤ 1 part for the construction of the 1-minimal
model. So far, we have not used the cohomological connectivity of N , this comes
in now: Use the canonical augmentation of A1,1 to write A1,1 = N ⊕ I1,1.

Claim. Hp(I1,1(r)) = 0 for r > 1, p ≤ 1.

To prove the claim, we use the same filtration that we used in the proof of
lemma 2.1.3. The same induction argument as in lemma 2.1.3, using of course the
cohomological connnectedness of N , shows that the lowest degree cohomology of
I1,1(r) comes from ⊕r−1

i=1 SymiE1(1) ⊗H1(N (r − i)) plus SymrE1(1) ⊗H0(N (0)).
Since all the elements of E1(1) have cohomological degree 1, this proves the claim.

For the n-minimal model with n > 1, we continue the construction, first adjoining
elements of Adams degree 1 and cohomological degree 2 to generate all ofH2(A)(1),
and then adjoining elements of Adams degree 1 and cohomological degree 2 to kill
the kernel on H3(−)(1). Continuing in this manner gives the generalized nilpotent
cdga over N ,

A1,n := Sym∗En(1)⊗N ,
with En(1) in Adams degree 1 and cohomological degree 1, . . . , n, together with a
map over N , A1,n → A, that induces an isomorphism on Hi(−)(1) for 1 ≤ i ≤ n
and an injection for i = n+1. If we are in the case n =∞, we just take the colimit
of the A1,n. In addition, writing A1,n = N ⊕ I1,n, we have

Hp(I1,n(r)) = 0 for r > 1, p ≤ 1.

Now suppose we have constructed bi-graded Q-vector spaces

En(1) ⊂ En(2) ⊂ . . . ⊂ En(m)

(for fixed n with 1 ≤ n ≤ ∞) with En(j) having Adams degrees 1, . . . , j and
cohomological degrees 1, . . . , n, a differential on Am,n := Sym∗En(m)⊗N making
Am,n a generalized nilpotent cdga over N , and a map Am,n → A of cdgas over N
that is an isomorphism on Hi(−)(j) for 1 ≤ i ≤ n, j ≤ m, and an injection for
i = n+ 1, j ≤ m. In addition, writing An,m = N ⊕ In,m, we have

(2.1.1) Hp(Im,n(r)) = 0 for r > m, p ≤ 1.
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We extend En(m) to En(m + 1) by simply repeating the construct for En(1) de-
scribed above, but working in Adams degree m + 1 rather than 1; using (2.1.1)
allows us to start the construction by adjoining generators for H1(I(m+ 1)), just
as in the case of Adams weight 1. Again, as N (r) = 0 for r < 0 and N (0) = Q · id,
the inclusion Am,n → Am+1,n is an isomorphism in Adams degree ≤ m. In addi-
tion, the argument used to prove the claim shows that (2.1.1) extends from m to
m+ 1 and the induction goes through.

Taking En := ∪mEn(m), we thus have a differential on A{n}N := Sym∗En⊗N
making A{n}N a generalized nilpotent cdga over N , and a map A{n}N → A of
cdgas over N that is an isomorphism on Hi(−) for 1 ≤ i ≤ n and an injection for
i = n+ 1, completing the proof of (1).

For (2), the construction of an isomorphism φ between two n-minimal models
over N is also the same as for N = Q, using again induction on the Adams degree.

To prove (3), the assumption that N is cohomologically connected passes to
all generalized nilpotent cdgas over N (lemma 2.1.3), in particular, A{n}N is
cohomologically connected. If in addition A is cohomologically connected, then
A{n}N → A automatically induces an isomorphism on Hi for i ≤ 0. Combining
this with (1) proves (3). �

Remark 2.1.6. A generalized nilpotent cdga over N is automatically a cell-module
over N . Indeed, for A = Sym∗E ⊗N satisfying the conditions of definition 2.1.1,
one has the filtration on E≤n given by remark 2.1.2. Combining this filtration with
the filtration by degree on Sym∗E gives a filtration on Sym∗E which exihibits A
as an N -cell module.

2.2. Relative bar construction. One forms the bar construction for a cdga A
over N just as for cdgas over Q, replacing ⊗Q with ⊗N . However, for this con-
struction to have good cohomological properties, one should replace A with a quasi-
isomorphic cdga A′ which is a cell module over N , so that ⊗N = ⊗LN . This is
accomplished by using the minimal model A{∞}. In any case, we give the “pre-
derived” definition for an arbitrary cdga A over N .

Definition 2.2.1. Let A be an augmented Adams graded cdga over N . Define the
simplicial cdga Bpd• (A/N ) by

Bpd• (A/N ) := A⊗N [0,1]

The inclusion {0, 1} → [0, 1] makes Bpd• (A/N ) a simplicial cdga over A⊗A. Given
two (possibly equal) augmentations ε1.ε2 : A → N , set

Bpd• (A/N , ε1, ε2) := Bpd• (A/N )⊗A⊗A N .

and let B̄pdN (A, ε1, ε2) be the total complex associated to Bpd• (A/N , ε1, ε2).

Remark 2.2.2. If A is a generalized nilpotent algebra over N , then B̄pdN (A, ε1, ε2)
has a natural structure of an N -cell module. In addition, since A is Adams graded,
A(r) = 0 for r < 0, hence A⊗Nn is in CM+w

N for each n ≥ 0 and B̄pdN (A, ε1, ε2) is
in CM+w

N . Finally, if ε1 = ε2 = ε, then B̄pdN (A, ε) has the natural structure of a dg
Hopf algebra in CM+w

N , and thus a Hopf algebra in D+w
N .

Definition 2.2.3. Let A be an augmented Adams graded cdga over N with aug-
mentation ε. Suppose that N is cohomologically connnected and let A{∞}N → A
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be the relative minimal model of A over N . Define

B•(A/N ) := Bpd• (A{∞}N /N ), B̄N (A, ε) := B̄pdN (A{∞}N , ε{∞}).

Remark 2.2.4. Still supposing N to be cohomologically connected, we may apply
the truncation functor

H0
N : D+w

N → HN
to the dg Hopf algebra B̄N (A, ε) in D+w

N , giving us the Hopf algebra H0
N (B̄N (A, ε))

in HN . We may therefore also form the co-Lie algebra object γA/N in HN =
Conn0

N :
γA/N := H0

N (B̄N (A, ε))+/H0
N (B̄N (A, ε))2+

with H0
N (B̄N (A, ε))+ ⊂ H0

N (B̄N (A, ε)) the augmentation ideal.
We let B̄•≤m(A/N , ε) denote the restriction of the simplicial object B̄•(A/N , ε)

to the full subcategory {[0], . . . , [m]} of Ord, and B̄≤mN (A, ε) ⊂ B̄N (A, ε) the asso-
ciated total complex of B̄•≤m(A/N , ε).

If we suppose that A is in DfN , then H0
N (B̄≤mN (A, ε)) is in HfN for each m, hence

H0
N (B̄N (A, ε)) has the structure of an ind-Hopf algebra in HfN with

H0
N (B̄N (A, ε)) = lim−→

m→∞
H0
N (B̄≤mN (A, ε))

in HN .

2.3. Base-change. We consider a quasi-isomorphism φ : N ′ → N of cohomolog-
ically connected cdgas. Given an augmented cdga A over N with augmentation
ε : A → N , we have A = I ⊕ N , with I the kernel of ε. In particular, I is a
(non-unital) N -algebra. Via φ, we make I a (non-unital) N ′-algebra, and thus give
A′ := I ⊕N ′ the structure of a cdga over N ′, with augmentation ε′ : A′ → N ′ the
projection on N ′ with kernel I.

This construction yields the commutative diagram of cdgas

(2.3.1) A′
φ′

//

ε′

��

A
ε

��

N ′

p′

OO

φ
// N

p

OO

with φ and φ′ quasi-isomorphisms.
Now let f ′ : A′{n}N ′ → A′ be a relative n-minimal model over A′ over N ′. Since

the composition φ′f ′ : A′{n}N ′ → A is an N ′-module map, φ′f ′ factors through a
unique map

f : A′{n}N ′ ⊗N ′ N → A
of cdgas over N . Similarly, the N ′-augmentation of A′{n}N ′ induces an N -
augmentation of A′{n}N ′ ⊗N ′ N , making f a map of augmented cdgas over N .

Lemma 2.3.1. f : A′{n}N ′ ⊗N ′ N → A is a relative n-minimal model of A over
N .

Proof. As A′{n}N ′ is a generalized nilpotent algebra over N ′, with generators in
degree ≤ n, the same follows for A′{n}N ′ ⊗N ′ N as an algebra over N . φ is a
quasi-isomorphism, so φ∗ : DN ′ → DN is an equivalence of triangulated categories.
We can compute cohomology of a dg module via maps in the derived category; as
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A′{n}N ′ is an N ′-cell module, we have φ∗(A′{n}N ′) = A′{n}N ′ ⊗N ′ N , hence the
canonical map

A′{n}N ′ → A′{n}N ′ ⊗N ′ N
is a quasi-isomorphism of cdgas. Since φ′ : A′ → A is a quasi-isomorphism, and
A′{n}N ′ → A′ is a relative n-minimal model, the map on Hi induced by f is an
isomorphism for 1 ≤ i ≤ n and an injection for i = n+1, i.e., f : A′{n}N ′⊗N ′N →
A is a relative n-minimal model. �

Remark 2.3.2. Still assuming N and N ′ cohomologically connected, write A{n}N
for the n-minimal model A′{n}N ′⊗N ′N . We have the change of rings isomorphism

A′{n}⊗N′mN ′ ⊗N ′ N → A{n}⊗NmN

and the quasi-isomorphism

A′{n}⊗N′mN ′ → A′{n}⊗N′mN ′ ⊗N ′ N
Thus on the bar construction

B̄pdN ′(A′{n}N ′ , ε′) α−→ B̄pdN ′(A′{n}N ′ , ε′)⊗N ′ N β−→ B̄pdN (A{n}N , ε)
the map α is a quasi-isomorphism and the map β is an isomorphism.

In particular, taking n =∞, we have the canonical isomorphism

φ∗(H0
N ′(B̄N ′(A′, ε′))) ∼= H0

N (B̄N (A, ε))
of Hopf algebra objects in HN . Since φ∗ : HN ′ → HN is an equivalence, we are
thus free to replace N with a quasi-isomorphic N ′ in a study of H0

N (B̄N (A, ε)).
For instance, we may use the minimal model N{∞} → N as a replacement for N .

2.4. Connection matrices. Generalized nilpotent algebras over N fit well into
the connection matrix point of view described in section 1.12. Indeed, suppose that
A = Sym∗E ⊗ N is generalized nilpotent over N , with augmentation ε : A → N
induced by writing Sym∗E = Q⊕ Sym∗≥1E.

Using the augmentation of N , we write N = Q · id⊕N+, which writes A as

A = Sym∗E ⊗ id⊕ Sym∗E ⊗N+.

Thus the differential on A is completely determined by its restriction to Sym∗E⊗id,
giving the decomposition

d = d0 + Γ
with d0 a differential on Sym∗E and Γ : Sym∗E → Sym∗E⊗N+ a flat connection.
In addition, (Sym∗E, d0) an Adams graded cdga over Q with augmentation ε0

induced by the projection to Sym0E = Q. Finally, the connection Γ is nilpotent
since Sym∗E has all Adams degrees ≥ 0 (lemma 1.12.3).

Using the tensor structure in the category of flat nilpotent connections, the flat
nilpotent connection Γ : Sym∗E → Sym∗E ⊗ N+ gives rise to a flat nilpotent
connection on (Sym∗E)⊗n for all n. These fit together to give a flat nilpotent
connection on the bar construction:

B̄(Γ) : B̄((Sym∗E, d0), ε0)→ B̄((Sym∗E, d0), ε0)⊗N+.

This defines a Hopf algebra object in ConnN .

Proposition 2.4.1. Let N be cohomologically connected. The N -cell module cor-
responding to B̄((Sym∗E, d0), ε0) with flat nilpotent connection B̄(Γ) is isomorphic
to B̄pdN (A, ε), as dg Hopf algebra objects in CM+w

N .
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Proof. We check instead the equivalent statement that the dg Hopf algebra in
ConnN corresponding to B̄pdN (A, ε) is (B̄((Sym∗E, d0), ε0), B̄(Γ)).

We note that we have canonical isomorphisms

A⊗Nn ∼= (Sym∗E)⊗Qn ⊗Q N = (Sym∗E)⊗Qn ⊗ id⊕ (Sym∗E)⊗Qn ⊗Q N+

respecting differentials and multiplications. Tracing this isomorphism through the
definition we have given of the flat nilpotent connection on B̄((Sym∗E, d0), ε0)
completes the proof. �

2.5. Semi-direct products. Let ε : A → N be an augmented Adams graded
cdga over N . We suppose that N is generalized nilpotent and that A is generalized
nilpotent over N . We let GA := SpecH0(B̄(A)), GN := SpecH0(B̄(N )) be the
Q-algebraic group schemes defined with respect to the canonical augmentations
A → Q, N → Q. The N -algebra structure π∗ : N → A induces the map of
algebraic groups π : GA → GN ; the augmentation ε gives a splitting s : GN → GA
to π.

Lemma 2.5.1. The map π is flat.

Proof. As Q-algebras, H0(B̄(A)) and H0(B̄(N )) are polynomial algebras on A1,
N 1 respectively, and the map

H0(B̄(π∗)) : H0(B̄(N ))→ H0(B̄(A))

is just the polynomial extension of the linear injection

π∗ : N 1 → A1,

i.e., H0(B̄(π∗)) identifies H0(B̄(A)) with a polynomial extension of H0(B̄(N )). �

Lemma 2.5.2. Let e denote the identity in GN . The fiber π−1(e) is canonically
isomorphic to SpecH0(B̄(A⊗N Q)) as group schemes over Q.

Proof. We have the natural map of Hopf algebras

H0(B̄(A))⊗H0(B̄(N )) Q→ H0(B̄(A⊗N Q)).

Writing A = Sym∗E⊗N as an N -algebra, H0(B̄(A⊗N Q)) is a polynomial algebra
on (Sym∗E)1, while H0(B̄(A)) is the polynomial algebra on A1 = (Sym∗E)1⊕N 1,
and H0(B̄(N )) is the polynomial algebra on N 1. This shows that the above map
is an algebra isomorphism. �

Set K := SpecH0(B̄(A ⊗N Q)) = SpecH0(B̄(Sym∗E)). The splitting s gives
an action of GN on K and an isomorphism of GA with the semi-direct product

GA ∼= K nGN .

Let Ks denote the Q-group scheme K with this GN -action.
On the other hand, we have seen (proposition 2.4.1) that writingA = Sym∗E⊗N

gives Sym∗E a flat nilpotent connection

Γ : Sym∗E → N+ ⊗ Sym∗E

and an isomorphism of H0
N (B̄N (A)) with H0(B̄(Sym∗E)) as Hopf algebras in

Conn0
N .

Replacing N with its 1-minimal model, and noting that Conn0
N ∼ Conn

0
N{1} we

have the canonical structure of H0(B̄(Sym∗E)) as a Hopf algebra in the category
of co-modules over the co-Lie algebra QN = γN (remark 1.12.7). But this category
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is equivalent to the category of representations of GN , giving us another action of
GN on K.

Theorem 2.5.3. The action of GN on K = SpecH0(B̄(Sym∗E)) induced by the
splitting s is the same as the action given by the flat nilpotent N -connection Γ on
Sym∗E. In other words, there is an isomorphism

Ks
∼= SpecH0

N (B̄N (A))

as Q-group schemes with GN -action.

Proof. It suffices to check that the two co-actions of the co-Lie algebra γN are the
same, in fact, it suffices to check that the two co-actions of γN on the co-Lie algebra
γSym∗E of K are the same.

By Quillen’s theorem (theorem 1.13.2(2)), we can identify the co-Lie algebras γA,
γN and γSym∗E with QA, QN and QSym∗E, respectively. Since we are assuming
A and N are both generalized nilpotent, QA, QN and QSym∗E are the respective
co-Lie algebras

dA : A1 → Λ2A1, dN : N 1 → Λ2N 1, dE : E1 → Λ2E1.

On the level of co-Lie algebras, the splitting s is just the decomposition of A1 =
(Sym∗E ⊗N )1 as

A1 = (Sym∗E)1 ⊕N 1.

The co-action ofN 1 onA1 determined by the splitting s is thus given by dA followed
by the projection of Λ2A1 on N 1 ⊗A1 via the isomorphism

Λ2A1 = Λ2((Sym∗E)1 ⊕N 1) ∼= Λ2(Sym∗E)1 ⊕N 1 ⊗ (Sym∗E)1 ⊕ Λ2N 1.

This induces the co-action of N 1 on (Sym∗E)1 by taking the composition

(Sym∗E)1 → A1 dA−−→ Λ2A1 → N 1 ⊗ (Sym∗E)1.

Via our identifications, this gives us the co-action of γN on γSym∗E determined by
the section s.

On the other hand, the flat nilpotent connection Γ on Sym∗E giving the iso-
morphism of H0

N (B̄N (A)) with H0(B̄(Sym∗E)) in Conn0
N is just the restriction

of dA to Sym∗E followed by the projection of A = N ⊗ Sym∗E to N+ ⊗ Sym∗E.
However, by reasons of degree, the restriction of dA to (Sym∗E)1 = E1 decomposes
as

dA : E1 → Λ2E1 ⊕N 1 ⊗ E1

from which it follows that Γ : E1 → N 1 ⊗ E1 is the same as the co-action defined
by s. �

3. Motives over a base

This section summarizes the material we need from the work of Cisinski-Déglise
[7] and Østvar-Röndigs [28]. Together with the content of sections 4 and 5, this will
be developed in a forthcoming article [22] by the second author. In this section, we
always assume that k admits resolution of singularities.
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3.1. The construction. We summarize the main points of the construction of
the category DM eff(S) of effective motives over S, and the category DM(S) of
motives over S, from [7]. Although S is allowed to be a quite general scheme in [7],
we restrict ourselves to the case of a base-scheme S that is separated, smooth and
essentially of finite type over a field. We let SchS denote the category of finite type
separated S-schemes and let Sm/S denote the full subcategory of SchS consisting
of smooth S-schemes.

ForX ∈ Sm/S, Y ∈ SchS , define the group of finite S-correspondences cS(X,Y )
as the free abelian group on the integral closed subschemes W ⊂ X ×S Y with
W → X finite and surjective over an irreducible component of X.

For X,Y in Sm/S, Z ∈ SchS , let pXY , pY Z and pXZ be the evident projections
from X ×S Y ×S Z. One checks that the formula

(3.1.1) W ◦W ′ := pXZ∗(p∗XY (W ) · p∗Y Z(W ′)) ∈ cS(X,Z)

where · is the intersection product, is well-defined for all W ∈ cS(X,Y ), W ′ ∈
cS(Y,Z)1; this follows from the fact that supp (W )×S Z ∩X ×S supp (W ′) is finite
over X and each irreducible component of this intersection dominates a component
of X. This is called the composition of correspondences.

We start with the category SmCor(S). Objects are the same as Sm/S, mor-
phisms are

HomSmCor(S)(X,Y ) := cS(X,Y )
with composition law given by the formula (3.1.1). Define the abelian category
of presheaves with transfer on Sm/S, PST(S), as the category of presheaves of
abelian groups on SmCor(S). We have the representable presheaves ZtrS (Z) for
Z ∈ Sm/S by ZtrS (Z)(X) := cS(X,Z) and pull-back maps given by the composition
of correspondences. In fact, the same formula defines ZtrS (Z) for Z ∈ SchS .

One gives the category of complexes C(PST(S)) the Nisnevich local model struc-
ture (which we won’t need to specify). The homotopy category is equivalent to the
(unbounded) derived category D(ShtrNis(S)), where ShtrNis(S) is the full subcategory
of PST(S) consisting of the presheaves with transfer which restrict to Nisnevich
sheaves on Sm/S.

The operation
ZtrS (X)⊗trS ZtrS (X ′) := ZtrS (X ×S X ′)

extends to a tensor structure ⊗trS making PST(S) a tensor category: one forms the
canonical left resolution L(F) of a presheaf F by taking the canonical surjection

L0(F) :=
⊕

X∈Sm/S,s∈F(X)

ZtrS (X)
φ0−→ F

setting F1 := kerφ0 and iterating. One then defines

F ⊗trS G := H0(L(F)⊗trS L(G))
noting that L(F) ⊗trS L(G) is defined since both complexes are degreewise direct
sums of representable presheaves.

The restriction of ⊗trS to the subcategory of cofibrant objects in C(ShtrNis(S))
induces a tensor operation ⊗LS on D(ShtrNis(S)) which makes D(ShtrNis(S)) a trian-
gulated tensor category.

1Even though Z may be singular, one can locally embed Z in an AN
S and compute the inter-

section multiplicites there
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Definition 3.1.1 ([7]). DM eff(S) is the localization of the triangulated category
D(ShtrNis(S)) with respect to the localizing category generated by the complexes
ZtrS (X × A1)→ ZtrS (X). Denote by mS(X) the image of ZtrS (X) in DM eff(S).

Remark 3.1.2. 1. DM eff(S) is a triangulated tensor category with tensor product
⊗S induced from the tensor product ⊗LS via the localization map

QS : D(ShtrNis(S))→ DM eff(S),

and satisfying mS(X)⊗S mS(Y ) = mS(X ×S Y ).

2. One has the model category C(PSTA1(S)) with underlying category C(PST(S))
defined as the Bousfield localization of C(PST(S)) with respect to the complexes

(1) For each elementary Nisnevich square with X ∈ Sm/:

W
� � // X ′

f

��

W
� � // X

one has the complex

ZtrS (X ′ \W )→ ZtrS (X \W )⊕ ZtrS (X ′)→ ZtrS (X)

Recall that the square above is an elementary Nisnevich square if f is
étale, the horizontal arrows are closed immersions of reduced schemes and
the square is cartesian.

(2) For X ∈ Sm/S, one has the complex ZtrS (X × A1)→ ZtrS (X).
The homotopy category of C(PSTA1(S)) is equivalent to DM eff(S).

Definition 3.1.3. Let T tr be the presheaf with transfers

T tr := coker(ZtrS (S) i∞∗−−→ ZtrS (P1
S))

and let ZS(1) be the image in DM eff(S) of T tr[−2]. Let

⊗T tr : C(PST(S))→ C(PST(S))

be the functor C 7→ C ⊗trS T tr.

Let SptT tr (S) be the model category of ⊗T tr spectra in C(PSTA1(S)), i.e.,
objects are sequence E := (E0, E1, . . .), En ∈ C(PST(S)), with bonding maps

εn : En ⊗trS T tr → En+1.

Morphisms are given by sequences of maps in C(PST(S)) which strictly commute
with the respective bonding maps.

The model structure on the category of T tr-spectra is defined by following the
construction of Hovey [15]. The weak equivalences are the stable weak equivalences:
for each E ∈ SptT tr (S) there is a canonical fibrant model E → Ef , where Ef :=
(Ef0 , E

f
1 , . . .) with each Efn fibrant in C(PSTA1(S)) and the map

Efn → Hom(T tr, Efn+1)

adjoint to the bonding map Efn ⊗trS T tr → Efn+1 is a weak equivalence in the model
category C(PSTA1(S)).

Definition 3.1.4. The “big” category of triangulated motives over S, DM(S), is
the homotopy category of SptT tr (S).
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Remark 3.1.5. Concretely, a stable weak equivalence f : (E0, E1, . . .)→ (F0, F1, . . .)
is a map such that, for each X ∈ C(PST(S)), the map

lim−→
n

HomDMeff (S)(X ⊗trS (T tr)⊗n, En)
fn∗−−→ lim−→

n

HomDMeff (S)(X ⊗trS (T tr)⊗n, Fn)

is an isomorphism.

We will use the following result from [7].

Theorem 3.1.6 ([7, section 10.4]). Suppose that S is in Sm/k for a field k, take
X in Sm/S, and let mk(X), mS(X) denote the motives of X in DM(k), DM(S),
respectively. Then there is a natural isomorphism

HomDM(S)(mS(X),Z(n)[m]) ∼= HomDM(k)(mk(X),Z(n)[m])

Remark 3.1.7. By Voevodsky’s embedding theorem [11, chapter V, theorem 3.2.6]
the functor DM eff

gm(k)→ DM eff
− (k) induces a full embedding

DMgm(k)→ DM(k),

hence HomDM(k)(mk(X),Z(n)[m]) is motivic cohomology in the sense of Voevodsky
[11, chapter V], that is

HomDM(k)(mk(X),Z(n)[m]) = Hm(X,Z(n)).

3.2. Tensor structure. The tensor structure on C(PST(S)) induces a “tensor
operation” on the spectrum category by the usual device of choosing a cofinal
subset N ⊂ N × N, i 7→ (ni,mi), with ni+1 +mi+1 = ni +mi + 1 for each i: each
pair of T tr spectra E := (E0, E1, . . .) and F := (F0, F1, . . .) gives rise to a T tr

bispectrum

E �tr
S F :=


...

. . . Ei ⊗trS Fj . . .
...


with vertical and horizontal bonding maps induced by the bonding maps for E
and F , respectively. The vertical bonding maps use in addition the symmetry
isomorphism in C(PSTA1(S)). Finally, the choice of the cofinal N ⊂ N×N converts
a bispectrum to a spectrum.

Of course, this is not even associative, so one does not achieve a tensor operation
on SptT tr (S), but �tr

S (on cofibrant objects) does pass to the localization DM(k),
and gives rise there to a tensor structure, making DM(S) a tensor triangulated
category. We write this tensor operation as ⊗S , as before.

3.3. Tate motives. In DM(X)Q we have the full subcategory of Tate motives over
X, DMT(X), this being the full triangulated subcategory of DM(X)Q closed under
isomorphism and generated by the Tate motives QX(n), n ∈ Z. Since QX(n) ⊗
QX(m) ∼= QX(n+m), DMT(X) is a tensor triangulated subcategory of DM(X)Q.

Just as for the case of motives over a field, the category DMT(X) admits a
canonical weight filtration, and, in case X satisfies the Beilinson-Soulé vanishing
conjectures, a t-structure with heart generated by the Tate objects QX(n). In fact,
the results of [26] apply directly, so we will content ourselves here with giving the
relevant definitions.
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Definition 3.3.1. Let WnDMT(X) denote the full triangulated subcategory of
DMT(X) generated by the Tate motives QX(−a) with a ≤ n. Let W[n,m]DMT(X)
be the full triangulated subcategory of DMT(X) generated by the Tate motives
QX(−a) with n ≤ a ≤ m, and let W>nDMT(X) be the full triangulated subcate-
gory of DMT(X) generated by the Tate motives QX(−a) with a > n.

Lemma 3.3.2. For X ∈ Sm/k there is a natural isomorphism

HomDMT(X)(QX(a),QX(b)[m]) ∼= Hm(X,Q(b− a))

Proof. This follows directly from theorem 3.1.6 and remark 3.1.7, noting that
⊗QX(a) is invertible in DMT(X) ⊂ DM(X)Q. �

Lemma 3.3.3. DMT(X) is a rigid tensor triangulated category.

Proof. The unit 1 for the tensor operation is QX(0). It suffices to check that the
generators QX(n) of DMT(X) admit a dual (see e.g. [25, part I, IV.1.2]). Setting
QX(n)∨ = QX(−n), with maps δ : 1→ QX(n)∨⊗QX(n), ε : QX(n)⊗QX(n)∨ → 1

being the canonical isomorphisms shows that QX(n) has a dual. �

Theorem 3.3.4. 1. (WnDMT(X),W>nDMT(X)) is a t-structure on DMT(X)
with heart consisting of 0-objects.

2. Denote the truncation functors for the t-structure (WnDMT(X),W>nDMT(X))
by

Wn : DMT(X)→WnDMT(X) ⊂ DMT(X)

W>n : DMT(X)→W>nDMT(X) ⊂ DMT(X).

Then
(a) Wn and W>n are exact
(b) Wn is right adjoint to the inclusion WnDMT(X)→ DMT(X) and W>n is

left adjoint to the inclusion W>nDMT(X)→ DMT(X).
(c) For each n < m there is an exact functor

W[n+1,m] : DMT(X)→W[n+1,m]DMT(X) ⊂ DMT(X)

and a natural distinguished triangle

Wn →Wm →W[n+1,m] →Wn[1].

(d) DMT(X) = ∪n∈ZWnDMT(X) = ∪n∈ZW
>nDMT(X).

Proof. By lemma 3.3.2, we have an isomorphism

HomDM(X)Q(QX(a),QX(b)[m]) ∼= Hm(X,Q(b− a))

=


0 for b < a

0 for b = a,m 6= 0
Q · id for b = a,m = 0.

Thus, [26, lemma 1.2] applies to prove the theorem. �

We denote the exact functor W[n,n] : DMT(X) → W[n,n]DMT(X) by grWn and
the category W[n,n]DMT(X) by grWn DMT(X).
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Remark 3.3.5. Since

HomDMT(X)(QX(−n),QX(−n)[m]) =

{
0 for m 6= 0
Q · id for m = 0,

the category grWn DMT(X) is equivalent toDb(Q). Thus, we can define the Q-vector
space Hn(grWn M) for M in DMT(X).

Definition 3.3.6. 1. We say that X satisfies the Beilinson-Soulé vanishing con-
jectures if Hm(X,Q(n)) = 0 for m ≤ 0 and n 6= 0.

2. Let DMT(X)≤0 be the full subcategory of DMT(X) with objects M such that
Hm(grWn M) = 0 for all m > 0 and all n ∈ Z. Let DMT(X)≥0 be the full subcate-
gory of DMT(X) with objects M such that Hm(grWn M) = 0 for all m < 0 and all
n ∈ Z. Let MT(X) := DMT(X)≤0 ∩DMT(X)≥0.

Theorem 3.3.7. Suppose X satisfies the Beilinson-Soulé vanishing conjectures.
Then

1. (DMT(X)≤0,DMT(X)≥0) is a non-degenerate t-structure on DMT(X) with
heart MT(X) containing the Tate motives QX(n), n ∈ Z.

2. MT(X) is equal to the smallest abelian subcategory of MT(X) which contains
the QX(n), n ∈ Z, and which is closed under extensions in MT(X).

3. The tensor operation in DMT(X) restricted to MT(X) makes MT(X) a rigid
Q-linear abelian tensor category.

4. The functor ⊕ngrWn : MT(X) → VecQ is a fiber functor, making MT(X) a
neutral Tannakian category.

Proof. By lemma 3.3.2, the assumption that X satisfies the Beilinson-Soulé van-
ishing conjectures implies that

HomDMT(X)Q(QX(a),QX(b)[m]) =

{
0 for b > a,m ≤ 0
0 for b = a,m 6= 0

With this, the result follows from [26, theorem 1.4, proposition 2.1]. �

4. Cycle algebras

Bloch’s cycle complex zp(X, ∗) is defined using cycles on X ×∆n, where ∆n is
the algebraic n-simplex

∆n := Spec k[t0, . . . , tn]/(
∑
i

ti − 1).

One can also use cubes instead of simplices to define the various versions of the
cycle complexes. The major advantage is that the product structure for the cubical
complexes is easier to define and, with Q-coefficients, one can construct cycle com-
plexes which have a strictly commutative and associative product. This approach
is used by Hanamura in his construction of a category of mixed motives, as well as
in the construction of categories of Tate motives by Bloch [2], Bloch-Kriz [1] and
Kriz-May [21].
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We combine the cubical variation with the strictly functorial constructions of
Friedlander-Suslin-Voevodsky to give a functorial version of the cycle complex. This
allows us to extend the representation theorem of Spitzweck to give a description
of mixed Tate motives over a smooth base in terms of cell modules over a cycle
algebra.

We give a rather sketchy treatment in this section. The second author will make
a complete treatment in his forthcoming article [22]. In this section, we assume
that k admits resolution of singularities.

Remark. Joshua [20] has given a definition of a cycle algebra AX over a smooth
quasi-projective variety X, and has defined the triangulated category of mixed
Tate motives over X as DfAX

, along the lines outlined above. However, there is
apparently a problem in his construction, in that he uses the cubical Suslin complex
construction on the sheaves Ztr(An) in his definition of the cycle complex AX . Since
the projection An → Spec k induces a weak equivalence CSus

∗ (Ztr(An))→ CSus
∗ (Z),

the degree n portion of Joshua’s cycle algebra does not seem to represent weight n
motivic cohomology, as is claimed in [20].

4.1. Cubical complexes. We recall the definition of the cubical version of the
Suslin-complex (see [11, Chap. V]) CSus

∗ .
Let (�1, ∂�1) denote the pair (A1, {0, 1}), and (�n, ∂�n) the n-fold product of

(�1, ∂�1). Explicitly, �n = An, and ∂�n is the divisor
∑n
i=1(xi = 0)+

∑n
i=1(xi =

1), where x1, . . . , xn are the standard coordinates on An. A face of �n is a face of
the normal crossing divisor ∂�n, i.e., a subscheme defined by equations of the form
ti1 = ε1, . . . , tis = εs, with the εj in {0, 1}. If a face F has codimension m in �n,
we write dimF = n−m.

For ε ∈ {0, 1} and j ∈ {1, . . . , n} we let ιj,ε : �n−1 → �n be the closed embedding
defined by inserting an ε in the jth coordinate. We let πj : �n → �n−1 be the
projection which omits the jth factor.

Definition 4.1.1. Let X be a noetherian scheme and let F be presheaf on Sm/X.
Let Ccb

n (F) be the presheaf

Ccb
n (F)(X) := F(X ×�n)/

n∑
j=1

π∗j (F(X ×�n−1)),

and let Ccb
∗ (F) be the complex with differential

dn =
n∑
j=1

(−1)j−1F (ιj,1)−
n∑
j=1

(−1)j−1F (ιj,0).

If F is a Nisnevich sheaf, then Ccb
∗ (F) is a complex of Nisnevich sheaves, and if

F is a presheaf (resp. Nisnevich sheaf) with transfers, then Ccb
∗ (F) is a complex

of presheaves (resp. Nisnevich sheaves) with transfers. We extend the construction
to complexes of sheaves (with transfers) by taking the total complex of the evident
double complex.

For a presheaf F on Sm/X and Y ∈ Sm/X, let

CAlt
n (F)(Y ) ⊂ Ccb

n (F)(Y )Q = F(Y ×�n)Q

be the Q-subspace consisting of the alternating elements of F(Y ×�n)Q with respect
to the action of the symmetric group Σn on �n, i.e., the elements x satisfying

(id× σ)∗(x) = sgn(σ) · x.
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Here Σn acts on �n = An by permuting the coordinates. Y 7→ CAlt
n (F)(Y ) evi-

dently forms a sub-presheaf of Ccb
n (F)Q, which we denote by CAlt

n (F); in fact the
CAlt
n (F) form a subcomplex CAlt

∗ (F) ⊂ Ccb
∗ (F)Q. We extend this to complexes of

presheaves by taking the total complex of the evident double complex.
The arguments of e.g. [24, section 2.5] show

Lemma 4.1.2. Let F be a complex of presheaves on Sm/X.
(1) There is a natural isomorphism CSus

∗ (F) ∼= Ccb
∗ (F) in the derived cate-

gory of presheaves on Sm/X. If F is a complex of presheaves with trans-
fer, we have an isomorphism CSus

∗ (F) ∼= Ccb
∗ (F) in the derived category

D(PST(X)).
(2) The inclusion CAlt

∗ (F)(Y ) ⊂ Ccb
∗ (F)Q(Y ) is a quasi-isomorphism for all

Y ∈ Sm/X.

Remark 4.1.3. One can define a cubical version of Bloch’s cycle complex, following
the pattern of definition 4.1.1. That is, define zq(X,n)cb to be the free abelian
group on the codimension q subvarieties W ⊂ X × �n such that W ∩ X × F
has codimension q for every face F ⊂ �n, and let zq(X,n)cb be the quotient of
zq(X,n)cb by the “degenerate” cycles coming from zq(X,n − 1)cb by pull-back.
This gives us the complex zq(X, ∗)cb, which is quasi-isomorphic to the simplicial
version zq(X, ∗) defined in [3].

Taking the subgroups of alternating cycles gives us the subcomplex zq(X, ∗)Alt ⊂
zq(X, ∗)cbQ , quasi-isomorphic to zq(X, ∗)cbQ .

Lemma 4.1.4. Let F be in C(PST(X)). Suppose that Ccb
∗ (F) satisfies Nisnevich

excision. Then Ccb
∗ (F) is quasi-fibrant for the Nisnevich local model structure on

C(PST(X)) and is A1-local.

Proof. Let Ccb
∗ (F)→ Ccb

∗ (F)f be a fibrant model for Ccb
∗ (F), with respect to the

Nisnevich local model structure on C(PST(X)). Since Ccb
∗ (F) satisfies Nisnevich

excision, the map of complexes

Ccb
∗ (F)(Y )→ Ccb

∗ (F)f (Y )

is a quasi-isomorphism for every Y ∈ Sm/X. Thus, since the homotopy category
of C(PST(X)) for the Nisnevich local model structure is equivalent to the derived
category of ShtrNis(X), we have isomorphisms for every Y ∈ Sm/X and n ∈ Z:

HomD(Shtr
Nis(X))(ZtrX(Y ), Ccb

∗ (F)[n])
∼= HomD(Shtr

Nis(X))(ZtrX(Y ), Ccb
∗ (F)f [n])

∼= HomK(Shtr
Nis(X))(ZtrX(Y ), Ccb

∗ (F)f [n])
∼= Hn(Ccb

∗ (F)f (Y ))
∼= Hn(Ccb

∗ (F)(Y )).

Since the presheaves ZtrX(Y ) form a set of cofibrant generators for C(PST(X)),
it follows that Ccb

∗ (F) is quasi-fibrant for the Nisnevich local model structure on
C(PST(X)).

On the other hand, for every F , the cubical complex construction Ccb
∗ (F) is

homotopy invariant as a complex of presheaves, i.e.,

Ccb
∗ (F)(Y )→ Ccb

∗ (F)(Y × A1)
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is a quasi-isomorphism for each Y ∈ Sm/X. Thus

HomD(Shtr
Nis(X))(ZtrX(Y ), Ccb

∗ (F)[n])

→ HomD(Shtr
Nis(X))(ZtrX(Y × A1), Ccb

∗ (F)[n])

is an isomorphism for all Y ∈ Sm/X, i.e., Ccb
∗ (F) is A1-local. �

Example 4.1.5. Let W be a finite type k-scheme. We recall the presheaf with
transfers zq.fin(W ) (also denoted zequi(W, 0) in [11]) on Sm/k. For Y ∈ Sm/k,
zq.fin(W )(Y ) is defined to be the free abelian group on integral closed subschemes
Z ⊂ Y ×k W such that Z → Y is quasi-finite, and dominant over a component of
Y .

It follows from [11, chapter V, theorem 4.2.2(4)] and lemma 4.1.2 that one has
a natural isomorphism for Y ∈ Sm/k

Hn(Ccb
∗ (zq.fin(W ))(Y )) ∼= H−nNis(Y,C

cb
∗ (zq.fin(W ))),

and hence Ccb
∗ (zq.fin(W )) satisfies Nisnevich excision as a complex of presheaves on

Sm/X. Thus Ccb
∗ (zq.fin(W )) is A1-local in C(PSTA1(X)).

Denote by ZtrX(P1/∞) the sheaf defined by the exactness of the split exact se-
quence

0→ ZtrX
i∞∗−−→ ZtrX(P1)→ ZtrX(P1/∞)→ 0

Of course, ZtrX(P1/∞) = ZtrX(1)[2]. Similarly, let ZtrX((P1/∞)r) be defined by the
exactness of

⊕rj=1ZtrX((P1)r−1)
P

j ij,∞∗
−−−−−−→ Ztr((P1)r)→ ZtrX((P1/∞)r)→ 0

where ij,∞ : (P1)r−1 → (P1)r inserts ∞ in the jth spot. Thus ZtrX((P1/∞)r) is
isomorphic to ZtrX(r)[2r].

Remark 4.1.6. We used the notation T tr for ZtrX(P1/∞) in the context of “Tate
spectra” (definition 3.1.3); we introduce this new notation to make clear the relation
with the sheaf zq.fin(A1).

4.2. The cycle cdga in DM eff(X)Q. For Y ∈ Sm/k, we denote ZtrSpec k(Y ) by
Ztr(Y ).

The symmetric group Σq acts on Ztr((P1/∞)q) by permuting the coordinates in
(P1)q. We let N (q) ⊂ CAlt

∗ (Ztr((P1/∞)q) be the subsheaf of symmetric sections
with respect to this action.

Lemma 4.2.1. The inclusion N (q) ⊂ CAlt
∗ (Ztr((P1/∞)q) is an isomorphism in

DM eff
− (k), in fact a quasi-isomorphism of complexes of presheaves on Sm/k.

Proof. Fix Y ∈ Sm/k. We have the sequence of maps

C∗(Ztr((P1/∞)q))(Y )→ C∗(zq.fin(Aq))(Y )→ zq(Y × Aq, ∗),

the first map induced by the inclusion Aq ⊂ (P1)q, the second by the inclusion of
the quasi-finite cycles on Y ×Aq×∆n to the cycles in good position on Y ×Aq×∆n.
Both maps are quasi-isomorphisms: for the first, use the localization sequence of
[11, chapter IV, corollary 5.12] together with [11, chapter IV, theorem 8.1]; for
the second, use the duality theorem [11, chapter IV, theorem 7.4] and Suslin’s
comparison theorem [11, chapter VI, theorem 3.1].
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Passing to the cubical versions, tensoring with Q and taking the alternating sub-
complexes, it follows from lemma 4.1.2 and remark 4.1.3 that we have the sequence
of quasi-isomorphisms

CAlt
∗ (Ztr((P1/∞)q))(Y )→ CAlt

∗ (zq.fin(Aq))(Y )→ zq(Y × Aq, ∗)Alt.

As the pull-back by the projection p : Y × Aq → Y

zq(Y, ∗)Alt → zq(Y × Aq, ∗)Alt

is also a quasi-isomorphism by the homotopy property, Σq acts trivially on zq(Y ×
Aq, ∗)Alt, in D−(Ab), and thus Σq acts trivially on the cohomology of the complex
CAlt
∗ (Ztr((P1/∞)q))(Y ). Since CAlt

∗ (Ztr((P1/∞)q))(Y ) is a complex of Q-vector
spaces, it follows that N (q)(Y ) → CAlt

∗ (Ztr((P1/∞)q)(Y ) is a quasi-isomorphism,
as claimed. �

For X,Y ∈ Sm/k, the external product of correspondences gives the associative
external product

Ccb
n (Ztr((P1/∞)q)(X)⊗ Ccb

m (Ztr((P1/∞)p))(Y )

→ Ccb
n+m(Ztr((P1/∞)p+q))(X ×k Y ).

Taking X = Y and pulling back by the diagonal X → X×kX gives the cup product
of complexes of sheaves

∪ : Ccb
∗ (Ztr((P1/∞)p))⊗ Ccb

∗ (Ztr((P1/∞)q))→ Ccb
∗ (Ztr((P1/∞)p+q)).

Taking the alternating projection with respect to the �∗ and symmetric projection
with respect to the A∗ yields the associative, commutative product

· : N (p)⊗N (q)→ N (p+ q),

which makesN := Q⊕⊕r≥1N (r) into an Adams graded cdga object in C(ShtrNis(k)).
By abuse of notation, we write N (0) for the constant presheaf Q.

Definition 4.2.2. For X ∈ Sm/k, we let NX(q) denote the restriction of N (q) to
SmCor(X); similarly define the Adams graded cdga object in C(ShtrNis(X)):

NX = Q⊕⊕q≥1NX(q).

Taking sections of N on X gives us the Adams graded cdga N (X). In fact, NX
is a presheaf of Adams graded cdgas over N (X), where for f : Y → X in Sm/X,
the algebra structure comes from the pull-back map

f∗ : N (X)→ NX(Y ) = N (Y ).

Lemma 4.2.3. The multiplication map

NX(r)⊗trX NX(s)→ NX(r + s)

is an isomorphism in DM eff(X)Q.

Proof. First note that the restriction of Ztr((P1/∞)n) to SmCor(X) is canonically
isomorphic to ZtrX((P1/∞)n), where the isomorphism is induced by the natural
isomorphisms

Y ×X (P1
X ×X . . .×X P1

X) ∼= Y ×X ((P1)n ×k X) ∼= Y ×k (P1)n

for Y ∈ Sm/X. In DM eff(X) we have the canonical isomorphism

mX(X)(n)[2n]→ Ccb
∗ (ZtrX((P1/∞)n))
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which identifies the multiplication

Ccb
∗ (ZtrX((P1/∞)r))⊗trX Ccb

∗ (ZtrX((P1/∞)s))→ Ccb
∗ (ZtrX((P1/∞)r+s))

with the canonical isomorphism

mX(X)(r)[2r]⊗trX mX(X)(s)[2s]→ mX(X)(r + s)[2r + 2s].

�

5. N (X)-modules and motives

We relate the category of Tate motives to the dg modules over the cycle algebra
N (X). We give a rather sketchy treatment in this section, a detailed account will
be written in the forthcoming article [22] by the second author. In this section, we
assume k admits resolution of singularities.

5.1. The contravariant motive. We define the functor

hX : Sm/Xop → DM(X)

as follows: For Y → X in Sm/X we have the internal Hom presheaf on SmCor(X)
defined by

Hom(ZtrX(Y ), C∗(ZtrX(n)[2n]))(W ) := C∗(ZtrX(n)[2n])(Y ×X W ).

The multiplication

ZtrX(n)[2n]⊗trX ZtrX(1)[2]→ ZtrX(n+ 1)[2n+ 2]

gives rise to the bonding maps

Hom(ZtrX(Y ), C∗(ZtrX(n)[2n]))⊗trX T tr → Hom(ZtrX(Y ), C∗(ZtrX(n+ 1)[2n+ 2]))

defining the T tr spectrum hX(Y ) ∈ SptT tr (X):

hX(Y ) := (Hom(ZtrX(Y ), C∗(ZtrX)), . . . ,Hom(ZtrX(Y ), C∗(ZtrX(n)[2n])), . . .).

Using the action of correspondences on ZtrX(Y ), one sees immediately that hX
extends to a functor

hX : SmCor(X)op → SptT tr (X),

which in turn extends to

C(hX) : C(SmCor(X)op)→ SptT tr (X).

Lemma 5.1.1. The composition of hk with the canonical localization functor

SptT tr (k)→ DM(k)

gives a dual to the composition

SmCor(k)
Mgm−−−→ DM eff(k)

Σ∞
T tr−−−→ DM(k).

Proof. For Y ∈ Sm/k, we denote C∗(zq.fin(Y )) by Cc∗(Y ) and let M c
gm(Y ) denote

the image of Cc∗(Y ) in DM eff
− (k). We recall the presheaf with transfers zequi(Y, r),

with zequi(Y, r)(X) the free abelian group on the subvarieties W ⊂ X × Y such
that W → X is dominant and equi-dimensional of relative dimension r over some
component of X.

For Y ∈ Sm/k of dimension d, one has the dual motive Mgm(Y )∨ in DMgm(k),
since k admits resolution of singularities. Also, Mgm(Y )∨(d)[2d] is in DM eff

gm(k) and
the image of Mgm(Y )∨(d)[2d] in DM eff

− (k) is canonically isomorphic to M c
gm(Y )
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(see [11, chapter V, section 4.3]). Letting Σ∞T trM c
gm(Y )(−d)[−2d] denote the T tr

spectrum
(0, . . . , 0, Cc∗(Y ), Cc∗(Y )(1)[2], . . .)

with Cc∗(Y ) in degree d, we see that in DM(k), Σ∞T trMgm(Y ) has a dual, namely,
the object represented by Σ∞T trM c

gm(Y )(−d)[−2d].
The restriction by the open immersion An → (P1)n induces a quasi-isomorphism

of presheaves

Hom(Ztrk (Y ), C∗(Ztrk (n)[2n]))→ Hom(ZtrX(Y ), Cc∗(An)).
By the duality theorem [11, chapter IV, theorem 7.1], the inclusion of complexes of
presheaves

Hom(Ztr(Y ), Cc∗(An))→ C∗(zequi(Y × An, d))
is a quasi-isomorphism of complexes of presheaves, as is each morphism in the
sequence

Cc∗(Y × An−d)→ Hom(Ztr(Ad), Cc∗(Y × An−d))→ C∗(zequi(Y × An, d))
for all n ≥ d.

By [11, chapter V, corollary 4.1.8] we have M c
gm(Y × An) ∼= M c

gm(Y )(n)[2n] for
all n ≥ 0 Thus we have the canonical isomorphisms in DM eff

− (k):

Cc∗(Y )(n− d)[2n− 2d] ∼= Cc(Y × An−d) ∼= Hom(Ztrk (Y ), C∗(Ztrk (n)[2n]))

for all n ≥ d. One checks that this isomorphism is compatible with the bonding
morphisms for Σ∞T trM c

gm(Y )(−d)[−2d] and hk(Y ), giving the desired isomorophism
Mgm(Y )∨ ∼= hk(Y ) in DM(k). �

We let
hX : K(SmCor(X)op)→ DM(X)

be the exact functor induced by the composition

C(SmCor(X)op)
C(hX)−−−−→ SptT tr (X)→ DM(X).

We can use the cycle complex construction NX (definition 4.2.2) to define a Q
version of hX . Indeed, for Y ∈ Sm/X, set

hX(Y )(n) := Hom(Qtr
X(Y ),NX(n)).

The composition
ZtrX(1)[2]→ Ccb

∗ (ZtrX(1)[2])→ NX(1)
together with the multiplication in NX induces bonding maps

εn : Hom(Qtr
X(Y ),NX(n))⊗trX T trX → Hom(Qtr

X(Y ),NX(n+ 1)),

giving us the T tr spectrum

hX(Y ) := (Hom(Qtr
X(Y ),NX(0)),Hom(Qtr

X(Y ),NX(1)), . . .).

Sending Y to hX(Y ) gives an exact functor

hX : K(SmCor(X))op → DM(X)Q.

We have the canonical isomorphism in D(Q)

N (n)(Y ) ∼= C∗(ZtrX(n)[2n])(Y )Q.

This gives an isomorphism (in D(PST(X))Q)

Hom(Qtr
X(Y ),NX(n)) ∼= Hom(ZtrX(Y ), C∗(ZtrX(n)[2n]))Q,
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which induces a canonical isomorphism

hX(Y ) ∼= hX(Y )Q

natural in Y , in fact an isomorphism of functors

hX ∼= hXQ : K(SmCor(X))op → DM(X)Q.

5.2. Cell modules as Tate motives. Recall the Adams graded cdga N (X) got-
ten by evaluating the presheaf Nk of Adams graded cdgas at X ∈ Sm/k. The
following result extends Spitzweck’s representation theorem (see [24, section 5])
from fields to X ∈ Sm/k.

Theorem 5.2.1. Let X be in Sm/k. There is an exact tensor functor

MX : DN (X) → DM(X)Q

with MX(Q(n)) ∼= QX(n). In addition

1. The restriction of MX to

Mf
X : DfN (X) → DM(X)Q

defines an equivalence of DfN (X) with DMT(X), as tensor triangulated categories,
natural in X.

2. Mf transforms the weight filtration in DfN (X) to that in DMT(X).

3. Suppose that X satisfies the Beilinson-Soulé vanishing conjectures. Then Mf

is a functor of triangulated categories with t-structure. In particular, Mf inter-
twines the respective truncation functors and induces an equivalence of Tannakian
categories

H0(Mf ) : HfN (X) → MT(X),

which identifies DfN (X) with DMT(X).

Sketch of proof. We just describe the construction of the exact functor MX .
Let M = ⊕rM(r) be an N (X)-cell module. This gives us the presheaf of Adams

graded dg NX -modules M ⊗N (X)NX . DecomposeM := M ⊗N (X)NX as the sum
of its Adams graded pieces

M = ⊕rM(r).

We have the canonical map T tr → NX(1); combining with the multiplication

M⊗trX NX →M

gives us the bonding maps εr :M(r)⊗trX T tr →M(r + 1). We set

MX(M) := ((M(0),M(1), . . .), εr)

giving the functor of dg categories

MX : CMN (X) → SptT tr (X)Q.

As a homotopy equivalence of N (X)-cell modules clearly gives rise to a weak equiv-
alence of the associated motives, we have the exact functor

MX : KCMN (X) → DM(X)Q.
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Since KCMN (X) → DN (X) is an equivalence, we have as well the exact functor

MX : DN (X) → DM(X)Q.

�

5.3. From cycle algebras to motives. Let p : Y → X be in Sm/X, giving us
the map of cycle algebras

p∗ : N (X)→ N (Y );
in particular, we may consider N (Y ) as a dg module over N (X). We let

ρY : cmX(Y )→ N (Y )

be a quasi-isomorphism with cmX(Y ) an N (X)-cell module.
We proceed to define a natural transformation

ψY :MX(cmX(Y ))→ hX(Y ).

Indeed, recall that hX(Y ) is the T tr-spectrum

(Hom(Qtr
X(Y ),NX(0)), . . . ,Hom(Qtr(Y ),NX(r)), . . .),

with bonding maps induced by the multiplication in NX and the structure map
T tr → NX(1), while MX(cmX(Y )) is the T tr spectrum

([cmX(Y )⊗N (X) NX ](0), . . . , [cmX(Y )⊗N (X) NX ](r), . . .)

with bonding maps also given by the multiplication with T tr → NX(1).
Now take W ∈ Sm/X. Then

Hom(Qtr(Y ),NX(r))(W ) := N (Y ×X W )(r)

Using the external products in N , we thus have the canonical map of Adams graded
complexes

ψ̃X(W ) : N (Y )⊗N (X) N (W )→ N (Y ×X W ).

The maps ψ̃X(W ) clearly define a map of Adams graded complexes of presheaves
with transfer

ψ̃Y : N (Y )⊗N (X) N → ⊕r≥0Hom(Qtr
X(Y ),NX(r));

restricting to the component of Adams weight r gives the map of complexes of
presheaves with transfer

ψ̃Y (r) : [N (Y )⊗N (X) N ](r)→ Hom(Qtr
X(Y ),NX(r)).

It is easy to see that ψ̃Y respects the action (on the right) by N .
Composing ψ̃Y (r) with the structure map

cmX(Y )⊗N (X) N
ρY ⊗id−−−−→ N (Y )⊗N (X) N

gives us the map

ψY (r) : [cmX(Y )⊗N (X) N ](r)→ Hom(Qtr
X(Y ),NX(r)).

also respecting the right N action. Thus the maps ψY (r) define a map of T tr

spectra
ψY :MX(cmX(Y ))→ hX(Y )

as desired.
In general, ψY does not define an isomorphism in DM(X)Q. In this direction

our main result is
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Proposition 5.3.1. Suppose that hX(Y )Q is in DMT(X). Then

ψY :MX(cmX(Y ))→ hX(Y )

is an isomorphism.

Sketch of proof. We introduce the intermediate category MNX
of presheaves with

transfers of Adams graded dg modules over the presheaf (on Sm/X) of cdgas
NX , and the subcategory of finite cell modules CMf

NX
. The transfers and module

structure on M ∈ MNX
are required to be compatible in the following manner:

For Y → X in Sm/X, W,T ∈ Sm/Y , M(W ) and M(T ) are dg N (Y ) modules via
the structure morphisms W → Y , T → Y . Then for f ∈ cY (W,T ), one has

a · f∗(m) = f∗(a ·m)

for a ∈ N (Y ), m ∈M(T ).
A modification of the functorMX defines the exact functor

M̃X : DNX
→ DM(X)Q.

For Y ∈ Sm/X, we have the object Hom(Qtr
X(Y ),NX) in DNX

and a natural
isomorphism

φY : M̃X(Hom(Qtr
X(Y ),NX))→ hX(Y ).

In addition, we have the base-extension functor

−⊗LN (X) NX : DN (X) → DNX

and natural isomorphism

MX
∼= M̃X ◦ (−⊗LN (X) NX).

Finally, the external products for NX define a natural map

ψ′Y : cmX(Y )⊗N (X) NX → Hom(Qtr
X(Y ),NX)

making the diagram

MX(cmX(Y ))
ψY //

fMX(ψ′Y )

��

h(Y )

M̃X(Hom(Qtr
X(Y ),NX))

φY

66mmmmmmmmmmmmmm

commute. Thus we need only show that ψ′Y is an isomorphism in DNX
.

For this, let M := ⊕r≥0M(r) be an Adams graded dg NX -module. Define the
Adams graded dg N (X) module Γ(M) by taking sections on X:

Γ(M)(r) :=M(r)(X)

The NX -module struction gives a canonical map

ψ′M : Γ(M)⊗LN (X) NX →M

which is just the map ψ′Y in case M = Hom(Qtr
X(Y ),NX).

Using the weight filtration in DMT(X), one shows that the fact that h(Y ) is in
DMT(X) implies that the dg NX -module Hom(Qtr

X(Y ),NX) is quasi-isomorphic
to a finite NX -cell module. Thus, we need only show that, ifM is a finite NX -cell
module, then ψ′M is an isomorphism in DNX

.
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For this, one argues again by induction on the weight filtration, reducing to
the case of M a twist of NX (i.e. a pure Tate motive), for which the result is
obvious. �

5.4. The cell algebra of an X-scheme. We now assume that N (X) is cohomo-
logically connected.

Let p : Y → X be in Sm/X with a section s : X → Y . We thus have the
map of cycle algebras p∗ : N (X) → N (Y ) making N (Y ) a cdga over N (X) with
augmentation s∗ : N (Y ) → N (X). Let N (Y )X<∞> → N (Y ) be the relative
minimal model of N (Y ) over N (X). In particular, N (Y )X<∞> is a cell module
over N (X). In addition, the multiplication

N (Y )X<∞>⊗N (Y )X<∞>→ N (Y )X<∞>
given by the cdga structure on N (Y )X<∞> descends to

µY : N (Y )X<∞>⊗N (X) N (Y )X<∞>→ N (Y )X<∞>.

Definition 5.4.1. The motivic cell algebra of Y ,

caX(Y ) ∈ CMN (X)

is N (Y )X<∞>, considered as a cell module over N (X).

The same construction we used to define the mapMX(cmX(Y ))→ hX(Y ) gives
us the map in SptT tr (X)Q

ψY :MX(caX(Y ))→ hX(Y ).

Lemma 5.4.2. Suppose that hX(Y )Q is in DMT(X) and that Y satisfies the
Beilinson-Soulé vanishing conjectures. Then

ψY :MX(caX(Y ))→ hX(Y )

is an isomorphism.

Proof. This follows from proposition 5.3.1, once we know that caX(Y )→ N (Y ) is
a quasi-isomorphism.

Recall that the Beilinson-Soulé vanishing conjectures for Y are just saying that
N (Y ) is cohomologically connected. Using the section s : X → Y , we see that
X also satisfies the Beilinson-Soulé vanishing conjectures, hence N (X) is cohomo-
logically connected. The structure map N (Y )X<∞> → N (Y ) is thus a quasi-
isomorphism by proposition 2.1.5(3). �

6. Motivic π1

We can now put all our constructions together to give a description of the
Deligne-Goncharov motivic π1 in terms of a relative bar construction. In this sec-
tion, we assume k admits resolution of singularities.

6.1. Cosimplicial constructions. Fix a base-field k. We have the action of finite
sets on Schk by

XS :=
∏
s∈S

X

for X ∈ Schk and S a finite set, where
∏

means product over k. As this defines a
functor

X? : Setsop
fin → Schk
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we have an induced functor (also denoted X?) from simplicial objects in finite sets
to cosimplicial schemes.

Examples 6.1.1. 1. We have the simplicial finite set [0, 1]:

[0, 1]([n]) := HomOrd([n], [1])

giving us the cosimplicial path space of X, X [0,1]. The two inclusions i0, i1 : [0]→ [1]
induce the projection

π : X [0,1] → X{0,1}.

Explicitly, X{0,1} is the constant cosimplicial scheme X2. X [0,1] has n-cosimplices
Xn+2 with the ith coface map given by

(t0, . . . , tn) 7→ (t0, . . . , ti, ti, ti+1, . . . , tn)

and the codegeneracies given by projections. The structure morphism π is given
by the projection Xn+2 → X2 on the first and last factor.

2. Fix k-points a, b ∈ X(k), giving the map ib,a : Spec k → X2 corresponding to
(b, a). The pointed path space Pb,a(X) is

Pb,a(X) := Spec k ×ib,a,π X
[0,1].

We write Pa(X) for Pa,a(X).

6.2. The ind-motive of a cosimplicial scheme. Let X• : Ord → Sm/k be a
smooth cosimplicial k-scheme, [i] 7→ X[i] ∈ Sm/k. Following Deligne-Goncharov,
we define hgm(X•) as an ind-object in DMgm(k).

Let ZSm/k be the additive category generated by Sm/k, i.e., objects are denoted
Z(X) for X ∈ Sm/k, for X irreducible, HomZSm/k(Z(X),Z(Y )) is the free abelian
group on HomSm/k(X,Y ) and disjoint union is direct sum. Sending X to Mgm(X)
extends to

Mgm : Kb(ZSm/k)→ DMgm(k);

composing with the duality involution ∨ on DMgm(k) gives

hgm := ∨ ◦Mgm : Kb(ZSm/kop)→ DMgm(k).

Since DMgm(k) is pseudo-abelian, hgm extends canonically to

hgm : Kb(ZSm/kop)\ → DMgm(k).

where (−)\ means the pseudo-abelian hull.
For each n, one has the complex C∗(∆n, X

•) with

Ci(∆n, X•) := ⊕g:[i]↪→[n]Z(X([i])),

where the sum is over all injective maps g : [i]→ [n] in Ord. The boundary

di : Ci(∆n, X•)→ Ci+1(∆n, X•)

is defined as follows: For 0 ≤ j ≤ i + 1, we have the coface map δij : [i] → [i + 1]
(see section 1.2). Fix an injection g : [i+ 1]→ [n]. Define

δi,gj∗ : Ci(∆n, X•)→ Ci+1(∆n, X•)

by projecting Ci(∆n, X•) to the component Z(X[i]) indexed by g ◦ δij followed by
the map

X(δij) : X[i]→ X[i+ 1]
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and then the inclusion Z(X[i+ 1])→ Ci+1(∆n, X•) indexed by g. Set

di :=
∑
j,g

sgn(j, g) · δi,gj∗

where sgn(j, g) is the sign of the shuffle permutation of [n] given by (g ◦ δij([i])c, g ◦
δij([i])).

Projecting on the factors g with 0 in the image of g defines a map of complexes

πn+1,n : C∗(∆n+1, X
•)→ C∗(∆n, X

•)

giving us a projective system in Cb(ZSm/k). Reindexing so that Cn is now in
degree −n gives an inductive system in Cb(ZSm/kop)

. . .→ C∗(∆n, X
•)→ C∗(∆n+1, X

•)→ . . .

Definition 6.2.1. hgm(X•) is the ind-object of DMgm(k) defined by the ind-
system

n 7→ hgm(C∗(∆n, X
•))

Let Z∗(X•) be the complex which is X[n] in degree n, and differential the al-
ternating sum of the coface maps, and let Z∗(X•) be the associated complex in
ZSm/kop. Taking the sum of the identity maps defines a map

qn : C∗(∆n, X
•)→ Z∗(X•)

in C−(ZSm/kop), giving a map of the above ind-system to Z∗(X•).

Lemma 6.2.2 ([24]). Let F : ZSm/kop → A be an additive functor to a pseudo-
abelian category, closed under filtered inductive limits. Then

lim−→
n

F (C∗(∆n, X
•))→ F (Z∗(X•))

is a homotopy equivalence in C−(A).

The category DM(k) is large enough to define the object h(X•) directly.

Definition 6.2.3. For a cosimplicial scheme X•, define hk(X•) by

hk(X•) := hk(Z∗(X•)).

Sending X• to hk(X•) extends to a functor

hk : [Sm/kOrd]op → DM(k).

Proposition 6.2.4. We have a natural isomorphism in DM(k)

lim−→
n

hgm(C∗(∆n, X
•)) ∼= hk(X•)

Proof. This follows directly from lemma 6.2.2. �

Finally, we may replace hgm and hk with the functor hk. Sending X• to
hk(X•) := hk(Z∗(X•)) extends to the functor

hk : [Sm/kOrd]op → DM(k)Q,

the natural isomorphism hkQ → hk gives natural isomorphisms

φX• : hk(X•)Q → hk(X•)

and we have natural isomorphisms

hgm(C∗(∆n, X
•))Q → hk((C∗(∆n, X

•))
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and
lim−→
n

hgm(C∗(∆n, X
•)) ∼= hk(X•).

6.3. Motivic π1. Let X be a smooth k-scheme with a k-point x ∈ X(k). This
gives us the ind-system in DMgm(k)Q

n 7→ hgm(C∗(∆n,Px(X)))Q

as well as the object hk(Px) ∈ DM(k)Q with isomorphism

lim−→
n

hgm(C∗(∆n,Px(X))) ∼= hk(Px).

Suppose that hgm(X)Q is in DMT(k). As DMT(k) is a tensor subcategory of
DM(k)Q and as hgm(Xn) = hgm(X)⊗n, it follows that hgm(Xn)Q is in DMT(k) for
all n ≥ 0. Since the individual terms in the complex hgm(C∗(∆n,Px(X)))Q are all
direct sums of self-products of X, the motive hgm(C∗(∆n,Px(X)))Q is in DMT(X)
for all n.

If k satisfies the Beilinson-Soulé vanishing conjectures, we have the truncation
functor

H0
mot : DMT(k)→ MT(k).

Thus we have the ind-system in MT(k)

n 7→ H0
mot(hgm(C∗(∆n,Px(X)))Q) := χ(X,x)n.

Deligne-Goncharov [9] note that the standard structures of product, coproduct and
antipode in the classical bar construction make the ind-system χ(X,x)∗ into an
ind-Hopf algebra object in MT(k). In case X is the complement of a finite set of k-
points of P1

k, and x ∈ X(k), Deligne and Goncharov define πmot1 (X,x) to be the dual
group scheme object in pro-MT(k). They generalize the definition of πmot1 (X,x) to
the case where X is a smooth uni-rational variety defined over k: they show in [9,
theéorème 4.13] that a suitable object of Deligne’s realization category comes from
the mixed Artin-Tate category MAT (k) (which is a bit larger than MT (k) as it
takes into account trivial motives defined over a finite extension of k). However,
they do not give a direct construction as a motive in DMgm(k). We extend their
definition in the following direction:

Definition 6.3.1. Suppose that k andX both satisfy the Beilinson-Soulé vanishing
conjectures, and that hk(X) is in DMT(k). Let ix : Spec k → X be a k-point. Define
πmot1 (X,x) to be the group scheme object in pro-MT(k) dual to the ind-Hopf algebra
χ(X,x)∗.

6.4. Simplicial constructions. Let A ε−→ N be an augmented cdga over a cdga
N . Recall from section 2.2 the simplicial version of the relative bar construction

Bpd• (A/N , ε) := A⊗N [0,1] ⊗A⊗A N .

The total complex associated to the simplicial object n 7→ Bpdn (A/N , ε) is the
relative bar complex B̄pdN (A, ε).

Using the opposite of the construction described in section 6.2, we have the ind-
system of “finite” complexes C∗(∆n, B

pd
• (A/N , ε)), and a homotopy equivalence

lim−→
n

C∗(∆n, B
pd
• (A/N , ε))→ B̄pdN (A, ε).
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Replacing A with its relative minimal model over N (assuming for this that N
is cohomologically connected), we have the refined version of the simplicial bar
construction, B•(A/N , ε), the associated complex B̄N (A, ε), the approximations
C∗(∆n, B•(A/N , ε)) and the homotopy equivalence

lim−→
n

C∗(∆n, B•(A/N , ε))→ B̄N (A, ε).

6.5. The comparison theorem. Take X ∈ Sm/k. with k-point ix : Spec k → X.
We apply the construction of the preceeding section to the augmented cdga N (X)
over N (k):

N (X)
i∗x // N (k).
p∗

oo

Assuming that N (k) is cohomolgoically connected, we have the relative minimal
model N∞(X/k) := Nk(X)<∞>N (k), which is an augmented N (k) algebra via
i∗x : N∞(X/k)→ N (k). The multiplication in N∞(X/k) gives the natural maps

µn : N∞(X/k)⊗N (k)n → N (Xn)

which thus gives natural maps in DM(k)

φn(X,x) :Mk(C∗(∆n, B•(N (X)/N (k), i∗x)))→ hk(C∗(∆n,Px(X)))

and

φ(X,x) :Mk(B̄N (k)(N (X), i∗x))→ hk(Px(X))).

The maps φn(X,x) give a map of ind-Hopf algebra objects in DM(k).

Theorem 6.5.1. Suppose that h(X) is in DMT(k) and X satisfies the Beilinson-
Soulé vanishing conjectures. Then both φn(X,x) and φ(X,x) are isomorphisms in
DM(k).

Proof. Note that the Beilinson-Soulé vanishing conjectures for X imply the vanish-
ing conjectures for k, hence N(k) is cohomologically connected and thus the relative
bar complex B̄N (k)(N (X), i∗x) is defined.

As φ(X,x) is identified with the filtered homotopy colimit of the maps φn(X,x),
it suffices to show that φn(X,x) is an isomorphism for each n. But on the individual
terms in the complexes defining C∗(∆n, B•(N (X)/N (k), i∗x)) and C∗(∆n,Px(X)),
φn(X,x) is the map

φn(X,x)n :Mk(N∞(X/k)⊗N (k)n)→ Hom(Qtr(Xn),Nk) = hk(Xn)

induced by ψk(Xn) ◦ µn.
Since X is a Tate motive and satisfies the Beilinson-Soulé vanishing conjectures,

it follows from lemma 5.4.2 that ψk(X) is an isomorphism. Since h(Xn) = h(X)⊗n

and since Mk is a tensor functor (theorem 5.2.1), this implies that ψk(Xn) is an
isomorphism for all n.

In addition,the structure map µ1 is a quasi-isomorphism since N (X) is cohomo-
logically connected. Since X is a Tate motive, it follows that the motivic cohomol-
ogy of Xn satisfies a Künneth formula for each n. Thus µn is a quasi-isomorphism
for each n, and hence φn(X,x)n is an isomorphism for each n. �
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Corollary 6.5.2. Suppose that hk(X) is in DMT(k) and X satisfies the Beilinson-
Soulé vanishing conjectures. Then we have canonical isomorphisms of ind-Hopf
algebras in MT(k),

n 7→ [Mk(H0
N (k)(C∗(∆n, B•(N (X)/N (k), i∗x))

H0(φn(X,x))−−−−−−−−→ H0
mot(hgm(C∗(∆n,Px(X)))].

Proof. This follows from theorem 6.5.1 and theorem 5.2.1. �

6.6. The fundamental exact sequence. Let X be in Sm/k, with structure mor-
phism p : X → Spec k. We thus have the exact functor of triangulated tensor
categories p∗ : DM(k) → DM(X); since p∗(Z(n)) ∼= ZX(n), p∗ induces the exact
tensor functor

p∗ : DMT(k)→ DMT(X).
Similarly, if x ∈ X(k) is a k-rational point, we have

i∗x : DMT(X)→ DMT(k).

Both p∗ and i∗x are compatible with the weight filtrations.
Similarly, the maps p and ix induce maps of cdgas

p∗ : N (k)→ N (X); i∗x : N (X)→ N (k)

and thus exact tensor functors

p∗ : Df
N (k) → Df

N (X), i
∗
x : Df

N (X) → Df
N (k).

Recall that the equivalenceMf
X of theorem 5.2.1 is natural in X, so we have natural

isomorphisms
Mf

X ◦ p
∗ ∼= p∗ ◦Mf

k ; M
f
k ◦ i

∗
x
∼= i∗x ◦M

f
X .

Now suppose that X satisfies the Beilinson-Soulé vanishing conjectures; this
property is inherited by k using the splitting i∗x. Thus we have this entire struc-
ture for the Tannakian categories MT(X) and MT(k), with p∗ and i∗x respecting
the fiber functors grW∗ . Similarly, we have functors p∗ and i∗x for the Tannakian
categories HfN (X) and HfN (k), respecting the fiber functors grW∗ . Finally, H0(Mf

X)

and H0(Mf
k) give an equivalence between these two structures.

Let G(MT(X), grW∗ ), G(MT(k), grW∗ ) denote the Tannaka groups (i.e. pro-group
schemes over Q) of (MT(X), grW∗ ) and (MT(k), grW∗ ). We sometimes omit the
“base-point” grW∗ from the notation.

The functors p∗ and i∗x gives maps of pro-group schemes over Q

p∗ : G(MT(X), grW∗ )→ G(MT(k, grW∗ )), ix∗ : G(MT(k), grW∗ )→ G(MT(X), grW∗ ).

Letting K = ker p∗, we thus have the split exact sequence

1 // K // G(MT(X), grW∗ )
p∗ //

G(MT(k), grW∗ )
ix∗

oo // 1

of pro-group schemes over Q. Via the splitting ix∗, G(MT(k)) acts by conjuga-
tion on K. Thus the pro-affine Hopf algebra Q[K] is a G(MT(k))-representation.
Tannaka duality yields the corresponding ind object in MT(k), and its dual is a
pro-group scheme object in MT(k), which we denote by Kx. As we have seen above,
the Deligne-Goncharov motivic fundamental group πmot1 (X,x), is also a pro-group
scheme object in MT(k).
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Theorem 6.6.1. Let X be in Sm/k with k-point ix : Spec k → X. Suppose that
X satisfies the Beilinson-Soulé vanishing conjectures and that the motive hk(X) ∈
DMgm(k)Q is in DMT(k). Then there is a natural isomorphism

πmot1 (X,x) ∼= Kx

as pro-group objects in MT(k).

Proof. As we have seen above, we may identify G(MT(X)) and G(MT(k)) with
the Tannaka groups of the categories HfN (X) and HfN (k), respectively. By theo-
rem 1.13.2, this gives an isomorphism of K with the kernel of the map of pro-groups
schemes over Q:

p∗ : Spec (H0(B̄(N (X))))→ Spec (H0(B̄(N (k))))

induced by
H0(B̄(p∗)) : H0(B̄(N (k)))→ H0(B̄(N (X)))

Similarly, the splitting ix∗ becomes identified with

ix∗ : Spec (H0(B̄(N (k))))→ Spec (H0(B̄(N (X)))).

By lemma 2.5.2 and theorem 2.5.3, we have the identification

Kx
∼= Spec (H0

N (k)(B̄N (k)(N (X), i∗x)))

as group schemes in HN (k), hence as pro-group schemes in HfN (k).
But by theorem 6.5.1, the equivalence

H0(Mf ) : HfN (k) → MT(k)

identifies Spec (H0
N (k)(B̄N (k)(N (X), i∗x))) with πmot1 (X,x), completing the proof.

�

Corollary 6.6.2. Let k be a number field and S ⊂ P1(k) a finite set of k-points of
P1. Set X := P1

k \ S and let a ∈ X(k) be a k-point. Then both k and X satisfy the
Beilinson-Soulé vanishing conjectures. Furthermore, there is an isomorphism

πmot1 (X, a) ∼= Ka

as pro-group objects in MT(k).

Proof. k satisfies the Beilinson-Soulé vanishing conjectures by Borel’s theorem on
the rational K-groups of k [4]. For X, we have the Gysin distinguished triangle

Mgm(X)→Mgm(P1)→ ⊕x∈SZ(1)[2]→Mgm(X)[1].

Taking motivic cohomology gives the long exact sequence

. . .→ ⊕x∈SHp−2(k,Z(q − 1))→ Hp(k,Z(q))⊕Hp−2(k,Z(q − 1))

→ Hp(X,Z(q)) ∂−→ ⊕x∈SHp−1(k,Z(q − 1))→ . . .

Thus the vanishing conjectures for k imply the vanishing conjectures for X. In ad-
dition, since Mgm(P1) = Z⊕Z(1)[2], the Gysin exact triangle shows that Mgm(X)Q
is in DMT(k), and thus the dual hk(X) = Mgm(X)∨Q is also in DMT(k).

We may therefore apply theorem 6.6.1 to give the isomorphism

πmot1 (X, a) ∼= Ka.

�
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235–272.
[5] Bousfield, A.; Guggenheim, V. On PL de Rham theory and rational homotopy type.

Memoirs of the A.M.S. 179 1976.
[6] Bousfield, A.; Kan, D. Homotopy limits, completions and localizations. Lecture Notes

in Mathematics, 304. Springer-Verlag, 1972.
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