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1 Norms
Lets start by fixing a non-archimedian field 𝐾 and a non-archimedian
norm | | ∶ 𝐾 → R. (The paper fixes an ordered group Γ, but every non-
archimedean field has Γ ⊂ R by definition and we will only need the
case where, in fact, |𝐾| = R.) Let 𝐴 ⊂ 𝐾 be its ring of integers and
𝑘 its residue class field.

Definition 1. Let 𝑉 be a 𝐾-vector space. A non-archimedian norm
on 𝐾 is a function | | ∶ 𝑉 → R such that

1. |𝑥| = 0 if and only if 𝑥 = 0;

2. |𝜆𝑥| = |𝜆||𝑥|;

3. |𝑥 + 𝑦| ≦ max{|𝑥|, |𝑦|}.

A normed vector space is a 𝐾-vector space endowed with a norm.
A linear map 𝑉 → 𝑉′ is said to be contractive if |𝑓 (𝑥)| ≤ |𝑥| for all
𝑥 ∈ 𝑉. In particular they are continuous.

If 𝑊 ⊂ 𝑉 is a subspace, then it inherits a norm. The quotient
𝑉/𝑊 inherits the norm

∣𝑣 + 𝑊∣ = min
𝑤∈𝑊

|𝑣 + 𝑤|

and becomes normed also, and the map 𝑉 → 𝑉/𝑊 is strict. A homo-
morphism 𝑓 ∶ 𝑉 → 𝑉′ is called strict if it induces an isomorphism of
normed vector spaces 𝑉/ker 𝑓 ∼

Ý→ 𝑓 (𝑉) ⊂ 𝑉′.
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If 𝑉 = 𝐾 then one sees that the usual norm is a norm in the sense
above. Furthermore, point 2 above implies that the choice of a
norm on 𝑉 is determined by choosing any point 𝑣 ∈ 𝑉 and |𝑣| ∈ R. In
higher dimensions, such argument breaks down, and we make it into
a definition.

Definition 2. Let 𝑉 be a normed vector space. A splitting of 𝑉 is
defined to be a 𝐾-basis 𝑒𝑖 such that

∣∣∣∣
∑

𝑖
𝜆𝑖𝑒𝑖

∣∣∣∣
= max

𝑖
|𝜆𝑖||𝑒𝑖|.

The terms splittable, split and etc are defined as usual.

Remark. If 𝐾 is spherically complete (eg. a DVF) then every 𝐾 vector
space is splittable. In fact the converse is also true, as one may
find in that case an extension 𝐿 ⊃ 𝐾 with |𝐿| = |𝐾| and 𝑘 = 𝑙. Taking
𝑎 ∈ 𝐿 − 𝐾 the vector space 𝐾 ⊕ 𝑎𝐾 with obvious norm does not admit a
splitting.

Definition 3. Let 𝑉 be a normed vector space over 𝐾. For 𝜆 ∈ R>0
we define

𝑉≦𝜆 = {𝑣 ∈ 𝑉 ∣ |𝑣| ≦ 𝜆} , 𝑉<𝜆 = {𝑣 ∈ 𝑉 ∣ |𝑣| < 𝜆} .

Clearly each 𝑉≦𝜆 is a flat 𝐴-module, and a lattice in 𝑉 if finitely
generated. Furthermore if 𝑥 is in 𝐾 then

𝑉≦𝜆 ∼
Ý→ 𝑉≦|𝑥|𝜆

via multiplication by 𝑥.

The {𝑉𝜆}𝜆∈R therefore determine a filtration on 𝑉 (which for
example makes 𝑉 into a topological vector space in a natural way).
The associated graded

gr(𝑉) = ⊕𝜆∈R𝑉≦𝜆/𝑉<𝜆

is therefore a 𝑘-vector space. We note that 𝐾× acts on 𝑉 compatibly
with the Γ-filtration in the sense that 𝑥 ∈ 𝐾× maps 𝑉≦𝜆 into 𝑉≦|𝑥|𝜆.
This also descends to an action of 𝐾× on gr(𝑉).

Definition 4. Let 𝐾 be a non-archemedean field. We denote by
Norm∘(𝐾) the category of splittable normed finite dimensional 𝐾-
vector spaces. The morphisms are contractible (but not necessairly
strict) homomorphisms of such.
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We endow this category with some structure. Firstly, we see that
this is an exact 𝐴-linear category, with short exact sequences given
by strict extensions. Secondly, there is a canonical forgetful
faithful functor

forg ∶ Norm∘(𝐾) → Vect(𝐾)

forgetting the underlying norm. Similarly, we have a forgetul
functor

( )≦1 ∶ Norm∘(𝐾) → Mod(𝐴)

given by 𝑉 ↦ 𝑉≦1 (and similarly for ≦ 𝑥). This is also faithful
since 𝑓 (𝑥) = 𝜋𝑛𝑓 (𝑥/𝜋𝑛).

Most importantly, Norm∘(𝐾) is a strict tensor category. Firstly,
we have a tensor product 𝑉 ⊗ 𝑊 where we define

|𝑧| = min
𝑧=∑𝑗 𝑣𝑗⊗𝑤𝑗

max
𝑗

|𝑣𝑗||𝑤𝑗|.

Here we check that this is a well defined norm and that if 𝑒𝑖 and 𝑓𝑗
split 𝑉 and 𝑊 we have that 𝑒𝑖 ⊗ 𝑓𝑗 splits 𝑉 ⊗ 𝑊.

For the duals, we define a norm on 𝑉∗ = Hom(𝑉, 𝐾) as

|𝜙| = max {|𝜙(𝑣)|/|𝑣| ∣ 𝑣 ≠ 0}

and check that we have maps 𝑉 ⊗ 𝑉∗ → 𝐾 and 𝐾 → 𝑉 ⊗ 𝑉∗ as usual by
choosing a splitting basis and showing its independent of it. We
can now also re-interpret the 𝐴-linear structure as

Hom(𝑉, 𝑊) = (𝑉∗ ⊗ 𝑊)≦1 ∈ Mod(𝐴).

1.1 Lattices
A lattice in a 𝐾 vector space 𝑉 is an 𝐴-submodule 𝐿 ⊂ 𝑉 such that
𝐿 is finitely generated and

𝐿 ⊗𝐴 𝐾 ∼
Ý→ 𝑉.

Since 𝐿 is automatically flat, this is equivalent to 𝐿 being
(finitely locally) free.
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Definition 5. Let 𝐿 ⊂ 𝑉 be a lattice in a finite dimensional 𝐾-vector
space. We define a norm | |𝐿 = | | associated to 𝐿 to be

|𝑣| =
∣∣∣∣
∑

𝑖
𝜆𝑖𝑣𝑖

∣∣∣∣
= max

𝑖
|𝜆𝑖|

for {𝑣𝑖} 𝐴-basis of 𝐿. Clearly this is a splittable norm with 𝑉≦1 = 𝐿
and |𝑉| = |𝐾|.

Proposition 1. Let 𝑉 be a splittable normed 𝐾-vector space, and
suppose that |𝑉| ⊂ |𝐾|. Then 𝑉≦1 is a lattice and this induces the
norm on 𝑉.

Proof. If 𝑉 is a normed 𝐾-vector space, {𝑒𝑖} splits 𝑉, and |𝑒𝑖| ∈ |𝐾|
(and hence we can assume that |𝑒𝑖| = 1), then

𝐿 = 𝑒1𝐴 ⊕ ⋯ ⊕ 𝑒𝑑𝐴 = 𝑉≦1

is a lattice and the norm comes from it by its non-archimedeanness.

Corollary 1. If |𝐾| = R then lattices are in bijection with splittable
norms.

We are interested, however, mostly in the case where 𝐾 is a
discretely valued field. In that case, it is not enough to remember
a lattice, but we must also remember an R-filtration in a compatible
way. (This is indeed, included in the original definition of the
building).

Definition 6. Let 𝑉 be a finite dimensional 𝐾-vector space. Suppose
given an 𝐴-lattice 𝐿 ⊂ 𝑉 and an R-grading 𝜒 of 𝐿, ie.

𝐿 = ⨁
𝑤∈R

𝐿𝑤, (𝑉 = ⨁
𝑤∈R

𝑉𝑤)

Then we define a norm | | = | |𝐿,𝜒 via

|𝑣| = ∣∑
𝑤

𝑣𝑤∣ = max𝑤 𝑤.|𝑣𝑤|𝑤 ∈ R

where | |𝑤 is the norm on 𝑉𝑤 defined by 𝐿𝑤.
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Remark. A grading of 𝐿 as above can be seen as the same data as a
homomorphism

𝜒 ∶ 𝐷𝐴 → GL(𝐿) ≅ GL𝑑,𝐴,

where 𝐷𝐴 is the “diagonal” 𝐴-group scheme given by the Hopf group-
algebra 𝐴[R]. (Its representation parametrize R-gradings on 𝐴-
modules).

Proposition 2. The norms | |𝐿,𝜒 are splittable for every 𝐿 and 𝜒 as
above. Every splittable norm is furthermore of this form (in more
than one way).

2 Normed Fiber Functors
We now fix a smooth affine model 𝒢 of 𝐺 over 𝐴. Also fix some
non-archimedean extension 𝐿/𝐾 with integral elements 𝐵 and residue
𝑙. (Not required to be algebraic, or to preserve the value group.)

Definition 7. A normed fiber functor over some non-archimedean
extension 𝐿/𝐾 (with respect to our fixed model 𝒢) is an 𝐴-linear
tensor exact (faithful) functor

𝛼∶ Rep∘(𝒢) → Norm∘(𝐿)

from the category of dualizable 𝒢-representations in finite (free)
𝐴-modules to the category of 𝐿-norms as defined last section.

Definition 8. Let 𝜔∶ Rep∘(𝒢) → Vect𝐾 be a fiber functor. We define
the set of norms on 𝜔, 𝑁⊗(𝜔), to be the set of normed fiber functors
whose underlying fiber functor is 𝜔. We also define 𝑁⊗(𝒢), the set
of norms of 𝒢, to be the set of norms on the standard (forgetful
followed by base-change) fiber functor of 𝒢.

This comes equipped with two actions

• An R-action given by the canonical R-action on the norms.

• A 𝐺(𝐾)-action given by the canonical action of 𝐺(𝐾) on 𝐿 ⊗ 𝐾.

For clarity, if | | ∶ 𝑉 → R is some norm, then so is 𝜆| | for
𝜆 ∈ R>0 ≅ R. Similarly, if 𝑇 ∈ GL(𝑉) then so is |𝑇−1 |.

The goal of this seminar is to show that in fact, this is nothing
but the (extended) Bruhat-Tits building of 𝐺 = 𝒢𝐾. The more modest
goal of this talk, is to establish the result for split tori.
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For now, we show that the building is non-empty, and in fact
has a canonical base point. Consider the standard integral fiber
functor

𝜆∶ Rep∘(𝒢) → Mod𝐴

given by forgetting the action. This determines a canonical lattice
𝜆(𝑉) ⊂ 𝜆(𝑉) ⊗ 𝐾 = 𝜔(𝑉). In particular it determines a splittable norm
on it.

2.1 Example: the building of a torus
Let Γ be an abelian group. There is an associated algebraic group
over Z

𝐷Γ = SpecZ[Γ]

given by the Hopf algebra above. From a tannakian perspective,
𝐷Γ-representations are given by a Γ-grading on a lattice. (The
𝛾-graded part being associated with the 𝛾-eigenspace for such rep-
resentation.)

Very crucially, we may identify 𝐷Z with G𝑚 and 𝐷Z𝑛 with G𝑛
𝑚. For

a ring 𝐴 we write 𝐷Γ
𝐴 for the base change of the group scheme above

to Spec𝐴.
Lemma 1. Fix a field 𝑘, and let 𝑇 be a split 𝑘-torus, ie. 𝐷Z𝑛

𝑘 = G𝑛
𝑚,𝑘.

Then there exists a canonical, R and 𝑇(𝑘)-invariant isomorphism

HomGps(𝐷R
𝑘 , 𝑇) ≅ 𝑋∗(𝑇) ⊗ R ≅ R𝑛.

Proof. The idea of the proof is as follows: we imediately reduce
to the case of 𝑛 = 1 and we note that any homomorphism of groups
𝑥 ∶ Z → R singles out a morphism

Spec 𝑘[𝑇R] = 𝐷R
𝑘 → 𝐷Z

𝑘 = Spec 𝑘[𝑇±]

given by the functoriality of 𝐷. (In coordinates, we identify the
right hand side as Z[𝑇±] and the morphism is given by 𝑇 ↦ 𝑇𝑥 on the
left.)

Crucially now, we use the fact that this is a homomorphism of
algebraic groups, hence of Hopf algebras, to see that any such
homomorphism is of this form. (Hint: write the image of 𝑇 as
∑𝑥 𝑎𝑥𝑇𝑥. Use the fact it preseves multiplication to see that only
one 𝑎𝑥 is non-zero. The fact that it preserves inversion implies
that this 𝑎𝑥 = 1.) The proof now follows.
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Fix a split torus 𝐺 = G𝑛
𝑚,𝐾 and its canonical integral model

𝒢 = G𝑚,𝐴.
Now, we construct a map HomGps(𝐷R

𝐾, 𝐺) → 𝑁⊗(𝐺). Given such a map

𝜒 ∶ 𝐷R
𝐾 → 𝐺

we have now a unique extension to a homomorphism 𝐷R
𝐴 → 𝒢. This

determines a norm

𝛼𝜒 ∶ Rep∘(𝒢) → Norm∘(𝒢)

given as follows.
Fix a 𝒢-representation 𝐿 over 𝐴. Then this determines a repre-

sentation 𝐷R
𝐾 → 𝒢 → GL(𝐿), and hence a decomposition into eigenspaces

𝑉 = ⊕𝑥∈R>0
𝑉𝑥.

This determines therefore a norm by the results of last sections.
This assembles into a normed fiber functor (ie. is functorial,
exact and endowed with a canonical symmetric monoidal structure).

Theorem 1. The construction above determines a bijection

𝑋∗(𝑇) ⊗ R ≅ Hom(𝐷R
𝐾, 𝑇) ∼

Ý→ 𝑁⊗(𝑇).

equivariant for both 𝐺(𝐾) and R actions.

We break the proof into three parts.

Proof (equivariance). How does (𝐾×)𝑛 acts on both sides? On the
left we see that each such tuple determines a morphism 𝑇 → 𝑇 and
hence we get an action. On the right, we write for each normed
vector space 𝛼(𝑉) a decomposed lattice 𝐿(𝑉) = ⊕𝑥𝐿(𝑉)𝑥 determining
its norm, and we see that we must re-scale the norm acording to the
tuple in question.

Staring at this long enough one sees that the construction above
is equivariant essentially from its definition.

Proof (injectivity). Since we have fixed a lattice in our construc-
tion (namely the canonical one associated to our base point 𝒢) the
norm is completely determined by the grading.
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Proof (surjectivity). By the “Main Theorem” of the paper, every
norm is splittable. (More about this, and proof, on next talk).
This gives us in particular another integral model 𝒢 of 𝐺 = 𝒢𝐾
given by the fiber functor

𝜆∶ Rep∘𝒢 → Mod𝐴

of our fiber functor 𝜔 together with a map 𝜒 ∶ 𝐷R
𝐴 → 𝒢 splitting the

norm globally.
Now 𝒢 and 𝒢 are isomorphic fpqc-locally on 𝐴, and since we are

working with smooth models, they are also isomorphic étale locally
on 𝐴. But since any 𝑇-torsor on 𝐴 is trivial (Satz90) they must
be already isomorphic over 𝐴.

Since there was already a fixed isomorphism 𝒢𝐾 ≅ 𝒢𝐾, we get an
element 𝑔 ∈ 𝐺(𝐾) and a computation shows that 𝑔𝜒 splits 𝒢 already.
In other words, 𝑔𝜃𝜒 is our normed fiber functor. By equivariance,
the map above is surjective.
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