
LOCALLY ACYCLIC MORPHISMS AND

BASE CHANGE

Recall that when studying the quasi-coherent cohomology of
schemes, we have the following base change result.

Theorem 1. Let f : Y → S be a qcqs morphism and g : S′ → S be
flat. Consider the cartesian diagram

X ′ X

S′ S

g′

f ′ f
g

Then the base change morphism g∗R f∗(F ) ∼−→ R f ′∗g′∗(F ) is an iso-
morphism as soon as F is a quasi-coherent OX -module.

In étale cohomology the analogous base-change holds, but the
quasi-coherent condition has to be replaced by torsion of invertible
order, and flat morphisms have to be replaced by locally acyclic
morphisms.

1 Locally acyclic morphisms

Let S be any scheme and s → S a geometric point. We assume,
although later we will show that it doesn’t matter, that all geomet-
ric points are of the form s = Spec k̃ → S, where k̃ is the closure of
the image of s → S. (In other words no trancendental extensions
allowed.)

We define denote for ease of notation, the strict henselization of
S at s by

Ss =SpecOhs
S,s.

Given a morphism X → S, we similarly denote by XS the base
change X = X ×S Ss → Ss.
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Definition 1. Let S be a scheme, and s → S a geometric point. An
étale generalization of s is a geometric point t → Ss. Note that this
has an underlying Zariski generalization given by the image via
the canonical morphism Ss →SpecOS,s.

Let X → S be a morphism, x → X a geomtric point above a
geometric point s → S and t → Ss an étale generalization of s. The
scheme (or variety) of vanishing cycles of X /S at x → s ← t is defined
to be the t-scheme

X̃ x
t = Xx ×Ss t → t.

That is, the scheme of vanishing cycles is a scheme, over an
algebraically closed field, parametrizing étale generalizations of
x → X which lie over the specified generalization t → Ss of the base.
This scheme is almost never of finite type, but it is noetherian as
soon as X is locally noetherian.

We can now define locally acyclic sheaves and morphisms. To
make things cleaner we restrict to the setting of Λ-modules wher
Λ=Z/pn for some n.

Definition 2. Let X /S be an S-scheme. We say that an étale sheaf
K ∈ D(Xét,Λ) is locally acyclic if for all x → X over s → S and gen-
eralizations t → Ss we have that the canonical map

Kx
∼−→ RΓ(X̃ x

t ,K|X̃ x
t
)

is an isomorphism. A sheaf K is called universally locally acyclic
if for any map S′ → S the sheaf KS′ is locally acyclic as a sheaf on
X ′ = X ×S S′.

A morphism f : X → S is said to be (universally) locally acyclic
if Λ is (universally) locally acyclic.

We recall that if Y is a local strictly henselian scheme with
closed point y → Y then for any étale sheaf F on Y we have that
Fy = RΓ(Y ,F). In particular, the Leray isomorphism gives us

RΓ(X̃ x
t ,K|X̃ x

t
)= RΓ(Xx,R j∗K|X̃ x

t
)

where j : X̃ x
t → Xx. The canonical morphism above is just induced

from the counit K → R j∗ j∗K .

Example. Every étale morphism is (universally) locallly acyclic.
Indeed, any étale morphism induces an isomorphism on strict henseliza-
tions.

2



Example. Locally acyclic morphisms lifts tautologically lifts spe-
cializations. In particular, any locally acyclic morphism which is
locally of finite presentation is open (Chevalley’s Theorem).

Example. If S = Speck, then every K ∈ D(Xét) is locally acyclic.
Indeed, there are no specializations on the base, so the local acyclic-
ity is equivalent to asking if

Kx
∼−→ RΓ(Xx,K)

is an isomorphism, which is a basic property of étale cohomology.
It is a deep theorem (I believe due to Gabber) that if X is a vari-

ety then it is furthremore universally locally acyclic. The problem
here is that we lose control of the strict henselizations when we
pass to the product X ×Y →Y .

Example. Let X be a nodal curve and consider the degree 2 branched
covering X →P1 (lets assume we are in characteristic not 2 for sim-
plicity). Then this map is not locally acyclic. Indeed, taking x → X
to be the nodal point and the non-trivial generalization in the base,
we see that the variety of vanishing cycles is disconnected1 and
hence RΓ(X̃ x

t ,Λ) has bigger rank than expected.

We see that singularities seem to break local acyclicity. One of
the two main theorems of local acyclicity is that smooth morphisms
are (universally) locally acyclic when Λ has invertible order in the
base. This takes some effort, and we will come back to this later.

Proposition 1. Let S′ → S be a quasi-finite morphism. If X /S is
locally acyclic then so is X ′ = X×S S′ → S′. If X ′/S′ is locally acyclic,
and S′ → S is also surjective, then so is X /S.

Proof. It follows from the fact that we can identify the scheme of
vanishing cycles of the two via the following lemma.

Lemma 1. Let S′ → S be a quasi-finite morphism and T → S be an
S-scheme. Then if T ′ = T ×S S′ and t′ → T ′ is a point mapping to
s′, t, s respectively, then

SpecOhs
T,t ⊗hs

SpecOS,s
SpecOhs

S′,s′
∼−→SpecOhs

T ′,t′

is an isomorphism.
1Crucially here we are using that the étale topology can "separate" the two

branches of the node. In the Zariski topology such example would fail because
the nodal curve is still integral.
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Observe such result must be false without strict henselization:
just take two finite extensions of fields.

Proof. We can assume S, S′ and T are strictly local, the points to
be the corresponding closed points and the morphisms to be local.
Then S′ → S finite by properties of henselian local rings. By the
same reasoning T ′ is finite over S′ and hence a product of henselian
local rings. We must then show that there is a unique closed point.
But the closed fiber is the fibered product s′ ×s t which must in-
ject into the point s′ since t → s is radiciel. Now the morphism in
question is a local morphism of henselian rings which is an isomor-
phism at the closed point, hence an isomorphism.

2 Vanishing cycles

Let S be a henselian trait, that is, the spectrum of a henselian DVR.
Let s,η be the closed and generic points respectively. If X /S is an
S-scheme we can consider the fibers

X (s)= X ×S s, X (η)= X ×S η.

We have a diagram in which we label the inclusions i and j.

X (s) X X (η)

s S η

i j

The same definition also applies for S henselian local, s → S the
closed point and η= t → Ss an étale generalization.

Definition 3. Let X /S with S a henselian trait (or more generally
henselian local as above). Let K be an étale sheaf in D(Xét,Λ).
Then the nearby cycles of K is defined to be

RΨ(K)= i∗R j∗ j∗K ∈ D(X (s)ét,Λ).

It comes equipped with the (restriction of the) counit morphism
K → RΨ(K). We also define the vanishing cycles of K to be the
cone RΦ(K) of this morphism, that is, we have an exact triangle

K → RΨ(K)→ RΦ(K)

in D(X (s)ét,Λ).
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Remark. The nomencalture is somewhat unfortunate. Initially,
on the SGA, Grothendieck called the nearby cycles vanishing cy-
cles, and since then things still have not become quite normal-
ized. For example our scheme of vanishing cycles should be called
scheme of nearby cycles.

Proposition 2. Let X → S be a morphism. For every point x →
X with image s → S and étale generalization t → Ss, we have a
canonical identification

RΨ(Ks)x = RΓ(X̃ x
t ,K|X̃ x

t
).

In particular a morphism is locally acyclic if and only if for all s → S
and generalizations t → Ss the map K|X (s) = K(s)→ RΨ(K(s)) is an
isomrphism if and only if RΨ(K(s))= 0.

Proof. We can increase the diagram above to

x Xx X̃ x
t

X (s) X X (t)

s S t

i j

i j

and we note that, since pullbacks commute with pullbacks, the
stalk of RΨ(K) at x → X (s) can be computed as the stalk of R j∗ j∗K
at x → X . Again, a basic computation of stalks of étale pushfoward
yields

(R j∗ j∗K)x = RΓ(X (t)×X Xx,KXx)= RΓ(X̃ x
t ,K t)

since X (t)→ X is qcqs (it is affine, because t → S is).

Recall the functoriality of étale cohomology: if f : Y → X is any
morphism and K is a sheaf in D(Xét) there is a canonical pullback
map

RΓ(X ,K)→ RΓ(Y , f ∗K).

Applying this to our situation, and also using the Leray isomor-
phism, we have a natural map

RΓ(X (t),K(t))= RΓ(X ,R j∗K(t))→ RΓ(X (s),RΨ(K)).

When K is locally acyclic, by the above theorem, we can define the
following:
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Definition 4. Let K be locally acyclic for X /S. The cospecialization
map is the morphism

RΓ(X (t),K(t))→ RΓ(X (s),K(s))

defined above.

So in some sense being locally acyclic means that you relate
the cohomology of the fibers which are infinitesimally close to each
other. In some sense this is analogous to the flatness of a connec-
tion, which we will make precise when X /S is furthermore proper
(so that the cohomology of the fibers will be identified with the
fibers of a sheaf on S).

3 The locally acyclic base change

Our goal in this section is to prove the analogous of the flat base
change for the étale topology. We start with the statement. From
now on, we assume that the order ℓ of Λ=Z/ℓn is invertible in the
base. (In other words we are only considering Z[1/ℓ]-schemes.)

Theorem 2 (Locally acyclic base change). Let f : X → S be a qcqs
morphism and g : S′ → S be locally acyclic. Let

X ′ X

S′ S

g′

f ′ f
g

be a cartesian diagram. Then the base change morphism g∗R f∗(K) ∼−→
R f ′∗g′∗(K) for K ∈ D(Xét,Λ).

Lets start with some reductions. Since X /S is qcqs, we can
compute the stalk of the pushfoward R f∗(K) at a geometric point
s → S via the global sections of K pulled back to Xs. The same is
true for f ′, and hence we can assume that both S and S′ are local.

We can also assume X → S (and hence X ) to be affine. [IN-
CLUDE EXPLANATION].

Finally, writing the coordinate ring of X as a colimit of finitely
presented sub-algebras, we can reduce to the case where f is of
finite presentation. Even better, doing the same to S we can sup-
pose that S is the strict Henselization of a finite type Z-algebra,
and hence reduce to the Noetherian setting.
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To prove the theorem we assumem freely proper base change.
This means that the result is already proven for X → S proper. In
particular using Nagata’s compactification we can reduce to the
case of an open immersion. We start with a key case.

Lemma 2. In the situation of the Theorem, assume that X = s → S
is a geometric point of S. Then the base change holds for the sheaf
Λ.

Proof. Let Y be the normalization of the closure of the image of s
in S. By the proper base change, we need only prove base change
for the diagram

Y ′
η η

Y ′ Y

g′

f ′ f

g

where η → Y is the generic point (the residue is already a closed
field!) and Y is an integral, normal scheme. We note that Y is
not necessarily noetherian, and that, by the properties mentioned
above, all its local rings are already strictly henselian. The mor-
phism Y ′ →Y is also locally acyclic by quasi-finite base change.

Unraveling what the theorem says we have to show that

g∗η∗Λ
∼−→ R f ′∗Λ

as sheaves on Y ′. We claim that the left hand side is actually
just Λ as a constant sheaf on Y ′. Indeed, this is follows from
the fundamental fact that each connected étale scheme over a ir-
reducible, normal (or unibranch) scheme is itself irreducible and
normal. Hence, we conclude that η∗Λ=Λ.

Now we simply note that we can check the desired claim at
stalks. Let y′ → Y ′ be a geometric point, and again the stalk of
R f ′Λ at this point is just

R f ′∗Λ= RΓ(Y ′
s ×Y ′ Y ′

y′ ,Λ)= RΓ(Ỹ ′ y′
η ,Λ)=Λ

by local acyclicity.

Remark. Consider X to be the nodal curve, an integral but not
unbranch scheme. Then one can construct an étale map Y → X
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given by gluing two P1’s at 0 and ∞. Therefore if η→ X denotes
the geometric generic point, one sees that

Λ(Y )=Λ→Λ2 = Rη∗Λ(Y )

is not an isomorphism. Therefore it is really necessary to pass to
the normalization for the argument above to work so smoothly.

Proof of Theorem. We have reduced the proof to the Noetherian
open immersion case. The result is now known for every sheaf
which is the pushfoward of a point by the lemma above. Indeed,
this is a simple diagram chase from

U ′
s s

U ′ U

S′ S

by noting that U ′ →U is locally acyclic.
Now, it is a deep theorem that this class of sheaves generates

the category D(Uét) for Noetherian U . This finishes the proof by
dévissage.

Example. Let X /k be any k-scheme for a closed field k. Let K
be another closed field and k ⊂ K an extension. Then there is a
canonical isomorphism

RΓ(X ,Λ) ∼−→ RΓ(XK ,Λ).

This can fail without characteristic assumptions. Indeed, just take
X =A1

k for k of characteristic p and use Artin-Schreier.
In particular, we need not assume our geometric points to be

the closures of the residues of X . Any closed extension, indepen-
dent of trancendence degree, would do.

A different base change result

Proposition 3. Let f : X → S be a locally acyclic morphism, with
S locally Noetherian and assume all cospecialization maps are iso-
morphisms. Then

(R f∗ f ∗K)s ∼= RΓ(X (s), f ∗K(s))
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is an isomorphism for all geometric points s → S. In particular
(R f∗Λ)s ∼= RΓ(X (s),Λ).

Remark. The above theorem implies that the base change trans-
formation is an isomorphism for all sheaves which are pulled back
from S and all S′ → S. However, to conclude this we need to show
that X ′ → S′ is also locally acyclic, which is not straightfoward
(cf. last section).

Proof. The category of sheaves on S is generated by s∗Λ, where s →
S is a geometric point (here is where the Noetherian assumption
comes in). Now by the Lemma above, we can write

f ∗s∗Λ∼= R j∗Λ

where j : X (s)→ X is the inclusion of the fiber. Hence, RΓ(X ,R j∗Λ)=
RΓ(X (s),Λ) and the base change map is easily seen to be the cospe-
cialization map, which is an isomorphism by assumption.

Corollary 1. Composition of locally acyclic morphisms between
locally noetherian schemes is locally acyclic.

Proof. Indeed if X → Y → Z are locally acyclic morphisms with
points x, y, z then the morphism

X̃ x
z → Ỹ y

z

is locally acyclic with fibers X̃ x
y′ acyclic also. By last proposition, it

follows that

RΓ(X̃ x
z ,Λ)= RΓ(Ỹ y

z ,Λ)= 0

by Leray, and hence we’re done.

4 Smooth morphisms and local acyclic-
ity

In this section we will show the following very important class of
examples of (universal) local acyclicity.

Theorem 3. Let f : X → S be a smooth morphism. Then it is locally
acyclic.
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Proof. By passing to a Zariski cover we can assumme X → S to be
étale over An

S → S. We’ve proven last section that locally acyclic
morphisms compose, hence it is enough to show that for every S
A1

S → S is locally acyclic. By the proof of lemma 2, we can also
assume S to be normal domain with algebraically closed generic
point η→ S. Considering the cartesian diagram

X̃ η

A1
S S

f

we must show that Λ ∼−→ R f∗Λ.
We follow the ideas of Stacks project tag [0EYU].
The derived pushfoward can be seen as the sheafification of

U 7→ RΓ(U ×S η,Λ).

Now we need a strong input about the étale site of a smooth mor-
phism:

If X → S is smooth, then any étale morphism U → X lo-
cally factors, over S, as a morphism U → V → S where
V → S is étale and U → V is a smooth morphism of
affine schemes with geometrically connected fibers and
admiting a section. (Tag [0EY4].)

Now, the étale site of S is essentially trivial, in the sense that each
(separated) étale maps V → S are (a disjoint union of) open subsets
of S. This means we can assume that U → S has a section and
geometrically connected fibers.

Now the map in question is already an equivalence in degrees >
1 for dimension reasons. In degree 0 it is an equivalence as follows
from the connectedness above. In degree 1, we must see that each
class ξ ∈H1(U×Sη,Λ) becomes trivial after passing to an étale map
P →U . The finite étale Λ-torsor P̃ representing ξ trivializes ξ. Now
the results follows by another deep result of étale covering spaces:

Let S be a qcqs integral normal scheme with closed
generic point η. Let X → S be a smooth morphism with
geometrically connected fibers and a section. Then any
étale Λ-torsor (with order invertible on S) of Xη can be
extended to X . (Tag [0EZJ].)
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Remark. The proof given above is desceptively simple. All proofs
of this result need to involve some kind of tame purity statement
as this last step in the above. The original involved Nagata-Zariski
purity. Smooth morphisms are not acyclic if the order of Λ is not
invertible in S.

5 Proper and locally acyclic base change

Theorem 4. Let X → S be a morphism which is both proper and
locally acyclic. Then for all specializations t → Ss of the base the
cospecialization maps

RΓ(X (t),K) ∼−→ RΓ(X (s),K)

are isomorphisms for all locally constant K . Furthermore the push-
foward R f∗K is also locally constant.

Proof. The proper base change theorem tells us that R f∗K is con-
structible, and the stalk at s ∈ S is RΓ(X (s),Λ). The cospecializa-
tion morphisms are isomorphisms because we can identify them
with the base change maps with respect to the proper and locally
acyclic morphism Xs → Ss along the generalization ttoSs. Finally,
a constructible sheaf whose specialization maps are isomorphisms
is locally constant.

Corollary 2. Let X /S be smooth. Then all fibers have the same
ℓ-adic cohomology. In particular, if K is a local field and X /K has
good reduction then the ℓ-adic cohomology of X and of the special
fiber X ⊗k agree.

6 Gabber’s Theorem on universal local
acyclicity

We finish this document by showing Gabber’s powerful theorem on
universal local acyclicity.

Theorem 5 (Gabber). Let S be a noetherian scheme, X → S finite
type. If X /S is locally acyclic, then it is univeresally locally acyclic.
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Proof. Fill in later. . .

Remark. Note that this implies some interesting results: For ex-
ample, over a field we have that X×Y →Y is always locally acyclic.
Similarly, this also reproves that A1

S → S is locally acyclic if S is an
algebraic variety.
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