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1 Noxrms

Lets start by fixing a non-archimedian field K and a non-archimedian
norm |_|: K-> R. (The paper fixes an ordered group I', but every non-
archimedean field has ' Cc R by definition and we will only need the
case where, in fact, |[K|=R.) Let ACK be its ring of integers and
k its residue class field.

Definition 1. Let V be a K-vector space. A non-archimedian norm
on K is a function |_|: V - R such that

1. |xl =0 if and only if x=0;
2. |Ax| = |Allxl;
3. x4yl = max{lx|, [yl}.

A normed vector space is a K-vector space endowed with a norm.
A linear map V — V' 1is said to be contractive if |f(x)| < |x| for all
xe V. In particular they are continuous.

If WCV is a subspace, then it inherits a norm. The quotient
V/W inherits the norm

v+ W| = min v + w|
weW

and becomes normed also, and the map V - V/W is strict. A homo-
morphism f: V —» V' is called strict if it induces an isomorphism of
normed vector spaces V/kerf = f(V)cV'.
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If V=K then one sees that the usual norm is a norm in the sense
above. Furthermore, point 2 above implies that the choice of a
norm on V is determined by choosing any point v &€V and |vjeR. In
higher dimensions, such argument breaks down, and we make it into
a definition.

Definition 2. Let V be a normed vector space. A splitting of V is
defined to be a K-basis ¢; such that

Z Ase;
1

The terms splittable, split and etc are defined as usual.

:|n?xLAMeA

Remark. If K is spherically complete (eg. a DVF) then every K vector
space is splittable. In fact the converse is also true, as one may
find in that case an extension L D K with |L| =|K| and k=1[. Taking
aelL—-K the vector space K@®aK with obvious norm does not admit a
splitting.

Definition 3. Let V be a normed vector space over K. For A eR,
we define
VA = (ve V|p A}, VA={weV|p <A}.

Clearly each V=' is a flat A-module, and a lattice in V if finitely
generated. Furthermore if x is in K then

VA, ysiid

via multiplication by x.

The {V,},cg therefore determine a filtration on V (which for
example makes V into a topological vector space in a natural way).
The associated graded

gr(V) = @ gV VA

is therefore a k-vector space. We note that K* acts on V compatibly
with the I'-filtration in the sense that x € KX maps V' into VWA,
This also descends to an action of K* on gr(V).

Definition 4. Let K be a non-archemedean field. We denote by
Norm’(K) the category of splittable normed finite dimensional K-
vector spaces. The morphisms are contractible (but not necessairly
strict) homomorphisms of such.



We endow this category with some structure. Firstly, we see that
this is an exact A-linear category, with short exact sequences given
by strict extensions. Secondly, there is a canonical forgetful
faithful functor

forg: Norm®(K) - Vect(K)

forgetting the underlying norm. Similarly, we have a forgetul
functor

()= Norm®(K) — Mod(A)

given by V — V=l (and similarly for <x). This is also faithful
since f(x) = n"f(x/7t").

Most importantly, Norm’(K) is a strict tensor category. Firstly,
we have a tensor product V@ W where we define

Izl = min max [vjllw;].
z=Y,0;Qw; |

Here we check that this is a well defined norm and that if ¢; and f;
split V and W we have that ¢ ®f; splits Ve W.
For the duals, we define a norm on V* =Hom(V,K) as

¢l = max {|¢(0)|/[ol | v # 0}

and check that we have maps V@ V* - K and K- V®V* as usual by
choosing a splitting basis and showing its independent of it. We
can now also re-interpret the A-linear structure as

Hom(V, W) = (V* @ W)= &€ Mod(A).

1.1 Lattices

A lattice in a K vector space V is an A-submodule L cCV such that
L is finitely generated and

Lo, K5 V.

Since L is automatically flat, this is equivalent to L being
(finitely locally) free.



Definition 5. Let L Cc V be a lattice in a finite dimensional K-vector
space. We define a norm |_|; =|_| associated to L to be

E:Aﬂ%
i

for {v;} A-basis of L. Clearly this is a splittable norm with V=l =1L
and |V| = [K]|.

ol = = max |A,|
1

Proposition 1. Let V be a splittable normed K-vector space, and
suppose that |V|C IK|]. Then V=! is a lattice and this induces the
norm on V.

Proof. If V is a normed K-vector space, {e} splits V, and |¢| € K]
(and hence we can assume that lg/=1), then

L=eA® - @®eA=V=L

is a lattice and the norm comes from it by its non-archimedeanness.
]

Corollary 1. If |[K| =R then lattices are in bijection with splittable
norms.

We are interested, however, mostly in the case where K is a
discretely valued field. In that case, it is not enough to remember
a lattice, but we must also remember an R-filtration in a compatible
way. (This is indeed, included in the original definition of the
building) .

Definition 6. Let V be a finite dimensional K-vector space. Suppose
given an A-lattice LcV and an R-grading x of L, ie.

L=@L, V=&V,

weR weR
Then we define a norm |1 =1-Ipx via
[v] = va = maxw.[oyly, € R
w

where |_|, is the norm on V, defined by L,.



Remark. A grading of L as above can be seen as the same data as a
homomorphism

Xx: Dy — GL(L) = GL, 4,

where D, is the “diagonal” A-group scheme given by the Hopf group-
algebra A[R]. (Its representation parametrize R-gradings on A-
modules) .

Proposition 2. The norms |_|; , are splittable for every L and x as
above. Every splittable norm is furthermore of this form (in more
than one way).

2 Normed Fiber Functors

We now fix a smooth affine model ( of G over A. Also fix some
non-archimedean extension L/K with integral elements B and residue
I. (Not required to be algebraic, or to preserve the value group.)

Definition 7. A normed fiber functor over some non-archimedean
extension L/K (with respect to our fixed model g) is an A-linear
tensor exact (faithful) functor

a: Rep’(G) — Noxm’(L)

from the category of dualizable (-representations in finite (free)
A-modules to the category of L-norms as defined last section.

Definition 8. Let w:Rep’(G) — Vecty be a fiber functor. We define
the set of norms on w, N®(w), to be the set of normed fiber functors
whose underlying fiber functor is w. We also define‘N®(g), the set
of norms of g, to be the set of norms on the standard (forgetful
followed by base-change) fiber functor of .

This comes equipped with two actions

« An R-action given by the canonical R-action on the norms.
« A G(K)-action given by the canonical action of G(K) on L®K.

For clarity, if |_|:V - R is some norm, then so is A|_| for
A€R,=R. Similarly, if T €GL(V) then so is |T-'_|.

The goal of this seminar is to show that in fact, this is nothing
but the (extended) Bruhat-Tits building of G::QK. The more modest
goal of this talk, is to establish the result for split tori.
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For now, we show that the building is non-empty, and in fact
has a canonical base point. Consider the standard integral fiber
functor

A:Rep’(G) — Mod,

given by forgetting the action. This determines a canonical lattice
AVYCAV)®K = w(V). In particular it determines a splittable norm
on it.

2.1 Example: the building of a torus

Let T be an abelian group. There is an associated algebraic group
over Z

D' = Spec Z[I']

given by the Hopf algebra above. From a tannakian perspective,
D'-representations are given by a TI'-grading on a lattice. (The
v-graded part being associated with the ¢-eigenspace for such rep-
resentation.)

Very crucially, we may identify D? with G,, and D% with G’,. For
a ring A we write Dg for the base change of the group scheme above
to SpecA.

Lemma 1. Fix a field k, and let T be a split k-torus, ie. D%"::G;k.
Then there exists a canonical, R and T(k)-invariant isomorphism

Homg,s (DR, T) = X, (T) ® R = R"™.

Proof. The idea of the proof is as follows: we imediately reduce
to the case of =1 and we note that any homomorphism of groups
x:Z - R singles out a morphism

Speck[TR] = D} —» DZ = Spec k[T*]

given by the functoriality of D. (In coordinates, we identify the
right hand side as Z[T*] and the morphism is given by T — T* on the
left.)

Crucially now, we use the fact that this is a homomorphism of
algebraic groups, hence of Hopf algebras, to see that any such
homomorphism is of this form. (Hint: write the image of T as
>4, 7. Use the fact it preseves multiplication to see that only
one g, is non-zero. The fact that it preserves inversion implies
that this 4,=1.) The proof now follows. O
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Fix a split torus G = G, and its canonical integral model

g:Gm,A'
Now, we construct a map HommB(DR,G)—+ZV®(G). Given such a map

)(:DIR<—>G

we have now a unique extension to a homomorphism Dg - G. This
determines a nozrm

a,: Rep’(G) —» Noxm®(())

given as follows.
Fix a (G-representation L over A. Then this determines a repre-

sentation D%-eg}—eGL(LL and hence a decomposition into eigenspaces
V= GaxER>O V.

This determines therefore a norm by the results of last sections.
This assembles into a normed fiber functor (ie. is functorial,
exact and endowed with a canonical symmetric monoidal structure).

Theoxem 1. The construction above determines a bijection
X, (T) @ R = Hom(DR,T) = N®(T).
equivariant for both G(K) and R actions.
We break the proof into three parts.

Proof (equivariance). How does (K*)" acts on both sides? On the
left we see that each such tuple determines a morphism T — T and
hence we get an action. On the right, we write for each normed
vector space a(V) a decomposed lattice L(V) = &,L(V), determining
its norm, and we see that we must re-scale the norm acording to the
tuple in question.

Staring at this long enough one sees that the construction above
is equivariant essentially from its definition. O

Proof (injectivity). Since we have fixed a lattice in our construc-
tion (namely the canonical one associated to our base point g) the
norm is completely determined by the grading. O



Proof (surjectivity). By the “Main Theorem” of the paper, every
norm is splittable. (More about this, and proof, on next talk).
This gives us 1in particular another integral model g of G = Gk
given by the fiber functor

A: Rep’(; — Mod,

of our fiber functor w together with a map,x:D§>ﬁ»g splitting the
norm globally.

Now ( and g are isomorphic fpqc-locally on A, and since we are
working with smooth models, they are also isomorphic étale locally
on A. But since any T-torsor on A is trivial (Satz90) they must
be already isomorphic over A.

Since there was already a fixed isomorphism (g = QK, we get an
element ¢ € G(K) and a computation shows that gx splits ( already.
In other words, gQX is our normed fiber functor. By equivariance,
the map above is surjective. O



