Stratifications of affine Deligne-Lusztig varieties

Ulrich Görtz

Sydney, August 9, 2019

Classical Deligne-Lusztig varieties

 G_0 connected reductive group / finite field \mathbb{F}_q , $T_0 \subset B_0 \subset G_0$. G base change to $\overline{\mathbb{F}}_q$, B, W, Frobenius σ acts on G, W, ...

Classical Deligne-Lusztig varieties

 G_0 connected reductive group / finite field \mathbb{F}_q , $T_0 \subset B_0 \subset G_0$. G base change to $\overline{\mathbb{F}}_q$, B, W, Frobenius σ acts on G, W, ...

Definition (Deligne-Lusztig variety)

Fix $w \in W$. We set $X_w = \{g \in G/B; g^{-1}\sigma(g) \in BwB\}$.

Classical Deligne-Lusztig varieties

 G_0 connected reductive group / finite field \mathbb{F}_q , $T_0 \subset B_0 \subset G_0$. G base change to $\overline{\mathbb{F}}_q$, B, W, Frobenius σ acts on G, W, ...

Definition (Deligne-Lusztig variety)

Fix $w \in W$. We set $X_w = \{g \in G/B; g^{-1}\sigma(g) \in BwB\}$.

Properties

- locally closed in G/B,
- ullet smooth of dimension $\ell(w)$,
- ullet $G_0(\mathbb{F}_q)$ acts on X_w , hence on $H^*(X_w,\mathbb{Q}_\ell)$.

F local field

(equal characteristic: $F = \mathbb{F}_q((t))$,

mixed characteristic: F/\mathbb{Q}_p finite).

F local field (equal characteristic: $F=\mathbb{F}_q((t))$,

mixed characteristic: F/\mathbb{Q}_p finite).

 $reve{F}=\overline{\mathbb{F}}_q((t))$, $\sigma\colon \sum a_it^i\mapsto \sum a_i^qt^i$ Frobenius

F local field (equal characteristic: $F = \mathbb{F}_q((t))$,

mixed characteristic: F/\mathbb{Q}_p finite).

$$reve{F}=\overline{\mathbb{F}}_q((t))$$
, $\sigma\colon \sum a_it^i\mapsto \sum a_i^qt^i$ Frobenius

F local field (equal characteristic: $F = \mathbb{F}_q((t))$,

mixed characteristic: F/\mathbb{Q}_p finite).

$$reve{F}=\overline{\mathbb{F}}_q((t))$$
, $\sigma\colon \sum a_it^i\mapsto \sum a_i^qt^i$ Frobenius

 ${f G}$ quasi-simple connected reductive group over F, $\ \breve{G}={f G}(\breve{F})$ $\ \breve{\mathbb{J}}\subset \breve{G}$ fixed rational lwahori subgroup, $\ \ \tilde{\mathbb{W}}$ lwahori-Weyl group, $\ \ \tilde{\mathbb{S}}$ simple affine reflections

F local field (equal characteristic: $F = \mathbb{F}_q((t))$,

mixed characteristic: F/\mathbb{Q}_p finite).

$$reve{F}=\overline{\mathbb{F}}_q((t))$$
, $\sigma\colon \sum a_it^i\mapsto \sum a_i^qt^i$ Frobenius

 ${f G}$ quasi-simple connected reductive group over F, $\check{G}={f G}(\check{F})$ $\check{\mathbb{J}}\subset \check{G}$ fixed rational lwahori subgroup, $\check{\mathbb{W}}$ lwahori-Weyl group, $\check{\mathbb{S}}$ simple affine reflections

Definition (Affine Deligne-Lusztig variety - Rapoport)

Let $w \in \tilde{W}$, $b \in \check{G}$.

$$X_w(b) = \{ g \in \breve{G}/\breve{\Im}; \ g^{-1}b\sigma(g) \in \breve{\Im}w\breve{\Im} \}.$$

F local field

(equal characteristic: $F = \mathbb{F}_q((t))$,

mixed characteristic: F/\mathbb{Q}_p finite).

$$reve{F}=\overline{\mathbb{F}}_q((t))$$
, $\sigma\colon \sum a_it^i\mapsto \sum a_i^qt^i$ Frobenius

 ${f G}$ quasi-simple connected reductive group over F, $\ \check{G}={f G}(\check{F})$ $\ \check{\mathbb{J}}\subset \check{G}$ fixed rational lwahori subgroup, $\ \check{\mathbb{G}}$ simple affine reflections

 $ilde{W}$ lwahori–Weyl group, $ilde{\mathbb{S}}$ simple affine reflections

Definition (Affine Deligne-Lusztig variety - Rapoport)

Let $w \in \tilde{W}$, $b \in \check{G}$.

('positive') affine flag variety

$$X_w(b) = \{ g \in \breve{G}/\breve{\gimel}; \ g^{-1}b\sigma(g) \in \breve{\gimel}w\breve{\gimel} \}.$$

Relative position map:

$$\begin{array}{ccc} \mathrm{inv} \colon \breve{G}/\breve{\mathbb{J}} \times \breve{G}/\breve{\mathbb{J}} & \longrightarrow & \breve{\mathbb{J}} \backslash \breve{G}/\breve{\mathbb{J}} \; \cong \; \tilde{W} \\ & (g,h) \; \longmapsto \; g^{-1}h \end{array}$$

Relative position map:

$$\operatorname{inv} \colon \breve{G}/\breve{\mathbb{J}} \times \breve{G}/\breve{\mathbb{J}} \ \longrightarrow \ \breve{\mathbb{J}} \backslash \breve{G}/\breve{\mathbb{J}} \ \cong \ \tilde{W}$$
$$(g,h) \ \longmapsto \ g^{-1}h$$

 \rightsquigarrow what are the possible relative positions of g and $\sigma(g)$?

Relative position map:

$$\text{inv: } \breve{G}/\breve{\mathbb{J}} \times \breve{G}/\breve{\mathbb{J}} \ \longrightarrow \ \breve{\mathbb{J}}\backslash \breve{G}/\breve{\mathbb{J}} \ \cong \ \tilde{W}$$

$$(g,h) \ \longmapsto \ g^{-1}h$$

 \rightsquigarrow what are the possible relative positions of g and $\sigma(g)$?

Example (
$$SL_2$$
, $b=1$)

$$X_w(1) \neq \emptyset \iff w = \text{id} \text{ or } \ell(w) \text{ odd}$$

Example: GSp_4 , $b= au eq \operatorname{id}$, $\ell(au)=0$

0 8 7 67	7 56	5 56	7667	87 7 89 9
8 8 76 6	5 5	4	5	6 88
7 7 5	4 34	3 34	5/4/4	566888
7 7 65 5	43 3	2	3	5 77
6 5 4	3 2	10 1	2 3	4 5 6 7
7 65	43	1 2	3 4	5 6 7 8
8 7 76 5	5/4 3	2 3	3 4	6 6 8 8
8 76	4	3 4	4 5	6 7 88 9
9 8 8 7 6	56 55	4 55	6 6	6 7 9 9
9 7	6	5 6	6 7	7 8 9 10

$$\mathrm{Adm}(\mu) = \{ w \in \tilde{W}; \ \exists v \in W_0 : w \le t^{v(\mu)} \}.$$

$$\mathrm{Adm}(\mu) = \{w \in \tilde{W}; \ \exists v \in W_0 : w \le t^{v(\mu)}\}.$$

$$\mathsf{Adm}(\mu) = \{ w \in \tilde{W}; \ \exists v \in W_0 : w \le t^{v(\mu)} \}.$$

$$\mathrm{Adm}(\mu) = \{ w \in \tilde{W}; \ \exists v \in W_0 : w \le t^{v(\mu)} \}.$$

$$\mathsf{Adm}(\mu) = \{ w \in \tilde{W}; \ \exists v \in W_0 : w \le t^{v(\mu)} \}.$$

$$\mathrm{Adm}(\mu) = \{w \in \tilde{W}; \ \exists v \in W_0 : w \leq t^{v(\mu)}\}.$$

$$\mathrm{Adm}(\mu) = \{w \in \tilde{W}; \ \exists v \in W_0 : w \le t^{v(\mu)}\}.$$

$$X(\mu, b) := \bigcup_{w \in \mathsf{Adm}(\mu)} X_w(b).$$

$$X(\mu, b) := \bigcup_{w \in \mathsf{Adm}(\mu)} X_w(b).$$

Let $\pi_K \colon \breve{G}/\breve{\mathbb{J}} \to \breve{G}/\breve{\mathbb{K}}$ be the projection.

$$X(\mu, b) := \bigcup_{w \in \mathsf{Adm}(\mu)} X_w(b).$$

Parahoric variant: $K \subset \tilde{\mathbb{S}}$, $\sigma(K) = K \longrightarrow \check{\mathcal{K}} \subset \check{G}$. Let $\pi_K \colon \check{G}/\check{\mathbb{J}} \to \check{G}/\check{\mathbb{K}}$ be the projection.

$$X(\mu,b)_K = \pi_K(X(\mu,b)) \subset \check{G}/\check{\mathcal{K}}$$

$$X(\mu,b):=\bigcup_{w\in \mathrm{Adm}(\mu)}X_w(b).$$

Let $\pi_K \colon \breve{G}/\breve{\mathbb{J}} \to \breve{G}/\breve{\mathcal{K}}$ be the projection.

$$X(\mu, b)_K = \pi_K(X(\mu, b)) \subset \check{G}/\check{\mathfrak{K}}$$

- $X_w(b)$, $X(\mu, b)$ depend only on σ -conjugacy class [b] of b.
- Can choose b in \hat{W} .
- Given μ , $X(\mu, \tau) \neq \emptyset$ for a unique length 0 element $\tau \in \tilde{W}$.

$\dim X(\mu, \tau) = ?$

Say $\mathbf{G} = GSp_{2g}$, $\mu = \omega_g^{\vee}$. Then $\dim X(\mu, \tau)$ equals the dimension of the supersingular locus of the moduli space of g-dimensional principally polarized abelian varieties with Iwahori level structure at p, over \mathbb{F}_p .

(For g=1: supersingular points in modular curve $X_0(p)$ over \mathbb{F}_p .)

$\dim X(\mu, \tau) = ?$

Say $\mathbf{G} = GSp_{2g}$, $\mu = \omega_g^{\vee}$. Then $\dim X(\mu, \tau)$ equals the dimension of the supersingular locus of the moduli space of g-dimensional principally polarized abelian varieties with Iwahori level structure at p, over \mathbb{F}_p .

(For g=1: supersingular points in modular curve $X_0(p)$ over \mathbb{F}_p .)

Theorem (G-Yu)

For g even, $\dim X(\mu, \tau) = g^2/2$.

For g odd, $g(g-1)/2 \le \dim X(\mu, \tau) \le (g+1)(g-1)/2$.

$$\dim X(\mu, \tau) = ?$$

Say $\mathbf{G} = GSp_{2g}$, $\mu = \omega_g^{\vee}$. Then $\dim X(\mu, \tau)$ equals the dimension of the supersingular locus of the moduli space of g-dimensional principally polarized abelian varieties with Iwahori level structure at p, over \mathbb{F}_p .

(For g=1: supersingular points in modular curve $X_0(p)$ over \mathbb{F}_p .)

Theorem (G-Yu)

For g even, $\dim X(\mu, \tau) = g^2/2$.

For g odd, $g(g-1)/2 \le \dim X(\mu,\tau) \le (g+1)(g-1)/2$.

Bonan: For $g \leq 5$ odd, $g(g-1)/2 = \dim X(\mu, \tau)$.

NB: Usually not equi-dimensional.

The J-stratification

Relative position (for $K \subset \tilde{\mathbb{S}} \iff \check{\mathcal{K}} \subset \check{G}$)

 $\mathsf{inv}_K \colon \breve{G}/\breve{\mathcal{K}} \times \breve{G}/\breve{\mathcal{K}} \to \breve{\mathcal{K}} \backslash \breve{G}/\breve{\mathcal{K}} \cong W_K \backslash \tilde{W}/W_K \cong {}^KW^K.$

The J-stratification

Relative position (for $K \subset \tilde{\mathbb{S}} \iff \breve{\mathcal{K}} \subset \breve{G}$)

$$\mathsf{inv}_K \colon \breve{G}/\breve{\mathfrak{K}} \times \breve{G}/\breve{\mathfrak{K}} \to \breve{\mathfrak{K}} \backslash \breve{G}/\breve{\mathfrak{K}} \cong W_K \backslash \tilde{W}/W_K \cong {}^KW^K.$$

Let

$$\mathbb{J} = \{ g \in \check{G}; \ g^{-1}b\sigma(g) = b \}.$$

The J-stratification

Relative position (for $K \subset \tilde{\mathbb{S}} \iff \breve{\mathcal{K}} \subset \breve{G}$)

$$\mathsf{inv}_K \colon \breve{G}/\breve{\mathfrak{K}} \times \breve{G}/\breve{\mathfrak{K}} \to \breve{\mathfrak{K}} \backslash \breve{G}/\breve{\mathfrak{K}} \cong W_K \backslash \tilde{W}/W_K \cong {}^KW^K.$$

Let

$$\mathbb{J} = \{ g \in \check{G}; \ g^{-1}b\sigma(g) = b \}.$$

Definition (Chen-Viehmann)

 $x, y \in \check{G}/\check{X}$ for all $j \in \mathbb{J}$:

lie in the same stratum $inv_{\mathcal{K}}(j, x) = inv_{\mathcal{K}}(j, y)$.

Intersecting with $X(\mu, b)_K$, get \mathbb{J} -stratification on $X(\mu, b)_K$.

Finiteness properties

Theorem

The \mathbb{J} -strata in $\breve{G}/\breve{\mathbb{X}}$ are locally closed.

Proposition ("Generalized gate property")

Let S be a bounded set of alcoves in $\mathfrak{B}(\breve{G})$. There exists a finite set J' of alcoves in $\mathfrak{B}(\mathbb{J})$ with the following property:

for every alcove j in $\mathfrak{B}(\mathbb{J})$ there exists an alcove $j' \in J'$ such that every alcove in S can be reached from j via a minimal gallery passing through j'.

Finiteness properties

Theorem

The \mathbb{J} -strata in $\check{G}/\check{\mathfrak{X}}$ are locally closed.

Proposition (Gate property)

Let $\mathfrak r$ be a simplex in the building, and $\mathfrak R$ the set of all alcoves whose closure contains $\mathfrak r.$

For every alcove $\mathfrak b$ there exists an alcove $\mathfrak g$ in $\mathcal R$ such that every alcove in $\mathcal R$ can be reached from $\mathfrak b$ via a minimal gallery passing through $\mathfrak g$.

Finiteness properties

Theorem

The \mathbb{J} -strata in $\breve{G}/\breve{\mathbb{X}}$ are locally closed.

Proposition ("Generalized gate property")

Let S be a bounded set of alcoves in $\mathfrak{B}(\breve{G})$. There exists a finite set J' of alcoves in $\mathfrak{B}(\mathbb{J})$ with the following property:

for every alcove j in $\mathfrak{B}(\mathbb{J})$ there exists an alcove $j' \in J'$ such that every alcove in S can be reached from j via a minimal gallery passing through j'.

The fully Hodge-Newton decomposable case

joint with Xuhua He, Sian Nie

$$B(\mathbf{G},\mu)=\{[b];\;X(\mu,b)
eq\emptyset\}$$
,

$$au \in \tilde{W}$$
, $\ell(au) = 0$, such that $[au] \in B(\mathbf{G}, \mu)$.

Theorem (G-He-Nie)

The following conditions are equivalent:

- The pair $(G, \{\mu\})$ is fully Hodge-Newton decomposable.
- 2 The coweight μ is minute:

if
$$G$$
 split: $\langle \mu, \omega_i \rangle \leq 1$ for all i

- "Bruhat–Tits stratification:" The space $X(\mu, \tau)_K$ is naturally a union of classical Deligne-Lusztig varieties.

Theorem (G-He-Nie)

The following conditions are equivalent:

- The pair $(G, \{\mu\})$ is fully Hodge-Newton decomposable.
- 2 The coweight μ is minute:

$$\langle \mu, \omega_0 \rangle + \{ \langle \sigma(0), \omega_0 \rangle \} \le 1$$
 for all 0

- "Bruhat–Tits stratification:" The space $X(\mu, \tau)_K$ is naturally a union of classical Deligne-Lusztig varieties.

The Bruhat-Tits stratification

In situation of the theorem, (4) means:

$$X(\mu,\tau)_K = \bigsqcup_{w \in \operatorname{Adm}(\mu) \cap K \tilde{W}} \pi_K(X_w(\tau)),$$

for $\pi_K \colon \breve{G}/\breve{\mathbb{J}} \to \breve{G}/\breve{\mathbb{K}}$ the projection, and

The Bruhat-Tits stratification

In situation of the theorem, (4) means:

$$X(\mu,\tau)_K = \bigsqcup_{w \in \operatorname{Adm}(\mu) \cap K \tilde{W}} \pi_K(X_w(\tau)),$$

for $\pi_K \colon \breve{G}/\breve{\mathbb{J}} \to \breve{G}/\breve{\mathbb{K}}$ the projection, and

$$\pi_K(X_w(\tau)) = \bigsqcup_{j \in \mathbb{J}/\mathbb{J} \cap \check{\mathcal{P}}_w'} jY(w),$$

where $Y(w) \subset \breve{\mathcal{P}}_w/\breve{\mathcal{I}}$ a classical DL variety.

 ${\it G}$ a quasi-split unitary group for unramified quadratic extension

 \longleftrightarrow Dynkin diagram \tilde{A}_{n-1} with $\sigma(0)=0$, $\sigma(i)=n-i$.

G a quasi-split unitary group for unramified quadratic extension

 \longleftrightarrow Dynkin diagram \tilde{A}_{n-1} with $\sigma(0)=0$, $\sigma(i)=n-i$.

G a quasi-split unitary group for unramified quadratic extension

 \longleftrightarrow Dynkin diagram \tilde{A}_{n-1} with $\sigma(0)=0$, $\sigma(i)=n-i$.

$$\mu = \omega_1^{\vee}$$

 $\operatorname{Int}(\tau)$ acts by rotation $i\mapsto i+1.$

 $\ln(\tau) \circ \sigma \text{ acts by reflection} \\ 0 \leftrightarrow 1 \text{, } n-1 \leftrightarrow 2 \text{, ...}$

G a quasi-split unitary group for unramified quadratic extension

 $\Longleftrightarrow \text{ Dynkin diagram } \tilde{A}_{n-1} \text{ with } \sigma(0) = 0 \text{, } \sigma(i) = n-i.$

$$\mu = \omega_1^{\vee}$$

 $\operatorname{Int}(\tau)$ acts by rotation $i\mapsto i+1.$

 $\ln(\tau) \circ \sigma \text{ acts by reflection} \\ 0 \leftrightarrow 1, \, n-1 \leftrightarrow 2, \dots$

G a quasi-split unitary group for unramified quadratic extension

 $\Longleftrightarrow \text{ Dynkin diagram } \tilde{A}_{n-1} \text{ with } \sigma(0) = 0 \text{, } \sigma(i) = n-i.$

$$\mu = \omega_1^{\vee}$$

 $\begin{aligned} & \operatorname{Int}(\tau) \text{ acts by rotation} \\ & i \mapsto i+1. \end{aligned}$

 $\ln(\tau) \circ \sigma \text{ acts by reflection} \\ 0 \leftrightarrow 1 \text{, } n-1 \leftrightarrow 2 \text{, ...}$

G a quasi-split unitary group for unramified quadratic extension

 $\Longleftrightarrow \text{ Dynkin diagram } \tilde{A}_{n-1} \text{ with } \sigma(0) = 0 \text{, } \sigma(i) = n-i.$

$$\mu=\omega_1^\vee$$

$$w = s_0 s_8 \tau$$

Y(w) is a Deligne-Lusztig variety in a unitary group.

Theorem (G-He-Nie)

Assume that **G** is quasi-simple over \check{F} and $\mu \neq 0$. Then $(\mathbf{G}, \{\mu\})$ is fully Hodge-Newton decomposable if and only if the associated triple (W_a, μ, σ) is one of the following:

$(\tilde{A}_{n-1},\omega_1^{\lor},id)$	$(\tilde{A}_{n-1}, \omega_1^{\vee}, \tau_1^{n-1})$	$(\tilde{A}_{n-1}, \omega_1^{\vee}, \varsigma_0)$
$\left (\tilde{A}_{2m-1}, \omega_1^{\vee}, \tau_1 \varsigma_0) \right $	$\left (\tilde{A}_{n-1}, \omega_1^{\vee} + \omega_{n-1}^{\vee}, id) \right $	$(ilde{A}_3,\omega_2^ee,id)$
$(\tilde{A}_3,\omega_2^\vee,\varsigma_0)$	$(\tilde{A}_3,\omega_2^{\vee}, au_2)$	
$(ilde{B}_n,\omega_1^ee,id)$	$(\tilde{B}_n,\omega_1^{\vee},\tau_1)$	
$(\tilde{C}_n,\omega_1^ee,id)$	$(ilde{C}_2,\omega_2^ee,id)$	$(\tilde{C}_2,\omega_2^{\vee},\tau_2)$
$(\tilde{D}_n,\omega_1^ee,id)$	$(\tilde{D}_n,\omega_1^\vee,\varsigma_0)$	

Comparison in the Coxeter case

Coxeter case (G-He)

Fully HN decomposable +

$$K = \tilde{\mathbb{S}} \setminus \{v\}, \quad \sigma(K) = K +$$

for all $w \in Adm(\mu) \cap {}^K \tilde{W}$ with $X_w(\tau) \neq \emptyset$, w is twisted Coxeter:

$$\mathsf{supp}(w) := \{ s \in \tilde{\mathbb{S}}; \ s \le w \}$$

intersects each $Int(\tau) \circ \sigma$ -orbit in at most one element

Comparison in the Coxeter case

Coxeter case (G-He)

Fully HN decomposable +

$$K = \tilde{\mathbb{S}} \setminus \{v\}, \quad \sigma(K) = K +$$

for all $w \in Adm(\mu) \cap {}^K W$ with $X_w(\tau) \neq \emptyset$, w is twisted Coxeter:

$$\operatorname{supp}(w) := \{s \in \tilde{\mathbb{S}}; \ s \leq w\}$$

intersects each $Int(\tau) \circ \sigma$ -orbit in at most one element

Theorem (G)

In the Coxeter cases, the \mathbb{J} -stratification coincides with the Bruhat-Tits stratification.

$inv_K(j,-)$ is constant on BT strata

Proposition (Gate property)

Let $\mathfrak r$ be a simplex in the building, and $\mathfrak R$ the set of all alcoves whose closure contains $\mathfrak r$.

For every alcove $\mathfrak b$ there exists an alcove $\mathfrak g$ in $\mathcal R$ such that every alcove in $\mathcal R$ can be reached from $\mathfrak b$ via a minimal gallery passing through $\mathfrak g$.

$inv_K(j,-)$ is constant on BT strata

Proposition (Gate property)

Let $\mathfrak r$ be a simplex in the building, and $\mathfrak R$ the set of all alcoves whose closure contains $\mathfrak r$.

For every alcove $\mathfrak b$ there exists an alcove $\mathfrak g$ in $\mathcal R$ such that every alcove in $\mathcal R$ can be reached from $\mathfrak b$ via a minimal gallery passing through $\mathfrak g$.

Return to the setting of classical DL varieties.

Proposition (Lusztig)

Let G_0/\mathbb{F}_q , $w \in W$ twisted Coxeter, $g \in G_0(\mathbb{F}_q)$, $h \in X_w$. Then

 $inv(g,h) = w_0$, the longest element of W.

Extremal cases

joint with Xuhua He, Michæl Rapoport

Assume that μ is not central in any simple factor of ${\bf G}$ over \check{F} .

Theorem (Equi-maximal-dimensional case, G-H-R)

Then $X(\mu,\tau)_K$ is equi-dimensional of dimension $\langle \mu,2\rho \rangle$

 \iff (W_a, σ, μ, K) is isomorphic to one of the following:

- $\bullet \quad (\tilde{A}_{n-1}, \circlearrowleft_1, \omega_1^{\vee}, \emptyset) \longleftarrow \qquad \text{Drinfeld case}$
- $(\tilde{A}_{n-1} \times \tilde{A}_{n-1}, \boldsymbol{\curvearrowleft}, (\omega_1^{\vee}, \omega_{n-1}^{\vee}), \emptyset)$
- $\bullet \quad (\tilde{A}_3, \circlearrowleft_2, \omega_2^{\vee}, \emptyset)$

Dimension 0

Theorem (G-He-Rapoport)

$$\dim X(\mu,\tau)_K = 0 \iff \frac{(W_a,\sigma,\mu) \text{ is isomorphic}}{\operatorname{to}\left(\tilde{A}_{n-1},\operatorname{id},\omega_1^\vee\right) \text{ for some } n.}$$

Finite fibers

Fix a pair $K \subsetneq K'$ of F-rational parahoric level structures.

Have projection $\pi_{K,K'} \colon X(\mu,\tau)_K \to X(\mu,\tau)_{K'}$.

Finite fibers

Fix a pair $K \subsetneq K'$ of F-rational parahoric level structures.

Have projection $\pi_{K,K'} \colon X(\mu,\tau)_K \to X(\mu,\tau)_{K'}$.

Theorem (G-He-Rapoport)

Then

all fibers of $\pi_{K,K'}$ are finite \iff LT case or

Dynkin type \tilde{A}_{n-1} with $\sigma(0)=0$, $\sigma(i)=n-i$, and $\mu=\omega_1^\vee$, and

• $K' \setminus K \subset \{s_0, s_{\frac{n}{2}}\}$, and if $s_i \in K' \setminus K$, then $s_{i+1} \notin K$.