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Gy connected reductive group / finite field F,, T;, C By C G.
G base change to F,, B, W, Frobenius o acts on G, W, ...

Definition (Deligne-Lusztig variety)
Fix w € W. We set X, = {g € G/B; g 'o(g) € BwB}.

Properties
@ locally closed in G/B,
@ smooth of dimension ¢(w),

e Gy(F,) acts on X, hence on H*(X,,, Q).
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Setup, afFFine DL varieties

F local field (equal characteristic: F' = TF,((t)),
mixed characteristic: F'/Q,, finite).

F=TF,((t), o: Y ait — 3 alt’ Frobenius

G quasi-simple connected reductive group over F, G = G(F)
J C G fixed rational Iwahori subgroup,
W Iwahori-Weyl group, S simple affine reflections

Definition (Affine Deligne-Lusztig variety - Rapoport)
Letw e W, beG. [ (‘positive’) affine flag variety

Xu(b) = {g € G/J; g"bo(g) € JuT}.
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Relative position map:
inv: G/Ix G)J — NG/ =~ W
(9.h) — g~'h

~> what are the possible relative positions of g and o(g)?

Example (SLo, b= 1)

Xp(l)#0 <= w=id or {(w) odd




EXQMP\CI GSpy, b=71#id, U(1)=0
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The admissible set

Fix t* € W translation element.

Adm(p) = {w e W; Jv e Wy : w < t*W}

/
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Main olajcc’r of 6+udy: X(p,b)x

X(p,b) := U Xu(b).

weAdmM(p)

Parahoric variant: K C S, 0(K) =K ~ X C G.
Let g : G/J — G/K be the projection.

X(:uvb)K = WK(X(:“vb)) - Gv{/jv<

@ X,(b), X(u,b) depend only on o-conjugacy class [b] of b.
@ Can choose b in V.

e Given u, X (p,7) # ) for a unique length 0 element 7 € W,



dim X (u,7) = 7

Say G = G'Spay, 1 = w,. Then dim X (u1, 7) equals the dimension of
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dim X (u,7) = 7

Say G = G'Spay, 1 = w,. Then dim X (u1, 7) equals the dimension of
the supersingular locus of the moduli space of g-dimensional
principally polarized abelian varieties with lwahori level structure at
p, over [F,.

(For g = 1: supersingular points in modular curve X,(p) over F,,.)

Theorem (G-Yu)
For g even, dim X (u, 7) = ¢%/2.
For g odd, g(g—1)/2 <dimX(p,7) < (g9+1)(g—1)/2.

Bonan: For ¢ <5 0dd, g(g —1)/2 = dim X (p, 7).

NB: Usually not equi-dimensional.
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The J-stratification

Relative position (for K C S «w K C ()
invi: G/K x G/K = K\G/K = Wi \W /Wy = EWE.

Let
J={g€G; g 'bo(g) =b}.

Definition (Chen-Viehmann)

z,y € G/K for all j € J:
lie in the same stratum invi (7, ) = invg (4, y).

Intersecting with X (11, b) k, get J-stratification on X (p, ) k.
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that every alcove in S can be reached from j via a minimal
gallery passing through '
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Proposition (“Generalized gate property”)

v

Let S be a bounded set of alcoves in B(G). There exists a finite set .J’
of alcoves in B(J) with the following property:
for every alcove j in B(J) there exists an alcove j’ € J' such
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The Pully Hodac—Ncmron dccompoc;ablc
case

joint with Xuhua He, Sian Nie

B(G, p) = {[bl; X(u,b) # 0},

T €W, {(r) =0, such that [7] € B(G, y).



Theorem (G-He-Nie)

The following conditions are equivalent:

@ The pair (G, {u}) is fully Hodge-Newton decomposable.
@ The coweight 11 is minute:
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@ For any [b] # [7] in B(G, {u}), dim X (1, b)x = 0.

@ ‘Bruhat-Tits stratification:” The space X (i1, )k is naturally a
union of classical Deligne-Lusztig varieties.
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The following conditions are equivalent:

@ The pair (G, {u}) is fully Hodge-Newton decomposable.
@ The coweight 11 is minute:
(1, we) +{{c(0),wn)} <1 forall O

@ For any [b] # [7] in B(G, {u}), dim X (1, b)x = 0.

@ ‘Bruhat-Tits stratification:” The space X (i1, )k is naturally a
union of classical Deligne-Lusztig varieties.
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The Bruhat-Tits stratification

In situation of the theorem, (4) means:

X(M77—>K - |_| 71-K(‘)(’LU(T))a

weAdm(u)NE W

for mx: /T — G/K the projection, and

me(Xu(m) = | ] Y (w),

FeI/INd!,

where Y (w) C P,,/J a classical DL variety.
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G a quasi-split unitary group for unramified quadratic extension

«~ Dynkin diagram A,,_; with o(0) = 0, o'(i) = n — 1.

— 4V
M= Wy

Int(7) acts by rotation
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Example: Unramikried unitary group

G a quasi-split unitary group for unramified quadratic extension

«~ Dynkin diagram A,,_; with o(0) = 0, o'(i) = n — 1.

0 8
p=wy
1
W = SoS8T
2

Y (w) is a Deligne-Lusztig
variety in a unitary group.



Theorem (G-He-Nie)

Assume that G is quasi-simple over ' and ju # 0. Then (G, {u}) is
fully Hodge-Newton decomposable if and only if the associated triple
(W, 1, o) is one of the following:

(Anflawi/a Id) (Anflvwichnil) (Anflyw}/ug())

(AQm—la wYa TlgO) (An—la w}/ + W;{,h Id) (A37 w¥7 Id)

(As,wy, ) (As,wy,T2)
(B, wy,id) (B, wY, 1)
(Cr,wY, id) (Cy,wy,id) (Ca,wy, ™)
(Dy, wy,id) (D, Y, 50)




ComParison in the Coxeter case

Coxeter case (G-He)
Fully HN decomposable +

K=S\{v}, o(K)=K +

for all w € Adm(u) N KW with X, (1) # 0, w is twisted Coxeter:
supp(w) := {s € §; s < w}

intersects each Int(7) o o-orbit in at most one element




Comparison in the Coxeter case

Coxeter case (G-He)
Fully HN decomposable +

K=8S\{v}, o(K)=K +

for all w € Adm(u) N KW with X, (1) # 0, w is twisted Coxeter:
supp(w) := {s € §; s < w}

intersects each Int(7) o o-orbit in at most one element

Theorem (G)
In the Coxeter cases, the J-stratification coincides with the Bruhat-Tits

stratification.
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invk(j,—) I constant on BT strata

Proposition (Gate property)
Let v be a simplex in the building, and R the set of all alcoves whose
closure contains .
For every alcove b there exists an alcove g in R such that
every alcove in R can be reached from b via a minimal gallery
passing through g.

Return to the setting of classical DL varieties.

Proposition (Lusztig)
Let Gy/F,, w € W twisted Coxeter, g € Go(FF,), h € X,,. Then

inv(g, h) = w, the longest element of W.




Extremal caoses

joint with Xuhua He, Michzel Rapoport

Assume that p is not central in any simple factor of G over E.

Theorem (Equi-maximal-dimensional case, G-H-R)

Then X (p, 7)k is equi-dimensional of dimension (i, 2p)

= (Wa, 0, 1, K) is isomorphic to one of the following:
Q@ (A,_1,01,w),0) ¢« —— Drinfeld case
Q@ (Ap 1 X Ap 1, ¥V, (WY, w)_y),0)
Q (A3, 0o, wy,0)




Dimension 0

Theorem (G-He-Rapoport)

dmX(u, 7))k =0 <= (VY‘“ U,.u) Is isomorphic
to (A,_1,id,wy) for some n.

<

Lubin-Tate case
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Finite Fibers

Fix a pair K & K’ of F-rational parahoric level structures.
Have projection mx k@ X (1, 7)) — X (1, 7) k-

Theorem (G-He-Rapoport)
Then

all fibers of mk i are finite = LT case or

Dynkin type A,_; with (0) =0, 0(i) = n — i, and u = wy, and
o K'\ K C{so,sn}, andifs; € K'\ K, then s;1, ¢ K.




