Algebraic Geometry I WS 2025/26

Prof. Dr. Ulrich Görtz Dr. Andreas Pieper

Problem sheet 8

Due date: Dec. 16, 2025.

Problem 26 Let X be a topological space, $U \subseteq X$ open, and denote by $j: U \to X$ the inclusion map. Let \mathscr{F} be a sheaf of abelian groups on U. Denote by $j_!(\mathscr{F})$ the sheaf associated with the following presheaf on X:

 $V \mapsto \begin{cases} \mathscr{F}(V) & \text{if } V \subseteq U, \\ 0 & \text{otherwise,} \end{cases} \quad \text{for } V \subseteq X \text{ open}$

Compute the stalks of $j_!(\mathscr{F})$ and the restriction $j_!(\mathscr{F})_{|U}$. It is possible to define $j_!$ on sheaf morphisms, so that $j_!$ is a functor. Show that j^{-1} is right adjoint to $j_!$.

Remark. Recall that $j^{-1}\mathscr{G} = \mathscr{G}_{|U}$. You do not have to write out the proof that the bijections $\operatorname{Hom}(j_!\mathscr{F},\mathscr{G}) \xrightarrow{\cong} \operatorname{Hom}(\mathscr{F},j^{-1}\mathscr{G})$ are functorial in \mathscr{F} and \mathscr{G} .

Problem 27 Give an example of affine schemes X, Y and a morphism $X \to Y$ of ringed spaces which is not a morphism of locally ringed spaces.

Hint: Consider a DVR R and its field of fractions K. Construct a morphism of ringed spaces $\operatorname{Spec}(K) \to \operatorname{Spec}(R)$ whose image is the closed point.

Problem 28 (Gluing topological spaces) Let U_1, U_2, U_3 be topological spaces. Suppose we are given:

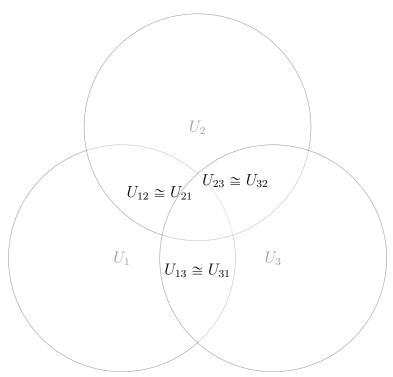
- $U_{ij} \subseteq U_i, i, j \in \{1, 2, 3\}$ open,
- isomorphisms $\varphi_{ji}: U_{ij} \xrightarrow{\cong} U_{ji}$.

such that

- (a) $U_{ii} = U_i$ and
- (b) the cocycle condition $\varphi_{kj} \circ \varphi_{ji} = \varphi_{ki}$ holds on $U_{ij} \cap U_{ik}$ for all i, j, k = 1, 2, 3.

Show that there exists a topological space X together with open embeddings $\psi_i: U_i \to X$ such that

- $\psi_j \circ \varphi_{ji} = \psi_i$ on U_{ij} for all i, j = 1, 2, 3,
- $X = \bigcup_{i=1}^{3} \varphi_i(U_i)$
- $\psi_i(U_i) \cap \psi_j(U_j) = \psi_i(U_{ij}) = \psi_j(U_{ji})$ for all i, j = 1, 2, 3.



Bonus exercise: Generalize to arbitrarily many U_i . Show that (X, ψ_i) is unique up to unique isomorphism.