

Problem sheet 13

Due date: Feb. 4, 2026.

Problem 42 Let k be a field. Consider the projective quadric

$$X := \mathcal{V}_+(x_0x_3 - x_1x_2) \subset \mathbb{P}_k^3.$$

- a) Show that there exists a map $\varphi : X \rightarrow \mathbb{P}_k^1 \times \mathbb{P}_k^1$ which on k -points is given by $(a_0 : a_1 : a_2 : a_3) \mapsto ((a_0 : a_1), (a_0 : a_2))$ for all $(a_0 : a_1 : a_2 : a_3) \in X(k)$ such that $a_0 \neq 0$.
- b) Show that φ is an isomorphism.

Problem 43 Let k be an algebraically closed field. Consider the morphism $\mathbb{A}_k^1 \rightarrow \mathbb{A}_k^1$ corresponding to the ring homomorphism $k[t] \rightarrow k[t]$, $t \mapsto t^2$. Describe the scheme theoretic fibers $f^{-1}(x)$ for all $x \in \mathbb{A}_k^1(k)$. Which fibers are reduced?

Problem 44 Let $\varphi : X \rightarrow S$, $S' \rightarrow S$ be maps of schemes. The *base-change* of φ is defined to be the map $\varphi' : X \times_S S' \rightarrow S'$.

$$\begin{array}{ccc} X \times_S S' & \xrightarrow{\varphi'} & S' \\ \downarrow & & \downarrow \\ X & \xrightarrow{\varphi} & S \end{array}$$

- a) Let K be a field, and let L_1, L_2 be extension fields of K . Show that there exists a field L together with K -homomorphisms $L_1 \rightarrow L$, $L_2 \rightarrow L$. (Hint. To construct L , you could start with the tensor product $L_1 \otimes_K L_2$ (however note that this will not in general be a field).)

- b) Show that the surjectivity of φ implies the surjectivity of φ' .
- c) Give an example of a situation where φ is injective, but φ' is not.

(We call a morphism of schemes *surjective* (or *injective*, *bijective*), if the underlying continuous map has the respective property. Note that every isomorphisms of schemes is bijective; but the converse is not true.)