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These are the notes for a talk given on the ESAGA research seminar
on January 18th, 2024. We cover the basic aspects of Bridgeland
stability, as defined originally by Bridgeland in [4]. I claim
little to no originality in the exposition below, which is mostly
based off of my understanding of Kontsevich and Bridgeland’s IHES
talks, the lecture notes [6] of Macrì and Schmidt, as well as many
of the papers cited below.

1 Stability of vector bundles on curves
Let 𝐶 be a curve over a closed field. We have defined a notion of
(semi)stability for vector bundles 𝐸 on this curve. (More generally
even, for coherent sheaves on it.) We recall that to each such 𝐸
we can assign two numbers deg𝐸 and rk𝐸 and finally the slope

𝜇(𝐸) = deg(𝐸)/rk(𝐸).

A coherent sheaf is called semistable (resp. stable) if for every
(coherent) non-zero subsheaf 𝐸′ ⊂ 𝐸

𝜇(𝐸′) ≦ 𝜇(𝐸) (resp. 𝜇(𝐸′) < 𝜇(𝐸)).

Crucially: we can prove the following theorem.

Theorem 1. Let 𝐸 be a vector bundle on 𝐶. Then there exists a
unique finite filtration by subbundles

0 = 𝐸0 ⊊ 𝐸1 ⊊ 𝐸2 ⊊ ⋯ ⊊ 𝐸𝑚 = 𝐸,

whose quotients 𝐸𝑖/𝐸𝑖−1 are semistable of slope 𝜆𝑖 and 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑚.
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Remark. The same theorem also holds for coherent sheaves on 𝐶,
provided that one defines the slope of rank 0 sheaves to be ∞.
Alternatively, one can define the phase of such sheaves which work
in the same way as the slope, but behaves better in the general
abelian setting.

The proof of the following theorem relies on showing uniqueness
first and using an induction argument to patch things up, also using
finiteness of Jordan-Hölder filtrations (Noetherianness). Here is
the technical heart of the proof:

Lemma 1. Let 0 → 𝐸′ → 𝐸 → 𝐸″ → 0 be a short exact sequence of coherent
sheaves. Then

𝜇(𝐸) ∈ [min {𝜇(𝐸′), 𝜇(𝐸″)} ,max{𝜇(𝐸′), 𝜇(𝐸″)}] .

Furthermore, if 𝜇(𝐸′) ≠ 𝜇(𝐸″), then 𝜇(𝐸) lies in the interior of the
interval.

An algebraic proof of the above lemma can be annoying to write
down. Instead we can prove it geometrically by defining the fol-
lowing auxiliary quantities.

Definition 1. Let 𝐸 be a vector bundle (or coherent sheaf) on 𝐶.
We define

𝑍(𝐸) = −deg(𝐸) + 𝑖 rk(𝐸) ∈ C

The phase 𝜙(𝐸) of 𝐸 is defined to be the argument of 𝑍(𝐸). Note
that 𝜇(𝐸1) < 𝜇(𝐸2) if and only if 𝜙(𝐸1) < 𝜙(𝐸2).

Proof (of lemma 1). By additivity of rank and degree, it follows
that 𝑍(𝐸) = 𝑍(𝐸′) + 𝑍(𝐸″). Now the result follows by drawing the
parallelogram.

In particular, this lemma implies the following. Let Coh𝜆(𝐶) be
the full subcategory of Coh(𝐶) consisting on the zero object and
semistable bundles of slope 𝜆. Then Coh𝜆(𝐶) is abelian and the
inclusion Coh𝜆(𝐶) ⊂ Coh(𝐶) is exact.

Another important corollary of this lemma (which yields unique-
ness in the theorem) is the following: If 𝐸𝑖 ∈ Coh𝜆𝑖

(𝐶), and 𝜆1 < 𝜆2,
then there are no non-zero maps 𝐸2 → 𝐸1. In short words:

The category Coh𝜆(𝐶) is contained in the right orthogonal
category to Coh𝜇(𝐶) for 𝜆 < 𝜇.
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Now, we note also that the notion of stability and slope do not
depend only on the isomorphism class of the vector bundle, but only
on its image in 𝐾0(Coh(𝐶)) = 𝐾0(𝐶). We recall the definition:

Definition 2. Let 𝒜 be an abelian category. We denote by 𝐾0(𝒜) the
free abelian group on isomorphism classes of objects in 𝒜 modulo
the relations

[𝐸] = [𝐸′] + [𝐸″], (0 → 𝐸′ → 𝐸 → 𝐸″ → 0).

Then we can package the rank and degree of a coherent sheaf on
𝐶 succintly via the complex number

𝑍(𝐸) = −deg(𝐸) + 𝑖 rk(𝐸) ∈ C,

whose slope corresponds precisely to the slope as defined before.
We then obtain a homomorphism of abelian groups

𝑍∶ 𝐾0(𝐶) → C

Definition 3. Let 𝒜 be an abelian category. Then a stability
function is a group homomorphism

𝑍∶ 𝐾0(𝒜) → C

such that the imaginary part is ≧ 0 and the real part is < 0 if it
lies on the real line for all objects in 𝒜.

Given a stability function we define he slope 𝜇(𝐴) to be the
argument of the complex number 𝑍(𝐴). We define the notions of
stability, semi-stability as before. With the same proof, we
obtain that

𝒜𝜇 ⊂ 𝒜

is an exact inclusion of abelian categories.

Example. Let 𝑄 be a quiver, meaning a finite collection of vertices
𝑉 and arrows 𝐴 between two vertices. (We do not impose relations
on these in this talk.) A concrete example to have in mind are the
quivers

𝑄 = 𝐴𝑛 ∶ • → • → … → •
𝑄 = 𝐾 ∶ • ⇉ •
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Let 𝒜 be the abelian category of finite dimensional 𝑘-representations
of 𝑄. This is the category whose objects consists on finite dimen-
sional vector spaces 𝑉𝑖 for each vertex in 𝑉 and morphisms 𝑉𝑖 → 𝑉𝑗
for every arrow.

Given an embedding 𝑄 ⊂ ℋ, the upper half plane, (or really just
a function 𝑧 ∶ 𝑉(𝑄) → ℋ) we can define a central charge

𝑍∶ 𝐾(𝑄) → C, 𝑉 ↦ ∑
𝑖

𝑧𝑖 dim𝑉𝑖

and one shows that every central charge arises as such.
Consider the quiver 𝑄 = • → •. What are the semistable objects

of its representations for a given central charge as above? There
are three cases: Let 𝐸10 = 𝑘 → 0, 𝐸01 = 0 → 𝑘 and 𝐸11 = 𝑘 ∼

Ý→ 𝑘. We note
the existence of a short exact sequence

0 → 𝐸01 → 𝐸11 → 𝐸10 → 0
All three objects are idecomposable, but only the first two are
simple. Let 𝑧1 = 𝑍(𝐸01) and 𝑧2 = 𝑊(𝐸10), with slopes 𝜇1 and 𝜇2
respectively.
1. If 𝜇 = 𝜇1 = 𝜇2 then all objects are semistable of slope 𝜇.

2. If 𝜇1 < 𝜇2, then the above sequence tell us that 𝐸11 is not
semistable. Then only 𝒜𝜇1

and 𝒜𝜇2
are non trivial, all equiv-

alent to 𝑘-mod.

3. If 𝜇1 > 𝜇2 then 𝐸11 is also semistable and we have a third
non-trivial category 𝒜𝜇(𝐸11), again equivalent to 𝑘-mod.

Now let 𝑄 = 𝐾 = • ⇉ •. Again if 𝜇2 ≧ 𝜇1 the situation is more
or less trivial, so lets assume 𝜇1 < 𝜇2. Representations of 𝐾 are
now much more interesting. Indecomposable representations come in
three types:
1. We have 𝑘𝑛 → 𝑘𝑛+1 and maps are inclusions in two different

subspaces;

2. Dual of the above;

3. We have two maps 𝑘𝑛 → 𝑘𝑛 and the first one is an isomorphism;
this therefore is equivalent to classifying idemcomposable mod-
ules over 𝑘[𝑇], which can be done using rational form or Jordan
if 𝑘 is closed. We obtain therefore a bijection between the
idecomposable modules of third type and irreducible polynomi-
als.
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One curious example to have in mind for the third type is the
representation

𝑥0, 𝑥1 ∶ 𝑘 ⇉ 𝑘

which will be idecomposable as soon as either 𝑥0 or 𝑥1 is non-zero.
Up to isomorphism, such representation corresponds to a point in
P1(𝑘).

Therefore, we have plenty of categories of semistable objects in
the case 𝜇1 > 𝜇2, each corresponding to the slope of some idecom-
posable of the form above.

2 Going derived
Let 𝒜 be an abelian category and consider 𝐷 = 𝐷𝑏(𝒜) its bounded
derived category. One can define the Grothendieck group of 𝐷 by
setting

[𝐾] = [𝐾′] + [𝐾″]

whenever there is a fiber sequence 𝐾′ → 𝐾 → 𝐾″ →. Noticiably, one
has [𝐾[1]] = −[𝐾] in the Grothendieck group, and in particular, it
allows us to give an interpretation to vitual representations via
the following proposition:
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Proposition 1. Let 𝒜 be an abelian category. Then the canonical
inclusion 𝒜 ⊂ 𝐷𝑏(𝒜) induces an isomorphism of abelian groups

𝐾0(𝒜) ∼
Ý→ 𝐾0(𝐷𝑏(𝒜)).

Proof. To define the inverse, just use canonical truncations.

In general, there is no way to recover 𝒜 from 𝐷(𝒜). There is,
however, purely derived structures that allows us to recover it.
This is what is called a bounded t-structure.

Definition 4. Let 𝐷 be a triangulated category. A bounded t-structure
on 𝐷 is the data of a full subcategory 𝐷♡ ⊂ 𝐷 such that Hom(𝐷♡, 𝐷♡[−1]) =
0. Furthermore, for every 𝑋 ∈ 𝐷 there is a exhaustive and separated
“filtration”

0 = 𝑋𝑎−1 → 𝑋𝑎 → … → 𝑋𝑏 → 𝑋𝑏+1 = 𝑋, 𝑎 ≦ 𝑏 ∈ Z

where 𝑋𝑟 and Cone(𝑋𝑟−1 → 𝑋𝑟) ∈ 𝐷♡[−𝑟].

We note that the maps in the filtration are not required to be
monomorphisms as this notion is not well behaved in triangulated
categories.For 𝐷 = 𝐷𝑏(𝒜) this filtration is the canonical filtration
whose graded pieces are the cohomology objects of any complex
representing 𝐷.

Theorem 2. This filtration is automatically unique up to isomorphism
and 𝐷♡ automatically abelian.

Proof. We give a rough sketch. For 𝐼 = {[𝑚, 𝑛], ≦ 𝑚, < 𝑚, ≧ 𝑛, > 𝑛} let 𝐷𝐼

be the full subcategory of 𝐷 consisting on those objects such that
there is some filtration as above with 𝑎 < 𝑏 in this range. Then
given a filtration of any 𝑋 as above one sees that 𝑋𝑎 ∈ 𝐷≦𝑎. Using
the octahedral axiom one also shows that Cone(𝑋𝑎 → 𝑋) ∈ 𝐷>𝑎. One
also sees that hom(𝐷≦0, 𝐷>0) = 0. This reduces our definition to the
classical definition of a 𝑡-structure [3].

Now, one uses Yoneda to define truncation functors 𝜏≦𝑎 and 𝜏≧𝑏

as right (resp. left) adjoints of the inclusions. This implies
that the filtration is unique. Finally kernels and cokernels can
be computed as cones and cocones followed by truncations.

Remark. Just as the case of abelian categories it follows (with
same proof) that 𝐾0(𝐷♡) = 𝐾0(𝐷).
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We can now define stability conditions1 on a triangulated cat-
egory. This definition is equivalent to the original condition
appearing in [4], but nowadays its also called a pre-stability
condition.

Definition 5. An stability structure on 𝐷 is the collection of two
data:

1. An additive morhpism (called the central charge)

𝑍∶ 𝐾0(𝐷) → C;

2. a bounded t-structure on 𝐷.

This data is asked to satisfy the condition that 𝑍 becomes a
stability function on 𝐷♡ such that the Harder-Narasimhan filtration
exists (uniquely).

The following definition can be translated into another better
definition. For this we define

𝐷(𝜙) = 𝐷♡
𝜇=𝜋𝜙

to be the collection of 𝜇-semistable objects for 𝜙 ∈ ]0, 1]. The
advantage of going derived is that we can now exend this definition
to all real numbers via

𝐷(𝜙 + 𝑛) = 𝐷(𝜙)[𝑛].

The following proposition is immediate from the definition of sta-
bility structure.

Proposition 2. Let 𝐾 ∈ 𝐷 be an object. Then there is a (unique)
exhausted separated “filtration”

0 = 𝐾0 → 𝐾1 → 𝐾2 → … → 𝐾𝑛 = 𝐾

such that the cones Cone(𝐾𝑖−1 → 𝐾𝑖) ∈ 𝐷(𝜙𝑖) and 𝜙1 > 𝜙2 > ⋯ > 𝜙𝑛.

Proposition 3. The data of a stability condition on 𝐷 is equivalent
to the data of

1. A central charge 𝑍∶ 𝐾0(𝐷) → C;
1But since its not a condition, I will follow Kontsevich and call these struc-

tures.
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2. for each 𝜙 ∈ R a full subcategory 𝐷(𝜙) ⊂ 𝐷.

such that the argument of 𝑍(𝐸) ≠ 0 is 𝜋𝜙 if 0 ≠ 𝐸 ∈ 𝐷(𝜙), for all 𝜙 we
have 𝐷(𝜙+1) = 𝐷(𝜙)[1], if 𝜙1 > 𝜙2 then Hom(𝐷(𝜙1), 𝐷(𝜙2)) = 0, and finally
each object has a (unique) filtration as in the theorem above.

Proof. We sketched one direction. The other direction follows from
considering

𝐷♡ = 𝐷(]0, 1]),

the category of those objects which have graded pieces with phase
between 0 and 1. This is automatically the heart of a t-structure
by our very convenient definition.

It also follows that 𝐷(]𝜙, 𝜙 + 1]) is the heart of a t-structure on
𝐷 (hence abelian) by the same reason.

Remark. For clarity’s sake, when considering multiple stability
conditions on the same category, we call the choice of such sub-
categories 𝐷(𝜙) by slicing. We will denote such by a letter such
as 𝒫 and write 𝒫(𝜙) for 𝐷(𝜙).

Example. By Beilinson’s theorem, we have that

𝐷(P1) ≅ 𝐷(• ⇉ •)

In particular there are at least two different stability structures
on this category. We will see later that you can deform one into
the other.

3 Numerical invariants and the construction of cen-
tral charges

We now want to approach the problem of constructing central charges
𝐾0(𝑋) → ℂ for smooth, projective 𝑘-varieties 𝑋. The main problem
being the computation of 𝐾0(𝑋).

Proposition 4. Let 𝐶 be a curve. Then we have an isomorphism

𝐾0(𝐶) ≅ Z × Pic(𝐶) = Z × Z × Pic0(𝐶),

where the first copy of Z is the rank and the second the degree. In
particular all stability functions are deformations of the rank-
degree stability function.
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Remark. A homomorphism 𝐾0(𝑋) → ℂ always factor through the ratio-
nalization 𝐾0(𝑋)Q → ℂ. By the Grothendieck-Riemann-Roch theorem,
this is nothing but the rationalization of the Chow ring

ch ∶ 𝐾0(𝑋)Q
∼
Ý→ CH(𝑋)Q

with isomorphism given by the Chern character. Unfortunately, the
right hand side is also hard to compute.
Definition 6. Let 𝑋 be a smooth projective variety over a field.
For 𝑣, 𝑤 ∈ 𝐾0(𝑋), we define their Euler-Poincaré pairing to be

𝜒(𝑣, 𝑤) = ∑(−1)𝑖 dimExt𝑖(𝑀, 𝑁) ∈ Z
Let 𝑇 be the set of 𝑣 such that 𝜒(𝑣, 𝑤) = 0 for all 𝑤. Then 𝐾num(𝐷) =
𝐾0(𝐷)/𝑇 is called the numerical Grothendieck group of 𝐷.
Example. If 𝑋 is a curve, then 𝐾num(𝑋) = Z ⊕ Z.
Example. If 𝑋 is a surface, then 𝐾num(𝑋) is the image of the Chern
character map

ch ∶ 𝐾0(𝑋) → H•(𝑋,Q).

For 𝑋 K3 or abelian surface then this is isomorphic to H0(𝑋,Z) ⊕
𝑁𝑆(𝑋) ⊕ H4(𝑋,Z).
Theorem 3. Assume 𝑘 is of characteristic zero. If 𝑋 is smooth,
projective variety over 𝑘, then 𝐾num(𝑋) is a finitely generated
(hence free!) abelian group.
Proof. For example, see [7, Thm. 1.2].

Still out of all numerical stability structures, not all of them
are sufficiently well behaved. The “suport property” below was
found by Kontsevich-Soibelman in [5], and now is included in the
definition of stability structures by most authors.
Definition 7. We say that a stability structure on 𝑋 is numerical
if the central charge factors through 𝐾num. (There are analogous
definitions for an arbitrary choice of lattice Λ and surjections
𝐾0(𝑋) ↠ Λ.)

Fix a norm 𝑣 ↦ ||𝑣|| on 𝐾num(𝑋)⊗R. We say that a numerical stability
structure satisfies the support property if

𝐶𝜎 = inf{|𝑍(𝐸)|
||𝐸|| ∣ 0 ≠ 𝐸 ∈ 𝒫(𝜙), 𝜙 ∈ R} > 0.

This notion is indepenedent of the choice of norm on 𝐾num.
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The support property says that the image of {𝑍(𝐸) | 𝐸 ∈ 𝒫 } is
discrete in C and that it is not “too dense” in some sense. Its
origin is physical (cf. [5, Remark 1]). It also implies that
the categories 𝒫(𝜙) are of finite length, meaning noetherian and
artinian.

Proposition 5. A numerical stability structure on 𝑋 satistfies the
support property if and only if there exists a symmetric bilinear
form 𝑄 on 𝐾num(𝑋)R satisfying the properties:

• if 𝐸 is semistable then 𝑄(𝐸, 𝐸) ≧ 0;

• if 𝑣 ∈ 𝐾num is such that 𝑍(𝑣) = 0 then 𝑄(𝑣, 𝑣) < 0.

Proof. For one direction we define

𝑄(𝑤, 𝑤) = 1
𝐶2𝜎

|𝑍(𝑤)|2 − ||𝑤||2.

By construction 𝑄(𝑤, 𝑤) ≧ 0 on semistable objects, and clearly 𝑄(𝑣, 𝑣) <
0 if 𝑍(𝑣) = 0. Conversely, since 𝑄(𝑣) ≧ 0 then ||𝑣|| ≧ 0 hence 𝑣 is non-
zero in 𝐾num. Now we see that |𝑍(𝐸)|2 is > 0 on the set where
−𝑄(𝑣) ≦ 0. By compacntess of the unit ball, there is some 𝐶 > 0 such
that 𝐶|𝑍(𝑣)|2 − 𝑄(𝑣) is a positive definive quadratic form.

4 The moduli of stability structures and Bridge-
land’s “deformation theorem”

Definition 8. Let 𝑋 be a smooth projective 𝑘-variety. We define
Stab(𝑋) to be the set of numerical stability structures on 𝐷(𝑋).

The group G̃L
+
2 (R) acts on Stab(𝑋). Recall that this group is the

universal cover of GL(2,R) and has the presentation

G̃L
+
2 (R) = {(𝑇, 𝑓 ) ∶ 𝑓 ∶ ℝ → ℝ monotone,

𝑓 (𝜙 + 1) = 𝑓 (𝜙) + 1, 𝑇 ∈ GL+
2 (R), 𝑓R/2Z = 𝑇R2−{0}/R>0

}

The action is given by (𝑇, 𝑓 ) ⋆ (𝒫, 𝑍) = (𝒫 ′, 𝑍′) where 𝒫 ′(𝜙) = 𝒫(𝑓 (𝜙)) and
𝑍′ = 𝑇−1 ∘ 𝑍.
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Definition 9. Let 𝜎 = (𝒫, 𝑍) be a stability structure on 𝐷(𝑋). Con-
sider some object 𝐸 ∈ 𝐷 and let 𝜙−

𝜎 (𝐸) and 𝜙+
𝜎 (𝐸) be the smallest

(resp. largest) slope in its HN filtration. Then we endow Stab(𝑋)
with the coarsest topology making the functions

𝜎 ↦ 𝜙+
𝜎 (𝐸), 𝜙−

𝜎 (𝐸) ∈ R

continuous for all 𝐸.

The above topology is actually locally given by a metric, and
hence this is a reasonable topological space. (See [4] for details.)
We finish this talk with two remarkable theorems.

Theorem 4. The action of G̃L
+
2 (R) on Stab(𝑋) is continuous and the map

𝑍∶ Stab(𝑋) → Hom(𝐾num(𝑋),C)

sending a stability structure to its central charge has the fol-
lowing property: its restriction to each connected component Σ
of Stab(𝑋) is a local homeomorphism Σ ∼

Ý→ 𝑉(Σ) for a certain linear
subspace 𝑉(Σ) of the right hand side.

Proof. This is the main theorem of [4].

This says that any small deformation of the central charge can be
uniquely lifted to a deformation of the whole stability structure.
The following theorem now tell us the significance of the condition
of the support property.

Theorem 5. A numerical stability structure 𝜎 ∈ Stab(𝑋) satisfies
the support property if and only if it is full, meaning 𝑉(Σ) =
Hom(𝐾num(𝑋),C) for the connected component Σ of 𝜎.

Given a full stability structure 𝜎, and 𝑄 the quadratic form for
which it satisfies the support property, then the set 𝑈 of those
𝑍∶ 𝐾num → C such that 𝑄 is negative definite on ker𝑍 is open. If 𝑈0
is the connected component containing 𝑍𝜎 then

𝒰0 → 𝑈

is a covering map, where 𝒰0 is the connected component of the
preimage of 𝑈0 containing 𝜎.

Proof. The first part is [1, Prop. B.4]. The second is in [2,
Prop. A.5].
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Example. We know all stability spaces for curves.

• genus 0: Stab(P1) = C2.

• genus g > 0: the action of G̃L
+
2 (R) on Stab(𝐶) is free and

transitive (and non-empty).
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