
HENSELIAN LOCAL RINGS

Notation and remarks.

In this document we give an overview of basic and fun-
damental properties of (strictly) henselian local rings and
henselian pairs, from an algebraic, geometric and topologi-
cal point of view. These objects arise as the local rings in the
étale topology of schemes and, crucially, can be thought as
being contractible from a tubular neighoubourhoods which
are homotopy retracts of the closed locus over which they
are henselian.

Here we adopt the slightly unusual notation where we
denote the local rings by (O ,m,k), to alude to their everyday
use.

Definition 1. A local ring O is said to be henselian when, for all
monic polynomials f ∈O [t] and all factorizations

f = gh (1)

where g,h are coprime monic polynomials in k[t], we can lift this
to a factorization to f = gh, where g and h reduce to g and h.

If k is furthermore separably closed, we say that O is strictly
henselian.

Remark. We do not need to ask for both g and h to be monic, only
one suffices.

Example (Hensel). Let (O ,m,k) be a complete local ring. Then O

is henselian.

Example. Quotients of henselian rings are henselian.

Example. Let X be a scheme, ξ : Speck → X a point of X and
ξ : SpecΩ→ Speck → X where k ⊂ Ω is an extension of k with Ω
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separably closed1. An étale neighborhood of ξ is an étale X -scheme
U /X together with a lift

U

Speck X
ξ

The colimits

Oh
X ,ξ = colim

ξ→U
Γ(U ,OU ), Ohs

X ,ξ =OX ,ξ = colim
ξ→U

Γ(U ,OU ),

are henselian local rings (Corollary 3). They exists due to the local
description of standard étale maps, which reduce the above colimit
to one indexed by a small set.

Remark. The étale topos of a field Speck is identified with the
topos of Γk sets for the absolute galois group Γk. Therefore from
the étale point of view it is SpecOhs

X ,ξ that is the true local ring of X
at the point ξ. Nonetheless the conept of Oh

X ,ξ is still very useful.

The proof of the fact that these rings are henselian will follow
from our discussion on “henselianization”. For now it suffices to
note that from the example above, strictly henselian local rings
are the stalks of the structure sheaf on the étale site, hence its
fundamental importance.

Lemma 1. If O is henselian, and g,h are lifts as in 1, then they
are strictly coprime in the sense that they generate O [t].

Proof. Consider the O -module

O [t]/(g,h);

this is finitely generated, since one of these lifts is monic, and the
special fiber is 0, NAK implies the result.

Corollary 1. Under the same hypothesis, g,h are unique.

There are many different characterizations of henselian rings;
first lets explore the similar variants.

1One may usually always assume that Ω = k. We do not do this for two rea-
sons. First it will take a while to show that étale cohomology is independent of
choice of Ω (need locally acyclic base change) and also for convenience: eg. when
k =Q it is sometimes clearer to choose Q=C instead of Q.
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Theorem 1. Let X = SpecO with closed point x ∈ X ; then the fol-
lowing are equivalent:

1. The local ring O is henselian;

2. All finite X -schemes are a disjoint union of local schemes.

3. All quasi-finite and separated X -schemes are a disjoint union
of finite local schemes and something not lying over the closed
point.

4. For all (affine) étale X -schemes Y , the map Y (O ) ↠ Y (k) is
surjective.

5. For all (affine) smooth X -schemes Y the map Y (O )↠Y (k) is
surjective.

6. For all f ∈ O [t] and a simple root α ∈ k of f , there is a lift
a ∈O reducing to α;

Proof. For 1 implies 2: Any finite X -scheme is affine (because
X is); let A be its global sections. By the going-up theorem, any
maximal ideal n of A must lie over m; letting

Ak = A⊗O k = A/mA,

we have that Spec Ak is identified with the maximal spectrum of
A.

We first assume that A =O [a]=O [x]/ f is a primitive extension,
where f is monic. Then the maximal spectrum of Ak = k[x]/ f corre-
sponds to a factorization f = f 1 . . . f n; by induction we can lift this
to a factorization f = f1 . . . fn where the f i are in pairs strictly co-
prime by lemma 1, which implies that we can use the CRT and get
our desired result.

If the result is true for A then it is true for A/I for any ideal I;
in particular we have proved the result whenever A is generated by
one element. In the general case, if A is not already zero, then we
can find an element a ∈ A and the morphism O [a]⊂ A will be finite;
the map Spec A ↠SpecO [a] is surjective (finite extensions of rings
induce surjective morphisms on spectra) and so the decomposition
of the latter implies a decomposition of the first.

For 2 implies 3: If Y /X is quasi-finite and separated, we ob-
tain by Zariski’s “main theorem” a factorization

Y ,→∐
Yi ↠ X
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with each Yi local with closed point yi. Therefore one has a factor-
ization

Y =Y0
∐ ∐

yi∈Y
Yi

and (Y0)k = 0.

For 3 implies 4: We can suppose that Y is affine (hence sepa-
rated), and finitely presented over O . The fiber over any (geomet-
ric) point is now étale and finitely presented over a field, whence
discrete and Y /X is quasi-finite. Applying the hypothesis, we can
even suppose that Y /X is finite étale of degree 1, hence an isomor-
phism.

For 4 implies 5: By adding more equations and passing to the
non-zero locus of the Jacobian, we can suppose Y /X is smooth of
dimension 0, that is, it is standard étale. The result now follows by
hypothesis.

For 5 implies 1: Let f ∈O [t], and write

f =
n∑

i=0
f i ti, g =

r∑
j=0

g j t j, h =
s∑

k=0
hktk,

with fn,hs non-zero and gr = 1 (so g is monic) and f = gh. Then
the equation f = gh is a solution (g0, . . . , gr−1,h1, . . . ,hs) of the poly-
nomials

B : G0H0 = f0, G0H1 +H0G1 = f1, . . . ,Hs = fn.

The rank of the the jacobian of the above equations, when re-
duced to k, is maximal if f and g are coprime by general properties
of the resolvent; therefore this is smooth at a neighborhood of ( f , g)
and we may lift this solution by assumption.

Corollary 2. All finite local O -algebras are henselian.

Corollary 3. Let X be a scheme and ξ,ξ→ X be a geometric point
and a point. Then Oh

X ,ξ and Ohs
X ,ξ are henselian.

Proof. Indeed, let O be either one of the above rings and take an
affine étale U → SpecO . Then since O = limU for the diagram of
all ξ,ξ → U , any étale map such as U → SpecO comes via base
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change from some étale Ṽ → V . Now if ξ,ξ→U is a section, then
this defines a point on Ṽ → V which implies that it lies in the dia-
gram category. Hence, from the definition of limit, there is a map
SpecO → Ṽ which determines a section O → U via pullback. Dia-
gramatically we have:

U Ṽ

V

ξ,ξ SpecO X

Corollary 4. A local O is henselian if and only if its its reduction
Ored is. A (local) ring with only one prime ideal is henselian.

Proof. The first part implies the second since the reduction is a
field, which is clearly henselian. The first part follows from the
fact that SpecR = SpecRred as topological spaces for any ring R,
and the fact that for any finite O algebra A, the reduction Ared
splits a product of local Rred-algebras by assumption.

Proposition 1. If X is the spectrum of a henselian ring O and
Speck → SpecO is the closed point, Γ = Gal(ksep/k) the absolute
Galois group, then the pullback functor

Fet(X ) ∼−→ Fet(k)∼=G-Set

is an equivalence of categories.
In particular, if x = Specksep, then πét

1 (X , x) = πét
1 (x, x), and

therefore we have a canonical isomorphism

Γk =Gal(ksep/k)∼=Gal(Knr/K),

or equivalently a short exact sequence

0 I Gal(K /K) Gal(ksep/k) 0

where I is the subgroup corresponding to the Galois extension Knr/K
(the inertia subgroup of x.)
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Proof. For essential surjectivity: We know that finite étale alge-
bras over k are just products of separable finite field extensions.
Therefore it suffices to show that any such extension l/k comes
from a finite étale (local) O -algebra. This is now follows from the
primitive element theorem, the criterion 6 above, and the fact that
this will be now standard étale.

For fully faithfulness: We let A, A′ be two finite étale O -algebras
and lets show that

homO (A, A′)→ homk(A⊗O k, A′⊗O k)

is a bijection. We can suppose that A, A′ are connected and there-
fore A = SpecO [x]/ f (x) for some f separable and the result follows
by Hensel’s lemma.

By this last result that étale covers of O don’t change upon com-
pletion for henselian local rings. The following result can be inter-
preted as extending this to possibly branched covers as well.

Proposition 2. Let O be a henselian local ring with fraction field
K , O∧ the completion at the maximal ideal and K∧ the fraction
field of the completion. Then the pullback defines an equivalence
of categories

Fet(K) ∼−→ Fet(K∧),

and therefore an isomorphism of absolute Galois groups ΓK ∼=ΓK∧ .

Proof (SGAIV.X.2.2.1). We consider the obvious functor

( )∧ : Fet(K)→ Fet(K∧).

To see essential surjectivity we just note that K∧ is still henselian
and hence it is enough to show this for monogenic finite étale al-
gebras, on which case it is of the form K∧[T]/ f for f monic with
O∧-coefficients. Then we note that

(K[T]/ f0)∧ ∼= K∧[T]/ f

for f0 a polynomial in O which is congruent to f modulo mN for N
big.

For the fully faithfulness (the faithfulness being clear)
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On left
adjoints

Here we construct, and give geometric interpretations,
on the processes of making local rings henselian, and
henselian rings strict. The construction is a variant

on the construction of (separable) closure, and can be seen as a
stalkwise comparison between two topologies.

Proposition 3 (Strictification). The inclusion of the category of
strictly henselian local rings into the category of henselian ones
has a left adjoint

O 7→Os

called the strictfication of O .
Furthermore, Os is a filtered colimit of étale O -algebras.

Proof. We start by noting that for any extension l/k gives us a
unique finite étale and extension O ⊂ Ol given by the equivalence
between Fet(X ) and Fet(x) in Proposition 1.

O Ol

k l

Concretely it is given by adjoining a separable element lifing the
one generating the extension k ⫅ l.

The rings Ol are indeed henselian, being finite over O . Since
henselian local rings are closed under filtered colimits, we see that

Os = colim
Fet(x)

Ol

satisfies the adjoint universal property we are looking for.

Remark. Functoriality follows immediately from the universal prop-
erty. We note that the counit

O
∼−→Os

is an isomorphism for all strictly henselian local rings O . Also the
residue of Os is clearly ksep.

An equivalent way of describing this ring is as the integral clo-
sure of O inside of the extension Knr/K . In particular O → Os is
integral.
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Example. Let k be a field and consider the complete (henselian)
local ring A = k[[T]]. The strictification of A can be computed as
the colimit

As = ⋃
[l:k]<∞

l[[T]].

A similar result follows in more variables.

We can also construct henselization functors and strict henseliza-
tion functor directly from the category of local rings. To do this we
consider the following construction.

Proposition 4 (Henselizations and strict henselizations). The in-
clusion of the category of henselian local rings (resp. strictly henselian
local rings) into the category of local rings has a left adjoint

O 7→Oh, O 7→Ohs

called the henselization and strict henselization of O respectively.
Furthermore, Oh and Ohs are filtered colimits of étale O -algebras

and by adjunction properties, there is a canonical isomorphism of
functors Ohs ∼= (Oh)s.

Proof. We consider the category of pairs (U ,u) of schemes with
U → SpecO a (connected) étale scheme over SpecO and u a point
mapping to the closed point of SpecO and such that the induced
extension k = k(u) is trivial. A morphism in this category is just a
pointed morphism. Then the colimit

Oh = colim
u→U

Γ(U ,OU )

is a henselian local ring. (The proof: identical to Corollary 3.)
To see the universal property note that by the Theorem on

henselian rings, if O is already henselian, then Oh = O . Indeed,
in that case then each connected étale U → SpecO with a point
over the closed point of O is finite étale and hence an isomorphism
since it induces one on residue fields.

The proof of strict henselization is analogous by asking k ⊂ k(u)
to be finite separable instead.

Remark. It is clear from the construction that mh is just mOh and
similarly for the strict henselization.
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Example. As it is clear from the proof, since limits commute with
limits and the étale site commutes with colimits of rings, if X is a
scheme and x is a point, then Ohs

X ,x and Oh
X ,x agree with our defini-

tion given in the first part of these notes.

Example. Let k be a (separably closed) field and A the localization
of k[t1, . . . , tn] at the maximal ideal (t1, . . . , tn); then

Ah =
{

f ∈ k[[t1, . . . , tn]] | f is algebraic over A
}

.

Example. Let K be a number field, OK the rings of integers and p
a maximal ideal with local ring A =OK ,p. Let Ksep be the separable
closure of K , OKsep its rings of integers and fix a lift p of p in this
ring.

In algebraic number theory one defines a decomposition group

Dp/p = {σ ∈Gal(Ksep/K)=GK |pσ = p}.

The henselization of A can be computed as the localization of

O
Dp/p

Ksep,p

at the image of p in this (elements in p fixed by D).

For the proofs of both examples, we follow [Raynaud, 1970:
Ch. X §2 Thm. 2]:

Theorem 2. Let A be a normal local ring, p the maximal ideal, K
its fraction field. Let Ksep be a fixed separable closure of K , and G
the absolute Galois group acting on the integral closure A of A in
Ksep. Let p be a maximal ideal over p and D = Dp/p as above.

The inertia subgroup I = IP is the kernel of the homomorphism

1 I D Gal(kP/kp) 1

Let B and B′ be the fixed subrings of A by D and I respectively, q
and q′ the induced prime ideals. Then

Bq = Ah, B′
q′ = Ahs.
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Applications
to the étale
topology

We start by using the characterization of henselian
rings to understand the stalks of sheaves on the
étale site.

Definition 2. If X is a scheme, F a sheaf for the étale topology
and x → X a geometric point. Then the stalk of F at x is defined to
be the pullback x∗F , or, unravelling the definition, the colimit

colim
(U ,u)

F (U)

where (U ,u) are elements in the cofiltered category of étale neigh-
borhoods of x in X , the slice category of Xét under x → X . An
object in this category is therefore a pair (U ,u) with u being a lift
of of x → X :

U

x X

u

a morphism of

Remark. It follows without much trouble that the functor F 7→Fx
is exact, commutes with colimits and that sheafification preserves
stalks. Also, the definition of stalk only depends on the equivalence
class of geometric point, that is, any commutative diagram of the
form

x′

x X

induces a canonical isomorphism Fx
∼−→Fx′ .

Proposition 5. Let X =SpecO be the spectrum of a strictly henselian
local ring. Then any Y ↠ X étale cover of X admits a section and
the functor sending an étale sheaf F to its global sections is natu-
rally isomorphic

Γ(Xét,F )=Fx

to the functor taking the stalk at the closed point x → X .
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Proof. The first part follows immediately from the characterization
3 of Theorem 1. It also follows that we need only consider finite
étale covers of X to compute the global sections. But Fet(X )= Fet(x)
is trivial by strictness, which proves exactness of global sections
directly, and also that it equals the stalk at the closed point.

We can now prove a very important result computing the stalks
of the (derived) pushfoward of étale sheaves.

Proposition 6. Let f : Y → X be a qcqs morphism of schemes,
x → X geometric point, and K ∈ D(Xét) a derived étale sheaf Let
Xx =SpecOhs

X ,x and consider the base change

Yx Y

Xx X

g

fx f

then the stalk of the (derived) pushfoward can be computed as

( f∗K)x =Γ(Yx, g∗K), (R f∗K)x = RΓ(Yx, g∗K).

Proof. Since Xx is the limit of étale neighborhoods of x in X , Yx
is the limit of all étale neighborhoods of f −1(x) in Y . Since global
sections commute with filtered colimits of qcqs schemes, the result
follows from their definition.
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